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Gradient-Based Iterative Image Reconstruction
Scheme for Time-Resolved Optical Tomography

Andreas H. Hielscher,* Alexander D. Klose, and Kenneth M. Hanson

_ Abstract—Currently available tomographic image reconstruc- and has been applied in a variety of pilot studies concerned
tion schemes for optical tomography (OT) are mostly based on with monitoring of blood oxygenation [11]-[18], hemorrhage
the limiting assumptions of small perturbations and a priori  getaction [8], [19]-[21], functional imaging of brain activities
knowledge of the optical properties of a reference medium. 2211261, Alzhei di is [12]. 1271 [28 v di .
Furthermore, these algorithms usually require the inversion of [22]-{26], _Z e_lmer '6_‘9”_05'5[ 1, [27], [28], early diagnosis
large, full, ill-conditioned Jacobian matrixes. In this work a Of rheumatic disease in joints [29]-[31], and breast cancer
gradient-based iterative image reconstruction (GIIR) method is detection [7], [32]-[37]. However, a major challenge remains
presented that promises to overcome current limitations. The the development of algorithms that efficiently transform these

code consists of three major parts: 1) A finite-difference, time- 045 rements into accurate cross-section images of various
resolved, diffusion forward model is used to predict detector body parts

readings based on the spatial distribution of optical properties; . . .
2) An objective function that describes the difference between  Currently available reconstruction algorithms for OT have
predicted and measured data; 3) An updating method that uses several limitations that need to be overcome before they can
the gradient of the objective function in a line minimization  pe routinely applied in a clinical setting. In contrast to X rays,
schemg to prowde.subsequentguesses of the spatial dIStrIbUt.IOI’] Ofneal’-infraI’Ed photons used in OT do not cross the medium on
the optical properties for the forward model. The reconstruction traight line f th to the detector. The phot

of these properties is completed, once a minimum of this objective a straight line irom the source 1o the ; etector. € photons
function is found. After a presentation of the mathematical are strongly scattered throughout the tissue. Hence, standard
background, two- and three-dimensional reconstruction of simple backprojection methods have only limited success [38]—[41].
heterogeneous media as well as the clinically relevant example of ~ A majority of available reconstruction algorithms are based
ventricular blgedlng |n§he brain are discussed. Numerical studlgs on perturbation methods [42]-[59]. These algorithms have
suggest that intraventricular hemorrhages can be detected using limited tical lication b f their inh t

the GIIR technigue, even in the presence of a heterogeneous '.m' €d practica a,pF? Ica '9” ecausg ortherr 'n.eren_ a‘_ssump—
background. tion that the variations in the optical properties within the
medium are small, or that the properties of a reference medium
similar to the unknown medium are available. Furthermore,
they are computationally very expensive since they require
the inversion of large full ill-conditioned Jacobian matrixes.

. INTRODUCTION In this paper we report on a new approach, which we refer

N recent years researchers have invested considerablet@fas gradient-based iterative image reconstruction (GIIR),

forts toward tomographic |mag|ng Systems that use neéhat overcomes problems encountered with the perturbation
infrared (NIR) light [1]-[5]. In this novel medical imaging method. First we will review the basic features of perturbation
technique, commonly referred to as optical tomography (OT9¢hemes to contrast them to the GIIR technique. This review
one attempts to reconstruct the spatial distribution of opticélll be followed by a detailed account of the particular
properties (absorption and transport scattering coefficignts, Structure and mathematical background of a time-resolved
and /) within the body from measurements of transmittetinage reconstruction algorithm. To illustrate the performance
near-infrared light intensities. The source is typically a laséf that code we will present results for two-dimensional
whose light is delivered through optical fibers to sever&R-D) and three-dimensional (3-D) reconstruction of simple
locations around or inside the organ under investigation. THeterogeneous media as well as simulated reconstructions of
technology for making such light-transmission measuremer@sslice through an infant's brain.
on human subjects is nowadays readily available [6]-[10]

Index Terms—Infrared imaging, optical tomography, time-
resolved imaging, tomographic reconstruction, turbid media.
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in common the gssumpnon that/the gnknown distribution FORWARD MODEL, F
of optical properties{ = [uq(r), 1i(r)] is a small pertur- (depends on estimated systom parameter

. . . . f > absorption coefficient p,(r),
bation to an estimated distributiof.. From the assumed ) transport Seattering coofictont (1)
distribution of optical properties, it is possible to predict B Diffusion Theory
measurements value®, given a forward model or theory : Y
F,M, = F[(.]. The forward model is typically a diffusion Pred'ﬁed_“g'(egiulremef‘]t)‘ Mp
equation derived as an approximation to the equation of Pr o el
radiative transfer. Experimental measurement valdgsare < Measured Data, M
commonly considered to be taken on the bound#pyof the F Y
system under investigation. A variety of parameters have been £ comoar NALYSIS SCHEME

. 3 X | — parison of predicted and measured datg

considered foM, e.g., fluence rates, either obtained by time- L Taylor expansion around estimate
or frequency-dependent measurements, maximum of fluence © M = F(L) + oF/ 0L, (& - O+ ..
in time-resolved measurements, phase shifts of photon density = M-Mp = J A
waves, etc. New ¥

Assuming that the estimated spatial distributigpnis close guess UPDATING SCHEME
to the actual distributiod, one can perform a Taylor expansion of optimize AM(C) =M - Mp

foll ! p y p 1a{r), by calculating AL = [Ap,, Ap]
as Tollows: w(r) *

M= F[Ce]+F/[Ce](C_Ce)+(C_Ce)TF//[Ce](C_Ce)+' o (1) Y —> Ca‘IJCL;Ia;)ng/rSzient
Inner

whereF’ and F are the first- and second-order derivatives of _ ¢ iteration
the forward model with respect to the optical propertieShe s AMED) 3 AL °i| +R O
derivativesF’ and F” can be represented as matrixes and are € =1Au,, Al — _),i.
commonly referred to as the Jacobian or the weightfunction

! H 2
(F - J) and _the Hessiad ™" — H) 9f the pmblem' If Fig. 1. Basic flow chart for reconstruction algorithms based on perturbation
we define the difference between experimentally obtained améthods that employ full Jacobian matrix inversion.

predicted measurement values A8 = M — M, and the
difference between actual and estimated distribution of opticl.opian matrix more diagonally dominant [51]. For more
properties asA( = ¢ — (., (1) becomes details on the perturbation techniques and other reconstruction
AM = J[CJAC + ACTH[CIA + -+ ) methods currently applied in OT, see the review by Arridge
and Hebden [60].
By neglecting second-order terms on the right-hand side, (2)
becomes linear. The reconstruction problem is then reduced®oGIIR Schemes

solving a set of linear equations fax¢ GIIR schemes [61]-[63] differ fundamentally from the
AC = J7YC]AM. (3) perturbation approach employed by the majority of researchers
in the field of optical tomography. This statement is true
Knowing A¢ and the reference mediuga allows to calculate even though many common features exist. As in all other
the distribution( = A¢ + ¢., which is the desired image. methods, the goal of the GIIR scheme is to reconstruct the
This approach may be generalized to iterative reconstructigigtribution of the optical properties inside a medium from a
schemes, which successively updateo that{ = (. +A{1+ given setM of measurements on the circumferen6€) of
A¢2 +---. In Fig. 1 these successive updates are describg@ medium. Analogous to the perturbation approach depicted
as outer iteration. in Fig. 1, we can divide the GIIR scheme in three different
The major computational effort of this approach lies in thgajor components (see Fig. 2).
inversion of thg Iarge full |II-cond|t|one_d Jacob|an_matr|x.'Usu- 1) Forward Model: As in the perturbation approach, this
ally this inversion is not atte_mpteo_l directly, bu_t is considered ~ model is a theory or algorithm that predicts a set of
as an optimization problem in which the functional measured signald/,, based on the position of the light
17 [p]AC — AM|| = B(AL) (4) source and t?e spatial distribution of optical properties
¢ = [pa(r), ps(r)]-
is minimized. Commonly applied techniques are conjugated2) Analysis Schemetere, an objective functio is de-
gradient descent (CGD), singular value decomposition (SVG), fined, which describes the difference between the mea-
projection onto convex sets (POCS), algebraic or simultaneous sured,M and predicted datalf,. A simple example is
algebraic reconstruction techniques (ART or SART) [48], or  the least square error norg{¢) ~ (M — My(())?.
the recently developed elliptic system method (ESM) [58]. In Since the problem is highly ill posed, a penalty or
Fig. 1, this step is called inner iteration. regularization termk is usually added to the objective
Since the problem of solving (3) is ill posed, regularization function. Note that by defining the objective function in
techniques are often employed, which put additional con- this way,no linearization of the problem is performed.
straints on the solution vectoA(. Regularization of these 3) Updating SchemeOnce the objective function is de-
problems is obtained by making the highly ill-conditioned fined, the task becomes to minimize This is accom-
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work on similar reconstruction schemes as presented in this

A ¥ paper.
Gopenee A DL F In summary, the major difference between the perturbation
absorption coefficient u,(r), < approaches described in Section II-A and the proposed GIIR
transport scattering coefficient pi(r)) A . . .
Diffusion Theory scheme is that the inverse problem is to be solved as an
v v optimization problem, rather than a perturbation problem.
Predicted Measurement, Mp While in both methods Jacobian matrixes are calculated, they
Mp = F(Ce= (o 151 are used in different ways in the reconstruction process. In
Measured Data, M ‘—LEXPII the perturbation approach, the Jacobian matrix needs to be
{ ¢ inverted to obtain one updat&( of the optical properties in
S ANALYSIS SCHEME c the medium. This inversion, in itself, is an extremely time-
s comparison of predioted and measured data % consuming iterative process, which sometimes also is referred
= :>¢d(‘2;”i‘Ebl"\:f‘“:nf“("cc)“;’;‘j’(g) 5 to as optimization. In the GIIR scheme, the Jacobian is part
g P N 5 of the gradient calculation of the objective function. Once this
i ¢ £ gradient is found, a line minimization of the objective function
UPDATING SCHEME along the direction of the gradient is performed to find the
optimize © by updating G, update for the optical properties. This line minimization does
¢ not require the computationally expensive inversion of the
gl:ljzvsvs calculate gradient gﬁz‘gs JaCObian matfix. ] ] ] ) ]
of 99 90 oMy, of In the remainder of this paper we will discuss in detail the
Ha(r), aadi-;ommigyepnuamén Ha(r), mathematical background and actual implementation of the
() ¢ Hs(0 time-resolved image reconstruction scheme, which is based
Y minimizaﬁonwof o A = on gfinite—difference forward model of the diffusion eguation.
along direoton of conjugated gradint [ Au‘f Tp illustrate the perf_ormance of that code, we Wlll_shovx_/
AL =1 Ay, Ant] ¢ simulated reconstruction examples of well-defined objects in

-
<

a homogeneous background and a more clinically relevant
reconstruction of brain tissue.

Fig. 2. Flow diagram of GIIR scheme used in this work.

plis
a)

b)

The inner iteration in the perturbation approach (Fig. 1) co
sists in solving (4) which contains the large full ill-conditioned

Jacobian
the inner

¢ are fixed, unlike in the line-minimization scheme (Fig. 2):
While the outcome of the inner iteration in Fig. 1 is one update

C+ A¢ t
¢+ AG
calculate

) IIl. THEORY
hed in two substeps.

First, the gradient of the objective functidn(¢)/d{ A. Forward Model
is calculated by means of so-called adjoint differen-
tiation. Note that this gradient is not identical to the
weight function or Jacobian used in the perturbatio
approach. The effective calculation of this gradie

As a forward model that describes the photon propagation
the turbid medium and predicts the measurements at the
etector positionry we use the 2- or 3-D time-dependent dif-
poses a major challenge in itself and is described Hsior_1 gquatior_1 W_‘th zero-boundary condi_tion. Fo_r nota_tional
detail later. simplicity we will first develop all C(_)ncep_ts in tWO dimensions.
Second, given the gradient an iterative line min‘l_'r_le extensions to three d|men5|o_ns is stralghtforward and
imization in the direction of the gradient is per-W.III b.e outI|ne(_j whengver appropriate. The time-dependent
formed. This step is labeled inner iteration in Fig. éilffusmn equation is given as
and consists of several forward calculations in which au 9 ou a U
the optical parameter$ are varied. Once the min- ot %( %) - dy <Da_y
imum along the line is found, a new gradient is ]
calculated at this minimum (outer iteration) andi€re.U = U(z,y,?) is the fluence rate [Wen?] and 5 =
another line minimization is performed, now along®(#; ;%) is the source strength at positi¢n, y) and timet.
a different direction in the’ space. These steps arel € position-dependent absorption and diffusion coefficients
repeated until a distributio is found for which are denoted byi, = pa(,y) and D = D(z, y), respectively.
$(¢) is smallest. The speed of light in the medium is representedcbyrhe
diffusion coefficient is defined aB = c- [Brra +3(1—g)ps] ~*
hereg is the scattering anisotropy value equal to the average
lue of the cosine of the angle through which photons are
Féa\ttered. The coefficiept, = (1 — g)u, is called the reduced
or transport scattering coefficient.
Equation (5) is solved by replacing the temporal and spa-

) —cuU +5. (5)

matrix and is usually very time consuming. Durin
iteration of the perturbation approach the paramet

he inner iteration in Fig. 2 provides several updatigj}: der'lvatlves by their finite-difference approximations as
+ AG + -~ before a new gradient needs to be> oW
d. The superiority of this method was most recently oU Un_—Un—l ©

acknowledged by Arridge and Schweiger [64], who currently at At
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3<D3_U> ~6,(Us ; Di ;) (7a) column-ordering in the second half step [(9b)], and letting
dr dx FATIT n take on fractional values, we can compactly represent
9a) and (9b) as
(%(DZ_I?JJ) ~ by (Ui, D j) (7b) (%2) (%)
AUn—l—l/Q — BU™ + Sn+l/4 (10a)
where
or
62(Uij) =[Diy1/2,j(Vir1,; — Ui )
— Di1yo (U — Ui )]/Ae® (8) U2 = ATIBUT 4 ATES A (10b)

0y(Ui3) =[Pij1/2(Uiia = Ui 0 The structures of the matrixed and B remain the same

—D; j12(Uij — Uij-1)]/Ay*.  (8b) in both half-time steps, but the absolute values of the matrix
%lIFé'nents differ. The advantage of the ADI method is that by
correct ordering the matrix4d can always be made tridiagonal,
g., for the first half step

The distances between spatial and temporal mesh points
given by Az, Ay, and At, respectively. The approximations
are obtained by simply differencing the partial derivatives ast
stands and centering everything appropriately. The interpolated At At
value of D halfway between the grid points is gotten by linear it =1+ ctta— + (Digrpaj + Diciyag)5 - (118)
interpolationD; 1/, ; = (D;; + Diq1,5)/2. At
By substituting the finite-difference approximations (7) and Aiir = _Diil/mm-
(8) in the diffusion equation (5), we obtain a difference
equation that needs to be solved forward in time. The finite- The matrixA needs to be inverted to computé+*/2 from
difference approximations to the spatial derivatives (7) cdA™ (10b). SinceA is always tridiagonal, the inversion can
be evaluated at time index + 1 or » when we are solving easily be done ifO(N) computations [66]. Furthermore, the
the difference equation foF™t!. Methods that evaluate the ADI method is unconditionally stable for any value At and
spatial derivatives at the past time instange are called is acccurate t@[(At)?]+O[(Ax)?] [65]. From now on we do
explicit, while methods that evaluate the spatial derivatives Bt distinguish between the two half-time steps for notational
the present time instande + 1) are called implicit. Explicit simplicity. For further information on explicit, implicit, and
methods lead to simple and fast solution of the finite-differenédl methods see [63], [65], [67], and [68].
equation, however, they are only conditionally stable. Implicit The generalization of the ADI method to three dimensions
methods prove to be unconditionally stable, but lead to moigestraightforward. Equations (9a) and (9b) have to be replaced
complex solution schemes. by three equations containing, respectively, off# and
To combine the simplicity of explicit methods with theU"*/3, U"+1/3 and U+%/3 and U"+%/3 and U"*!. These
stability of fully implicit methods, we use in this work three equations are identical, except for a cyclic shifting of
a technique known as alternating-directions implicit (ADIJhe implicit term among the, , and~ derivatives. The major
method [65]. In this method, the computation@f* from difference between the 2- and 3-D ADI method is that, in three
U™ is broken up into two time steps. In the first halfdimensions, the unconditional stability is lost and is replaced
time step, the spatial derivative in only one direction iby the stability conditionAt < [1.5 - Az/D; ;]. Furthermore,
evaluated at the present time instance (implicit) and the othbe accuracy drops tO[(At)] + O[(Az)?] [65].
spatial derivatives are evaluated at the previous time instance
(explicit). In the next half-time step, the implicit and explicitB. Analysis Scheme
directions are switched, etc. The difference equations for th
two half-time steps are given as

(11b)

®The forward model is used to calculate detector responses at
a set of detector positiof/. Let Y denote the measurements
l4e g Y ﬁ& (U"+1/2) of the diffuse intensity/ for all s € M. We assume, for sim-
Ha™y BJ 9 ENTL plicity, that the measurements are corrupted by uncorrelated

At . n A Gaussian noise. However, note that the method we propose is
= 75y(Ui,j) +U;5 + T(Si;g’ +575) (92) not limited to this choice and could just as well have chosen a
At At " more complex model such as Poisson noise. In this work the
<1 + Cuc7>Uij = - 0(Ui5) objective function is defined as
At nt1/2 nt1y2 | At g n Y — U ())?
= 76m(Um )+ U +7(5m +57;). (9b) () = Z Z ¥y = UHO)F + R(Q). (12)

v 20(s,n)?
We call the vectorU row ordered if the elements

of the vector U are ordered such that we firstThe first sum over indicates a summation over all source-
enumerate thex values before increasing thg value detector pairs, while the second sum overepresents the
(Wa1,41, V2,415 3 Usn g1, Uzt y2, Us2 42, - - -]), @and column summation over all time steps. The parametds,n) is
ordered if we first enumerate thevalues before increasingthe time and spatially varying noise variance. The function
the z values([Uz1 41, Us1.42: - -, Usyns Un2.w1, Uz2 42, - *]).  R({) describes any additional penalty or regularization term,
If we perform row ordering in the first half step [(9a)],which generally depends on the spatial distribution of optical
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properties¢ = [cpa(r), D(r)]. An example would be a with
Markov random field regularizer [69], defined as dd 9P
» — = —= for N=max(neT). (16b)
A Crn - Cr dUé\ aU(f\
R(Q) = — Z oclm) | (13)
p (mmyen | %6 m Here, 9¢/U} denotes the change i when only U/} is

The parametei is a weighting factor for the regularizationvaried’ keeping all other yariables constant, while/ Uy
notes the total change inwhenU}} is varied, as well as

term, often also referred to as hyperparameter [70]. T I bles that d d qiin Ll diff o 5
regularization term compare$ at positionr with ¢ at all all varia es that depen dﬂp Partially differentiating (12)
with respect toU/?, we obtain

neighboring positionsr. Large variations between neighbor-
ing ¢ are more or less penalized, depending on the choice 9D
of p and the scaling parameter;. In this work we used U :{
A =1,p=1.1ando; = 1. This regularization term imposes a P
certain smoothness on the solution. A more detailed discussio nt1/2 ; rm .
on Markov random fields, as well as the interpretaion of (1 nl'he te.rmdUp.+ / /dU’ can again be cglculated from the
and (13) in a Bayesian framework, can be found eIsewhjg’éward finite difference (6b) and we obtain

[63], [69]. The goal of the reconstruction algorithm is now to qu"+1/2 . _ 1 g=p

minimize this objective function with respect to the system g = A B with I, = {0 q#p (18)
parametersD(r) and cu, (7). r

1
SMy =) p=de (17)
0 otherwise.

wherel, is a column vector that is zero everywhere except at

C. Gradient Calculation the spatial poinf, where it is unity.
To further enhance the efficient calculation of the gradi-

The effective solution to optimization problems involvinge . . : oo 2
. e . nt (14) we make use if the following matrix-multiplication
many variables (here the spatial distribution of optical proper-

ties) relies on knowing the gradient of the objective functioﬁ/i;)pz:(lje?\'/[cg?jcﬁr;h; T};J:t'ﬁ)l('gzt'g%; ?5425; ‘\//)eg’;':rergf
with respect to the variable#p/d¢. In this work, we employ ! 2

the method of adjoint differentiation [71]-[73], sometimes alsle.ngth N Th|§ mult!pllcauo.n.can b? done in wo ways.
; . : . ither a matrix-matrix multiplication is performed before a

called reverse differentiation [74]. To outline this method we _ ~ L :
L - . . Matrix-vector multiplication(Af; - M>) - V' or two matrix-

assume, for simplicity, that no regularization term is used, "%‘éctor multiolications are performed fir (M - V)
R(¢) = 0. Furthermore, we choose the following notation: P P S 2 '

1 . . i 3 2
p,q,r,d € Q are grid points;dd € Q C Q are detector The first approachM, - M) - V, requiresN™ + N° scalar

positions on the boundag<); and M denote measurementsﬁa:::p::g:::g:i ﬁﬂg?;fr; t?:etchoengei%argzch :iglégﬁg;iagr
on the boundary€}. The derivative of the objective function b X ' P

) . o times faster than the first approach.
(8) with respect to the optical propertiesis given by How this method can be applied in our gradient calculation
dd de Uy,
TP IPY

(14) can be seen by inserting (16a) into (14)
oy e dur - 9¢,

4 ae  dupt?r o o9 \ our
Here, we simply applied the chain rule and the first term im;— = Z Z Z JUTHL2 ;U" + ETo 8(%
the sum is the outer derivative, while the second term is the™  n€T peQ \¢€Q 4 P P '
inner derivative of (12). The second term is easily obtained (19a)
by differentiating (10a) at tim¢n] with respect to the optical
parameters, which yields

pulling the last term into the bracket

dA U™  dB d® ae  duptV?ooun
UM A = T2 (15a) ==y < - L L
& T Bk . W o G G \auy T AUy G
= = A—1< Uiz - —U"). 15b o UL
ac, . &, (130) ;Un s (19b)
(Here we consider (10a) at tim@s— 1/2] and[n] rather than b "
[»] and[n+1/2]). Equation (15b) can be easily calculated bgnd reordering the sums yields
means of the known intensity/ and the matrixesd and B "
of the forward model. ae YTy e dupTt? our
More involved is the calculation of the derivative of the  d¢,. - e dU(?H/Q aup 9¢.
objective function® with respect to the intensitigs™, which neh APt as
is the first term in (14). We obtain this term recursively by 9% oU™
applying the chain rule and stepping backward (reverse) in + Z Z Z oun a{f (19c¢)
time fromn + 1/2 to n n€T \pe@ req TP 7Y
A® A® dU(?*l/Q 9P The double sum in the first bracket of (19c) is just a mul-
oy~ > QU2 AUy + Uy (162) tiplication of two matrixes([dUr+*/dUz] and [dU; d¢.]),
q

7€92 with a vector(d¢/dUr**). The order of the summation can
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be done in two ways. If the sum ovgiis done before the sum counting is used, relatively noise free data can be obtained over
over ¢, we effectively perform a matrix—matrix multiplication2—3 orders of magnitude. Signals that are approximately 1000
before the matrix-vector multiplication. Summing first ovetimes smaller than the maximum are increasingly affected by
g and then overp corresponds to the case of two matrixstatistical noise.

vector multiplication and, thus, can be performed + 1)/2 Once the detector readings are simulated, they are used as
faster than the first approach. This amounts to the adjoiiie actual measurement data in the reconstruction code.
differentiation scheme applied in this work. To start the reconstruction program an initial guess of the

The method of adjoint differentiation provides an efficienbptical properties is necessary. If not stated otherwise, a
means to calculate the needed gradients for a complex sedium with constant absorption and diffusion coefficients
guence of calculations, such as the forward simulation ©f used as a first guess. Based on this guess, the forward
the migration of photons described above. Its power lies aode calculates the detector respon8eand compares these
its ability to calculate the derivatives with respect to all thpredicted measurements with the measurement #athy
variables in a CPU time that is comparable to one forwahlculating the objective function (12). The derivatives of

calculation. with respect to¢ at all grid points are calculated and a new
spatial distribution ofD and ¢, is put in place for the next
D. Line Minimization forward calculation. The speed of light in the medium is set

. . . : to ¢ = 22 cm ns! in all cases. All calculations are done on
h f - :
Once the gradient¢/d¢ for a point(, is obtained, a one an HP 9000/770 workstation.

dimensional (1-D) line minimization along the given gradien
direction is performed. In this method one moves along a
direction given by the gradient until a minimud(¢,,) is B. Simple Systems

found. Various techniques can be applied to perform such ) ) _
1-D minimization [75]. In this work we apply an iterative First we consider a simple heterogeneous system [Fig. 3(a)]

strategy by starting with a small step + AC = ¢, in the Whl?h consists of albackground n_‘nedlum_w(tD = 0.9 cm?
direction of the gradient, calculating the function valgeg,), NS .»c#a = 22 ns') and two objects witD = 0.5 e’
taking a bigger ste@; + «A¢ = (o, With « > 1, in the NS ' Chla = 9.0 ns™!) and (D = 1.46 cn? _”S_lzc“a = 0.44
gradient direction, calculating the function valdé(,), etc. NS '), respectively. A 40x 40 z — y grid with a spatial
until @(C,) < ®(¢y—1) and ®(C,) < ®(¢op1). At this point, a reso!utmn of 0.2 cm is used to simulate the>8 8-cm
parabola is fitted to the three points and the minimum of tfgédium. The medium is surrounded by 16 source detector
parabola is assumed to be a minimum along the direction RFSitions. Moving the source around the medium results in
the gradient. 16 x 15 = 240 detector readings. Each detector reading
We typically choseA¢ in a way that ensures that in eactfOnsists of 50 time points, which are equally spaced by
componentAy, < 1 and Ay, < 0.01. Therefore, the changesAt = _0.1 ns. In the reconst_ructlon code, the derivatives of
of optical properties in each pixel are initially smaller thaff€ objective function (12) with respect &g, and D at each
approximately 10% of typical values for biomedical tissue§rid point are calculated, which results thx 40 x 40 =
The parameter: is set to 1.618, which is the ratio of the3200 derivative calculat|oqs in each_lteratlon step. Fig. 3(b)
golden sections. Furthermore, we impose positivity constraif@oWs the reconstructel! image, which was obtained after
that limited the search to values> 0. For more detailed 15 iterations (20 min). The initial guess is a homogeneous
discussion of line-minimization schemes see, for example [757€dium with D = 1.0 C”_‘2 ns~ and cu, = 2.0 ns~*. The
Once the minimum along the direction of the gradient i@cations of the two objects and absolute values/bfare
found, a new gradient calculation is performed and a negconstructed with high accuracy.
direction is chosen in a conjugate-gradient framework. ThatHowever the absolute values @i, are not as accurate. For
is, the new direction is determined by a weighted sum of tf&ample, the small object witty:, = 9.0 ns™* appears as a

previous gradients. In this study we employ a Polak—Riber@ger object withcu, = 3.2 ns. Similar results have been
conjugated-gradient scheme [75], [76]. observed by other researchers using different diffusion-based

image algorithms [64], [79], [80]. Further studies are necessary
to fully explore the reasons for this behavior.

The extension of the code to three dimensions is
straight forward. An example of a 3-D reconstruction of
A. Problem Setup a 8 x 8 x 8 cm heterogeneous medium is shown in Fig. 4.

The GIIR algorithm is tested by simulating time-resolve&ources and detectors were arranged in ten layers. Layers two
measurements of infrared light passing through a hetermnd seven are shown in Fig. 4(b). Each layer has four sources,
geneous medium and using these simulated measurememis centered on each side of the cube, and 20 detectors, four
as input to the reconstruction code. The measurements aneeach side and one on each corner. A medium with constant
simulated with the finite-difference, time-resolved diffusiombsorption (i, = 0.12 cm™!) and diffusion coefficients
code. To mimic real-world measurements, Gaussian noise(i3 = 1.0 cm~!) was used as a first guess.
added to each measurement at a signal-to-noise (SNR) levelVe find that the time it takes for the GIIR code to complete
of 30 db. This value is typical for time-resolved singlea reconstruction on a given problem is proportional to the
photon counting measurements [77], [78]. When single-photammber of grid pointsVy,;q and number of source¥.qrce.

IV. RESULTS
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Original D Reconstruction

3
[

|
0.5 D [cm2/ns] 1.5
(@) (b)

Original cLL, Reconstruction

-
1.0 cu,[i/ns] 3.0
() (d)

Fig. 3. (a) and (c) The original medium that contains two inhomogeneiti
which differ in the diffusion and absorption coefficient. For the reconstructi
the system is discretized int) x 40 = 1600 voxels. (b) and (d) Here the
reconstructed medium after 15 iterations (20 min) is shown for both opti
parameters. The arrows indicate the 16 source/detector positions surrout
the medium.

Doubling Ngiq O Neource l€ads to a doubling of the recon
struction time. Doubling the number of detectors increases
computation time only by a factor of 1.1. Furthermore, v
observe that keepin@source, Ngria, and Nget, constant, but
increasing the dimension of the problem from 2-B 3-D,
leads to an increase of the computation time by a factor
1.5, which can be explained by the additional overhead in
implementation of the 3-D code.

C. Brain Imaging

To test the algorithms in a situation closer to a clinic
problem, MRI density maps are used to generate opti
property maps of a brain. MRI imaging techniques allow o &2
to distinguish between skull, white matter, gray matter and ()
gerebrospinal-flu_id-filled spaces ?n th_e head. The;g different 4. (a) and (b) Original and reconstruction of six X6L6 x 1.6 cnf
tissues appear in MRI scans with dlﬁerer)t den§|t|es. Froﬁﬁ)'es'(D — 045 szgnyl) in8 x 8 x 8 cP background medium
this an optical property mageu,(r), D(r)) is obtained by (D = 0.9 cn? ns!). The absorption is constapt, = 0.1 cm!. The
assigning different optica| properties to different density valuéygstem is discretized iI:ltZI).X 20x20 = SQOO voxels. The six heterogeneities
[1]. Fig. 5(a) shows such a segmented scan for a S o oIt s POl et ement ayers. Each fayer has four
through the head. Clearly identifiable features include tkgurces (open squares) and 20 detectors (full circles). Displayed are volumes
cerebrospinal-fluid-filled ventricle in the center of the braifer which D <0.76 cn? ns™!.
and a hematoma near the forehead. Furthermore, the brain is
surrounded by cerebrospinal fluid, as can be seen in the ligiiout 70 min. While fine structures are not resolved, clearly
areas in Fig. 5(a). Fig. 5(b) shows the reconstruction, basedwsible in the reconstruction are the ventricles and other areas
simulated time-resolved measurements, for 12 source/detedibed with cerebrospinal fluid. In addition, the hematoma at
positions. In this case, 60 iterations are performed, which tattee forehead can be seen.
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3) An updating scheme, which allows to subsequent guess
the optical properties of the medium based on the gradi-
ent of the objective function. The gradient is calculated
with an adjoint differentiation technique.

The code was successfully used to reconstruct simple 2-D and
3-D heterogeneous media, which contain well-defined objects
in a homogeneous background. The code was also tested on
MRI-generated optical property maps of the brain.

Further studies will be necessary to fully explore all pos-
sibilities and problems connected with GlIR-type algorithm
for optical tomography. Open questions are, for example,

o

b) Reconstruction

4 what type of regularization terms and hyperparameters are
@ optimal, how can cross talk between absorption and diffusion
=z reconstruction be addressed, how sensitive is the algorithm to
E “ the choice of the initial guess, and how can global maxima be
a found most efficiently.

Sources &

Detectors Furthermore, experimental validation of the findings will be

necessary. Since only numerical simulations were performed,
the reconstructions shown do not provide an estimate of the
model error. In other words, the results obtained in this study
are based on the assumption that the diffusion model correctly
describes the light propagation in the media. However, our
group and others have shown that the diffusion model fails to
accurately describe the propagation of light in highly absorbing
regions, such as hematoma and void-like low scattering and
low absorbing regions, such as the ventricles in the brain
[81], [84]. How model errors effect the reconstruction results

Fig. 5. (a)—(c) Reconstruction of 2-D slice through the brain based 3R currently under investigation and first results have been

simulated time-resolved measurements (75 time steps svith= 0.1 ns). reported elsewhere [85].
The reconstruction was started with a homogenous initial g@iBss= 1.0

cm? ns~1). The numbers indicate the reconstructed diffusion coefficient
[cm? ns~'] at various positions. The spatial resolution is 0.2 cm. The circles
in the bottom image indicate source and detector positions.

Sources &
Detectors
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