

中国化学会第33届学术年会 The 33rd CCS Congress

2023年6月17-20日 山东·青岛 June 17-20, 2023 Qingdao Shandong

Fermi's golden rule (FGR) rate is a quantum rate for a quantum transition like charge transfer (CT) population transfer, whose system Hamiltonian can be given by

where $\hat{H}_{D/A} = \hat{\mathbf{P}}^2/2 + V_{D/A}(\hat{\mathbf{R}})$ is donor/acceptor Hamiltonian, $\hat{\mathbf{P}} = \{P_j | j = 1, \cdots, N\}$ and $\hat{\mathbf{R}} = \{R_j | j = 1, \cdots, N\}$ serves as momenta and positions of a system with nuclear degrees of freedom of N, $V_{D/A}$ serves as donor/acceptor state PES, under Condon approximation, diabatic coupling is a constant, $\Gamma_{DA} = \Gamma_{AD} = \Gamma$, whose corresponding Fermi's Golden rule rate coefficient is

$$
k = \frac{1}{\hbar^2} \int_{-\infty}^{\infty} dt C_{DA}(t)
$$

where quantum time correlation function is $C_{DA}(t) = C_{AD}^{\dagger}(t) = \frac{1}{Z_D} \text{Tr}_N \left[e^{-\beta \hat{H}_D} e^{i \hat{H}_D t/\hbar} \hat{\Gamma}_{DA} e^{-i \hat{H}_A t/\hbar} \hat{\Gamma}_{AD} \right]$ and Tr_N is trace over nuclear degrees of freedom. It can be converted to *symmetrized time correlation function (SCF)* via $\tau_c = t - i\beta\hbar/2$ and

obtain the 2-state SCF $G_{AD}(t) = \frac{1}{Z_D} \text{Tr}_N \left[\hat{\Gamma}_{DA} e^{i \hat{H}_A \tau_c^* / \hbar} \hat{\Gamma}_{AD} e^{-i \hat{H}_D \tau_c / \hbar} \right]$

This can be sampled by open-chain path-integral (OCPI) approach.

Open-Chain Path Integral Method

OCPI Gives Accurate FGR CT Rates

Open-chain Path-integral Method to Fermi's Golden Rule Rate

x1 x9 x8 x10 $\int_{0}^{\infty} x \Gamma_{AD}(x') \left\langle x' \left| e^{-i \hat{H}_D \tau_c / \hbar} \right| x \right\rangle,$ **backward propagation on H**A

Zengkui Liu (刘增魁**)** 1,2,3 , **Wen Xu (**徐文**)** 1,2 **, Mark Tuckerman** 2,3,4 **, Xiang Sun (**孙翔**)** 1,2,3

1.Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Rd., Shanghai 200126, China

2. NYU-ECNU Joint Computational Chemistry Research Center, 3667 North Zhongshan Road, Shanghai 200062, China

3. Department of Chemistry, New York University, New York, New York 10003, USA

以后

4. Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA

Figure #1 Schematic of Openchain Path-integral Approach: From ring polymer to open chain *Figure #3 Sampled SCF*

References

¹ J.R. Cendagorta, Z. Bačić, and M.E. Tuckerman, *J. Chem. Phys.* **148**(10), 102340 (2018). ² Z. Liu, W. Xu, M.E. Tuckerman, and X. Sun, *J. Chem. Phys.* **157**(11), 114111 (2022).

where $\hat{\sigma}_z = |D\rangle\langle D| - |A\rangle\langle A|$, $\hat{\sigma}_x = |D\rangle\langle A| + |A\rangle\langle D|$, $\Delta E = -\hbar\omega_{DA}$ is energy gap between donor and acceptor state, Γ serves as diabatic state coupling coefficient, and $\{\omega_j, c_j, \widehat{R}\}$ \hat{P}_j , \widehat{P}_j $\delta_j|j=1,\cdots,N\}$ are normal mode frequencies, vibronic couplings, positions and momenta operator of the j-th mode.

Fermi's Golden Rule Charge Transfer Rates

where we can apply Trotter splitting, Condon Approximation, and linearization variable Transformation as below

In linearized symmetrized correlation function integrate over the path-difference variables and employ the enhanced sampling approach to get OCPI symmetrized correlation function given by $G_{AD}(t) = \Gamma^2 \frac{\tilde{Z}_{\rm av}}{Z_D} \left\langle e^{i\Phi(\mathbf{r})} \frac{e^{-\beta W(\mathbf{r})}}{e^{-\beta W_{\rm av}(\mathbf{r})}} \right\rangle \qquad \qquad Z_D = \text{Tr}[\exp(-\beta \hat{H}_D)]$

r1

Here, < > av is canonical ensemble average of effective Hamiltonian with averaged PES partition, interbead frequency is $\omega_P = \sqrt{P/|\tau_c|}$, the effective Hamiltonian is

$$
\tilde{H}_{av} = \frac{\mathbf{p}^2}{2} + \sum_{\alpha=1}^P \frac{1}{2} m \omega_P^2 (r^{(\alpha+1)} - r^{(\alpha)})^2 + \frac{1}{P} \left[\sum_{\alpha=2}^P \overline{V}(r^{(\alpha)}) + \frac{1}{2} \overline{V}(r^{(1)}) + \frac{1}{2} \overline{V}(r^{(P+1)}) \right] + \frac{1}{2\beta} \left[\mathbf{K}(\mathbf{r})^T \mathbf{M}^{-1}(\mathbf{r}') \mathbf{K}(\mathbf{r}) + \ln(\det[\mathbf{M}(\mathbf{r}')]) \right]_{av}
$$
\n• quantum phase factor\n
$$
\Phi(\mathbf{r}) = \frac{t}{P \hbar} \left[\sum_{\alpha=2}^P \Delta V(r^{(\alpha)}) + \frac{1}{2} \Delta V(r^{(1)}) + \frac{1}{2} \Delta V(r^{(P+1)}) \right],
$$

 $W(\mathbf{r}) = \frac{1}{2\beta} \Big[\mathbf{K}(\mathbf{r})^T \mathbf{M}^{-1}(\mathbf{r'}) \mathbf{K}(\mathbf{r}) + \ln(\det[\mathbf{M}(\mathbf{r'})])\Big]_{\text{complex}},$

 $W_{\text{av}}(\mathbf{r}) = \frac{1}{2\beta} \left[\mathbf{K}(\mathbf{r})^T \mathbf{M}^{-1}(\mathbf{r'}) \mathbf{K}(\mathbf{r}) + \ln(\det[\mathbf{M}(\mathbf{r'})])\right]_{\text{av}},$

Acknowledgement

Figure #2 FGR Rates

 $\hat{H} = \hat{H}_D|D\rangle\langle D| + \hat{H}_A|A\rangle\langle A| + \hat{\Gamma}_{DA}|D\rangle\langle A| + \hat{\Gamma}_{AD}|A\rangle\langle D|$

Figure #5 Bead structures

the analytical FGR CT rate

constant of the model system

results agrees with the exact

CT rates within $10\omega_c$ *without*

smoothing and $20\omega_c$ *with*

smoothing.

can capture NQE with and

without smoothing.

- *OCPI can produce very accurate SCF*
- *The absolute sampling errors of SCF utilizing the OCPI method is small!*
	- *less than 0.001 at high temperature*
	- *less than 0.0001 at low temperature*
- *Adding smooth to the central part can further improve FGR CT rate constant.*

• *The end-to-end distance clearly exhibits the real-time dynamics.*

• *The first bead of the open chain corresponds to time 0; the last bead of the open chain corresponds to the time t.* • *Intermediate beads follow a*

chronological order in-between time 0 and t.

Figure #4 Sampled Configurations

The 2-state SCF of 1-dimensional system

can be cast in position basis

 $G_{AD}(t) = \int \mathrm{d} x \; \mathrm{d} x' \Gamma_{DA}(x) \left\langle x \left| e^{i \hat{H}_A \tau_c^* / \hbar} \right| x' \right\rangle$

- quantum phase factor
- complex bead average weight
- real bead average weight
- matrix elements $M_{\alpha\alpha'}(\mathbf{r}') = \left[2A + \frac{\beta}{4P}\overline{V}''(r^{(\alpha)}) \frac{it}{4P\hbar}\Delta V''(r^{(\alpha)})\right]\delta_{\alpha\alpha'} A\delta_{\alpha+1,\alpha'} A\delta_{\alpha,\alpha'+1}, \quad (\alpha,\alpha'=2,\ldots,P)$ $K_{\alpha}(\mathbf{r}) = \gamma \left(2r^{(\alpha)} - r^{(\alpha-1)} - r^{(\alpha+1)}\right) - \frac{t}{P\hbar}\overline{V}'(r^{(\alpha)}) - \frac{i\beta}{4P}\Delta V'(r^{(\alpha)}), \quad (\alpha = 2, \ldots, P),$ where $A = \frac{mP\beta}{4|\tau_z|^2}, \qquad \gamma = \frac{mPt}{\hbar|\tau_z|^2}$
- Model Hamiltonian employed here is a 19-mode spin-boson Hamiltonian

 $\hat{H} = \Gamma \hat{\sigma}_x - \frac{\Delta E}{2} \hat{\sigma}_z + \sum_{i=1}^N \left(\frac{\hat{P}_j}{2} + \frac{1}{2} \omega_j^2 \hat{R}_j^2 - c_j \hat{R}_j \hat{\sigma}_z \right).$

$$
r^{(1)} = x^{(1)}, \quad r^{(P+1)} = x^{(P+1)},
$$

$$
r^{(\alpha)} = \frac{1}{2} \left[x^{(\alpha)} + x^{(2P+2-\alpha)} \right], \quad (\alpha = 2, \cdots, P),
$$

$$
s^{(\alpha)} = x^{(\alpha)} - x^{(2P+2-\alpha)}, \quad (\alpha = 2, \cdots, P).
$$
and
$$
\{ x^{(\alpha)} | \alpha = 1, \cdots, 2P \}
$$
 is the bead positions.