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4.17.1 Introduction

Optical molecular tomography is an imaging technique that

makes use of light-emitting biomarkers as the source of

contrast. This technique provides a three-dimensional visuali-

zation of these biomarkers inside the tissue in a noninvasive

manner and can thus be used to image particular target

molecules or their pathways associated with the molecular

process or the development of diseases inside living organisms

(Bremer et al., 2001; Contag, 2002; Galbán et al., 2010;

Narsinh et al., 2009; Weissleder and Ntziachristos, 2003).

Depending on the biomarker used as a contrast agent, the

method can be loosely divided into two different modalities:

fluorescence molecular tomography (FMT) and biolumines-

cence tomography (BLT). FMT uses fluorescent biomarkers

called fluorophores that absorb light and reemit it at longer

wavelength and has been mainly applied to preclinical studies

to target specific molecules that provide functional informa-

tion about biochemical processes (Ale et al., 2012; Chang

et al., 1997; Chen et al., 2003; Corlu et al., 2007; Deliolanis

et al., 2009; Li et al., 2012; Ntziachristos et al., 2002). BLT also

makes use of light-emitting probes called luciferases that emit

light when certain biochemical environments are encountered
and has been widely used in preclinical setting with small

animals to study various disease processes and drug effects

(Choy et al, 2003; Contag, 2002, 2010; Eslami et al., 2012;

Hu et al., 2012). Using these two modalities (FMT and BLT), it

is thus possible to detect diseases on a molecular level before

typical symptoms or macroscopic changes appear.

Tomographic images of these molecular probes are obtained

through the so-called model-based image reconstruction

schemes (Arridge, 1999; Hielscher and Klose, 1999) in which a

forward model of light propagation is employed that leads to

predictions of measured values on the boundary, assuming a

certain distribution of all unknown parameters inside the

medium. An objective function is defined as that quantifies the

differences between predicted and actually measured values.

Image reconstructions are performed iteratively to find the min-

imum of this objective function, by updating the parameters of

the forward model. Most image reconstruction methods used

for FMT and BLT rely on the validity of the diffusion approxi-

mation (DA) to the equation of radiative transfer (ERT) (Chen

et al., 2001; Elaloufi et al., 2002; Kim and Ishimaru, 1998).

The DA converts the difficult-to-solve integrodifferential ERT

into a partial-differential diffusion equation (DE) for which

various analytical solution and stable numerical methods exist.
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However, it is well known that the DA becomes inaccurate if

the absorption coefficient of the medium under consideration

is high and becomes comparable in magnitude to the scattering

coefficient. Furthermore, the approximation is inaccurate in

media with small geometries where boundary effects are

dominant or in fluid-filled, void-like regions (Hielscher et al.,

1998). All these conditions hold true for small animal imaging

for which fluorescence and bioluminescence tomographic tech-

niques are mainly used. For example, luciferases most often

employed as a light-emitting probe have a broad light spectrum

with an emission peak between 460 and 630 nm (Zhao et al.,

2009). In this wavelength range, the intrinsic tissue absorption

is relatively high (Cheong et al., 1990). Furthermore, the opti-

cal path length in small animals such as mice and rats is

relatively small and boundary effects are dominant. Hence, it

is highly desirable to use ERT-based image reconstruction

schemes for small-animal FMT and BLT. First, ERT-based FMT

codes have been reported (Klose and Hielscher, 2003a; Klose

et al., 2005). Gao and Klose have presented first ERT-based BLT

schemes (Gao and Zhao, 2010; Klose, 2007). Gao et al.

improved a spatial resolution of the reconstructed biolumines-

cence image by exploiting the sparsity of bioluminescent

sources with the l1-regularized multilevel scheme. Klose et al.

employed a stochastic iterative reconstruction method to find

the global minimum of a bioluminescence inverse problem,

which overcame premature convergence due to infeasible ini-

tial guess. However, these ERT-based reconstruction algorithms

are computationally very costly since they require solving the

forward problem of ERT repeatedly until convergence, thus

taking anywhere from several hours to even days to solve one

single image reconstruction case.

Recently, Kim and Hielscher introduced a novel algorithm

called partial differential equations (PDE)-constrained sequen-

tial quadratic programming (SQP) to solve molecular tomo-

graphic problems in a computationally efficient manner (Kim

et al., 2009; Kim et al., 2010). This new algorithm increases

the speed of an image reconstruction process by a factor of

up to 20 as compared to traditional methods. This increase in

speed is made possible by solving the forward and inverse

problems simultaneously in a framework of PDE-constrained

optimization. In this article, the theoretical foundation and

computational efficiency for this PDE-constrained algorithm

is provided with comparison to traditional unconstrained

codes that make use of the limited-memory Broyden–Fletcher–

Goldfarb–Shanno (lm-BFGS) method (Nocedal and Wright,

2006). The lm-BFGS method is known to be the most efficient

gradient-based unconstrained optimization method and there-

fore provides a good standard for comparison.
4.17.2 Fluorescence Molecular Tomography

4.17.2.1 Light Propagation Model with Fluorescence
Tomography

In frequency-domain (FD) FMT, the external light source is

amplitude-modulated in the 10 Hz–1 GHz frequency range

and the demodulated transmitted intensities and phase

shifts are measured on the tissue surface, using wavelength-

dependent filters to distinguish between excitation and emis-

sion signals. The generation and propagation of fluorescence

light in biological tissue can be accurately modeled by two
coupled FD equations of radiative transfer (Kim and Charette,

2007; Kim et al., 2010; Ren et al., 2006) as

r�Oð Þ þ mxa þ mxs þ mx!m
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The first equation describes the propagation of excitation

light emanating from the external light source and the second

represents the propagation of emission light due to the fluo-

rescent source in tissue. Here, the superscripts x and m denote

excitation and emission, respectively. Hence i is
ffiffiffiffiffiffiffi�1

p
; $ is the

angular frequency at which the amplitude of the external

source is modulated modulation; c is the speed of light in the

medium; ma
x and ms

x are the absorption and scattering coeffi-

cients in units of cm�1 at the excitation wavelength; ma
x!m is the

absorption coefficient of a fluorescent source in tissue, in unit

of cm�1; ma
x and ms

x are the absorption and scattering coeffi-

cients in units of cm�1 at the emission wavelength. cx(r,O,$)

and cm(r,O,$) denote the excitation and emission radiances,

respectively, in units of W cm�2 st�1; � denotes the quantum

yield by which the fluorescent source emits light in transit from

excitation state to ground state; t(r) is the local lifetime of a

fluorescent source. Note that f(r,$) appearing in eqn [2]

denotes the excitation fluence at position r defined by

f(r,$)¼ Ð
4pc

xdO in unit W cm�2. For a phase function

denoted by p(O0,O), we use here the Henyey–Greenstein

phase function (Henyey and Greenstein, 1941) that is com-

monly used in tissue optics. As shown in eqn [1], the excitation

light cx(r,O,$) is absorbed and scattered by the intrinsic

medium, and further attenuated by the fluorophore absorp-

tion ma
x!m, and then excites a fluorochrome inside the tissue at

position r. The excited fluorophore constitutes a light source

inside the medium that reemits radiation cx(r,O,$) typically at

longer wavelength (see eqn [2]). The local strength of a fluo-

rescent source is directly proportional to the local fluorophore

absorption ma
x!mf(r,$) and the quantum yield � and the local

fluorophore lifetime t(r).
The corresponding boundary conditions for the two equa-

tions are given:

Cx
b n

!
b�O<0

¼ cx0
��� ���

n
!
b�O<0

þ R O
0
;O

� �
�cxj

n
!
b�O0

<0
[3]

cm
b jn!b�O<0
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0
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� �
�cmj

n
!
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where R(O0,O) is the reflectivity at Fresnel interface (Modest,

2003) from direction O0 to direction O0,cb
x0, is the radiation

intensity due to the external source function and subscript

b denotes the boundary surface of the medium, while nb
!

is

the unit normal vector pointing outward the boundary surface.

For discretization of the two eqns [1] and [2], one can employ a

node-centered finite-volume approach in the spatial domain

and a discrete ordinates method in the angular domain. The

node-centered finite-volume method takes advantage of the

beneficial properties of both the finite element and finite-vol-

ume methods by combining the conservation properties of the
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finite-volume formulation and the geometric flexibility of the

finite element approach (Minkowycz et al., 2006).

Following an unstructured finite-volume discrete-ordinate

method (Kim et al., 2010; Montejo et al., 2010), the discretized

forms of the two ERTs given by eqns [1] and [2] are obtained by

integrating eqns [1] and [2] over the control volume with a

divergence theorem as
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whereNsurf andNO are the number of surfaces surrounding the

node N(¼1,. . .,Nt) and the number of discrete ordinates based

on the level symmetric scheme, respectively; n
!

j denotes the

surface normal vector; and cj
x,l and cj

m,l denote the excitation

and emission radiances defined on the jth surface in direction l.

Also, the surface intensities cN
x,l and cj

m,l are related to the

nodal intensities cN
x,l and cj

m,l by the second-order spatial

differencing scheme (Minkowycz et al., 2006). It can be easily

seen that each ERT involves Nt spatial unknown intensities

coupled into NO directions, thus leading to the total Nt�NO

unknowns. The system given by eqns [1] and [2] can be solved

by using any iterative solvers as far as they are reliable. One

can employ a matrix-based iterative linear solver that enables

updating all the radiation intensities cN
x,l (or cN

m,l) simulta-

neously, which leads to fast convergence as compared to source

iteration-based techniques. After discretization for all nodes,

one finally obtains two linear systems of algebraic equations as

Axcx ¼ bx and Amcm ¼ bm [7]

Each line denoted by i(i¼1,. . .,NtNO) of the matrix A con-

tains the coefficients of the discretized forms given by eqn [7]

established at node number N and direction l.

The excitation light source comes into the term bx after

discretization on boundary node Nb, while the fluorescent

source comes into the term bm after discretization on internal

node N, as

bx, lNb
¼ �

X
j

1� max nj�Ol= n�Ol
�� ��, 0
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nj�Ol
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0, l
Nb
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bm, lN ¼ 1

4p
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a f r; $ð Þ
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where cNb
x0,l is the external source function on boundary node

Nb in direction l.

A direct treatment of the FD equations of radiative transfer

leads to the matrix formulations given by eqn [7] that contain

complex-valued elements. As a result, the complex-valued

algebraic linear equations can be solved with a complex

version of the GMRES linear solver (Saad, 2003; Saad and

Schultz, 1986).

The two equations given by eqns[1] and [2] provide the

predictions of the excitation radiance cj
x,l and transmitted
emission radiance cj
m,l on the boundary surface. Also, these

two equations are used as the constraints within the PDE-

constrained inverse model that is used to obtain the spatial

distribution of a fluorescent source inside the medium that

best fits the measured emission data.
4.17.2.2 Fluorescence Tomographic Algorithms

4.17.2.2.1 Traditional approach
The optical fluorescence tomographic problem can be formu-

lated in more general terms as

min f x; uð Þ subject to c x; uð Þ ¼ 0 [9]

where xERn is the vector of inverse variables, uEZm is the vector

of forward variables, f(x;u) is an objective function that quan-

tifies the difference between measured and predicted

intensities, and c(x;u)¼0 is a discretized version of combined

excitation and emission equations. The problem given by eqn

[9] is often referred to as ‘PDE-constrained’ optimization since

the optimal solution at minimum of f is constrained by equal-

ity condition c(x,u)¼0 represented by two PDEs.

Traditional method for solving eqn [9] is to treat the for-

ward variable u as a dependent variable of the inverse variable

x, that is, u ¼ ~c xð Þ, which makes it possible to replace the

prediction vector u in f of eqn [9] by its forward solution

vector. As a result, problem [9] can be reformulated as

min ~f xð Þ ¼ f x,~c xð Þð Þ [10]

which is often referred to as ‘unconstrained’ because the equal-

ity constraint c(x;u)¼0 is eliminated in eqn [10], that is, ~f is

now a function of x only. Thus, the forward solution u ¼ ~c xð Þ
has to be obtained for evaluation of ~f , that is, the complete

solutions of the two ERTs are required for the excitation and

emission radiances at each of optimization iterations. As a

consequence, the associated optimization procedure becomes

a computationally very demanding process, with respect to

both time and memory. Nonetheless, this approach has been

widely used for the solution of optical fluorescence tomo-

graphic problems mainly because of easiness of implementa-

tion. The existing fluorescence tomographic codes belong to

this approach: the conjugate gradient approach, the quasi-

Newton (QN) approach, the Jacobian approach (Eppstein

et al., 2002; Jiang, 1998; Klose and Hielscher, 2003a; Klose

et al., 2005; Lee and Sevick-Muraca, 2002; Milstein et al., 2003;

O’Leary et al., 1996; Paithankar et al., 1997; Roy and Sevick-

Muraca, 2001), and so on.

4.17.2.2.2 PDE-constrained approach
Another approach to solve eqn [9] is to treat the forward

variable u and the inverse variable x independently, which

enables solving the PDE-constrained problem [9] directly by

updating the forward and inverse variables simultaneously at

each of optimization iterations. Typically, an extended objec-

tive function called ‘Lagrangian’ is introduced as follows

(Abddoulaev et al., 2005, Bangerth and Joshi, 2008; Kim and

Hielscher, 2009):

L x; u; lð Þ ¼ f þ lTc [11]

Here, lEZm is called the vector of Lagrange multipliers. The

simultaneous solutions of forward and inverse problems can
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be achieved at points satisfying first-order necessary conditions

where the gradient of L in eqn [11] vanishes with respect to l,
u, and x, respectively.

One major advantage of this PDE-constrained approach is

that the complete solution of the forward problem is not

required until convergence is reached (Nocedal and Wright,

2006). In other words, PDE-constrained methods allow for

using the inexact solution of the forward problem into solving

the inverse problem, which leads to a significant reduction

in the total reconstruction time. The solution accuracy of

the forward problem is iteratively controlled as the inverse

solution goes toward the optimum. Optimization techniques

of this kind have seen rapid developments mainly in applica-

tions with airfoil design, flow variable optimization, and elec-

tromagnetic inverse problems (Biegler et al., 2000; Biros

and Ghattas, 2003, Byrd et al., 2008; Gill et al., 2005; Lalee

et al., 2003).

Following this approach, the fluorescence tomographic

problem given by eqn [9] can be rewritten into a problem of

finding a vector of unknowns m¼(ma
x!m,t,�), assuming that all

other intrinsic properties inside the medium, ma
x,ms

x and ma
m,ms

m,

are already known at the excitation and emission wavelengths,

such that

min f cmð Þ ¼ 1

2

X
s, d

Qdc
m
s � zs, d

�� ��2 [12]

Subject to

Cx
s ¼ Axcx

s � bxs ¼ 0; s ¼ 1, . . . ,Ns

Cm
s ¼ Amcm

s � bms ¼ 0; s ¼ 1, . . . ,Ns

where f(cs
m) is the objective function that quantifies the differ-

ence between predictions and measurements of emitted light

made on the tissue surface and Cx and Cm are the discretized

versions of the two coupled radiative transfer equations.

By introducing a Lagrangian function, the previously men-

tionedPDE-constrained optimizationproblem canbe restated as

L m;cx;cm; lx; lmð Þ ¼ 1

2
Qcm � z2
�� ��þ lxT Axcx � bxð Þ

þ lmt Amcm � bmð Þ [13]

The simultaneous solutions of the forward and inverse

problems can then be obtained at points in which the follow-

ing five PDEs, that is, the first derivatives of the Lagrangian

function with respect to each of variables, become zero:

Lm � @L

@m
¼ cxTAxT


 �
ml

x � bmT
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ml
m ¼ 0 [14a]

Lcx � @L

@cx ¼ AxTlx � bmT

 �

cxl
m ¼ 0 [14b]

Lcm � @L

@cm ¼ QT Qcm � zð Þ þ AmTlm ¼ 0 [14c]

Llx � @L

@lx
¼ Axcx � bx ¼ 0 [14d]

Llm � @L

@lm
¼ Amcm � bm ¼ 0 [14e]

where the first equation represents the sensitivity equation

with respect to the inverse variable m and the second and

third equations can be viewed as the adjoint equations for
lxand lm, and the last two equations represent the two forward

equations given by eqn [7].

The Karush–Kuhn–Tucker (KKT) system given by eqn [14]

can be solved with Newton’s method as

W AT

A 0

� �
Dp
Dl

� �
¼ � Lp

Ll

� �
[15]

where the block matrix W denotes the Hessian matrix of the

Lagrangian function L with respect to each of unknowns P¼
(m,cx,cm) and the block matrix A denotes the Jacobian matrix

of constraints Cx and Cm with respect to each of unknowns

P¼(m,cx,cm). Also, Dp and Dl denote [Dm,Dcx,Dcm]T and

[Dlx,Dlm]T, respectively. The algebraic system given by eqn

[16] can then be solved efficiently through the reduced Hessian

SQP (rSQP) scheme as will be shown in the succeeding text.
4.17.2.2.3 Reduced Hessian sequential quadratic
programming
The rSQP method is an established method that solves non-

linear optimization problems with relatively low cost and fast

convergence (Byrd et al., 2008). Employing this rSQP method

for solving the KKT system [15] in the preceding text is equiv-

alent to finding the minimum to a quadratic approximation of

the Lagrangian function L subject to the linearized constraints

Cx and cm, which gives the following quadratic programming

problem so that

min D pTgp þ 1

2
DpTWDp

subject to ADpþ c ¼ 0 [16]

where g¼rf¼ [gm,gcx,gcm] denotes the gradients of the objec-

tive function J with respect to each of unknowns (m,cx,cm) and

Wk is the full Hessian (or approximations) of the Lagrangian

function. Here, the full Hessian of the Lagrangian function is

often difficult to obtain and its approximation by the updating

schemes tends to create large dense matrix (nþm)�(nþm).

These difficulties can be overcome by dropping certain non-

critical second-order terms of the full Hessian matrix. Follow-

ing the standard rSQP method as described in the literature

(Kim et al., 2010), the unknown vector Dp is given as follows:

Dm ¼ � Hrð Þ�1 gr þ drð Þ [17]

Dc ¼ Dcx

Dcm

� �
¼ Z � Y Hrð Þ�1 gr þ drð Þ [18]

where Hr¼YTWY denotes the reduced Hessian, gr¼YTg

denotes the reduced gradient, and

Z ¼
0

� Axð Þ�1Cx

� Amð Þ�1 Cm þ bmð Þcx Axð Þ�1Cx
n o

2
64

3
75 and

Y ¼
I

� Axð Þ�1 Axcxð Þm
� Amð Þ�1 bmð Þm � bmð Þcx Axð Þ�1 Axcxð Þm

n o
2
64

3
75 [19]

following the popular choices for Zk and Yk (Gill et al., 2005;

Kim and Hielscher, 2009; Kim et al., 2010; Nocedal and

Wright, 2006).

Thus, the rSQP method requires much less memory than

the full SQP one, that is, only a small (n�n) matrix needs to be
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maintained and updated at each of optimization iterations. For

large-scale applications, it is desirable to avoid the direct com-

putation of the reduced Hessian Hr and its matrix inversion

(Hr
k)�1. Accordingly, the matrix–vector product of (Hr

k)�1gr
k

can be approximated directly by using the limited-memory

updating formula (Kim and Hielscher, 2009; Klose and

Hielscher, 2003a; Nocedal and Wright, 2006).

The global convergence of the rSQP scheme is ensured by

line search on the following real-valued l1 merit function

defined as

’� m;cx;cmð Þ ¼ f cmð Þ þ � Ck k1 [20]

which is, at the new iterate given by pkþ1¼pkþakDp, succes-
sively monitored to ensure global progress toward the optimal

solution during line search (Biegler et al., 2000). Refer to

literature (Kim and Hielscher, 2009; Kim et al., 2010) for

details on implementation of this rSQP technique.
0.001
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4.17.2.3 Examples of Fluorescence Reconstructions

In the following, we will present some illustrative examples of

fluorescence reconstructions. The examples include numerical

and experimental results of a comparison between PDE-

constrained and unconstrained algorithms, in terms of accu-

racy, computational efficiency, and effects of noise and initial

guess on the reconstruction.

4.17.2.3.1 CPU times, accuracy, and effects of noise and
initial guess
A numerical phantom with a diameter of 2 cm as shown in

Figure 1 is used to mimic a typical fluorescence tomographic

problemwith small animal imaging. In the first case, a fluorescent

heterogeneity with a diameter of 0.15 cm is embedded inside

the cylinder at G¼{(x,y)|(x–0.35)2þ(y–0.35)2¼0.22}. The

background medium has optical parameters of ma
x¼0.4cm�1

and ms
x¼15cm�1 at the excitation wavelength and

ma
x¼0.4cm�1 and ms

x¼15cm�1 at the emission wavelength.

The fluorescence heterogeneity has the absorbing coefficient of

ma
x!m¼00.5cm�1 . In the second example, a stronger-absorbing

medium is considered: the optical parameters of the background

medium are ma
x¼1.0cm�1 and ms

x¼15cm�1 at the excitation

wavelength and ma
x¼1.0cm�1 and ms

x¼15cm�1 at the emission

wavelength, and the absorption coefficient of the fluorescence
Figure 1 The schematic of test problems 1 and 2: circle with diameter
of 2 cm. (a) Source–detector configuration: 4 sources (•) and 66
detectors around the surface and (b) computation domain with 4886
triangular elements.
heterogeneity is ma
x!m¼0.5 cm�1. In both examples, the

quantum yield and fluorescence lifetime are assumed spatially

constant at the values of t¼4 ns and �¼0.95, which is taken to

match the corresponding properties of fluorophore (fluorescein)

used later in the experimental study. As shown in Figure 1, four

external sources are located on the tissue boundary close to the

target fluorescent source and 66 detectors are equally distributed

around the circular circumference of the medium defined

by G¼{(x,y)|x2þy2¼1}.

Figure 2 shows the reconstruction results obtained with

the PDE-constrained rSQP and unconstrained lm-BFGS algo-

rithms for different levels of noise, and CPU times and accu-

racy are given in Table 1 for their respective case. The

correlation factor r(me,mr) and the deviation factor d(me,mr)
are used as the metrics of image quality as defined in the

succeeding text (Kim and Hielscher, 2009; Klose and Hielscher,

2003a):

r ¼
XNt

i¼1
mei � �mei

 �

mri � �mri

 �

Nt � 1ð Þs með Þs mrð Þ , d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

i¼1
mei � mri

 �2

Nt

q
s með Þ [21]

where �m and s mð Þ are the mean value and the standard devia-

tion for the spatial function of the fluorescence absorption

coefficient. Similarly, me and mr are the exact and reconstructed

distributions of fluorescent sources, respectively. As shown in

Figure 2, the circular fluorescence perturbation as shown

in Figure 1(a) is well identified by the two methods.

Table 1 shows that the PDE-constrained rSQP method

leads to a significant reduction in the computation time in all

cases considered here. For the case of the noise-free data, the

PDE-constrained method takes only 0.31 h to converge, while

the unconstrained lm-BFGS method takes about 3.98 h to
Figure 2 Reconstructed fluorescence absorption coefficients ma
x!m

obtained for the first example using the 15 and 10 dB noise data by the
PDE-constrained rSQP method.

Table 1 Reconstruction quality and computation times with different
noise levels

SNR Schemes CPU time (a) Cor. r Dev. d

1 PDE-constr. 0.31 h (13) 0.78 0.60
Unconstr. 3.98 h 0.77 0.60

15 dB PDE-constr. 0.33 h (13) 0.78 0.70
Unconstr. 4.28 h 0.75 0.69

10 dB PDE-const. 0.35 h (17) 0.66 0.81
Unconstr. 5.89 h 0.64 0.78

aDenotes the acceleration factor by the PDE-constrained method.



Table 2 Reconstruction quality and computation times with different
initial guesses

ma
x!m,0 Schemes CPU time (a) Cor. r Dev. d

0 PDE-constr. 0.45 h (12) 0.78 0.84
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meet the same convergence criterion. Therefore, the PDE-

constrainedmethod reduces the reconstruction time by a factor

of about 13. A similar reduction is observed in the two other

cases of different noise levels (see Table 1). The 15 dB data take

0.33 h using the PDE-constrained method, while the uncon-

strained methods require 4.28 h. With the 10 dB data, the

PDE-constrained code requires 0.35 h, while the uncon-

strained codes take 5.89 h to converge, which is approximately

17 times slower. The main reason for this significant reduction

in the CPU time can be explained by the fact that the PDE-

constrained rSQP method does not require the exact solution

of the forward problem at each of optimization iterations until

it converges to the optimal solution. Indeed, the PDE-

constrained method utilizes the incomplete solution of the

two linearized forward equations, for example, with the loose

tolerance of 10�2–10�3. Figure 3 illustrates this convergence

behavior of the PDE-constrained method. It can be clearly seen

that the forward and inverse solutions converge simulta-

neously toward their optimal solutions, even when a loose

tolerance of 10�2 is used. For the reconstruction accuracy,

Table 1 shows that at noise levels of 10–15 dB, the constrained

and unconstrained methods make no significant difference in

the accuracy.

In FMT, the optimization scheme starts with a homoge-

neous initial guess of unknown fluorescence absorption coef-

ficients, which is typically zero. However, it is well known that

different initial guesses affect the reconstruction accuracy.

Table 2 and Figure 4 show the results of effects of initial

guess on the fluorescence reconstruction for the two different

algorithms. It can be seen from Table 2 that the PDE-

constrained rSQP and unconstrained lm-BFGS method lead

to similar reconstruction results. For the 20% case, r(me, mr)¼
0.77 and d(me, mr)¼0.81 are observed by using the PDE-

constrained method and r(me, mr)¼0.76 and d(me, mr)¼0.83

using the constrained lm-BFGS method. In the 40% case, r(me,
mr)¼0.75 and d(me, mr)¼0.79, and r(me, mr)¼0.78 and d(me,
mr)¼0.81 employing the constrained and unconstrained

approach, respectively. However, the PDE-constrained code

yields these results about 10–12 times faster than the uncon-

strained code.
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Figure 3 Convergence history of the PDE-constrained method in the
forward and inverse solutions when a loose tolerance of 0.01 is used for
solving the QP problems.
4.17.2.3.2 FD data versus steady-state data
FD data are considered superior to steady-state (SS) data since

it provides more information. For example, FD carries a phase

shift in addition to amplitude, which improves the reconstruc-

tion. A lab phantom with a square base is used here that has a

size of 2.2 cm�2.2 cm�10.3 cm (X�Y�Z). A fluorescent

cylinder rod of d¼2 mm is filled with fluorescein and embed-

ded inside the medium. The optical properties of fluorescein

are ma
x!m¼0.4 cm�1,t¼4.0ns, and �¼0.93, respectively.

The fluorescent rod is positioned about 6 mm off-center and

the background medium is filled only with a 2% Intralipid

solution. Each side of the phantom was illuminated by a

focused light source (l1¼475 nm) andmeasurements of trans-

mitted light intensities were made on the opposite side of the

illumination side at l2¼515 nm, for which fluorescein emis-

sion is largest. Measurements were made with the CCD camera

both for SS and FD (at 150 MHz) data. Figure 5 shows the

reconstruction results. As expected, the 150 MHz data give the

more accurate reconstruction in the location of the fluorescent

probe as compared to the SS data.
4.17.3 Bioluminescence Tomography

4.17.3.1 ERT-Based Light Propagation Model with BLT

The forward problem for light propagation in turbid media

with a bioluminescent source in each spectral band v can be

accurately modeled by the ERT, given by (Kim and Hielscher,

2009; Klose, 2007)

r:Oð Þcv r;Oð Þ þ ma þ msð Þcv r:Oð Þ
¼ ms

4p

ð
4p
cv r;O

0� �
p O

0
;O

� �
dO

0 þ qv rð Þ
4p

[22]
Unconstr. 5.4 h 0.78 0.88
0.1 (20%) PDE-constr. 0.47 (11) 0.77 0.81

Unconstr. 5.2 h 0.76 0.83
0.2 (40%) PDE-constr. 0.45 h (11) 0.75 0.79

Unconstr. 4.9 h 0.78 0.81

aDenotes the acceleration factor by the PDE-constrained method.

0.142

0.002

PDE constrained(a) (b) Unconstrained

Figure 4 Reconstructed fluorescence absorption coefficients ma
x!m

obtained for the second example using the initial guess of ma
x!m¼0.1.



0.0

150 MHz(a) (b) DC

1.0

Figure 5 Reconstructed maps of fluorophore absorption coefficients
ma
x!m inside the phantom using the DC and 150 MHz data.

Inverse Models for Diffuse Optical Molecular Tomography 263
where cv (r,O) is the spectral radiation intensity in unit

(W cm�2 sr�1), ma and ms are the absorption and scattering

coefficients, respectively, in units of (cm�1), p(O0,O) is the

Henyey–Greenstein scattering phase function (Henyey and

Greenstein, 1941) that describes scattering from incoming

direction into scattering direction O. The source term qv(r) is

the photon emission in the spectral band v of the total photon

emission q rð Þ ¼ P
v
qv rð Þ where qv rð Þ ¼ wvq rð Þ where each

weight wv can be determined from a spectral analysis over the

spectral energy distribution of a bioluminescent source. Thus,

the total energy distribution q(r) of a bioluminescent source

is not a function of wavelength v, so we can use as many

wavelength data as possible simultaneously into reconstruc-

tion as will be shown later. To be able to consider the refractive

index mismatch at the air–tissue interface, one can employ the

partially reflective boundary condition:

cv, b n
!
b :O<0

¼ R O
0
;O

� �
:cvb

��� ���
n
!

b :O
0
<0

[23]

where R(O0,O) is the reflectivity at Fresnel interface (Modest,

2003) from direction O0 to direction O, cvb is the spectral

radiation intensity due to the external source function, and

subscript nb
!

denotes the boundary surface of the medium,

whilem is the unit normal vector pointing outward the bound-

ary surface.

For discretization of eqn [22], we use an unstructured node-

centered finite-volume method in the spatial domain and a

discrete-ordinate method in the angular domain. Following

unstructured finite-volume discrete-ordinate methods (Kim

et al., 2010; Montejo et al., 2010), the discretized form of

eqn [22] is obtained by integrating eqn [22] over the control

volume and a divergence theorem as

XNsurf

j¼1

nj
! �Ol

� �
cl
v, jdAj þ mva þ mvs


 �
cl

v,N

¼ mvs
4p

DVN

XNO

l0 ¼1

cl0
v,Np

l0 lwl
0 þ qv

4p
DVN [24]

whereNsurf andNO are the number of surfaces surrounding the

nodeN(¼1,. . .,Nt) and the number of discrete ordinates based

on the level symmetric scheme, respectively; nj
!

denotes the

surface normal vector; and cv,j
l denotes the spectral radiances

defined on the jth surface in direction l. Also, the surface inten-

sities cv,j
l are related to the nodal intensities cv,N

l by the second-

order spatial differencing scheme (Minkowycz et al., 2006).
4.17.3.2 Bioluminescence Tomographic Algorithms

4.17.3.2.1 Traditional approach
The most common approach to the inverse bioluminescence

problem is to exploit the linear relationship between biolumi-

nescent sources inside the medium and measurements on the

tissue surface. Given the measurement z at the tissue surface,

the prediction p can be represented by a linear combination of

the unknown source distribution q and its Jacobian coefficient

J, that is, p¼ Jq in a matrix–vector form. As a result, the inverse

bioluminescence problem reduces to solving the linear equa-

tion Jq¼z for the unknown vector q, and the inverse solution

is obtained in a least squares sense, that is, min
q

1

2
Jq� zk k2,

since the numberm of measurements available is usually much

smaller minq than the number n of unknown sources to be

estimated. Mathematically, this least squares minimization

problem is, however, highly ill-posed, meaning the inverse

solution is not unique and very sensitive to random errors in

the measured data. This can be overcome by reformulating the

originally ill-posed problem into an approximate, well-posed

problem, such as min
q

1

2
Jq� zk k2 þ bR qð Þ where R(q) is a

stabilizing term often represented by a classical l1 or l2 regular-

ization term (Dehghani et al., 2006; Gao and Zhao, 2010; Gu

et al., 2004) with a regularization parameter b. Nonlinear

iterative methods are often used to solve this regularized

minimization problem because in general a good choice of

b is not known a priori and needs to be adjusted iteratively.

Thus, all existing BLT methods are based on the Jacobian

matrix that requires a precalculation of the Jacobian coefficients

before the reconstruction is started (Ahn et al., 2008; Alexandra-

kis et al., 2005; Chaudhari et al., 2005; Comsa et al., 2007; Cong

et al., 2005; Dehghani et al., 2008; Kuo et al., 2007; Gu et al.,

2004; Han et al., 2007; Klose et al., 2010; Kuo et al., 2007; Lv

et al., 2007; Slavine et al., 2006; Zhang et al., 2008). The Jacobian

matrix can be constructed in two different ways: the perturbation

approach and the adjoint theorem. Givenmmeasurements for n

unknowns, the perturbation approach requires n forward runs,

while the adjoint theorem only needs m adjoint runs m�n

(Dehghani et al., 2008). Obviously, the adjoint theorem is far

more cost-efficient in this case. However, this Jacobian-based

approach may lead to a highly cost-demanding process with

respect to both time and memory for large-scale problems

where a large number of measurements are used as input to

reconstruction. This is true because in practice the CCD camera

allows for several hundreds to thousands detection points and

therefore the adjoint theorem will require several hundreds of

forward runs only to construct J. Thus, commonly employed

Jacobian methods appear to be too expensive to be applied to

ERT-based image reconstruction codes since the ERT has to be

solved accurately as many times as the number of detectors.

The fundamental reason for this requirement can be

explained by the fact that Jacobian methods belong to a class

called unconstrained. In the unconstrained approach, the

inverse variable q is always treated as a function of the forward

variable p, which makes it possible to eliminate the constraint

Ac¼b by substituting c¼A�lb into f(q,c). Then, the original

constrained problem min f(q,c) s.t. Ac¼b is now recast into

the unconstrained problem min f(q, A�lb(q)), where f is now a
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function of q only. All the existing BLT methods fall under this

unconstrained category. For the inverse bioluminescence prob-

lem, unconstrainedmethods of this kind basically require solving

the adjoint problem repeatedly as many times as detection points

used. As a consequence, the reconstruction process becomes a

very demanding task with respect to both time and memory. To

overcome this shortcoming, gradient-based techniques often used

in nonlinear optical tomographic problems can be employed in

this case where the Jacobian is too expensive to obtain. Among

these, QN methods (Nocedal and Wright, 2006) build up the

approximate Hessian (i.e., JTJ) using the gradient information

through iterations, and in particular, their limited-memory ver-

sion produces the product (JTJþbR)�1 JTz directly, thus saving

lots of time andmemory. However, thisQNmethod also requires

the complete solution of two equations (the forward and adjoint

equations) in order to construct the Hessian matrix iteratively,

and additional function evaluations are needed aswell during line

search, which results in a very time-consuming process when the

ERT is used as a light propagation model.
4.17.3.2.2 PDE-constrained multispectral approach
Given the predictions pv of measurements zv at wavelength zv
on the tissue surface, the multispectral inverse source problem

is to find a vector q(r) of spatial bioluminescent sources inside

the medium that minimizes the difference between measure-

ments and predictions as follows:

min
q;cv

f ¼ 1

2

X
v

Qcv � zvð ÞT Qcv � zvð Þ þ bR qð Þ
s:t: Cv ¼ Acv � bv ¼ 0, [25]

where Acv¼bv denotes the discretized forward equation andQ

denotes the measurement operator that projects the vector of

spectral radiances onto the measureable quantity pv,d¼Qdcv,d

on the tissue surface. Equation [25] shows that all wavelength

data can be used simultaneously into the source reconstruction

q. The constrained problem [25] can be solved directly in the

framework of PDE-constrained optimization where the for-

ward and inverse variables are treated independently (Kim

and Hielscher, 2009; Nocedal and Wright, 2006).

Typically, the PDE-constrained inverse problem [25] can be

reformulated into the framework of the following extended

objective function called ‘Lagrangian’ as

L q;cv; lvð Þ ¼ 1

2
Qcv � zj j2 þ bR qð Þ þ lTv Acv � bvð Þ [26]

Here, lv is called the vector of spectral Lagrange multipliers.

The simultaneous solutions of forward and inverse problems

can be achieved at points satisfying the so-called first-order

KKT conditions where the gradient of L in eqn [26] vanishes

with respect to q, cv, and lv, respectively:

Lq � @L

@q
¼ rfq þ brRþ bvð Þqlv ¼ 0 [27a]

Lcv
� @L

@cv

¼ rfcv
þ ATlv ¼ 0 [27b]

Llv �
@L

@lv
¼ Acv � bv ¼ 0, [27c]

where the first eqn [27a] is the sensitivity equation and the

second [27b] and third [27c] equations are the discretized
adjoint and forward equations, respectively. As in the PDE-

constrained approach with FMT, the rSQP method can be

used to solve the original multispectral problem [25] by min-

imizing the multispectral Lagrangian functional eqn [26] with

respect to q, cv, and lv, respectively.

4.17.3.2.3 Reduced Hessian sequential quadratic
programming
Let xk¼(q,c) be the current iterate and Ck,x denote @Ck

@xk
. The

rSQP method solves the quadratic approximation of the

Lagrangian functional equation [26] in the reduced space,

subject to the linearization of the forward equations as follows

(Kim and Hielscher, 2009; Nocedal and Wright, 2006):

min gTr, kD qk þ 1

2
DqTHr, qqDqk

subject to Ck, xð ÞDxk þ Ck ¼ 0 [28]

where Dx¼(Dq,Dc)T is the step for the next iterate, gr,k is

the reduced gradient, and Hr,qq (qk) is the reduced Hessian

of the Lagrangian function. After solving the quadratic prob-

lem [28], one finally can obtain the following expressions

for the updates Dx¼(Dq,Dc)T of the forward and inverse

variables as

Dqk ¼ � Hr, kð Þ�1gr, k [29]

Dck ¼ A�1 Ck þ Ck, qDqk

 �

[30]

where the matrix–vector product (Hr,k)
�1 gr,k corresponds to

the term (JTJ)�1 J Tz in the unconstrained Jacobian method.

QN methods can be used to build up the approximate Hessian

Hr,k (i.e., J
TJ) iteratively through previous gradient calculations,

and in particular, the limited-memory BFGS updating scheme

is employed here to directly produce the product (Hr,k)
�1 gr,k

thus saving time and memory.

The global convergence of the PDE-constrained multispec-

tral BLT algorithm is ensured by a line search on the following

merit function that somehow balances the aims of reducing the

objective function and satisfying the constraints, given as

(Biegler et al., 2000; Byrd et al., 2008; Kim et al., 2010)

’ cv; qð Þ ¼ f cv; qð Þ þ
X
v

�v Acv � bvj j1 [30]

which is successively monitored to ensure the global progress

toward the optimal forward and inverse solutions, while a line

search is performed to find a step length ak that can provide a

sufficient decrease in the merit function. As a consequence, the

new iterate is given as

qkþ1 ¼ qk þ akD qk

ckþ1
v ¼ ck

v þ akDck
v [31]

4.17.3.3 Examples of Bioluminescence Reconstructions

In the following, we will present some of the examples on

fluorescence reconstructions. The results include numerical

and experimental studies of CPU times, accuracy, and impacts

of random noise and different initial guesses on the image

reconstruction.
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4.17.3.3.1 Accuracy, CPU times, and effects of noise and
initial guess
The numerical phantom has a circular shape with a diameter of

2 cm, defined by G¼{(x,y)|x2þy2¼1} and one single biolumi-

nescent source with a diameter of 0.2 cm is embedded inside the

medium defined by G¼{(x,y)|(x–0.35)2þ(y–0.35)2¼0.22}.

The bioluminescent source has a power density of 1 W cm�3,

which is to be found by the image reconstruction code. For

numerical experiments, we considered spectrally resolved data.

The chosen set of three wavelengths is 600, 650, and 700 nm,

which are linearly independent of and distinguished from each

other (Lu et al., 2009). The optical properties of the background

medium are assumed to be ma ¼ 1:5cm�1, m
0
s ¼ 16:7cm�1

at 600 nm, ma ¼ 0:5cm�1, m
0
s ¼ 15:4 cm�1 at 650 nm, and

ma ¼ 0:2cm�1, m
0
s ¼ 14:3 cm�1 at 700 nm. The 72 detector posi-

tions are spaced equally around the surface.

First, the effects of noise are examined on the performance

of the two methods. To this end, two different SNR values (15

and 10 dB) that represent typical noise levels are used together

with noise-free data. The CPU time and the deviation dE [0,1]

and correlation rE [�1,1] factors are measured and given in

Table 3. Figure 6 shows the maps of the reconstructed biolu-

minescent sources obtained for the 15 and 10 dB cases. For

noise-free data, both PDE-constrained rSQP and uncon-

strained Jacobian methods give very similar accuracy:

rSQP¼0.71, dSQP¼0.92 and rJacobian¼0.71, djacobian¼0.92.

However, the PDE-constrained rSQP method converges faster

than the unconstrained Jacobian method by a factor of about

14: the rSQP method took only 66 s to converge, while 907 s

for the Jacobian method. Note that this CPU time (i.e., 66 s) by

the rSQPmethod is equivalent to the computation effort of less

than six forward runs, which in turn corresponds to the same
Table 3 Reconstruction quality and computation times with different
noise levels

SNR Schemes PDE- CPU time ( a) Cor. r Dev. d

1 Constrained rSQP 66 s (14) 0.71 0.92
Unconstrained Jacobian 907 s 0.71 0.92

15 dB PDE-constrained rSQP 67 s (14) 0.74 0.90
Unconstrained Jacobian 907 s 0.72 0.93

10 dB PDE-constrained rSQP 79 s (12) 0.72 0.93
Unconstrained Jacobian 920 s 0.67 0.93

aDenotes the acceleration factor by the PDE-constrained method.

0.00

PDE-constrained rSQ(a)

0.33
0.65
0.98
1.30
1.63
1.95
2.28

Figure 6 Reconstructed maps of bioluminescent sources q obtained with th
10 dB noise data.
computational effort taken to construct the Jacobian matrix for

six detectors in the Jacobian method. As before, this speedup is

achieved because the PDE-constrained code does not require

the complete solution of a forward problem, while the inverse

solution is inexact. In other words, the PDE-constrained algo-

rithm solves the forward equation given by the RTE equation

[22] with a loose tolerance in the 10�2–10�3 range during the

optimization process, which takes only a fraction of the time

required for the exact solution of the forward problem with

a tight tolerance (�10�10). This leads to lots of savings in the

computation time as it goes toward the minimum. Figure 7

clearly shows this feature of the PDE-constrained rSQP

method: both forward and inverse errors decrease in the

PDE-constrained rSQP method since it solves both problems

simultaneously (Figure 7(a)), which leads to the significant

difference in the CPU times of the two methods (Figure 7(b)).

At noise levels of 10–15 dB, the PDE-constrained rSQP

method and the unconstrained Jacobian method give some-

what different results; for the 15 dB data, rSQP¼0.74,

dSQP¼0.90 and rjacobian¼0.72, dJacobian¼0.93, and for the

10 dB data, rSQP¼0.72, dSQP¼0.93 and rJacobian¼0.67,

djacobian¼0.93. It can thus be said that the PDE-constrained

rSQP method is much less influenced by random noise in the

measurement than the unconstrained Jacobian method where

rjacobian¼0.72 for 15 dB and djacobian¼0.67 for 10 dB. For the

CPU times, Table 3 shows that the PDE-constrained rSQP

method leads to a significant saving in the computation time

both for the two noise levels. The PDE-constrained rSQP

method took 67 s, while the unconstrained Jacobian method

requires 907 s. The similar reduction is observed for the 10 dB

data: the PDE-constrained rSQP method converged after 79 s,

while the unconstrained Jacobian method reached conver-

gence after 920 min, which is already a speedup factor of

about 12.

Next, the influence of initial guess on the algorithm is

discussed here since gradient-based techniques including the

PDE-constrained approach require making an initial guess of

the unknowns to start the reconstruction and hence different

initial guesses may affect the reconstruction quality. For this

study, the same setup of the problem as before is considered

here, and three different initial guesses (q0¼1.0, 3.0, and 10.0)

are made that correspond to 10%, 30%, and 100%, respec-

tively, of the actual value of a bioluminescent source. Note that

a fixed noise level of 15 dB is used for the reconstructions with

three different initial guesses. The reconstruction results and
(b) Unconstrained Jacobian
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Figure 7 Objective function values of the two methods with respect to iteration numbers and CPU times.
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Figure 8 Reconstructed maps of bioluminescent sources obtained with the PDE-constrained rSQP method for different initial guesses of (a) q0¼1.0
and (b) q0¼10.0, respectively.

Table 4 Reconstruction quality and CPU times obtained with the
PDE-constrained rSQP scheme for different initial guesses

q0 CPU time (a) Cor. r Dev. d

1 70 s (13) 0.71 0.92
3 65 s (14) 0.71 0.92
10 94 s (9.6) 0.69 0.90

aDenotes the acceleration factor by the PDE-constrained method.
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measures of dE [0,1] and correlation rE[�1,1] are given in

Figure 8 and Table 4, respectively. It can be seen from Table 4

that the PDE-constrained rSQP method leads to similar recon-

struction results when the initial guesses are made as 10%,

30%, and 100% of the value of the target. For both of the

10% and 30% cases, the same accuracy is observed with

rSQP¼0.71 and dSQP¼0.92, and for the 100% case, similar

results are obtained with rSQP¼0.69 and dSQP¼0.90, although

rSQP is slightly decreased. In terms of CPU times, the PDE-

constrained code took 70 s for the 10% case and 65 s for the

30% case, respectively, which are very similar to the time taken

in the previous 15 dB case where the reconstruction is started

with zero. Note that the 100% case took a little longer time, but

this is already expected by the initial guess being too far away

from the true solution.
4.17.3.3.2 Examples of experimental phantom
Experimental results of a quantum dot are presented here that

allow for acquisition of spectral emission data over a broad

range of wavelengths between 450 and 900 nm. With this

spectral emission data alone, one seeks to find the spatial

distribution of the quantum dot as a light-emitting source

inside the medium. The square cylinder has a size of

25 mm�25 mm�100 mm (X�Y�Z) and is filled with 10%

Intralipid fluid of known optical properties for all wavelengths

considered here. A smaller cylinder rod with a diameter of

1.5 mm is filled with the quantum dot and embedded inside

the background medium. Three sides of the phantom were

imaged onto one CCD image and the 2�2 binning was done

onto the CCD image, which leads to an image scale at which 1

pixel equals 0.167 mm. Figure 9 shows the reconstruction

results of the spatial distribution of a quantum dot inside the

lab phantom obtained by the two methods. The black hollow

circle represents the actual location of the quantum dot

embedded inside the medium. The results show that the

PDE-constrained rSQP method gives very accurate localization

and identification of the quantum dot, while the uncon-

strained Jacobian method gives similar results but seems to

produce more artifacts. For CPU times, the unconstrained

Jacobian method needed a total computation effort of about

2230 s taken for a precalculation of the Jacobian matrix using

123 forward runs, whereas the PDE-constrained method took

only 103 s to converge, which yields a 22-fold speedup.
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Figure 9 Reconstructed maps of a quantum dot inside the experimental phantom obtained with the spectrally resolved data. The hollow circle (O)
indicates the location of the cylinder rod filled with a quantum dot.
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4.17.4 Summary

Inverse models of bioluminescence and FMT are presented

here. Traditional approaches to solving molecular tomo-

graphic problems are to solve a forward problem of light

propagation repeatedly by updating the parameters of this

forward model until the optimal values of parameters are

found that minimize the objective function. As a consequence,

this approach leads to a highly costly image reconstruction

process, especially when the ERT is used as a forward model.

On the other hand, another approach to this type of problems

is to solve the forward and inverse problems simultaneously in

a framework of PDE-constrained optimization, which consid-

erably increases the image reconstruction speed with a factor of

up to 25, thus saving lots of CPU times in the reconstruction.

With respect to effects of noise and initial guess, both PDE-

constrained and traditional unconstrained approaches show

similar results.
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