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Abstract

This paper presents a puzzle of the behavior of experimental sub-
jects in what we call common-probability auctions. In common-value
auctions, uncertainty is defined over values, while in common-probability
auctions, uncertainty is defined over probabilities. We find that in
contrast to the substantial overbidding found in common-value auc-
tions, bidding in strategically equivalent common-probability auctions
is consistent with Nash equilibrium. In our experiments, we isolate the
different steps of reasoning involved in the bidding process and con-
clude that in competitive environments, the difference in bids across
our two auctions stems from differences in the way that subjects esti-
mate the objects’ value they are bidding for rather than the way they
bid conditional on these valuations.
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1 Introduction

In the typical common-value auction, bidders bid for a good whose value is
not precisely known but is the same to all bidders. Bidding is then based
on a privately informed appraisal of the good’s expected value. Each bidder
receives a signal about the good and, based on that signal, makes a bid.
The key feature of this Bayesian game is that, when forming expectations,
bidders face some uncertainty that is common to all bidders. Yet, there has
been little discussion of auctions in which the main uncertainty refers to
a probability rather than to a value. For example, consider firms bidding
for bonds issued by a corporation under financial stress. Here, the value
of the bond at maturity is known, but what is uncertain is the probability
of default by the corporation. If investors do their due diligence, they will
receive a signal about the common default risk drawn from a commonly
known distribution and, based on this probability signal, make a bid for the
bond. In such situations, what is uncertain is, first and foremost, a common
probability and not a common value.1

In this paper, we ask whether in auctions, bidders process these two
objects of uncertainty (values and probabilities) in the same way. In other
words, do bidders, when facing two strategically equivalent common-value
(CV) and common-probability (CP) auctions, submit identical bids? Or
does the fact that one auction exhibits uncertainty in the value domain
while the other exhibits it in the probability domain lead to differences in
bidding behavior?

We find that subjects approach our two versions of the Bayesian game
very differently. First, in contrast to the theoretical predictions, our subjects
bid significantly more in CV than in equivalent CP auctions. More specifi-
cally, while our subjects in CV auctions tend to bid above the naïve bidding
function (i.e., bidding the expected value given the signal), subjects in CP
auctions tend to bid below the even lower Nash equilibrium bid function.
As a result, winning bidders are less vulnerable to the winner’s curse in the
CP than in the CV auction. Why this difference exists is the puzzle we wish
to unravel in this paper.

1Other auctions in which a probability constitutes a major uncertainty are auctions
for artwork with dubious provenance, for which collectors may have a precise assessment
if the object has a certificate of authenticity but where the risk of facing a counterfeit or
stolen object may be the principal uncertainty.
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In the different treatments of our experiment, subjects face either CV
or CP auctions and bid for equivalent items. In CP auctions, we present
subjects with a random asset whose positive value is known but where the
probability of receiving that value is not, while in CV auctions, our subjects
face a different asset whose failure risk is known but whose value in the case
of success is uncertain. These assets define lotteries for which our subjects
bid and are strategically equivalent, in that bidders should have identical
expectations conditional on equivalent probability and value signals and,
hence, bid identically.

To investigate our puzzle, we break down the bidding process into two
stages, one dealing with fundamental uncertainty (Stage 1) and the other
with strategic uncertainty (Stage 2), and run experiments attempting to
identify which stage is responsible for our puzzle. In Stage 1, bidders have
to calculate their subjective valuation for the good given a signal. This task
requires them to solve the problem of fundamental uncertainty, as they have
to estimate how much the good is actually worth. Once they have formed
their subjective estimate, in Stage 2, they then have to convert their sub-
jective valuation into a strategic bid, taking into account how others will
bid. This second task deals only with strategic uncertainty. The differ-
ence in bidding may emanate from either or both of these two stages. In
Stage 1, subjects may value the lotteries with uncertain values differently
than those with uncertain probabilities, conditional on equivalent signals.
Alternatively, given identical valuations in Stage 1, in Stage 2, bidders may
view the strategic uncertainty across our two settings differently and bid
accordingly.

Our experiments reveal that our puzzle is more complex than antici-
pated. Differences in bids originate by and large in the first stage of the
bidding process, but fundamental uncertainty alone is not sufficient to gen-
erate the discrepancy. Concretely, subjects resolve uncertain values and
probabilities differently–but only in a competitive setting. With uncertain
probabilities, expectations about the lottery’s payoff are mostly accurate,
but of particular interest is the way that subjects contemplate uncertain
values. Uncertain values give rise to misjudgments in a systematic manner:
In non-competitive settings, subjects value CV lotteries close to their ex-
pected payoff but, in the auction, they expect them to pay off substantially
more.
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We came to this conclusion by running four experiments designed to
study bidding behavior and its components in isolation. Experiment I es-
tablishes our main result on the asymmetry in bidding behavior across our
CV and CP auctions. To sort out whether this difference emerges with fun-
damental uncertainty, we ran Experiment II, in which subjects were asked to
evaluate (price) the same lotteries underlying our CV and CP auctions but
not bid for them in an auction. Interestingly, stripping the auction game of
its strategic elements revealed that the observed difference in bids cannot be
attributed solely to fundamental uncertainty. When asked to price lotteries,
subjects estimated both value and probability lotteries at their objective
expected payoff.

We then ran two more experiments to study the auction context specifi-
cally. Experiment III investigated how bidders resolve the Stage-1 problem
of fundamental uncertainty in an auction (competitive) as opposed to the
(non-competitive) decision problem studied in Experiment II. This third ex-
periment, in which we elicited a variety of fundamental estimates within and
outside of the auction context, provides us with two main insights. First,
differences in bids originate in Stage 1 of the bidding process, in that sub-
jects come up with different estimates for equivalent CV and CP lotteries.
Second, subjects must be placed in an auction context for these differences
in expectations to emerge.

Experiment IV focused on Stage 2 and studied how bidders deal with
the strategic uncertainty inherent in the auction game. Here, we found that
strategic uncertainty does not offset, but further sustains, the differences
that arise in Stage 1. Our subjects in CV auctions expected their competi-
tors to overbid, which prevented them from bidding below their exaggerated
estimates of the lottery’s expected payoff. In contrast, in CP auctions, in
which they had substantially lower estimates, they underestimated the com-
petition. Finally, Experiment IV further confirmed that disparities between
our CV and CP auctions emerge in Stage 1 because helping our subjects
resolve fundamental uncertainty reduced the extent of overbidding in CV
auctions and, hence, the differences in bids between auctions.

To appreciate the implications of our paper for auction design, it is im-
portant to understand that in the real world, it is hard to find examples
of pure common-value, common-probability, or even pure private-value auc-
tions. Bidders mostly face uncertainty over both values and probabilities,
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and, if an aftermarket exists for private goods, they too have a common-
value component. Usually, however, one object of uncertainty prevails over
the other. For example, consider a real estate developer who is thinking
of bidding on a piece of rural land with the hope of building a shopping
center. The developer knows the value of the land for that use, but the
shopping center will be viable only if a highway being discussed by the state
highway commission is built. If the highway is not built, the land remains
farmland. The uncertainty here is primarily over the probability of the high-
way being built and not its value contingent on that happening (although
that, too, may be uncertain).2 To include such ex-post uncertainty into
the sale of these contingent products, it is possible to auction off contin-
gency contracts, and a recent and interesting literature on such auctions
with contingent bids exists (see, e.g., DeMarzo et al., 2005). Still, in many
cases, goods are auctioned with all-cash bids–i.e., without the use of such
contracts.

Since most auctions have both probabilistic and value uncertainty, the
way they are perceived by bidders can be influenced by the way the auction
is presented to them. Descriptions that put relatively more weight on value
uncertainty can be expected to increase revenues (with a higher incidence of
the winner’s curse), while emphasis on probabilistic uncertainty will tend to
mitigate the winner’s curse at the expense of revenues. Since bidders may
shy away from auctions in which they repeatedly suffer from the winner’s
curse, stressing the probabilistic aspect of the auction, while reducing rev-
enues in the short run, may increase entry and, hence, revenues in the long
run.

The paper is divided in two main parts. In the first part, we briefly
discuss the most closely related literature in Section 2 and then in Section
3, present the main Experiment I with its design, the theoretical hypotheses
and the experimental results, which constitute our main puzzle. In the sec-
ond half of the paper, Section 4, we tackle the puzzle by exploring potential
explanations with the additional Experiments II to IV. We finally conclude
with our interpretation of the findings in Section 5.

2Other contingent entities might be firms that create a new product whose value is
contingent on their receipt of a patent. The worth of the firm can be estimated fairly
accurately once the patent is granted, but the uncertainty over whether it will be is the
vehicle driving the firm’s value.
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2 Related Literature

Our paper is connected to a number of different literatures. First, there
is the obvious connection to the literature on common-value auctions and
the extensive evidence on the winners’ curse (Kagel and Levin 1986; Kagel
et al. 1989; Charness and Levin 2009; Charness et al. 2014, i.a.; see also
Kagel and Levin 2002 for an excellent review). This pervasive observation
in the laboratory has spiked a wide experimental literature testing its ro-
bustness and, so far, the winner’s curse effect has been found to decline with
public information (Kagel and Levin, 1986; Grosskopf et al., 2018), learning
in form of sufficient experience (Dyer et al., 1989; Kagel and Richard, 2001;
Casari et al., 2007) or familiarity with the task in the field (Harrison and
List, 2008).3 Our contribution here is to investigate the extent to which
the winner’s curse is robust to having stochastic rather than deterministic
objects auctioned off. Having lotteries as auction prizes allows for modeling
the common uncertainty in two alternative ways, either as common proba-
bilities or as common values. Our experimental findings are novel because
they directly connect the incidence of the winner’s curse to the type of ob-
ject up for sale. We demonstrate that persistent overbidding is eliminated
in an equivalent variant of the same game that requires identical skills of
Bayesian updating, contingent reasoning and learning.

The main drivers of the winner’s curse phenomenon are still subject to
a debate. The experimental literature provides mixed evidence on the im-
portance of emotions such as the thrill of winning (Cox et al., 1992; Holt
and Sherman, 1994; Bos et al., 2008; Astor et al., 2013) or the fear of losing
(Delgado et al., 2008). Other explanations offered relate more directly to
strategic uncertainty. For instance, subjects may misidentify the connec-
tion between other bidders’ actions and their private signals (Eyster and
Rabin, 2005; Crawford and Iriberri, 2007; Eyster, 2019). Alternatively, sub-
jects might have difficulties performing the type of contingent reasoning
involved in equilibrium behavior. More precisely, in order to avoid over-

3Relatedly, overbidding in independent private value auctions has been attributed to
a misperception of winning probabilities (to some extent) (Dorsey and Razzolini, 2003),
learning dynamics (feedback information) (Neugebauer and Selten, 2006), ambiguity aver-
sion (Salo and Weber, 1995), anticipated loser’s regret (Engelbrecht-Wiggans and Katok,
2007; Filiz-Ozbay and Ozbay, 2007), spite (Morgan et al., 2003), reference-dependent util-
ity with induced values (Lange and Ratan, 2010) and imperfect best response combined
with risk aversion (Goeree et al., 2002).
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bidding, subjects’ bids should be conditional on their private signal being
the highest among all signals, and they should shave their bid downward.
Anticipating the informational content of winning is, however, a difficult
task. It requires a sophisticated level of contingent reasoning that, in gen-
eral, most bidders struggle with. Besides common-value auctions, difficulties
related to contingent reasoning extend to other settings, such as "Acquiring-
A-company" games (Bazerman and Samuelson, 1983; Charness and Levin,
2009; Martinez-Marquina et al., 2019, in an individual decision game vari-
ant); voting games (Esponda and Vespa, 2014); or asset markets (Carrillo
and Palfrey, 2011; Ngangoue and Weizsacker, 2021). In all these settings,
uncertainty appears to be a crucial factor in impeding contingent reasoning
(Martinez-Marquina et al., 2019; Koch and Penczynski, 2018; Ngangoue and
Weizsacker, 2021; Moser, 2019).

Note, however, that none of the behavioral explanations mentioned above
hinge on a specific object of uncertainty. Our findings are surprising since it
had been assumed that the winner’s curse was primarily the result of faulty
strategic (Stage-2) reasoning and not faulty Stage-1 valuations. This result
could not be detected by previous auction studies because the two stages of
the bidding process are typically not investigated separately, as we do here.

Our study also connects to recent decision-theoretic experiments that
have exposed the fragility of attitudes toward uncertainty. Subjects’ at-
titudes have been found to vary with different sources of ambiguity (Ab-
dellaoui et al., 2011; Li et al., 2018), with different sources of risk (Chew
et al., 2012; Armantier and Treich, 2016) and sometimes with different out-
comes (e.g., with money vs. time in Abdellaoui and Kemel, 2014). These
treatments highlight that it matters how subjects think about uncertainty,
and we contribute to this literature by proposing an additional treatment
variation that puts the domain over which uncertainty is resolved in the fore-
ground. In our study, the final outcome is always some amount of money,
and the mechanism generating uncertainty is similar (the source), but the
object over which the uncertainty is defined varies. This matters substan-
tially in our game with incomplete information because it implies that our
subjects will have to form and update beliefs over different objects. This
distinction is also picked up in a growing literature in economics and psy-
chology on how people view lotteries with uncertain outcomes versus those
with uncertain probabilities. The findings suggest mainly that when asked
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to choose between lotteries involving uncertain outcomes or uncertain prob-
abilities, subjects appear to have no strong preference (Kuhn and Budescu,
1996; Gonzalez-Vallejo et al., 1996; Du and Budescu, 2005; Eliaz and Or-
toleva, 2016). However, when asked to price them, subjects value lotteries
with uncertain outcomes above those with uncertain probabilities (Schoe-
maker, 1991; Du and Budescu, 2005). The results of Experiments II and
IIIb are consistent with this existing literature on decision problems, but
our auction setting brings attention to the finding that these small differ-
ences observed in individual decision-making are substantially magnified in
a strategic environment.

Finally, it is useful to point out that a number of things we do in this
paper are novel to the experimental auction literature. For example, this
paper is probably the first to separate the bidding process into two stages
and investigate them separately. This separation leads us to elicit a number
of objects typically not revealed in conventional experimental auctions, such
as a subject’s estimate of the value of the object on which they are bidding
given their signal; their estimate of the value of the object in the event
of having the highest signal among all competitors (something we elicit in
Experiment III and that is needed to bid optimally); their beliefs about the
highest bid they are likely to face in the auction given their signal; as well
as their belief that they have the highest signal among all competitors, etc.
All of these objects are vital for understanding bidding behavior, and we
believe that they may be useful to others.

3 A Different Auction Game

Our study consists of four experiments with a total of 360 students from
New York University.4 Experiment I provides the main evidence on bidding
behavior in auctions with 107 subjects. Experiment II, with 104 subjects,
sheds some light on how, in a non-strategic setting, bidders value lotteries
with uncertain values versus those with uncertain probabilities. Experiments
III and IV, with 96 and 53 subjects, respectively, help us understand how
subjects map their private signals into bids. All experiments were conducted
in a between-subject design, in which subjects faced uncertainty either in
values or in probabilities. In this section we present the two main auction

4Participants were recruited with the software hroot (Bock et al., 2014).
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treatments CV and CP of Experiment I and relegate the description of
Experiments II, III and IV to Section 4.

3.1 The Bayesian Game

At the beginning of an auction, subjects were randomly placed into groups of
four bidders (i = 1, .., 4).5 Subjects then bid for lotteries described as either
common value (CV) or common probability (CP) lotteries. Both lotteries
are defined by two parameters v and p, where v is a non-zero payoff of the
lottery and p is the percentage probability of receiving that payoff (with
(100− p) defining the percentage probability of receiving 0).6 We define by
k and ũ the known and unknown components of the lottery, respectively (we
use tildes in the following to denote random variables). In the CP lottery,
the two outcomes {v, 0} are known such that k =: v, but ũ =: p̃ is uncertain,
while in the CV lottery, k =: p is known, but ũ =: ṽ is uncertain.

The computer determined the exact lottery by randomly drawing ũ from
a uniform interval such that ũ ∼ U [γl, γh], 0 < γl < γh < 100. The four
bidders, who did not observe the realization of ũ, each received a private
signal si independently from each other. The signal was informative about
the unknown ũ in that si ∼ U [ũ − ε, ũ + ε], ε > 0. Signals became more
informative with a smaller support–i.e., with decreasing ε.

A Bayesian bidder would infer from observing a specific signal si that
the unknown ũ must lie within [si− ε; si + ε]. To help the subjects, we pro-
vided this Bayesian update to them before they bid. Given this information,
subjects placed a bid for the lottery at the bottom of the decision screen
(see Figure 1 for an example of a CV auction).

At the end of an auction, the unknown ũ was revealed along with broad
feedback: Every bidder observed the true lottery (with p and v), the lottery
outcome (0 or v) and the highest bid.7 The lottery was played, and the
auction winner received the lottery’s outcome, either 0 or v, and paid her
bid.

5We chose n = 4 because in the experimental literature, the winner’s curse has been
extensively studied in auctions with four bidders (see Kagel and Levin, 2002).

6We deliberately focus on binary zero-outcome lotteries to keep the cognitive costs of
computing expected values comparable. This lotteries describe an investment structure
that is not unusual because in many auctions the possibility of a zero outcome in form of
a failed investment is relevant. For instance, in the standard example of common-value
auctions, bidding for an oil lease also entails the risk of hitting a dry well.

7The computer broke ties between maximum bids randomly.
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Figure 1: Example of Decision Screen in Treatment CV

3.2 Predictions Under Linear Expected Utility

There are three standard benchmarks under linear expected utility to which
we can compare empirical bids. The derivation of the symmetric risk-neutral
Nash equilibrium (RNNE) can be found in Wilson (1977) and Milgrom and
Weber (1982). Following the standard experimental procedure of discarding
observations with signals close to the lowest and highest possible values of
ũ (see, e.g., Kagel and Levin, 2002), we will constrain our data analyses to
observations in the signal domain (γl + ε < si < γh − ε) for which our three
bidding benchmarks (multiplied by 100) take the following functional forms:

Naive bid: 100 · E[L|si] = k · si (1a)

Break-Even bid: 100 · E[L|si = max
∀j
{sj}] = k ·

(
si − ε

n− 1
n+ 1

)
, j = 1, ..., 4

(1b)

RNNE bid: 100 · b∗(si) = k ·
[
si − ε+ 2ε

n+ 1e
−( n

2ε
)[si−(γl+ε)]

]
(1c)

A naive bidder will bid the expected payoff of the lottery given her private
signal E[L|si] (see Equation 1a). A more sophisticated bidder will take into
account the winner’s curse effect and will bid the expected payoff assuming
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that her signal is the highest. She will, therefore, shave her bid downwards
to make, on average, zero profits with a break-even bid (see Equation 1b). A
highly sophisticated bidder will shave her bid even more, assuming that, in
a symmetric equilibrium, everyone else uses the same strategy (see Equation
1c). The break-even and the RNNE bid do not differ by much; the analyses
will, therefore, focus mainly on the naive and the RNNE benchmarks as these
represent the highest and the lowest bidding benchmark, respectively.8

3.3 Procedures and Parameters

In Experiment I, 55 and 52 subjects were assigned to the treatments CV
and CP, respectively. Sessions lasted approximately 90 minutes and subjects
earned, on average, $23.78. The currency used in the experiment was credits
(C= ) with C= 6 corresponding to $1.

Both treatments had identical procedures. The experiment was com-
puterized with oTree (Chen et al., 2016) and consisted of two parts.9 In
the first part of both treatments, subjects engaged in eight different auction
environments with ten separate auctions each. The eight environments de-
termined the type of lotteries they bid for and were defined by an n-tuple
(k, γ̄, ε), where γ̄

(
= γl+γh

2
)
defined the interval [γl, γh] (of fixed length) from

which ũ is drawn, and ε defined the signal precision (1
3ε

2)−1. A 2x2x2 fac-
torial design varied these three components across two sets of parameters:
k ∈ {40, 60}, γ̄ ∈ {40, 60}, ε ∈ {4, 8}. Thus, as shown in Table 1, the eight
environments differed with respect to the known parameter k (column 2),
the support of the unknown parameter [γl, γh] (columns 3 and 4), as well as

8In auctions with affiliated values, a prize in the form of a lottery ticket may generate
some precautionary bidding if subjects have decreasing absolute risk aversion (Eso and
White, 2004; Kocher et al., 2015). In the instructions, we did not specifically frame the
lottery as an ex post risk, but the subjects probably perceived it that way. The observed
bids in our CV treatment are, if at all, too high and do not suggest that the lottery ticket
introduced a precautionary premium by lowering bids, although the general direction of
a corresponding DARA effect in common-value auctions is not clear. More importantly,
if bids exhibit a precautionary premium, there are no apparent reasons for premia to
drastically differ across treatments.

9Subjects needed to pass a comprehension test before they could start the first part
of the experiment. In the first part, subjects participated in a set of first-price auctions.
In the second part, attitudes toward risk, compound risk and ambiguity were elicited (see
Appendix C for a detailed description). At the end of the experiment, subjects learned
their payoffs in the first and second parts and answered a small, unincentivized question-
naire. In the questionnaire, they provided some information on their socio-demographic
background and their general approach to the auction game, and they took Frederick’s
cognitive reflection test (Frederick, 2005).
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the signal precision given by ε (column 5).

Table 1: Lottery parameters

Lottery type k γl γh γ̄ ε

1 60 30 90 60 4
2 40 10 70 40 4
3 40 30 90 60 4
4 60 10 70 40 4
5 60 30 90 60 8
6 40 10 70 40 8
7 40 30 90 60 8
8 60 10 70 40 8

Subjects then played ten different auctions in each of these eight auc-
tion environments. For each of these ten auctions, the computer randomly
selected a true lottery on the basis of the environment’s parameters such
that the exact lottery (i.e., the true v of the CV or p of the CP lottery) and
the corresponding signals possibly differed from auction to auction within
an environment.

3.4 Results

Overall, bids significantly differed between the two auction formats.

Result 1 Subjects generally overbid in common-value but bid according to
Nash equilibrium in common-probability auctions.

As predictions vary with parameters and signals, aggregate data will be
described by bid factors defined as the difference between the subject’s bid
and the Nash equilibrium bid. Normalizing bids in this fashion allows us
to focus on statistics that are independent of the private signals.10,11 Bid
factors are zero if subjects bid according to Nash equilibrium but are positive

10Empirical bid factors are usually defined as the difference between the naive bid and
the subject’s bid and reflect how much subjects shave their bid relative the naive expecta-
tions. We opted for a varying definition of bid factors that, in our opinion, offered better
visualization of the data. Here, bid factors refer to deviations from the Nash equilibrium
bid.

11We focus here on the comparison of bid factors across treatments, given that the
empirical distributions of the randomly generated signals si were similar (p = 0.113 in
Kolmogorov-Smirnov test).
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(negative) if they bid above (below) the Nash equilibrium bidding function.12
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Figure 2: Bid Factors (=bid - RNNE bid) in Treatments CV (solid) and
CP (dashed)

As Figure 2 shows, the distribution of bid factors significantly differed be-
tween the two treatments; Bid factors were predominantly positive in CV
(indicating a fair amount of overbidding) but slightly negative, albeit con-
sistent, with Nash equilibrium in CP. Appendix Table A1 presents the sum-
mary statistics of bid factors with respect to all three benchmarks. In CV,
subjects bid more than the expected payoff of the lottery given their pri-
vate signal, as mean and median bids are above the naive bid. In CP, by

12Despite passing the comprehension test, some subjects chose dominated bids that
were above the highest possible outcome a lottery could pay off (given one’s signal in
CV or independent of the signal in CP). For subjects who made these dominated choices
too frequently (more than 10% of all rounds), we interpret these choices as evidence of
inattention and exclude 3 and 13 subjects in treatment CV and CP, respectively. In the
Experiments II to IV, we exclude in a similar manner 5 and 8 subjects in CV and CP,
respectively. Therefore, our analyses present the decisions of a reduced sample of 332
out of 360 subjects. It is important to note that, first, removing those subjects does not
affect our main conclusion, as we continue to observe a substantial difference in bidding
behavior with the entire sample. Second, this reduced sample is balanced in the sense
that, across treatments, the remaining subjects do not substantially differ with respect
to demographics and personal characteristics measured at the end of the experiment (see
Appendix Table A7.)
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contrast, subjects bid slightly below the RNNE bid. In sum, subjects signif-
icantly overbid for CV lotteries, but bid close to Nash equilibrium for CP
lotteries. This difference between CV and CP occurred for all parameter
combinations–i.e., in all eight auction environments. Appendix Figure A 3
shows the estimated median bid as a function of signals. In all eight en-
vironments, the median bids for CV lotteries lie substantially above, while
those for CP lotteries are slightly below the RNNE curve.13

The question remains whether this difference in bid factors affects the
incidence of the winner’s curse. Figure 3a shows the distribution of bid fac-
tors in winning bids separately for the CV and CP treatments. Winners in
both auctions fell prey to the winner’s curse, as average winning bids were
significantly above the break-even bid (see Appendix Table A2). Yet the
difference in bid factors between the two auction formats remains substan-
tial. Winners bid higher in CV and lost, on average, more than in CP (mean
loss of C= −24.04 in CV vs. C= −10.04 in CP, p-value< 0.001 in t-test of
differences with cluster-robust standard errors). As shown in Figure 3b, the
cumulative distribution function (CDF) of winning payoffs in CV auctions
first-order stochastically dominates the CDF in CP auctions.
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Figure 3: The Winner’s Curse in CV and CP Auctions

Result 2 The winner’s curse effect is attenuated in the common-probability
compared to the common-value auctions.

13Previous experimental studies with a similar design exhibit some variety in the extent
of overbidding with, for instance, a percentage of bids above the break-even bid ranging
from 10% to 82% (see, e.g., Kagel and Levin, 2002). In our design that features a stochastic
instead of a deterministic prize, we observe that the extent of overbidding is slightly in
the upper end of this range (62% in Experiment I) but still in line with previous findings.
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Several factors may have contributed to the winner’s curse being less se-
vere in CP than in CV auctions. The first possibility is that winners in CP
lost less money because they shaved more as a result of more-sophisticated
reasoning through the adverse selection problem; a second alternative is that
CP auctions required less shaving in the first place because the empirical
break-even bids differed across auctions. Specifically, subjects may have
shaved differently because winning in CV and CP revealed unequal infor-
mation. A winner’s curse can arise only to the extent that winning reveals
some relevant information that should have been considered in formulating
a bid. Here, the information that a bidder needs to consider to properly
correct for the adverse selection effect is given by the difference between her
estimate of the object given her signal and her revised estimate upon win-
ning the auction. In a symmetric equilibrium, these two estimates will differ
because being the highest bidder implies having the highest signal. Yet, in
our auctions, bidding strategies may not have been symmetric, and, thus, to
assess how informative winning is, we estimate the predicted probability of
having the highest signal conditional on winning. Winning in CV increases
the likelihood of having the highest signal from 19% to 36%, which is three
times more than in CP (24% to 28%, as shown in Appendix Figure A 5).14

In other words, in the CP auction, a naive bidder could have easily won
an auction without having the highest signal and, hence, without overesti-
mating the object. This implies that, empirically, the CP auction requires
bidders to shave less than the CV auction, which may explain why, in CP
auctions, the winner’s curse is less severe, but not why bids are lower. Ap-
pendix Section B.2 provides a more detailed analysis of the winner’s curse
effect in those auctions. We conclude that, in the aggregate, the winner’s
curse is mitigated in CP because, there, a winner is less likely to have the
highest signal. This suggests that subjects in CP may not have been more
sophisticated than those in CV, but it does not preclude the possibility that
the ability to reason through the winner’s curse differed.

14The probit estimation is done with the entire sample in Experiment I. The estimation
with the reduced sample leads to more extreme results with a higher marginal effect of
winning in CV, but a nonsignificant and weak effect in CP.
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4 The Bidding Process and Its Constituents

4.1 Experiment II: Pricing of Lotteries

Differences between our CP and CV auctions may originate in the first stage
of the bidding process in which subjects form subjective valuations for the
good. In other words, subjects possibly bid differently simply because they
resolved the fundamental uncertainty existing in Stage 1 differently, without
differing in their assessment of the strategic uncertainty they faced in Stage
2. To investigate this in Experiment II, we stripped the auction game of its
strategic elements (cf. Charness et al., 2014, i.a.) by having subjects submit
their willingness to pay (henceforth WTP) for the same lotteries used in
Experiment I. In treatment CVL, we elicited subjects’ WTP for a series of
CV lotteries, whereas in treatment CPL, we did the same for CP lotteries.

In Experiment II, subjects engaged in the same eight environments used
in Experiment I but now made 12 decisions per environment. In the first
round, they submitted an ex-ante WTP without observing a signal. This
round was followed by ten rounds, in each of which a new lottery was gen-
erated. For each of these ten lotteries, subjects submitted an interim WTP
after observing a signal. Lastly, later in the experiment, they stated another
ex-ante WTP (without signals) for the first lottery they were presented with,
but this time in its reduced rather than its compound version. This allows
us to assess whether cognitive difficulties of compounding lotteries affected
valuations because for this elicitation, we aggregated the compound prob-
abilities for them. To this end, we presented lotteries defined over final
payoffs by using a wheel that displayed all possible outcomes of the reduced
lottery in a simple and condensed graph (see Appendix Figure A 1 for an
example of a CV lottery). We reversed the order of eliciting WTP for com-
pound and reduced lotteries across sessions: One third of the subjects first
submitted a WTP for lotteries in their reduced version before pricing lot-
teries in their compound version.15 The experimental interface remained

15To determine whether or not a lottery was bought, we endowed the subjects with
C= 100 with which to bid, with any unspent credits paid to the subject. We then used the
Becker-DeGroot-Marschak mechanism (1964) so that after a subject submitted her WTP,
a random number between 0 and 100 set the lottery price. The subject bought the lottery
if its price was weakly less than her WTP. In that case, any gains or losses were added to
or subtracted from her endowment of C= 100. Otherwise, she did not engage in the lottery
and ended the round with her initial endowment.
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essentially the same as in Experiment I, with the only difference being that
the subjects submitted WTPs for lotteries in a decision problem rather than
bids in an auction game. To keep learning dynamics as similar as possible
to those in Experiment I, in rounds without a signal there was no feedback
after submitting an ex-ante WTP. In contrast, after every round with a sig-
nal, the subjects learned the actual lottery ticket, its price and its outcome,
irrespective of whether or not they bought it.

4.1.1 Results: Experiment II

We collected data from 54 and 50 subjects in treatments CVL and CPL,
respectively. We present our main results using the difference between wi,
the subject’s willingness to pay for a lottery, and E[L|si], the lottery’s ex-
pected payoff given the subject’s signal. We call this measure the price factor
PF = wi − E[L|si], emphasizing its correspondence to the bid factor. In
other words, the price factor is equivalent to the negative of a risk premium.

To compare the lottery valuations with the bids from Experiment I, we
use the fact that E[L|si] also corresponds to the naive bidding curve in the
auction and compare the price factor with a non-strategic bid factor with
respect to the naive benchmark (BFns = bid − E[L|si]). Figure 4a shows
the distribution of non-strategic bid factors in the auctions of Experiment
I. We juxtapose Figure 4b, which shows the distribution of price factors in
Experiment II. The treatment effect that we found in the auction game is
largely attenuated in the decision problem. The average difference of C= 4
(p-value < 0.001 in quantile regression, C= 6 in the means) is substantially
smaller than the difference of C= 17.4 observed in the auctions.

Appendix Sections B.3 and B.4 show that subjects processed value and
probability signals similarly in the valuation of lotteries. We obtain a similar
picture with the ex-ante valuation of CV and CP lotteries, for which we find
no differences in median WTP (see Appendix Figure A 4). Without any
signal, subjects chose an average uncertainty premium of C= 4 regardless of
whether uncertainty was represented by a range of values or a range of
probabilities (see Appendix Table A3). We also find that, in the aggregate,
subjects priced compound and reduced lotteries similarly (see Appendix
Section B.5). In that sense, the general perception of lotteries with uncertain
values versus uncertain probabilities does not explain differences in bids.16

16Note that incentives differ between the auction and the lottery treatments. In first-
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Figure 4: Bidding in Exp. I (Left) versus Pricing in Exp. II (Right)

We next investigate the discrepancy between the bidding in auctions
and the pricing of lotteries in decision problems. Valuations for CP lotteries
with and without strategic incentives are rather stable. On average, subjects
priced CP lotteries almost C= 1.8 below their expected payoff, and in auctions,
bid C= 2 less for the same CP lotteries (p = 0.29 for the comparison of bids
and prices in quantile regression with clustered standard errors). In contrast,
valuations for CV lotteries substantially differed across settings. In CV
auctions, subjects bid, on average, C= 13.6 above the expected payoff of the
lottery but priced the same lotteries close to the expected payoff in the
decision problem (C= 2.4 above expected payoff–i.e., on average, C= 11.2 less
than in auctions, p < 0.001 in quantile regression).

Experiment II seems to suggest that the observed difference in bidding
across our CV and CP auctions was a Stage-2 phenomenon involving strate-
gic reasoning since subjects seemed to value CV and CP lotteries equiva-
lently. This conclusion is premature, however, since, as we will see in Ex-
periments III, IIIb, and IV, placing a subject in a competitive environment
tends to change their Stage-1 valuations.

price auctions, a Nash equilibrium bidder pays his bid and in expectations makes small
profits. In the lottery treatment, subjects pay the random price, which is, in expectation
and conditional on buying, half the subject’s WTP. Monetary incentives are, therefore, on
average, higher in the lottery treatment and could partly explain the smaller differences in
the lottery treatments. However, monetary incentives should have a similar effect across
CV and CP treatments, but the asymmetry in findings between CV and CP treatments
casts some doubt on monetary incentives being the main reason for the observed differences
between auction and lottery treatments.
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4.2 Experiments III-IV: The Bidding Process in the Auction

When bidding in an auction, it is not enough to estimate the common-value
item by looking only at one’s own signal. One must consider that others
have also received signals and, if they bid in a monotonic fashion, then a
bidder must condition her estimate of the common-value item on her signal
being the highest. The persistent overbidding in our CV auctions suggests
the opposite reflection, in that subjects may heavily weight the possibility of
signals above their own as being relevant. Overestimating the item’s value
in the auction context (Stage 1) can then lead to overbidding in the absence
of faulty strategic reasoning in Stage 2.

In Experiments III and IV, we look into the black box of bidding to
identify what element in this mapping of signals into bids is different across
our two auctions. Technically, the ingredients of the black box should not
depend on signals being over values or probabilities; yet our results from
Experiments I and II suggest that they do. Experiment III investigates
the mapping from signals to fundamental estimates (Stage-1) in an auction
setting, while Experiment IV explores strategic (Stage-2) behavior.

4.2.1 Experimental Designs

Procedures Experiments III and IV were conducted online on Zoom dur-
ing the Spring and Fall of 2021. For more efficiency, we made use of the data
in Experiment I by matching every participant in the new experiments with
three participants from auctions that took place in Experiment I. In other
words, every new subject replaced one randomly chosen subject from an auc-
tion in Experiment I. The new subject then bid for the exact same lottery
ticket, observed the same signal and bid against the same three opponents
as the replaced subject from Experiment I.17

17Hence, we held constant the environment our subjects faced by making it identical
to that of Experiment I–except, of course, for the fact that they were bidding against
subjects in a previous experiment, which the subjects knew. This allowed us to collect
more independent data since we did not need to recruit four subjects to obtain data on one
auction. In addition, this kept the feedback after each round as similar as possible because
information about the winning bid changed only if a new participant won the auction.
We also took into account that it was less risky to conduct an online experiment as an
individual decision-making experiment rather than with groups because of the risk of losing
group members due to internet connections or distractions. Each experiment had two parts
with separate instructions to which subjects had access throughout the experiment. In
addition, instructions were read aloud by the experimenter or made available through a
video. In every experiment, a comprehension test before Part 1 ensured that subjects
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Experiment III Intelligent bidding in an auction requires the ability to
estimate the expected payoff of a lottery given one’s own signal and, in
Nash equilibrium, conditional on having the highest signal. We specifically
wanted to know whether subjects form correct estimates of the lottery’s ex-
pected payoff in the auction game (as opposed to the decision problem in
Experiment II), in particular when they condition on having the highest sig-
nal and, more importantly, whether subjects perform these tasks differently
across our value and probability auctions.

Experiment III consists of two parts. To assess the robustness of our
results when matching participants to previous subjects, in Part 1, we let our
subjects bid for a lottery after receiving a (value or probability) signal, just
as in Experiment I. In Experiment III, however, because of a time constraint,
subjects participated in only 40 different auctions. More specifically, we used
the same parameters as in Experiment I, but we focused on the parameter
sets with ε = 4, for which, in Experiment I, overbidding in CV was more
pronounced. As we show in Appendix B.6, this part of Experiment III
replicates our main results of Experiment I.

In a second part, we elicited different estimates for 12 different lotteries.
For each lottery we elicited three objects of interest:

1. The estimate conditional on a signal (which we call the Naive Esti-
mate): Subjects stated their best estimate of the expected payoff of
the lottery ticket given a signal. In the experiment, we referred to the
expected payoff as the true average worth of the lottery ticket. We
described it as the payoff that they would get, on average, if the lot-
tery ticket with its Selected Value or Selected Probability was played
very often. There was one important difference between the estimate
elicited here and the valuation stated in Experiment II: While in Ex-
periment II, we simply asked subjects to price the lottery given a signal
in isolation, in Experiment III, we elicited these values after subjects
had participated in 40 rounds of auctions. In other words, subjects’
assessed the lottery in the context of an auction, forcing them to con-
sider this auction context when estimating the lottery’s expected pay-
off. For example, the expected payoff of a lottery conditional on one
solitary signal may strike subjects as different from the one conditional
on knowing that the signal is just one of four. If, for some reason, our

understood the information structure and the auction (in Experiment III).
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subjects thought that their signal might have been the lowest, they
might have increased their estimates to incorporate this fact. This is,
of course, false strategic reasoning since, to avoid the winner’s curse,
one computes expectations under the assumption that one has the
highest signal of all bidders.

2. The estimate conditional on having the highest signal (which we call
the Contingent Estimate): We elicited subjects’ estimates of the
lottery’s expected payoff in the hypothetical event of having the high-
est signal. Such contingent reasoning is required for bidding in Nash
equilibrium. Differences between the Naive and the Contingent Es-
timate tell us whether subjects were able to construct Bayesian up-
dates correctly–that is, whether they were able to compute correct
fundamental estimates once they were nudged to consider the relevant
conditional event of having the highest signal.

3. The belief about the likelihood of having the highest signal: We asked
subjects to assess the probability that the signal that they received was
the highest one among the four bidders’ signals in an auction. This
measure is necessary to interpret our data because someone who be-
lieves that she has the highest signal may not display any difference
between her Naive and Contingent Estimates in the first place.

We also ran Experiment III with a slightly different variant, in which the
two main parts were swapped: While in Experiment III, we elicited subjects’
estimates about features of the lottery after they had already engaged in 40
auctions, in Experiment IIIb, we elicited this information before they bid
in auctions. Reversing the order of the two parts in Experiments III and
IIIb allowed us to elicit fundamental estimates both outside and inside the
auction context. More precisely, in Experiment IIIb, we told our subjects
that their signal was part of a vector of four signals, but we did not reveal
that lotteries would be auctioned off in the second part. Hence, comparing
Experiments III and IIIb controls for auction experience in the valuation
of lotteries. The difference between Experiments II and IIIb, on the other
hand, is that subjects in Experiment IIIb knew that their signal was one of
four signals drawn, while in Experiment II they received a single signal in
isolation.18

18All point estimates were incentivized with a binarized scoring rule (Hossain and Okui,
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Experiment IV In Experiment IV, we isolated strategic from fundamen-
tal uncertainty by providing our subjects with the most accurate fundamen-
tal estimate for Stage 1, leaving them with mainly strategic uncertainty in
Stage 2. This experiment also consisted of two main parts. In the first part,
we explored subjects’ strategic uncertainty by eliciting beliefs about their
opponents’ bids. Here, subjects saw the same information as their peers in
Experiment I–that is, a lottery ticket with an uncertain value or probability–
and then, based on their private signal, they stated what they thought the
highest bid of the other three bidders was (we call this the Belief about
the Competitive Bid).19 Subjects stated their beliefs for 20 independent
auctions without receiving any feedback between auctions so as to not bias
their decisions in the subsequent Part II.

In the second part, subjects engaged in the same auctions as in Part 1,
seeing the same lottery tickets with the same signal. However, in this part,
we provided them with two pieces of information to allow them to weigh
the fundamental risks against the strategic ones. The first one pertained to
strategic uncertainty and reminded them of the belief about the competitive
bid they had stated for that particular auction in Part I (cf. box in the
upper right corner of Appendix Figure A 2). The second one pertained to
fundamental uncertainty. Our goal was to reduce fundamental uncertainty
as much as possible by telling our subjects that they had the highest signal
among all four bidders. In addition, we explicitly told subjects what it

2013). A bonus payment of C= 12 was paid if the estimate was sufficiently close to the object
of interest. More precisely, the bonus was paid with probability Pr[(Estimate - object of
interest)2 < K] with K ∼ [0, 362]. To elicit the probability belief, a bonus of C= 24 was
paid with probability Pr[(1(si≥s−i)) - guess)2 < K] with K ∼ [0, 1], where 1(si≥s−i) takes
the value 1 if the subject had indeed the highest signal (and zero otherwise). In addition,
we incentivized subjects to report the smallest interval for which they were certain that it
contained the lottery’s Expected Payoff Conditional on the Signal and its Expected Payoff
Conditional on Having the Highest Signal (Schlag et al., 2015; Enke and Graeber, 2021).
To incentivize the choice of the interval, we penalized wider intervals with the following
rule: subjects received a fixed bonus only if the object of interest was indeed in their
chosen interval, but the magnitude of the bonus would depend on the interval width. The
bonus was calculated as follows: 12 ∗ [1 − (u − l)/(E[L(γh)] − E[L(γl)])], where l and u
denote the chosen lower and upper threshold of the interval and E[L(γl)] and E[L(γh)] the
minimum and maximum expected payoff of the lottery. Thus, the smallest interval–i.e., a
point prediction– would lead to a maximum bonus of C= 12, while increasing the interval
width would decrease the bonus. This measure was meant to reflect subjects’ uncertainty
about their estimates.

19Again, subjects submitted first a point belief and then the smallest interval they were
sure would contain the highest bid of the other three bidders.
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meant to have the highest signal by telling them what the expected value
or probability of the lottery was given that their signal was highest, as
well as the resulting expected payoff of the lottery if one would multiply
values with probabilities (see Appendix Figure A 2). Hence, they had all the
important information about the lottery, leaving them mainly with strategic
uncertainty about the opponent.20

4.2.2 Results: Experiments III and IV

Stage 1 and Fundamental Uncertainty We start with Experiment
III, which examined whether differences in bids can be captured by different
fundamental estimates in Stage 1 of the bidding process. The distributions
of estimates are presented in Figures 5a and 5b, which plot the densities of
estimates conditional on the signal (solid lines for Naive Estimates) and con-
ditional on the signal being highest (dashed lines for Contingent Estimates)
relative to the objective expected payoff E[L|s] in CV and CP, respectively.

Result 3 Subjects in CV overestimated the lottery’s expected payoff condi-
tional on the signal they received and also conditional on the signal being the
highest among all bidders, while subjects in CP did not.

One striking feature in Figures 5a and 5b is that both Naive and Con-
tingent Estimates of the lottery’s expected payoff are significantly higher
in CV than in CP. For equivalent signals, subjects believed that the CV
lottery would, on average, pay more than the CP lottery. Furthermore,
subjects did not condition correctly contingent on having the highest signal
among the four bidders. The aggregate distribution of Naive and Contin-
gent Estimates are practically identical. The same observation is made at
the individual level, where subjects in both CV and CP chose, on average,
the same estimates in both tasks. This is significant because it indicates

20Note that some of the information we collected in Experiments III and IV have, to our
knowledge, not been collected in any previous auction studies, making our results relevant
to auctions in general. While some previous studies have elicited estimates of the common-
value item with or without incentives (Bazerman and Samuelson, 1983; Charness et al.,
2019), and others have provided subjects with the opportunity to revise bids conditional
on winning (Moser, 2019), to the best of our knowledge, ours are the first experiments to
directly elicit estimates about the common-value item contingent on having the highest
signal, the probability of having the highest signal and beliefs about the most competitive
bid.
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Figure 5: Naive and Contingent Estimates in Experiment III

that subjects failed to do one of the most critical parts of Stage-1 process-
ing, which is to condition correctly on their signal being the highest. If they
had, the distribution of Contingent Estimates would have shifted to the left
in both auctions, reflecting that having the highest of four signals lowers
one’s expectation about the lottery’s payoff.21 Thus, even when nudged to
consider the right conditional event, subjects did not recognize that they
needed to adjust their estimates downward.22

In Experiment IIIb, we asked subjects to assess lotteries before bidding
in auctions knowing that the signal they received was one of four signals.
The difference between Experiments III and IIIb should be informative of
the impact of experiencing competition on Stage-1 valuations.

We find that the majority of subjects in Experiment IIIb estimated the
lottery’s expected payoff close to its actual expected payoff (median differ-
ence of 0.4 in CV, p = 0.14, 0 in CP, p = 1, in median regression with

21We come to the same conclusion when we take into account subjects’ probabilistic
beliefs of having the highest signal. We find no systematic correlation between these
probabilistic beliefs and the Naive (and Contingent) Estimates, which, in turn, may not
be surprising given subjects’ failure to adjust Contingent Estimates in the right direction.

22Note that this finding contrasts with Moser (2019) and Esponda and Vespa (2021)
which differ in two ways. First, Moser (2019) and Esponda and Vespa (2021) study actions
(bids) rather than fundamental estimates contingent on relevant events; second, in their
studies, the relevant event that subjects are nudged to consider is winning. We believe
that the two events, winning and having the highest signal, are not empirically equiva-
lent. Conditional on winning, increasing the bid is a strictly dominated action, making
it easy for subjects to recognize that bids can only be adjusted downward. However, in
Nash equilibrium, the relevant informational event is the one of having the highest signal,
thereby also allowing for the possibility of non-monotonic or asymmetric bidding. Condi-
tional on having the highest signal, it may not be obvious to profit-maximizing subjects
that estimates need to be adjusted downward. This is what we in fact find.
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Figure 6: Naive and Contingent Estimates in Experiment IIIb

cluster robust standard errors (CRSE)). In the CP variant of Experiment
IIIb, subjects continued to evaluate the lotteries at their expected payoff,
albeit with a smaller noise. In CV, as can be seen in Figure 6a, the density of
estimates is shifted to the left compared to that in Figure 5a. While a small
hump remains at higher values, the mode is centered around the expected
payoff E[L|s].23 This finding is consistent with the finding in Experiment II
that subjects evaluated CV lotteries correctly in a non-competitive setting
with one signal. Our findings here show that it does not matter whether
signals are presented individually or as part of a vector as long as they are
not placed in a competitive context. More importantly, these results suggest
that if, conditional on their expectations, subjects shaved their bids equiv-
alently in our CV and CP auctions, then the overbidding we observe in the
CV auction stems from a problem of overestimating fundamental values in
Stage 1 and not a strategic problem in Stage 2.

Stage 2 and Strategic Uncertainty When looking at bidding behavior
in Experiment III, we see that contingent on their estimate, subjects shaved
their bid in a manner that was not significantly different across auctions.24

23We note that in Experiment IIIb, subjects formed better Contingent Estimates. In
both treatments, subjects lowered their estimates by, on average, C= 1 (p = 0.02 and
p = 0.001 in CP and CV, in median regression with CRSE) contingent on having the
highest signal (compared to a theoretical benchmark of lowering by, on average, C= 1.7).

24In absolute numbers, subjects actually shaved their bids more in CV than in CP, but
between auctions, differences in shaving were nonsignificant. In CV, they bid, on average,
C= -2.20 below their estimates (p = 0.235, median regression with CRSE). In CP, bids
were, on average, C= -0.8 (p = 0.6) below estimates. We obtain the same conclusion if
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This suggests that differences in bids do not stem from systematic differences
in the way subjects convert their estimates into bids. Of course, we can get
a complete picture of how subjects translated their estimates into bids only
once we know their beliefs about their opponents’ strategies. In Figure 7, we
place the objective expected payoff of the lottery given a signal, E[L|s], on
the horizontal axis, and for each such expected payoff, we plot two observed
values: (i) the median belief about the competitive bid (black line); and (ii)
the actual, median competitive bid (from Experiment I, dashed line). The
dotted line is the 45-degree line.

Result 4 Subjects in CV expected their strongest competitor to bid highly,
and their expectations were correct. By contrast, subjects in CP expected
their strongest competitor to bid close to the lottery’s expected payoff, thereby
underestimating the competition.
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Figure 7: Beliefs and competitive bids

Figure 7 shows that, for a given expected payoff, beliefs about the com-
petition subjects faced in the CV auction were significantly higher than

we estimate the bid function as the function of endogenous fundamental estimates in a
two-stage least squares procedure with mixed effects. The estimates of the bid functions
are not significantly different across auctions.
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those in the CP auction. This observation is consistent with the fact that
equivalent signals induced higher fundamental estimates in CV compared
to CP.25 In addition, in the CV auction, subjects were approximately cor-
rect in terms of their beliefs about the median competitive bid. Subjects
expected high bids from their competitors (bids greatly higher than the ex-
pected payoff of the lottery), and these beliefs were confirmed. The pattern
was different in CP. Here, subjects did not expect their competitors to bid
above the expected payoff of the lottery and actually underestimated the
competition. These beliefs further sustain the difference in fundamental es-
timates observed in Experiment III. In CV, the fact that subjects believed
their competitors bid close to their inflated estimates left them no room to
shave. For CP, the situation differed in that subjects had lower estimates
and also underestimated the competition.

A natural question that arises is whether subjects would adjust their
bids downward if they had correct estimates of the lottery’s expected payoff
when knowing they had the highest signal. Both Experiments IIIb and IV,
in which subjects had access to correct fundamental estimates before bid-
ding, can shed light on this question. While in Experiment IIIb, subjects
computed correct fundamental estimates themselves, in Experiment IV, we
provided them with correct fundamental estimates conditional on them hav-
ing the highest signal. If subjects in CV failed to form accurate estimates,
then providing them with such information should have changed their bid-
ding behavior. In fact, we find this to be the case. We start by looking at
the gentle nudge in Experiment IIIb. Figure 8 shows that having subjects
enter the auction with correct fundamental estimates shifts the distribution
of bids in Experiment IIIb to the left, relative to bids in Experiment III.

25This finding is akin to the type projection bias that induces one to believe that others
have the same signal as one does (Breitmoser, 2019), although, here, subjects would be
projecting their (biased) valuations rather than their type. Also note that there seems to
be some endogeneity between valuations and beliefs about others, as excessive valuations
were observed only in the presence of others.
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Figure 8: Bids in Experiments IIIb vs. I and III
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Figure 9: Bids in Experiment IV compared to Experiment I

The stronger nudge in Experiment IV led to an even stronger shift. Fig-
ure 9 shows subjects’ bids in Experiment IV as deviations from the expected
payoff given that they were told their signal was the highest. We juxtapose
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the bids (relative to the same benchmark) of their peers in Experiment I
who had the exact same signal but were not informed of its rank. As Fig-
ure 9 suggests, providing subjects with the conditional expected payoff had
a correcting effect on bids in both auctions. In CP, subjects adjusted their
bids upward, around the conditional expectation. In CV, we observe that,
relative to Experiment I, a substantial portion of bids were adjusted down-
ward towards the conditional expectation, even if the correction was not
enough to eliminate the aggregate evidence of overbidding. The shift to the
left in the CV distribution is consistent with our conjecture that in both
Experiments I and III, in which subjects in CV bid highly, a good part of
this overbidding was the result of not computing proper valuations. This
confirms our suspicion that receiving a signal in the value domain led to the
failure to process values correctly. When the expected payoff was provided,
behavior changed but could do so only partially, as subjects’ competitors
from Experiment I who were not given this information did, in fact, bid
excessively.

5 Discussion and Conclusion

This paper has presented a puzzle concerning the object of uncertainty in
auctions. We found that when we auctioned off items with an uncertain
common value, subjects largely overbid, but when the object of uncertainty
was a probability, the average bidding was close to the Nash equilibrium.

Our experiments revealed that our main puzzle consists of a combination
of two different phenomena: the overvaluation of value lotteries and the fact
that this overvaluation occurs only in a competitive context–i.e., in auctions,
but not in decision problems.

We gained these novel insights by breaking down the process of bidding
into two stages. In Stage 1, given the signal received, subjects form an esti-
mate of the item up for sale (either conditional on their signal or on knowing
their signal is the highest). In Stage 2, they transform their estimate into a
bid, with the understanding that they will face other bidders. This two-stage
process separates the fundamental uncertainty in the auction–i.e., how much
the good they are bidding for is worth–from the strategic uncertainty–i.e.,
what others will bid given their signals.

This procedure allowed us to pin down the origin of our puzzle to the
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way in which subjects resolve fundamental uncertainty when competing with
others. When subjects received a value or probability signal about the lot-
tery in decision problems, they did not only value the underlying lottery
equally across our two domains, but also valued it close to the lottery’s
expected payoff. These results were observed in Experiments II and IIIb.
However, when subjects were presented with signals in an auction, or, more
precisely, after having experience in an auction, (as was true in Experiment
III), they overvalued the lottery in the CV but not in the CP auction. Thus,
there was an asymmetry in how bidders resolved fundamental uncertainty
about values and probabilities but only when subjects were placed in the
auction. What this means is that the wall we have erected between assessing
fundamental and strategic uncertainty is not as solid as we thought. There
is a spillover. Our main goal in this discussion is to see whether we can
make sense in integrating these two different pieces of our puzzle.

In the following, we first discard possible explanations that have been
discussed in the literature, and then consider alternative explanations for
why competition triggers misjudgments with value uncertainty. While we
offer some suggestions to help us solve our puzzle, there is plenty still left
to investigate.

Enhanced utility via affect. An existing literature has discussed how
competitive settings may affect subjects’ valuation for an item. As dis-
cussed in Section 2, one of the first mentioned explanation for the winner’s
curse was the joy of winning that inflates the utility payoff of winning and,
as a result, entices a subject to bid higher. Somewhat related, Imas and
Madarasz’s (2020) "economics of exclusion" suggests that other peoples’ de-
sire for a scarce object makes it more valuable to the decision maker. In
both of these mechanisms, competition affects outcomes via an affective
channel, which is modeled as an increase in utility. Yet a surprising insight
from our experiments is that, in our Bayesian game, competition affects
outcomes via a cognitive channel: Our subjects directly misestimated the
item’s value (rather than having a higher utility for it). This implies that
our puzzle’s source is not in the utility domain but, rather, in additional
cognitive challenges to belief formation. Thus, in the following, we abstract
from mechanisms that distort valuations through utility and focus on how
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competition may complicate belief formation.

Misinterpretation of information in the auction. Bidding for lotter-
ies is more complex than pricing them because it requires bidders to form
rank-order statistics. Bidders know that their signal is only one out of many,
and their final expectation of the good will depend on how, they believe,
their signal compares to others’ signals. In our Experiment IIIb, however,
we do not find that computing rank-order statistics is the main issue: Sub-
jects were able to interpret their signals as part of a vector as long as they
were not associated with competition with others.

Desirability bias. Another way in which competition may affect belief
formation is via motivated reasoning (Benabou and Tirole, 2002; Benabou,
2013). One essential motive in competitive settings is the desire to win
the competition. In several experimental studies, the desire to win has
been shown to distort beliefs (see Kunda 1990 for a review of experimen-
tal research). Interestingly, this desirability bias features some irregularities
that fit our observed pattern. For example, Bar-Hillel and Budescu (1995);
Windschitl et al. (2010); Krizan and Windschitl (2009) have noticed that
predictions of outcomes are more prone to the desirability bias than are
predictions of likelihoods. Why this bias arises with the contemplation of
values but not of probabilities is unresolved, but our findings corroborate
this observed discrepancy in the literature and expose the importance of
modeling the right object of uncertainty in settings that trigger additional
desires. One possible hypothesis to be tested would be that subjects weight
outcomes that trigger a desire more heavily in their decision making. For
instance, the desire to win may trigger a focus on the “best case scenario”
that is worth “fighting” for, which, in the CV auction, means receiving a
high prize in the lottery. In contrast, in the CP auction, exaggerating the
probability of receiving the high prize offers less of an opportunity for wish-
ful thinking (perhaps even less with probability weighting). Whatever the
probability turns out to be, it must be multiplied by the prize to determine
an expected value, which is guaranteed to be less than the highest value
hoped for in the CV auction.
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Complexity matters more when pursuing a second objective. An
alternative explanation might be that stage 1 valuations could be affected
by the additional complexity that Stage 2 reflections introduce into decision
making. There is a basic difference in complexity between valuing a lottery
in isolation and bidding in an auction for that same lottery. When valuing
lotteries, subjects must choose a price that maximizes their profit, or an
estimate that maximizes its accuracy. To excel at this task, it suffices to
estimate the lottery’s expected payoff. By contrast, bidding in the auction
trades off two objectives: The optimal bid must be sufficiently high to max-
imize the chance of winning but, in the case of a win, sufficiently low to
generate profits. Hence, in the competitive setting, the desire to win intro-
duces a second objective in addition to the one of maximizing profits from
buying. The difficulty of attending to multiple objectives in a competitive
environment might interfere with estimating the item’s value.

The consequences of this type of complexity are not obvious, however.
Increased complexity can make the use of heuristics more appealing and,
hence, possibly lead to less-sophisticated bidding, or it can entice subjects
to exert more cognitive effort and, hence, enhance sophistication. What is
not clear is which auction should be considered more complex and which
reaction to this complexity is elicited.

In the following, we investigate reasons why the complexity of our CP
and CV auctions might differ.

Complexity is determined by the (mis-)match between information and
the response mode. One possibility for why one might consider the CP auc-
tion more complex than the CV auction is that the domains of the signal
and the response differ in the CP auction. Subjects receive signals in per-
centage probabilities, but they have to bid in credit values. This additional
computational task of converting probability signals into bid values might
induce subjects to direct more attention and effort to computing correct
estimates; it forces them to multiply their probability estimate with its as-
sociated value, which leads them to think in expected value terms. We call
this expectation-based reasoning. In contrast, subjects in the CV auction do
not engage in such expectation-based reasoning but, rather, use some other
heuristic. In such auctions, a bidder might fantasize about a high prize that
she might be able to obtain, inducing her to bid higher without taking the
probability of that event occurring into account. In CP auctions, any fanta-
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sizing must occur over the probability of winning the high prize, requiring
a bidder to compute expectations when converting her beliefs into a price.
Note that our design highlights the importance of expectation-based reason-
ing because, in contrast to previous common-value auction experiments, in
our design, simply bidding one’s signal does not conform with naive expec-
tations.

Previous experimental studies have commented on this hypothesis and
shown that responses become more prone to biases when the response mode
(a C= bid value) is aligned with the object of beliefs (a C= signal value) (Tversky
et al., 1988; Chapman and Johnson, 1994). For example, Kagel and Levin
1995 have alluded to the importance of the response mode to explain the
difference between the high bids in sealed-bid auctions, in which prices must
be submitted, and the lower bids observed in Dutch auctions with a binary
accept/reject response mode.26 Whereas in Kagel and Levin’s comparison,
the object of uncertainty is the same (values) while the response mode differs
(prices vs. accept/reject), in our experiments, the response mode is the
same (price values), but the object of uncertainty is different (values vs.
probabilities). An interesting test of this conjecture would be to investigate
the extent of overbidding in CP auctions in which subjects bid for a dollar–a
response scale that is identical to a probability scale. Interestingly, we note
that the prevailing response mode in auctions on non-performing loans are
bids on the dollar.27

Complexity is determined by the support of outcomes. Valuing compound
lotteries with uncertain probabilities over binary values appears different

26In the words of Kagel and Levin, "The behavioral breakdown of the strategic equiv-
alence of first-price and Dutch auctions and of second-price and English auctions is anal-
ogous to the preference reversal phenomenon, where theoretically equivalent ways of elic-
iting individual preferences do not produce the same preference ordering (see the Intro-
duction, section III.F.l and Camerer, chapter 8, section 111.1).12. Psychologists attribute
the preference reversal phenomenon to a breakdown in procedural invariance principles so
that the weight attached to different dimensions of a problem varies systematically with
the response mode employed. In the auctions, prices are higher when bidders must specify
a price, as in the first and second-price auctions, compared to the open auctions where the
decision is essentially to accept or reject the price that the auctioneer announces. Like the
P(rice)-bets in the preference reversal phenomenon, the sealed bid auctions focus attention
on the price dimension of the problem, and, like the P-bets, generates somewhat higher
prices. On the other hand, the accept/reject decisions involved in the Dutch and English
auctions focus attention on profitability, generating somewhat lower prices." Kagel (1995,
p. 512)

27To the best of our knowledge, whether these auctions on non-performing loans are
informationally efficient is still an open empirical question.
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from valuing compound lotteries with multiple uncertain values. For exam-
ple, under standard expected utility, the expected valuation of CP lotteries
increases linearly in the average probabilistic belief. This is because with the
CP lottery bidders know that, despite the uncertain probability distribution,
the winner will get one of two possible lottery outcomes: either the positive
value v or nothing. Thus, to assess the CP lottery subjects must simply
weight the utility of the high value by a probabilistic belief. With CV lot-
teries, on the other hand, the order of aggregating uncertainty matters more:
averaging utilities that are nonlinear over different values is surely more dif-
ficult than considering the utility of a single (average) value belief. Bidders
may therefore find it difficult to convert values in utils and keep track of all
possible utils in the aggregation process. Perhaps it is this additional cog-
nitive load that in the auction makes reasoning with uncertain values more
complicated and leads subjects to focus on a few salient values that may not
be good summary statistics. This raises the question of whether overbid-
ding generally decreases with a smaller support of outcomes–particularly in
settings like ours, in which the signal is not a good summary statistic.28

Since complexity is in the eye of the beholder, we might want to con-
sider which auction the subjects actually perceived to be more complex. In
Experiment I’s post-experimental survey, while we found a good deal of het-
erogeneity in how subjects perceived our two auctions, the majority of our
subjects preferred the CV to the CP lottery (54% for CV vs. 25% for CP,
with the rest being indifferent), and also preferred to participate in the CV
over the CP auctions (47% vs. 25%). While preference cannot be considered
synonymous with a lack of complexity, it is likely that our subjects preferred
the CV lotteries over their CP counterparts because they were better able to
comprehend them. What remains unclear is whether a better comprehen-
sion of CV lotteries implies that it is easier to deal with them in the bidding
process. Further research targeting subjects’ reflection and choice processes
should be undertaken, and a recent literature has taken up this ambitious
challenge (see, e.g., Agranov et al., 2015; Oprea, 2020; Kendall and Oprea,

28We have some suggestive evidence against this conjecture in Experiment I where we
increased the signal precision in our CV auction, which reduced the support of possible
outcomes, and found that subjects overbid more. Of course, a cleaner test is required than
this since subjects may also intuitively recognize that shaving becomes less important with
more-precise signals. As a result, the size of the support of values remains on the table as
a possible explanation.
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2021).
To conclude, we think that this paper has taken us some distance in

presenting a phenomenon that may be more general than the auction puz-
zle discussed here. For example, many problems in the real world contain
elements of both probabilistic and value uncertainty just as most auctions
are hybrids. What our results suggest is that one may be able to influence
behavior in such hybrid environments by simply stressing one aspect of the
uncertainty at the expense of the other. For example, if focusing attention
on the value uncertainty in an auction causes subjects to bid higher, then an
auctioneer whose objective is revenue maximization may want to do that.
Alternatively, if a social planner aims at maximizing social welfare, then
in that same environment she might want to stress the problem’s proba-
bilistic uncertainty sine that would mitigate the winner’s curse. A possible
avenue for future research might be to investigate how, in general hybrid
environments, behavior can be altered by stressing the different domains
of uncertainty facing decision makers. Since many economic mechanisms
are such hybrid entities, our results may have implications for how these
mechanisms should be implemented or framed in the real world.
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A Experimental Interfaces

Figure A 1: Example for Reduced Lottery in Experiment II

Figure A 1 shows the display of a reduced CV lottery in Experiment II.
The display of reduced CP lotteries was similar but with only two possible
outcomes.

Figure A 2: Example of CP Interface in Part II of Experiment IV

Figure A 2 shows the interface in the second part of Experiment IV. The
two framed boxes correspond to the two pieces of information given to the
subjects. The upper right box reminds the subject of their belief about the
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competitive bid for the exact same lottery. The lower box renders infor-
mation about the lottery to be expected conditional on having the highest
signal in the market.
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B Descriptive Statistics

B.1 Bid and Price Factors

Table A1: Bid Factors (BF) in Reduced Sample

Naive bid Break-Even bid Nash-Eq. bid
(bid-bidNaive) (bid-bidBE) (bid-bidRNNE)
mean median mean median mean median

CV 10.53*** 13.6*** 12.26** 15.32*** 13.33*** 16.45***
(1.872) (1.871) (1.870)

Exp. I CP -4.60*** -3.80** -2.84** -2.04 -1.77 -0.82
(1.424) (1.425) (1.425)

Diff. 15.13*** 17.4*** 15.11*** 17.36*** 15.10*** 17.26***
(2.346) (2.345) (2.345)

CV 16.14*** 19*** 17.80*** 21*** 17.53*** 20.60***
(2.570) (2.559) (2.791)

Exp. III CP -1.33 -0.40 -0.64 1 -0.31 0.80
(1.225) (1.178) (1.621)

Diff. 17.47*** 19.4*** 17.86*** 20*** 17.84*** 19.80***
(2.819) (2.789) (3.199)

CV 12.95*** 13.2*** 14.55*** 15*** 15.9*** 16.8***
(1.550) (1.558) (1.689)

Exp. IIIB CP -0.60 0 1.23 1** 0.84 1.80*
(1.099) (1.141) (1.380)

Diff. 13.54*** 13.2*** 13.32*** 14*** 15.07*** 15***
(1.885) (1.941) (2.166)

CV 9.46*** 8.4*** 10.66*** 9.36*** 11.45*** 10.00***
(1.828) (1.828) (1.828)

Exp. IV CP -1.61 -0.4 -0.41 0.76 0.39 1.60
(1.750) (1.750) (1.750)

Diff 11.07*** 8.80*** 11.07*** 8.60** 11.07*** 8.40**
(2.522) (2.522) (2.521)

Note: Cluster robust standard errors (CRSE) clustered at subject level in paren-
theses. P-values: ∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01. Clustering
standard errors by sessions do not alter tests results and accounts for approxi-
mately 1% of the residual variance. In the remaining analyses standard errors
are clustered at the subject level.

Tables A1 and A2 present the computation of bid factors relative to all
three benchmarks: the naive, the break-even and the RNNE bid function.
Positive (negative) bid factors imply that average bids are above (below)
the benchmark.



Table A2: Bid Factors (BF) – Winning Bids in Exp. I

CV CP Diff

Naive bid mean 24.68∗∗∗ 9.50∗∗∗ 15.18∗∗∗

(bid-bidNaive) (0.731) (1.076) (1.299)

median 23.40∗∗∗ 8.40∗∗∗ 5.00∗∗∗

Break-Even bid mean 26.41∗∗∗ 11.25∗∗ 15.17∗∗∗

(bid-bidBE) (0.727) (1.099) (1.316)

median 25.16∗∗∗ 10.28∗∗∗ 14.88∗∗∗

Nash-Eq. bid mean 27.47∗∗∗ 12.33∗∗∗ 15.15∗∗∗

(bid-bidRNNE) (0.725) (1.108) (1.322)

median 26.40∗∗∗ 11.52∗∗∗ 14.88∗∗∗

Note: Cluster robust standard errors (CRSE) at sub-
ject level in parentheses. P-values: ∗: p-value<.1,∗∗: p-
value<.05, ∗∗∗: p-value<.01.

Table A3: Price Factors in Exp. II

CV CP Diff

Part CL with signal
Price Factor mean 5.12∗∗∗ -1.03 6.16∗∗∗

(bid-price− E[L|s]) (1.676) (1.001) (1.945)

median 2.4∗∗∗ -1.8∗∗∗ 4.2∗∗∗

Part CL without signal
Price Factor mean 0.75 -3.00∗∗ 3.75∗

(bid-price− E[L|s]) (1.679) (1.410) (2.188)

median -4∗∗∗ -4∗∗∗ 0

Part RL
Price Factor mean -2.93∗ -1.37 -1.56
(bid-price− E[L|s]) (1.684) (1.128) (2.022)

median -4∗∗ -1 -3

Note: CRSE in parentheses. P-values: ∗: p-value<.1,∗∗: p-
value<.05, ∗∗∗: p-value<.01.
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Figure A 3: Estimated Median Bids in CV and CP Auctions by Lottery
Types (Experiment I)
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B.2 Adverse Selection
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Figure A 5: Predicted probabilities of having the highest signal conditional
on winning and losing

While the winner’s curse is less severe in CP than in CV, it is not clear
whether this is because subjects reason better through the adverse selection
problem with probabilistic uncertainty or because winning reveals less in-



formation in the first place. To shed more light on the extent of the adverse
selection problem, we juxtapose how informative two events are: the event
of having the highest signal and the event of winning. The lottery’s actual
average payoff conditional on having the highest signal tells us how much,
in each auction, subjects must actually shave their bids to break even. This
is the empirical benchmark for updating in a Bayesian manner. To this end,
we regress the lottery outcome on the signal and a dummy that takes the
value one if the signal is the highest in the auction. The lottery’s average
payoff conditional on winning, on the other hand, tells us how much subjects
can actually learn from winning the auction. In a similar manner, we regress
the average lottery outcome on the signal and a dummy that takes the value
one if the bidder with the same signal won the auction. Note that the two
events of having the highest signal and of winning will convey the same in-
formation if the winner is always the bidder with the highest signal, thereby
providing the need to account for an adverse selection effect in bidding. We
find that in the data having the highest signal in CV (CP) requires adjust-
ing expectations downward by an average of C= -3.08 (C= -2.65, p < 0.001 in
either case). In contrast, winning is not as informative, in particular in CP
auctions. Winning an auction allows one to adjust expectations only by a
fraction of what can actually be learned from having the highest signal: up
to 35.71% in CV but only 10.07% in CP. Differences in the reduced sample
are even more striking: 60.38% in CV versus 3.62% in CP. This is a direct
result of a weaker correlation between signals and winning the auction. Ap-
pendix Figure A 5 plots the predicted probabilities of having the highest
signal conditional on winning. The risk of falling prey to the winner’s curse
is present in CV but marginal in CP. Winning in CV increases the likelihood
of having the highest signal from 19% to 36%, which is three times more
than in CP (24% to 28%).

B.3 Decision weights

To assess the importance of signals relative to the known component of the
lottery, we estimate the elasticity of the bid with respect to the known and
the unknown (i.e., signal) component of the lottery. To this end, we use a
simple Cobb-Douglas bidding function in the form of b(si) = kα ·sβ. A naive
agent, for instance, would bid E[L|s] = kα · sβ with α = β = 1.

We use the marginal rate of substitution (MRS) to compare the esti-



Table A4: Median Regression Coefficients in Bidding

ln(bid) (CV) (CP) (Diff)

ln(k) 0.244∗††† 0.749∗∗∗† -0.505∗∗

(0.130) (0.137) (0.197)
ln(si) 1.096∗∗∗††† 1.254∗∗∗ -0.158

(0.030) (0.161) (0.171)
Cons -1.488∗∗∗ -4.818∗∗∗ 3.331∗∗∗

(0.570) (0.687) (0.901)

N 3253 2564 5817
Subjects 52 39 91
R2 0.015 0.072
F − Test 0.000 0.040
MRS ≈ 0.22 s

k ≈ 0.60 s
k

Note: Median regression with CRSE in parentheses. Sig-
nificant difference from 0: ∗: p-value<.1,∗∗: p-value<.05,
∗∗∗: p-value<.01. Significant difference from 1: †: p-
value<.1,††: p-value<.05, †††: p-value<.01. F-test refers
to a test on equal weighting of known parameter and signal
(α = β).

Table A5: Median Regression Coefficients in Pricing

ln(bid) CVL CPL Diff.

ln(k) 0.546∗∗∗††† 0.810∗∗∗††† -0.264
(0.157) (0.056) (0.067)

ln(si) 0.947∗∗∗ 0.974∗∗∗ -0.027
(0.069) (0.044) (0.066)

Cons -2.500∗∗∗ -3.847∗∗∗ 1.347
(0.721) (0.346)

N 4256 4000 8256
Subjects 54 50 104
R2 0.141 0.3919
F − Test 0.0209 0.0017
MRS ≈ 0.57 s

k ≈ 0.83 s
k

Note: Median regression with cluster robust standard er-
rors (CRSE) at subject-level in parentheses. Significant
difference from 0: ∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-
value<.01. Significant difference from 1: †: p-value<.1,††:
p-value<.05, †††: p-value<.01.



mated bidding functions. The MRS represents here how much units of the
signal subjects are willing to trade against a unit of the known parameter
to maintain the same bid. For a naive bidder, the MRS equals αs

βk = s
k . For

our parameter variation, MRS under Nash equilibrium should be close to
s
k . In both auction formats, the estimated MRS is smaller than s

k ( ≈ 0.23 sk
in CV vs. ≈ 0.60 sk in CP in Appendix Table A4), indicating that subjects
overweighted their private signal but underweighted the known component.
Subjects in CV auctions put relatively more weight on the signal compared
to those in CP auctions. Similar results are obtained with the pricing data,
where MRS are closer to the naive benchmark s

k (see Appendix Table A5).
While subjects put more attention on signals in both CV and CP formats
it is important to keep in mind that these signals are about different com-
ponents of the lotteries. In CV treatments, subjects paid more attention
to values in the lottery whereas in CP treatments they rather focused on
the probabilities. In a nutshell, it appears that the uncertain component
determines how subjects allocate their attention to different features of the
auctioned item.

B.4 Information processing in Experiment II

We study the importance of information processing in the decision problem.
The empirical value of a signal is obtained by comparing subjects’ willingness
to pay before and after receiving signal si. To this end, we regress subjects’
willingness to pay wi on objective measures like the prior expected value E[L]
and the information content of the signal given by the change in expectations
(E[L|si] − E[L]). We also include a dummy Dsignal that equals one when
the willingness to pay was submitted after observing a signal.

As shown in Table A6, we do not find substantial differences in the way
subjects processed these value and probability signals (consistent with our
results in Table A5). Under risk-neutral expected utility, pricing occurs at
the expected value. That is, an increase of C= 1 in prior and interim beliefs is
reflected in an equivalent increase of C= 1 in prices, while uncertainty premia
(captured by the constant and the dummy variable) should be zero (cf. first
column of Table A6). In treatment CVL, subjects reacted reasonably to
variations in both prior parameters and signals as the corresponding coeffi-
cients do not substantially differ from the RNEU benchmark. In treatment
CPL, subjects slightly underreacted to variations in the parameters, but



Table A6: Median Regression Coefficients

WTP Rational CV CP Diff

E[L] 1 0.898∗∗∗† 0.830∗∗∗††† 0.068
(0.053) (0.039) (0.069)

E[L|S]− E[L] 1 1.051∗∗∗ 0.905∗∗∗††† 0.146
(0.084) (0.030) (0.103)

Dsignal 0 5.292∗∗∗ 2.074∗∗ 3.218
(2.027) (0.947) (2.419)

Cons 0 -0.335 0.074 -0.409
(2.349) (1.497) (2.783)

N 4688 4400 9088
Subjects 54 50 104
R2 0.234 0.390
F − Test 0.0080 0.0001

Note: Median regression with CRSE in parentheses. Significant differ-
ence from 0: ∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01. Signifi-
cant difference from NE coefficient: †: p-value<.1,††: p-value<.05, †††:
p-value<.01.

more importantly coefficients do not differ from the ones in CVL. Hence,
subjects processed value and probability signals similarly.

A striking observation is that in both CVL and CPL, the mere fact of ob-
serving a signal significantly increased WTP by C= 5 and C= 2, respectively. In
other words, even when objective prior and interim expectations coincided,
subjects were willing to pay more after observing a signal. This could be
rationalized to some extent with a reduced uncertainty premium in interim
beliefs, as seen in the treatment CPL where after getting a signal subjects
bid closer to expected value. Rather surprising is that in CVL subjects bid,
on average, even above expected values after seeing a signal, implying that
the mere fact of getting a signal led subjects to move from an average posi-
tive to a negative uncertainty premium.

B.5 Reduction of Compound Lotteries in Experiment II

In CVL, subjects made no such distinction when valuing reduced and com-
pound CV lotteries. The median premium for compound risk in values is



zero, suggesting that compound risk in values may not necessarily have been
perceived as such. In CPL, they chose a small average compound risk pre-
mium of C= 2 for CP lotteries, pricing the reduced CP lotteries slightly higher
than their compound analog. There are some order effects in the compari-
son of reduced and compound lotteries. Whether subjects first saw reduced
or compound lotteries matters but only in the CV treatments. On average,
subjects chose similar WTP with and without compound risk when they
valued the compound lottery before its reduced form version (median com-
pound risk premium of 0 in CV lotteries). Seeing the reduced lottery first,
on the other hand, increased (rather than decreased) their WTP for the
compound version of CV lotteries by C= 3.5. In other words, the median pre-
mium for compound risk defined over values is even negative, implying that
the average subject was more averse to the reduced than to the compound
version of the CV lottery.
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B.6 Experiment III

Figures A 7a and A 7b show the robustness of our Experiment I results
to our Experiment III design where subjects bid against previous Experi-
ment I subjects. Like in Experiment I, in Experiment III subjects in CV
bid significantly more than their peers in CP. While in both CV and CP
auctions, subjects in Experiment III bid slightly higher than their peers in
Experiment I, the difference in bids between CV and CP remains of similar
magnitude: Subjects in CV bid, on average, C= 19.2 more than their peers
in CP (compared to C= 17.60 for the same auctions in Experiment I). Hence,
our results are robust to our design modification in Experiment III.
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Figure A 7: Comparing bid factors in Exp. III & I



C Individual Covariates

C.1 Attitudes toward risk, compound risk and ambiguity

In the last part of Experiments I & II, we elicited subjects attitudes toward
risk, compound risk and ambiguity. Subjects started this part by first select-
ing the payoff relevant task. To this end, they threw a dice, knowing that
the number on top of the dice would define the selected task. The corre-
spondence between the dice numbers and the tasks were, however, revealed
only at the end of the experiment (Baillon et al., 2022). The exchange rate
remained the same ($1 for 6 credits), but payoffs from the main part of the
experiment were weighted more heavily than those in this last part (3:1).

This part consisted of only six decision problems. The six decision
screens corresponded to three types of decision problems with two replicate
measurements each.

C.2 Elicitation

We elicited risk attitudes with a multiple price list akin to Abdellaoui et al.
(2011) and Gillen et al. (2019). Subjects faced virtual bags with red and
blue chips. First, subjects chose the color to bet on and then gave their
certainty equivalent (henceforth CE) for their chosen bet. Risky bets were
implemented with the following lottery (100:0.5;0) and (150:0.5;0) (i.e., a
50% chance of winning C= 100 / C= 150 or otherwise nothing).

To implement bets with compound risk, subjects were told that the com-
puter would first randomly select one virtual bag from a set of virtual bags
containing each a different mixture of red and blue balls (Figure A 8 shows
an example of the screen for a bag with 20 chips), and would then randomly
draw a chip from the selected bag. Subjects received C= 100 (C= 150 in the
replicate measurement) if the color of the drawn chip matched the color they
bet on.

The implementation of ambiguous bets was similar, except that the mix-
ture of red and blue chips was determined ex ante by a research affiliate and
was not known to subjects.



Figure A 8: Example for a decision screen to elicit attitudes toward com-
pound risk (after selecting to bet on red and a certainty equivalent of 50
credits.)

C.3 Descriptive statistics

Methods. We classify attitudes as averse toward a type of uncertainty if
subjects’ prices display a premium for the lottery. The premium is given by
the difference between the lottery’s expected value and the subject’s CE. A
positive (negative) premium reflects aversion (proclivity).

We mitigate possible measurement errors by taking the mean of the two
replicate measurements: To this end, we first normalize the CE by the lot-
tery’s expected value and average the normalized CE across the two replicate
measurements.29,30 Note that all decisions under uncertainty should be af-
fected by a risk premium, if a subject is not risk-neutral. In a crude attempt
to control for risk attitudes in decisions with compound risk and ambiguity,
we subtract the subject’s average risk premium from the chosen premium

29For the ambiguous bets, we assume uniform beliefs over possible probabilities to com-
pute the lotteries’ expected value.

30Most subjects were also consistent in their attitudes, especially in their attitudes to-
ward ambiguity. The redundant measures yield the same classification for 71.15%, 75.96%
and 79.81% of the subjects regarding attitudes toward risk, compound risk and ambiguity,
respectively (in the full sample).



for lotteries with compound risk and ambiguity (cf. Gillen et al., 2019). This
yields a conservative measure of the premia for compound risk and ambigu-
ity since risk premia for binary lotteries should be highest when the success
probability equals 50% (as in the risky lotteries). Thus, subjects who were
less averse toward compound risk/ ambiguity than toward risk exhibit a
negative premia for compound risk and ambiguity (applies to 59 (60) out of
195 subjects for the compound risk (ambiguity) premium).
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Figure A 9: Distribution of Premia in Exp. I II – by Treatments CV
(left) and CP (right).

Results. Figure A 9 shows the distribution of risk, compound risk and
ambiguity premia, averaged across the two duplicate measures. In general,
most subjects were averse toward uncertainty.

Distributions of premia are not significantly different from each other
across treatments (the Kolmogorov-Smirnov statistics yields p-values of p =
0.21, p = 0.45, p = 0.89 for risk, compound risk and ambiguity premia, re-
spectively). Most subjects chose a premium close to zero, and attitudes
toward compound risk and ambiguity are positively correlated (consistent
with Halevy (2007)’s finding). The pairwise correlation coefficients are
ρRC = −0.24, ρRA = −0.10, ρCA = 0.54.



C.4 Individual Characteristics

In general, individual characteristics do not significantly differ between the
CV and CP treatments. The measures of the cognitive reflection tests (CRT)
are higher in the treatments III-IV and have to be interpreted with caution
because the experiment was conducted online.

Table A7: Means of Individual Characteristics by
Treatment in Reduced Sample

Male Age CRT RP CRP AP

CV 0.538∗∗∗ 21.962∗∗∗ 1.519∗∗∗ 0.006 0.095∗∗ 0.120∗∗∗

(0.070) (0.355) (0.149) (0.053) (0.041) (0.036)
I CP 0.615∗∗∗ 22.333∗∗∗ 1.308∗∗∗ -0.076 0.153∗∗∗ 0.115∗∗

(0.079) (0.460) (0.160) (0.065) (0.033) (0.050)
Diff -0.077 -0.372 0.212 0.082 -0.058 0.005

(0.105) (0.581) (0.219) (0.084) (0.052) (0.062)

CV 0.434∗∗∗ 21.415∗∗∗ 1.389∗∗∗ 0.151∗∗ 0.057 0.043
(0.069) (0.386) (0.164) (0.059) (0.035) (0.043)

II CP 0.480∗∗∗ 21.440∗∗∗ 1.5∗∗∗ 0.050 0.094∗∗ 0.090∗∗

(0.071) (0.365) (0.154) (0.048) (0.037) (0.042)
Diff -0.046 -0.025 -0.111 0.101 -0.037 0.047

(0.099) (0.531) (0.225) (0.076) (0.051) (0.060)

CV 0.450∗∗∗ 23.050∗∗∗ 2.300∗∗∗ -0.028
(0.114) (0.671) (0.242) (0.159)

III CP 0.389∗∗∗ 23.278∗∗∗ 2.500∗∗∗ 0.069
(0.118) (0.645) (0.217) (0.124)

Diff 0.061 -0.228 -0.200 -0.097
(0.164) (0.931) (0.325) (0.202)

CV 0.522∗∗∗ 21.913∗∗∗ 2.391∗∗∗ 0.068
(0.106) (0.569) (0.137) (0.103)

IIIb CP 0.538∗∗∗ 21.346∗∗∗ 2.269∗∗∗ 0.223∗∗∗

(0.100) (0.474) (0.172) (0.724)
Diff -0.017 0.567 -0.122 -0.155

(0.146) (0.740) (0.219) (0.125)

CV 0.448∗∗∗ 23.279∗∗∗ 2.655∗∗∗ -0.023
(0.094) (0.660) (0.114) (0.177)

IV CP 0.333∗∗∗ 22.286∗∗∗ 2.048∗∗∗ 0.141
(0.105) (0.492) (0.243) (0.169)

Diff 0.115 0.990 0.608∗∗ -0.164
(0.141) (0.825) (0.268) (0.219)

CV 0.480∗∗∗ 22.130∗∗∗ 1.865∗∗∗ 0.049 0.076∗∗∗ 0.081∗∗∗

(0.038) (0.221) (0.0084) (0.043) (0.027) (0.028)
I-IV CP 0.494∗∗∗ 21.981∗∗∗ 1.773∗∗∗ 0.062∗ 0.120∗∗∗ 0.101∗∗∗

(0.040) (0.214) (0.089) (0.035) (0.025) (0.032)
Diff -0.013 0.150 0.092 -0.013 -0.040 -0.020

(0.055) (0.307) (0.122) (0.055) (0.037) (0.043)

Note: ∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01. Robust standard errors clustered by subject in
parentheses.
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