

Games of Partial Information in Cyber-Physical Systems Security

João P. Hespanha

Work in collaboration with Denis Garagic, Guosong Yang, Radha Poovendran

Outline

UC SANTA BARBARA engineering

Partial information games

- ►→ Sensor manipulation
 - Sensor-reveal game
 - Existence/computation of Nash equilibrium
 - Data-driven approach to detection

with D. Garajic (BAE)

[based on CDC'20, WeC09.4]

- ► Asymmetric information
 - online learning of the attacker's best response

with G. Yang (UCSB), R. Poovendran (UW)

[based on CDC'20, FrB09.3]

Motivation – Cyber attack detection (S) uc SANTA BARBARA engineering

- Legitimate users can request access to a secure service by providing appropriate credentials.
- Attacker explores sequence of exploits to get access to credentials that would give her illegal access.
 scan network ports, gain user access, escalade

 Attack detection based on sensor ("logs") that can be disabled by an attacker

399 0 0 1080/1008/1000/1000/1000/1000/1000/
399 1 0 1000/1000/1000/1000/1000/1000/100
399 8882 722 1000/1000/1000/1000/1000/1000/1000 660 8 /usr/sbb10 8882 1506972572 737456 endang
3 (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)
[3] 0729 [724] 115 [3790] 12907757 [7374/9] Emang 4] 1998 [724] 3156 1998 [156697577 [7376] and bo
3 8998 724 1112 8998 158697572 777658 endato
4 8990 724 3 48 8998 1586972572 737824 endaho
34018001173411068787878787868718687186871868718681995017241751675eeb1818985111586697357317378501eedebg
399 9362 888 1008/0/0/0/0/0/1000/1000/1000 8991 724 /usr/bin/sudo 0 9362 1506972572 738010 endang
4 9362 888 6 1 9362 1586972572 738814 endahg
3 9362 #88 5 1 9362 1586972572 738625 endeng
379 1 0 101 / 101 / 101 / 101 / 103 / 103 / 103 0 0 1 / 301 // 311 (0 1 1309 / 2572 / 2518 8167 / 103 101 / 101 / 103 /
41713181218217881158607257217391761endebs
192 9 9362 898 7 78 NA 8 9 9362 1596972572 738193 endaba
91 9362 888 8 6 67368800 16496 9362 1586972572 738254 endahg
91 9362 888 0 b72d7800 107008 9362 1586972572 738298 endang
91 9362 888 8 b7295800 196892 9362 1586972572 738382 endahg
91 9362 888 8 6 b7277888 125852 9362 1586972572 738313 endahg
[A1 A2PT [608] 0 [0 1970466 [8735] 2065 [12 66 A25 15] 138235 [66 09 g]
lavlanevlessialninexeeslessalanavlinessistinessalaineeg

Bayesian Detection

Adversarial Detection

Problem formulation:

 $\theta = \begin{cases} 1 & \text{attack active} \\ 0 & \text{no attack} \end{cases}$ cyber sensor logs classical Bayesian detection (given a-priori distribition of d detection system wants to estimate $\hat{\theta}(y)$ adversarial detection attacker decides distribution of θ to minimize $J_{\text{detec}} \coloneqq A \operatorname{P}(\hat{\theta} = 1, \theta = 0) + B \operatorname{P}(\hat{\theta} = 0, \theta = 1)$ cost of false cost of missed detections detections attacker wants to maximize $J_{\text{attack}} \coloneqq R\theta - CP(\hat{\theta} = 1, \theta = 1) + FP(\hat{\theta} = 1, \theta = 0)$ reward for reward penalty for false detections for attack getting caught (compromise confidence on detection mechanism)

Adversarial Detection

Problem formulation:

$$heta = egin{cases} 1 & ext{attack active} \ 0 & ext{no attack} \end{cases}$$

1-D example:

Detector picks *L* in $\hat{0} \quad y \leq L$

$$\theta = \begin{cases} x & y \\ 1 & y > L \end{cases}$$

to minimize

$$A P(\theta = 0) p_{\rm fp}(L) + B P(\theta = 1) p_{\rm fn}(L)$$

attacker wants to select $P(\theta = 1)$ to maximize (mixed policy)

$$J_{\text{attack}} \coloneqq R \operatorname{P}(\theta = 1) - C(1 - p_{\text{fp}}(L)) \operatorname{P}(\theta = 1) + F p_{\text{fn}}(L) \operatorname{P}(\theta = 0)$$

reward for attack penalty for getting caught

reward for false detections

Adversarial Detection

UC SANTA BARBARA engineering

attacker wants to select $P(\theta = 1)$ to maximize (mixed policy)

$$J_{\text{attack}} \coloneqq R \operatorname{P}(\theta = 1) - C(1 - p_{\text{fp}}(L)) \operatorname{P}(\theta = 1) + F p_{\text{fn}}(L) \operatorname{P}(\theta = 0)$$

reward for attack penalty for getting caught

reward for false detections

Detection with data manipulation

attacker selects values for

 $\theta \in \{0,1\}$ = whether or not to attack (typically mixed policy) $\sigma \in \{1,2,...,N\}$ = which sensor to reveal

detector picks set $Y_1, Y_2, ..., Y_N$ for each sensor and sets

$$\hat{\theta} = \begin{cases} 1 & y_{\sigma} \in Y_{\sigma} \\ 0 & y_{\sigma} \notin Y_{\sigma} \end{cases} \quad \text{in 1D example,} \\ Y_{i} = [L_{i}, \infty) \end{cases}$$

Detection with data manipulation

Problem formulation:

 $\theta = \begin{cases} 1 & \text{attack active} \\ 0 & \text{no attack} \end{cases}$

sensor selection allows attacker to influence

can be increased by disabling logs

$$p_{\rm fn} = \mathcal{P}(\hat{\theta}(Y) = 0|\theta = 1)$$

may be increased by creating "diversions"

$$p_{\rm fp} = \mathcal{P}(\hat{\theta}(Y) = 1|\theta = 0)$$

1.1.2. 191 (a) 1 (a)

attacker wants to maximize

data manipulation cost (e.g., added risk of being caught by disabling sensors)

$$J_{\text{attack}} \coloneqq R \theta - C \operatorname{P}(\hat{\theta} = 1, \theta = 1) + F \operatorname{P}(\hat{\theta} = 1, \theta = 0) - S(p_{\text{fn}}, p_{\text{fp}})$$

attacker maximizes reward by "tuning" data manipulation to maximize reward

UC SANTA BARBARA

Extensive Form Representation

attacker selects sensor σ $\sigma = 1$ $\sigma = N$ $\sigma = 2$ attacker selects θ $\theta = 0$ $\theta = 0$ $\theta = 1$ $\theta = 1$ $\theta = 1$ $\theta = 0$ defender selects Y_1 Y_2 $Y_{2/}$ Y_N Y_N Y_1 detection sets Y_i (knowing σ but not θ) $\hat{\theta} = \begin{cases} 1 & y_{\sigma} \in Y_{\sigma} \\ 0 & y_{\sigma} \notin Y_{\sigma} \end{cases}$

UC SANTA BARBARA engineering

On each branch $\sigma = i$, we have a 2-player nonzero sum game attacker plays rows:

$$\begin{aligned} A_{\text{att}}^{i} \coloneqq \begin{bmatrix} -S_{i} & F-S_{i} & Fp_{\text{fp}}^{i}(\mathcal{Y}_{i}^{1})-S_{i} & \cdots & Fp_{\text{fp}}^{i}(\mathcal{Y}_{i}^{M})-S_{i} \\ R-S_{i} & R-C & S_{i}-R+C\left(1-p_{\text{fn}}^{i}(\mathcal{Y}_{i}^{1})\right)-S_{i} & \cdots & R-C\left(1-p_{\text{fn}}^{i}(\mathcal{Y}_{i}^{M})\right)-S_{i} \end{bmatrix} & \leftarrow \text{ selects } \theta = 0 \\ \leftarrow \text{ selects } \theta = 1 & \leftarrow \text{ selects } \theta = 0 \\ B_{\text{def}}^{i} \coloneqq \begin{bmatrix} 0 & A & Ap_{\text{fp}}^{i}(\mathcal{Y}_{i}^{1}) & \cdots & Ap_{\text{fp}}^{i}(\mathcal{Y}_{i}^{M}) \\ B & 0 & Bp_{\text{fn}}^{i}(\mathcal{Y}_{i}^{1}) & \cdots & Np_{\text{fp}}^{i}(\mathcal{Y}_{i}^{M}) \end{bmatrix} & \leftarrow \text{ selects } \theta = 1 \\ defender & Y_{i} = \emptyset & Y_{i} = \text{``all''} & \text{intermediate options for } Y_{i} \\ plays & always pick & always pick \\ \theta = 0 & \theta = 1 & & \mathcal{Y}_{i}^{1}, \mathcal{Y}_{i}^{2}, \dots, \mathcal{Y}_{i}^{M} & \text{(finite enumeration for simplicity)} \end{aligned}$$

pl

Theorem: Consider only 3 detection sets (\emptyset , "all", Y_i)

For each sensor selection $\sigma = i$, the game has mixed Nash eq. with detection policy of the form

detection cost:

 $\bar{C}^i \coloneqq C(1 - p_{\rm fn}^i) + F p_{\rm fp}^i$

detection-set Y_i selected to maximize

$$\begin{cases} \frac{1-p_{\rm fn}^i}{p_{\rm fp}^i}, & \bar{C}^i \geqslant R\\ \frac{p_{\rm fn}^i}{1-p_{\rm fp}^i}, & \bar{C}^i < R, \end{cases}$$

very different from Bayesian case, where detection-set Y_i is selected to maximize $A P(\theta = 0)p_{fp} + B P(\theta = 1)p_{fn}$ but not surprising because now attack

probabilities adjust to $p_{\mathrm{fp}}, p_{\mathrm{fn}}$

Theorem: Consider only 3 detection sets (\emptyset , "all", Y_i)

For each sensor selection $\sigma = i$, the game has mixed Nash eq. with detection policy of the form

Attacker's reward determines (deterministic) optimal sensor selection form attacker

$$\sigma = \arg\max_{i} F \begin{cases} \frac{Rp_{\rm fp}^{i}}{\bar{C}^{i}} - S_{i} & \bar{C}^{i} \ge R\\ \frac{(R-C)(1-p_{\rm fp}^{i}) + Cp_{\rm fn}^{i}}{C+F-\bar{C}^{i}} - S_{i} & \bar{C}^{i} < R, \end{cases}$$

Attacker's reward determines (deterministic) optimal sensor selection form attacker

$$\sigma = \arg\max_{i} F \begin{cases} \frac{Rp_{\rm fp}^{i}}{\bar{C}^{i}} - S_{i} & \bar{C}^{i} \ge R\\ \frac{(R-C)(1-p_{\rm fp}^{i}) + Cp_{\rm fn}^{i}}{C+F - \bar{C}^{i}} - S_{i} & \bar{C}^{i} < R, \end{cases}$$

Theorem: Consider only 3 detection sets (\emptyset , "all", Y_i)

For each sensor selection $\sigma = i$, the game has mixed Nash eq. with detection policy of the form

But this policy depends crucially on opponent's goal...

$$J_{\text{attack}} \coloneqq R\theta - C \operatorname{P}(\hat{\theta} = 1, \theta = 1) + F \operatorname{P}(\hat{\theta} = 1, \theta = 0)$$
$$\bar{C}^{i} \coloneqq C(1 - p_{\text{fn}}^{i}) + F p_{\text{fp}}^{i}$$

Learning Through Fictious Play

Over repeated instances of the game, defender keeps track of

$$\bar{y}^{i}(t) = \begin{bmatrix} \text{fraction of times } \theta = 0 \text{ in } [0, t] \text{ when } \sigma = i \\ \text{fraction of times } \theta = 1 \text{ in } [0, t] \text{ when } \sigma = i \end{bmatrix}$$

at time t + 1 defender makes optimal Bayesian decision assuming

$$\begin{bmatrix} P(\theta = 0) \\ P(\theta = 1) \end{bmatrix} = \bar{y}^{\sigma}(t)$$
 empirical distribution
observed so far for sensor
 $\sigma(t + 1)$ is the correct prior

Theorem:

- 1. If attacker is using a fixed policy (Nash or not), then $\bar{y}^{\sigma}(t)$ converges to optimal best response trivial
- 2. If attacker is also using fictious play based on the observation of detectors policy, then $\bar{y}^{\sigma}(t)$ converges to optimal best response

non-trivial, based on results of convergence of 2x*N* player games

UC SANTA BARBARA engineering

Learning Through Fictious Play

engineering

Theorem:

- 1. If attacker is using a fixed policy (Nash or not), then $\bar{y}^{\sigma}(t)$ converges to optimal best response
- 2. If attacker is also using fictious play based on the observation of detectors policy, then $\bar{y}^{\sigma}(t)$ converges to optimal best response

Outline

Partial information games

- ➡ Sensor manipulation
 - Sensor-reveal game
 - Existence/computation of Nash equilibrium
 - Data-driven approach to detection

with D. Garajic (BAE)

[based on CDC'20, WeC09.4]

- ► Asymmetric information
 - online learning of the attacker's best response

with G. Yang (UCSB), R. Poovendran (UW)

[based on CDC'20, FrB09.3]

Learning Through Fictious Play

Impact:

- Robustify attack detection with respect to potential sensor manipulation
- Algorithm adapts to changes in opponent's intent
- 2. If attacker is also using fictious play based on the observation of detectors policy, then $\bar{y}^{\sigma}(t)$ converges to optimal best response

attacker's mixed policy

defender's mixed policy

player's costs

k

defender adjusts to opponent's policy, regardless of optimal or not

Asymmetric Information

- Defender often unaware of the attack objective ahead of time
- Attacker can observe/probe the defense strategy prior to attack

Lack of no-regret policies for defender

routing game example (based on cross fire attack [Kang-Lee-Gligor-13])

- attacker has resources to create 1Mpbs traffic through links 1, 2, or a combination
- router must decide how to route 1Mpbs of traffic through links 1, 2, or a combination

Asymmetric Information

- Defender often unaware of the attack objective ahead of time
- Attacker can observe/probe the defense strategy prior to attack

Lack of no-regret policies for defender

- attacker has resources to create 1Mpbs traffic through links 1, 2, or a combination
- router must decide how to route 1Mpbs of traffic through links 1, 2, or a combination

- attacker has resources to create 1Mpbs traffic through links 1, 2, or a combination
- router must decide how to route 1Mpbs of traffic through links 1, 2, or a combination

Asymmetric Information

- Defender often unaware of the attack objective ahead of time
- Attacker can observe/probe the defense strategy prior to attack

- Naif defender that reacts to "current" environment regrets choice (no Nash equilibrium, fictitious play will not converge)
- Defender must learn attacker's "response" and plan accordingly (need to consider Stackelberg equilibrium)

- attacker has resources to create 1Mpbs traffic through links 1, 2, or a combination
- router must decide how to route 1Mpbs of traffic through links 1, 2, or a combination

option I link 1, .5Mpbs legitimate
Optimal attack floods
link 2, .5Mbps legitimate
Ink 2, .5Mbps legitimate
Optimal attack floods
option II
Optimal attack floods
link 2 and
optimate traffic
Optimal attack floods
of legitimate traffic

Stackelberg equilibrium

Challenge in CPS sec.: attacker's best response $\beta(\cdot)$ is unknown to defender

- attacker's intent $J_a(\cdot)$ not known a priori
- attacker's capabilities \mathcal{A} not known a priori

Stackelberg equilibrium

Challenge in CPS sec.: attacker's best response $\beta(\cdot)$ is unknown to defender

- attacker's intent $J_a(\cdot)$ not known a priori
- attacker's capabilities \mathcal{A} not known a priori

Online learning approach:

- 1. estimate best response function $\hat{\beta}(\cdot)$ based on observation of attacker's actions *a*
- 2. select defender action

$$\hat{u}^* = \operatorname*{arg\ min}_{u \in \mathcal{U}} J_u(u, \hat{\beta}(u))$$

Stackelberg learning

$$\beta(\cdot) \in \left\{ f(\theta, \cdot) : \theta \in \Theta \right\}$$

(follower) cost
$$\beta(u) \coloneqq \arg\min_{a \in \mathcal{A}} J_a(u, a)$$

linearly parameterized function approximator on compact set \mathcal{U} (results extend to only approx. match)

attacker

Stackelberg learning

Assume

$\beta(\cdot) \in \left\{ f(\theta, \cdot) : \theta \in \Theta \right\}$

attack best-response learning rule:

$$\dot{\theta} = -\frac{\lambda_e}{\left| \int \nabla_{\theta} \left\| f(\theta, u) - a \right\|^2 \right|_{T_{\Theta}}}$$

hysteresis switching stops adaptation when error $||f(\theta, u) - a||$ is smaller than $\varepsilon/2$

$$\lambda_e(t) := \begin{cases} \lambda_\theta & \text{if } \|f(\theta, u) - a\| \ge \varepsilon;\\ \lim_{s \nearrow t} \lambda_e(s) & \text{if } \|f(\theta, u) - a\| \in (\varepsilon/2, \varepsilon);\\ 0 & \text{if } \|f(\theta, u) - a\| \le \varepsilon/2 \end{cases}$$

guarantees:

 $\begin{array}{c} \operatorname{attacker} \\ \text{(follower) cost} \\ \beta(u)\coloneqq \arg\min_{a\in\mathcal{A}}J_a(u,a) \end{array}$

linearly parameterized function approximator on compact set \mathcal{U} (results extend to only approx. match)

gradient descent learning with projection • can be computed without knowing θ

• can be computed without even observing a, just $J_u(u, a)$

Stackelberg learning

$$u^* = \arg\min_{u \in \mathcal{U}} J_u(u, \beta(u))$$

$$\beta(\cdot) \in \left\{ f(\theta, \cdot) : \theta \in \Theta \right\}$$

 $\dot{u} =$

attacker

(follower) cost

attack best-response learning rule:

$$= -\lambda_e(t) \left[\nabla_{\theta} \left\| f(\theta, u) - a \right\|^2 \right]_{T_{\Theta}}$$

defender's adaptation rule:

guarantees:

$$\begin{aligned} & = -\lambda_e(\iota) \left[\nabla_{\theta} \| J(\theta, u) - u \| \\ & -\lambda_u \left[\nabla_u J_u(u, f(\theta, u)) \right]_{T_{\mathcal{U}}} \quad \text{gradie} \end{aligned}$$

 $\beta(u) \coloneqq \arg \min J_a(u, a)$ $a \in \mathcal{A}$

> ent descent with projection (can be generalized by other adaptation mechanisms)

$$\dot{\theta} = 0 \implies \frac{\mathrm{d}}{\mathrm{d}t} J_u(u, f(\theta, u)) \leq -\lambda_u \left\| \left[-\nabla_u J_u(u, f(\theta, u)) \right]_{T_{\mathcal{U}}} \right\|^2 \leq 0$$

Λ

leader's cost $J_u(u, f(\theta, u))$'s monotonically decreasing; stops only if $\left[-\nabla_{u}J_{u}(u,f(\theta,u))\right]_{T_{u}}=0$ yill prove: convergence

Convergence analysis

D Est.:
$$\dot{\theta} = \lambda_e(t) \left[-\nabla_{\theta} \| f(\theta, u) - a \|^2 \right]_{T_{\Theta}}$$

Opt.:
$$\dot{u} = \lambda_u \left[-\nabla_u J_u(u, f(\theta, u)) \right]_{T_u}$$

hysteresis switching: stops only if error is smaller than $\varepsilon > 0$

Theorem.

- 1. After finite time T, estimate will accurately predict a(t) $\|f(\theta(t), u(t)) - a(t)\| < \varepsilon \quad \forall t \ge T$
- 2. Leader will converge to 1st-order optimality condition $\left[-\nabla_{u} J_{u}(u, f(\theta, u))\right]_{T_{\mathcal{U}}} \to 0$
- 3. One can use probing to guarantee correct estimation $\|\theta(t) \theta^*\| < \varepsilon_{\theta} \quad \forall t \ge T$

generalize Barbalat's lemma for hysteresis switching

establish invariance principle for projected gradient descent

persistent excitation (PE) $\int_{t}^{t+\tau_{0}} \nabla_{\theta} f(s)^{\top} \nabla_{\theta} f(s) \, \mathrm{d}s \ge \alpha_{0} I$

 $\varepsilon_{\theta} = \varepsilon \sqrt{\tau_0 / \alpha_0}$

Model mismatch

hysteresis switching: stops only if error is smaller than $\varepsilon > \kappa \varepsilon_f$

Theorem.

- 1. After finite time T, estimate will accurately predict a(t) $\|f(\theta(t), u(t)) - a(t)\| < \varepsilon \quad \forall t \ge T$
- 2. Leader will converge to 1st-order optimality condition $\left[-\nabla_{u} J_{u}(u, f(\theta, u))\right]_{T_{\mathcal{U}}} \to 0$
- 3. One can use probing to guarantee correct estimation $\|\theta(t) \theta^*\| < \varepsilon_{\theta} \quad \forall t \ge T$

generalize Barbalat's lemma for hysteresis switching

establish invariance principle for projected gradient descent

persistent excitation (PE) $\int_{t}^{t+\tau_{0}} \nabla_{\theta} f(s)^{\top} \nabla_{\theta} f(s) \, \mathrm{d}s \ge \alpha_{0} I$ $\varepsilon_{\theta} = 2\kappa \varepsilon_{f} \sqrt{\tau_{0}/\alpha_{0}} > 0$

Routing game example

Routing game example

Outline

UC SANTA BARBARA engineering

Partial information games

- ►→ Sensor manipulation
 - Sensor-reveal game
 - Existence/computation of Nash equilibrium
 - Data-driven approach to detection

with D. Garajic (BAE)

[based on CDC'20, WeC09.4]

- ► Asymmetric information
 - online learning of the attacker's best response

with G. Yang (UCSB), R. Poovendran (UW)

[based on CDC'20, FrB09.3]