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Monte Carlo simulations of the diffuse backscattering
Mueller matrix for highly scattering media

Sebastian Bartel and Andreas H. Hielscher

We have developed a Monte Carlo algorithm that computes all two-dimensional elements of the diffuse
backscattering Mueller matrix for highly scattering media. Using the Stokes–Mueller formalism and
scattering amplitudes calculated with Mie theory, we are able to consider polarization-dependent photon
propagation in highly scattering media, including linearly and circularly polarized light. The numeri-
cally determined matrix elements are compared with experimental data for different particle sizes and
show good agreement in both azimuthal and radial direction. © 2000 Optical Society of America

OCIS codes: 260.5430, 170.5280, 290.1350, 290.4210, 290.7050, 290.4020.
1. Introduction

In recent years there has been an increasing interest
in the propagation of polarized light in randomly
scattering media, especially for medical applications.
For example, Schmitt et al.,1 Emile et al.,2 and Demos
and Alfano3 proposed use of polarized light to isolate
ballistic photons from the diffuse background and
enhance the spatial resolution in optical tomographic
methods. In other applications that are aimed at
the in vivo characterization of biological tissue, the
nvestigation of backscattered light is of particular
nterest. Anderson,4 Jacques et al.,5 and Demos and

Alfano6 investigated the utilization of backscattered
polarized light for beneath-the-surface imaging.
Several studies suggest that relevant information
can be obtained from measurements of the spatially
dependent response of a medium to a polarized point
source.7–9 In this case a linearly polarized, colli-
mated laser beam is focused to a small point on the
medium, and the multiply scattered, diffusely back-
reflected light around this point is recorded with a
CCD camera. Using a collinear or crossed analyzer
in front of the camera, one obtains two-dimensional,
polarization-dependent, surface intensity maps,
which show characteristic two- or fourfold symme-
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tries. It has been demonstrated that these patterns
can be used to determine the scattering coefficient ms,
the anisotropy factor g, and the average size of par-
ticles in polystyrene sphere and biological cell sus-
pensions.8

Beyond obtaining surface intensity maps of lin-
early polarized light with crossed or collinear source
detector arrangements, many other configurations
are possible. For example, one may vary the angle
between the optical axes of the linear polarizer and
analyzer, or include circularly polarized light into the
measurements. It has been shown that a total of 16
intensity measurements suffice to obtain the so-
called Mueller matrix, which can be used to describe
any optical system.10–13 This 4 3 4 matrix operator
completely determines the transformation of an ar-
bitrary incident polarization state. In the case of
diffusely backscattered light generated by point illu-
mination, each matrix element is represented by a
two-dimensional surface map.14 In previous stud-
ies, our group showed that suspensions of differently
sized particles show distinctively different backscat-
tering Mueller matrices. Moreover, we were able to
differentiate cancerous from noncancerous cell sus-
pensions.8,14

In addition to experimental studies, several groups
have developed analytical and numerical models that
describe polarized light propagation in scattering me-
dia. Voshchinnikov and Karjukin15 investigated the
polarized radiation transfer through circumstellar
dust shells. Chuah and Tan16 studied the radar
backscatter from random media. Both groups used
Monte Carlo algorithms that were based on the
Stokes–Mueller formalism. However, none of these
groups actually determined elements of the diffuse
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backscattering Mueller matrix of the medium, nor
did they calculate the two-dimensional surface pat-
terns that are observed when linearly polarized light
is used.

Dogariu and Asakaru17 showed that the fundamen-
tal fourfold symmetry in the linear degree of polar-
ization of diffusely backscattered light can be
explained by assuming photon trajectories with only
two scattering events. Kattawar et al.9 and Rakovic
et al.18 were the first to present a Monte-Carlo-based
method to compute the effective backscattering Muel-
ler matrix and compare it with experimental results
obtained from the suspension of polystyrene spheres.
They were able to reproduce the azimuthal symmetry
in all 16 matrix elements for particles of 2020 nm in
diameter, but obtained only poor agreement in the
radial dependence.

In this paper we extend the existing approaches and
simulate polarization-dependent photon propagation
through multiply scattering media. Our simulation
fully considers both polar- and azimuthal-dependent
scattering as described by Mie theory. Unlike Rak-
ovic et al.,18 who estimated the contribution of each
cattered photon by an escape function from a partic-
lar scattering location, we follow each photon until it

s either absorbed or leaves the medium. By propa-
ating the Stokes vector along with each photon, we
an trace the polarization state of individual photons
nd determine the effective backscattering Mueller
atrix.
In Section 2 we briefly review the basic concept of

Monte Carlo techniques and the Stokes–Mueller for-
malism. We provide a detailed description of how the
Stokes–Mueller formalism is combined with the Monte
Carlo technique to properly consider polarization-
dependent light scattering and propagation. In Sec-
tion 3, simulation results for 204-nm-diameter and
2040-nm-diameter sphere suspensions are compared
with experimental results.

2. Numerical Model

A. Basic Monte Carlo Techniques

The basis of our Monte Carlo code for polarized light
scattering is an algorithm previously developed by
Wang and Jacques.19,20 The individual photon
paths are traces from a pencil beam, normally inci-
dent on a slab geometry. The transport path length
s between scattering events is sampled randomly
from the normalized distribution r~s! 5 mt exp~2mts!,

here mt 5 ma 1 ms is the interaction coefficient. A
variance reduction technique, namely, use of photon
packets, is employed to reduce computational ex-
pense and to improve statistics for long photon paths.
Rather than being completely absorbed, these pack-
ets merely drop statistical weight as they travel
through the medium. At each scattering point, the
loss is given by Dw 5 may~ma 1 ms! to yield an average

ecay of exp~2mas! along the photon’s path. Be-
cause the weight serves as a multiplicative factor
whenever energy is deposited into, or reflected from,
the medium, we are effectively simulating many pho-
tons along identical paths. Once the weight falls
below some threshold, the photon packet is termi-
nated. A more detailed description of Wang et al.’s
algorithm as well as experimental validation can be
found elsewhere.20–22 Here we concentrate on the
adaptation of this code to consider polarized light.

B. Stokes–Mueller Formalism

To include polarization effect into the standard
Wang–Jacques code we employ the Stokes–Mueller
formalism of polarized light. The Stokes notation is
favored over the also widely used Jones formalism
because the latter does not allow for the treatment of
depolarizing effects.10 A detailed discussion of dif-
ferences and relationships between both approaches
can be found in Refs. 10, 23, and 24. Here we only
review the basic principles of the Stokes–Mueller for-
malism. Neglecting only the absolute phase, one
can completely describe a given state of polarization
in terms of its intensities by a Stokes vector10,11,25:

S 5 3
S0

S1

S2

S3

4 5 3
^uElu2 1 uEru2&
^uElu2 2 uEru2&

^El*Er 1 El Er*&
i^~El*Er 2 El Er*!&

4 , (1)

where Er and El are two orthogonal electrical field
components in a plane perpendicular to the propaga-
tion direction ~Fig. 1!. The Stokes parameter Si are
ensemble averages ~or time averages in case of er-
odic, stationary processes! as indicated by the ^ &.
herefore no coherence effects are considered. The
arameters are real and obey the inequality

S0
2 $ S1

2 1 S2
2 1 S3

2. (2)

In inequality ~2! the equality holds for 100 percent
olarized light. The degree of polarization F is de-
ned by

F 5 ÎS1
2 1 S2

2 1 S3
2yS0. (3)

When Stokes vectors are used to describe the prop-
agation of light through optical components such as
lenses, polarizers, and retarders, each of these optical
elements can be represented uniquely by a 4 3 4
Mueller matrix M. By multiplying the Stokes vector
S0 of the incident polarization state with the appro-

Fig. 1. Transformation of incident Stokes vector S into scattering
plane by R~f! and subsequent scattering by the single-scattering
Mueller matrix Ms~u!. Shown are the electric field components,

1 and Er, from which the four-Stokes parameters are derived @Eq.
~1!#.
1 April 2000 y Vol. 39, No. 10 y APPLIED OPTICS 1581



p
~
r
t

s
e
t

i
c
v

h
v
F

1

o

r
s

w

1

priate Mueller matrix, one obtains the resulting vec-
tor S* for the transmitted or reflected light. An
arrangement of several optical components is de-
scribed mathematically by successive premultiplica-
tion of the corresponding matrix operator:

S* 5 Mn. . .M2 z M1 z S1. (4)

C. Polarized Light Propagation in Multiple-Scattering
Media

When the Stokes–Mueller formalism is employed to
describe scattering events, the Stokes vector S is de-
fined with respect to the scattering plane S, which
contains the direction vectors of the ingoing and out-
going beams. El is chosen to be in the scattering

lane and Er is orthogonal to the scattering plane
Fig. 1!. In multiple-scattering media, this plane of
eference changes with each scattering event, so that
he Stokes vector Sr,l of a scattered state is, in gen-

eral, different from Sr9,l9 the one that is subjected to
the next scattering event. To keep track of a pho-
ton’s polarization state as it undergoes multiple-
scattering events, it is assigned the four-component
Stokes vector Sr,l and a local coordinate system ~er, e1,
e3! in which Sr,l is defined. The local tripod is chosen
o that e3 points in the direction of propagation, and
l and er are oriented parallel and perpendicular to
he plane of reference, respectively ~Fig. 2!. Both S

and ~er, el, e3! have to be modified upon each scatter-
ng event. Knowledge of the reference system is cru-
ial to a correct interpretation of the current Stokes
ector.
If we assume that the deflection angles u and f

ave already been fixed properly, then the Stokes
ector and the local tripod are updated as follows ~See
igs. 1 and 2!:
582 APPLIED OPTICS y Vol. 39, No. 10 y 1 April 2000
~i! First we project the incident Stokes vector ~Eq.
! given in the coordinate system ~er, el, e3! into the

scattering plane. This can always be achieved by a
simple rotation of Srl:

Sr9l9 5 R~f! z Srl, (5)

where f is the tilting angle between successive scat-
tering planes and R~f! is given by

R~f! 5 3
1 0 0 0
0 cos~2f! sin~2f! 0
0 2sin~2f! cos~2f! 0
0 0 0 1

4 . (6)

At this point the Stokes vector Sr9,l9 is given with
respect to the system ~er9, el9, e39!, in which the single-
scattering Mueller matrix Ms~u! is defined. Now we
can perform the matrix vector multiplication and ob-
tain the Stokes vector S*r0,l0 of the scattered photon;
hence,

Sr0l0 5 Ms~u! z Sr9l9 5 Ms~u!R~f! z Srl. (7)

Note that the resulting vector Sr0l0 is given with re-
spect to the new coordinate system ~er0, el0, e30! of the
utgoing photon.

~ii! To keep track of the local coordinate system we
otate the local coordinate system ~er, el, e3! prior to
cattering about e3 and er9 to obtain the system ~er0,

el0, e30! of the outgoing photon ~Fig. 2!. This step
involves standard rotational matrices and is per-
formed easily, because we are dealing with the basis
vectors in their eigensystem, e.g.,

er0 5 er9 5 D3~f!er, (8)

er0 5 Fcos~f! 2sin~f! 0
sin~f! cos~f! 0

0 0 1
G F1

0
0
G 5 Fcos~f!

sin~f!
0

G ; (9)

and similarly

el0 5 F2cos~u!sin~f!
cos~u!cos~f!

sin~u!
G , (10)

e30 5 F sin~u!sin~f!
2sin~u!cos~f!

cos~u!
G , (11)

The sense of direction of the above rotations has to be
carefully considered. Although the Stokes vector is
being expressed in a rotated system, the three basis
vectors are being actively rotated, demanding for the
transpose matrix, or a negative angle f.

~iii! As it stands, the system ~er0, el0, e30! is given
ith respect to ~er, el, e3!. To be able to determine

the Stokes vector in terms of a fixed coordinate
system and eventually apply a detector to exiting
Fig. 2. Local coordinate systems of the photon prior to and after
scattering. The photon is incident from below; the scattering
plane is denoted Sn11.
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photons, ~er0, el0, e30! has to be expressed in terms of
the global system ~x, y, z!. For any vector a given
ocally, we obtain the x, y, z representation accord-
ng to

ax,y,z 5 er z ar 1 el z al 1 e3 z a3. (12)

o far no concrete single-scattering matrix Ms has
been specified. Mueller matrices for single-
scattering particles of arbitrary shape and composi-
tion can be derived from Mie theory.25,26 In this
study we considered only isotropically distributed
spherical particles, which reduces the Mueller matrix
to four independent elements:

Ms~u! 5 3
m11 m12 0 0
m12 m11 0 0
0 0 m33 m34

0 0 2m34 m33

4 . (13)

We used a source code by Bohren and Huffman25 to
determine the scattering amplitudes from which the
mij are derived.

D. Sampling of u and f

Let us now consider the actual sampling of u and f.
Generally, an incident plane wave is scattered over
the whole solid angle, resulting in an intensity dis-
tribution I~u, f!. Because we are dealing with dis-
crete photon packets and, consequently, discrete
deflection angles, it is necessary to either properly
sample ~u, f! or to punish certain packets, depending
on their new direction.

A straightforward approach to generate a photon
density distribution proportional to I~u, f! would be
o sample u [ @0..p# and f [ @0..2p# uniformly and
odify the photon’s weight w after each scattering

vent, so that

w3wr~u, f!, (14)

here r~u, f! } I~u, f! is the normalized intensity
istribution. Here, one makes use of the fact that
packet’s contribution to the photon density is al-
ays proportional to its weight w. However, this
ethod causes many photons to rapidly lose weight

y being scattered into less probable directions.
specially in the case of strongly anisotropic scat-

ering, the resulting statistic is increasingly poor
or longer paths.

Therefore, the preferred approach is to directly
ample ~u, f! so that the probability density r of a
acket being scattered under these angles is pro-
ortional to the expected intensity I~u, f! 5 S09~u,
f!. We obtain r in terms of the Stokes components
of an incident state by applying Eqs. ~6! and ~7!:

~u, f! } I~u, f! 5 S09~u, f! 5 m11~u!S0

1 m12~u!@S1 cos~2f! 1 S2 sin~2f!#

1 m12~u!@S1 cos~2f! 1 S2 sin~2f!#

1 m13~u!@S2 cos~2f! 2 S1 sin~2f!#

1 m14~u!S3, (15)

where mij are the elements of the single-scattering
Mueller matrix Ms. Note that Eq. ~15! introduces an
explicit dependence on the incident polarization
state, given by the matrix elements m12, m13, and
m14, as well as on the azimuth angle f as demanded
by Mie theory. This differs from the approach by
Kattawar and Rakovic9,18 who assumed the scattered
intensity I~u, f! to be proportional only to the m11
element and therefore independent of f.

The sampling of I~u, f! according to Eq. ~15! from
uniformly generated random numbers is performed
with the rejection method.27 First, two angles ~u, f!
re randomly chosen and Eq. ~15! is evaluated to
ield a number S09~u, f! between 0 and 1. Than a

third number Srand between 0 and 1 is randomly
generated. If Srand # S09~u, f!, than the scattering
ngles for the next scattering event are fixed to ~u, f!.
f Srand . S09~u, f!, than a new pair of angles and a
ew value Srand are randomly chosen until Srand #

S09~u, f!.

E. Photon Detection

The goal of this study is to determine the backscat-
tering Mueller matrix M 5 $mij% defined by

S* 5 M z S, (16)

which connects any incident Stokes vector S with the
outgoing vector S* of backscattered light. Although
the Mueller matrix for a random distribution of ho-
mogeneous spheres is known to have only 7 indepen-
dent elements,18 we explicitly recorded all 16
elements. This allowed us to perform consistency
checks and verify the validity of our approach.

A total of 16 linear independent intensity measure-
ments with linear and circular polarizers and analyz-
ers in different azimuthal arrangements are required
to determine M. Note that except for m11 none of
the matrix elements is directly accessible by a single
measurement. Instead, one has to solve the set of
linear equations generated by Eq. 16.12 A detailed
description of how to derive the actual matrix ele-
ments from linear combinations of intensity mea-
surements has been given by Bickel and Bailey13 and
Hielscher et al.14

Because in our simulation we are able to access the
Stokes components directly rather than only intensi-
1 April 2000 y Vol. 39, No. 10 y APPLIED OPTICS 1583
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ties, a total of four runs with the orthogonal basis
vectors,

S1 ; ~1, 0, 0, 0!T, S2 ; ~1, 1, 0, 0!T,

S3 ; ~1, 0, 1, 0!T, S4 ; ~1, 0, 0, 1!T, (17)

is sufficient to determine all elements of the back-
scattering Mueller matrix with only minor algebraic
effort. Consider an incident unpolarized photon in
state S2 is launched into the medium. Upon it exit-
ing from the medium, we record its Stokes compo-
nents in the auxiliary matrix m̂i

j:

m̂i
2 5 Si

29 (18)

where the superscript j 5 1...4 indicates one of the
ncident vectors in Eq. ~17! and the subscript i 5 1...4

refers to the component of the detected vector S*.
In general, if the incident polarization state is Sj,

he resulting Stokes vector is added to the jth column
f m̂i

j. Because Stokes vectors are additive, they
may simply be summed up to yield the average an-
swer of the medium. Finally, the average contribu-
tion of an incident state Sj to the ith component of a
recorded Stokes vector S* is contained in m̂i

j.
It is now straightforward to determine the actual

backscattering Mueller matrix M 5 $mij%. For ex-
ample, for the incident vector S1 we obtain per defi-
nition

~m̂1
1, m̂2

1, m̂3
1, m̂4

1!T 5 S19 5 M z S1

; ~m11, m21, m31, m41!
T, (19a)

from which we directly obtain mi1 5 m̂i
1. Similarly

one obtains for incident Stokes vectors S2, S3, and S4

~m̂1
2, m̂2

2, m̂3
2, m̂4

2!T 5 S29 5 M z S2

; ~m11 1 m12, m21 1 m22, m31

1 m32, m41 1 m42!
T, (19b)

~m̂1
3, m̂2

3, m̂3
3, m̂4

3!T 5 S39 5 M z S3

; ~m11 1 m13, m21 1 m23, m31

1 m33, m41 1 m43!
T, (19c)

~m̂1
4, m̂2

4, m̂3
4, m̂4

4!T 5 S49 5 M z S4

; ~m11 1 m14, m21 1 m24, m31

1 m34, m41 1 m44!
T. (19d)

When we insert the results from Eq. ~19a! into Eqs.
~19b!–~19d!, the remaining elements are easily found.

F. Depolarization

Some remarks are made here concerning the depo-
larization of light in the photon picture. After a
large number n of scattering, all four components of
the Stokes vector are effectively mixed and the re-
sultant vector S9~n! is given in a randomly oriented
coordinate system. Extending Eq. ~7! to successive
584 APPLIED OPTICS y Vol. 39, No. 10 y 1 April 2000
scattering of an incident Stokes vector S0, we can
write

S*~n! 5 M~un!R~fn!. . . M~u2!R~f2! z M~u1!R~f1! z S0, (20)

where un is the ith scattering angle and fn is the
azimuthal angle between scattering planes ~n 2 1!
and n.

It is interesting to note that the matrix product
@Eq. ~20!# is actually not changing the degree of po-
larization F @Eq. ~3!# of individual photons.25 Any
ncident state with F 5 1 will remain 100% polarized
s it undergoes multiple-scattering events. Only
he nature of polarization will change. However, in
onte Carlo simulations where a large number of

ndependent photons are launched, the observed po-
arization state is an incoherent superposition of all
ossible contributions from Eq. ~20!, which yields

Smean
~n! 5 (

i
Si

~n! 5 (
i

M~un,i!R~fn,i!. . . M~u2,i!R~f2,i!

z M~u1,i!R~f1,i! z S0, (20)

where i indicates the sum over all detected photons.
Therefore the effective Stokes vector will generally
yield F , 1, and we find the medium to be depolar-
zing.

3. Results

A. Problem Setup

The experimental setup for studying the polarization
state of diffuse backscattered light is described in
detail elsewhere.14 Here we restrict the description
to the major components. We used a focused He–Ne
laser ~l 5 543 nm! whose beam ~diameter d , 500

m! is normally incident onto the medium. The
merging light within an area of 4 cm 3 4 cm around
he point of incident was projected through an inter-
ediate image plane onto a 14-bit CCD camera. To

void the strong specular reflection from the surface
f the medium and record only multiply scattered
ight, an optical mask ~2 mm in diameter! was placed

in the intermediate plane.
The tissue phantom consisted of aqueous monodis-

perse polystyrene sphere suspensions with particle
sizes of 204 and 2040 nm in diameter. The respec-
tive concentrations were chosen so that the resulting
reduced scattering coefficient ms9 equaled 1.9 cm21.
For the recording of the backscattering intensity
measurements, approximately 30 ml of each suspen-
sion was placed in a beaker, which was 4 cm in di-
ameter.

Within the Monte Carlo simulation, particle size,
the refractive index of polystyrene, and water and the
particle concentration were chosen identical to the
experimental values. These parameters, together
with the wavelength l 5 543 nm, of the laser fix the
single-scattering matrix Ms. The simulated phan-
tom was a semi-infinite, randomly distributed ensem-
ble of scatterers. To match the experimental
geometry, absorption was set to 100% outside the
boundaries of the beaker. We implemented the
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Monte Carlo code on a multiprocessor machine, a
Cray T3E with 64 Dec Alpha EV 5.6 processors. The
total number of photons was divided into equal pack-
ages for each processor and these photon packages
were processed in parallel. Approximately 2-h
computational time was required to propagate 108

photons in the suspension that contained 2040-nm-
diameter particles. We also employed a cluster of
five Linux workstations, each of them with two 450-
MHz Pentium processors. On this cluster, simula-
tions with 108 photons were completed in less than
16 h. For the 204-nm-diameter-particle suspension,
the computation time was reduced by approximately
a factor of 5.

B. Comparison of Numerical and Experimental Results

Figures 3 and 4 display the Mueller matrix for sus-
pensions of 204-nm-diameter and 2040-nm-diameter

Fig. 3. ~a! Simulated backscattering Mueller matrix for the sus-
pension of 204-nm particles. ~b! Experimental backscattering
Mueller matrix for suspension of 204-nm particles. Each image
displays a 4 cm 3 4 cm area of the surface.
particles, respectively. Each matrix element is
given as a two-dimensional image of the surface, 40 3
40 mm in size, with the laser being incident in the
center. In the Monte Carlo simulation @Figs. 3~a!
and 4~a!#, a photon collection grid of 60 3 60 pixels is

sed, resulting in a spatial resolution of 0.67 mm.
his grid size was necessary to improve the signal-
o-noise ratio in each pixel. The experimental data
Figs. 3~b! and 4~b!# were obtained with a 300 3 300
rid resulting in a resolution of 0.13 mm. However,
o better compare simulations and experiments the
xperimental data were also projected onto a 60 3 60
rid. All 16 matrix elements are normalized to the
aximum intensity of the respective m11 element so

that the amplitudes range from 21 to 11.
First we note the excellent overall agreement be-

tween simulation and experiment. The basic sym-
metries and structures are recovered for each matrix

Fig. 4. ~a! Simulated backscattering Mueller matrix for suspen-
ion of 2040-nm particles. Each image displays a 4 3 4 cm area
f the surface. ~b! Experimental backscattering Mueller matrix

for suspension of 2040-nm particles. Each image displays a 4 cm
3 4 cm area of the surface.
1 April 2000 y Vol. 39, No. 10 y APPLIED OPTICS 1585
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element as well as the backscattering Mueller matrix
as a whole. This is true for the azimuthal and radial
dependencies for both particles sizes ~204-nm sphere
and 2040-nm spheres!.

As expected, the diffuse reflectance given by ele-
ment m11 is independent of the azimuth. It has a
similar radial extent in Figs. 3 and 4 because of the
identical ms9 in all experimental and simulated phan-
oms. For the 204-nm spheres suspension the last
ow and column are close to zero, whereas pro-
ounced patterns are observed in columns and rows 1
hrough 3. The strong lobes in m12, m13, m21, and

31 that are characteristic for suspensions of the
small polystyrene particles are reproduced accu-
rately in the simulation.

In the case of the 2040-nm spheres suspension, the
first row and column are almost zero, except for the
m11 element. The four central elements have a sim-
ilar symmetry compared with the small spheres, but
show a significantly larger radial extent and higher
amplitude. To compare these experimental and the-

Fig. 5. Comparison of Monte Carlo simulations and experimental
results. Shown are values of the m12 element on a ring with a
-cm diameter centered on a light-incident point.

Fig. 6. Comparison of Monte Carlo simulations and experimental
results. Shown are values of the m22 element on a ring with a
-cm diameter centered on a light-incident point.
586 APPLIED OPTICS y Vol. 39, No. 10 y 1 April 2000
oretical results in more detail, Figs. 5 and 6 show the
values of the m12 and m22 elements along a 2-cm-
diameter circle with the center in the middle of the
m12 and m22 images shown in Figs. 3 and 4.

Other differences between the two particle sizes
were discussed above,14 especially the pronounced
differences in the m44 element, which is close to zero
for 204-nm spheres suspension and of the same struc-
ture but opposite sign as the m11 element for
2040-nm particles suspension. Again, this feature,
which was first observed experimentally, is repro-
duced by the simulations.

4. Discussion

Although good overall agreement with the experi-
ment is observed, some small differences remain.
One reason for discrepancies is the uncertainty as to
the exact optical parameters, especially the reduced
scattering coefficient ms9. Because the typical unit
length in the diffusion regime is given by ms9

21, we
can expect the patterns to scale radially with this
parameter. For example, regarding the simulated
element m44 for the 204-nm spheres suspension, we
observe a sharp peak in the center. It is almost
hidden by the optical mask and is completely invisi-
ble in the experiment. However, if we choose a scat-
tering coefficient slightly larger than 1.9 cm21, the
adial extent of the patterns decreases and the posi-
ive peaks are covered by the optical mask.

Another potential source of error is the experimen-
al setup. Optical distortions that are due to spher-
cal aberrations, astigmatism, coma, etc., may
egrade the image of the surface and slightly change
he polarization. These effects will be most notable
n elements that are almost zero. The residual azi-

uthal variation observed in m42, m43, m24, and m34
of the experimental data for the 2040-nm sphere sus-
pension may be explained in this way.

Small differences between experiments and simu-
lations may be caused by the fact that the simulations
neglect numerical aperture effects. Experimentally,
we map the intensity at the surface onto the CCD
camera using a setup of lenses with a small aperture.
Therefore light escaping normally from the medium
is strongly favored over obliquely reflected light.
The simulation does consider that the detector can
read only electromagnetic oscillations in the x, y
plane but integrates over all photons independent of
their final direction to provide a reasonable signal-
to-noise ratio for each pixel.

Finally, Monte Carlo methods may not be appro-
priate to describe all polarization effects. Monte
Carlo techniques assume that light consists of single
photons and that scattering events are independent
of each other. No particle–particle interactions are
considered. To take these effects into account it may
be necessary to directly solve the Maxwell equations
for multiple-scattering media—a task that currently
appears unapproachable, even with the ongoing ad-
vances in computer technology. And, as our results
show, basic features of the backscattering Mueller
matrix may well be studied and understood with the
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independent single-scattering event Monte Carlo ap-
proach.

Several aspects of the diffusely backscattering
Mueller matrix can be deducted when the Mueller
matrix for a single-scattering event is considered.
The first-row elements m12, m13, and m14 of any scat-
tering matrix M project the Stokes components S1,

2, and S3 of the incident field into the S09 element of
the resulting Stokes vector. Consequently, signifi-
cant amplitudes in the m12, m13, and m14 elements
ndicate that the scattered intensity depends on the
ncident state of polarization. The first-column ele-

ents m21, m31, and m41, on the other hand, are
esponsible for transforming any incident intensity
0 into the components S19, S29, and S39. Thus sig-

nificant amplitudes in m21, m31, and m41 will gener-
ate polarized light ~F . 0! from unpolarized incident
ight ~F 5 0!.

Looking at the diffusely backscattered Mueller ma-
rices in Figs. 3 and 4 we observe that for the 204-nm
phere suspensions, m12, m13, m21, and m31 show a
trong azimuthal variation whereas the same ele-
ents of the 2040-nm sphere suspensions are close to

ero. Therefore 204-nm sphere suspensions will
enerate polarized light at certain areas of the sur-
ace, even when the incident light is unpolarized @S 5
1, 0, 0, 0!#, whereas 2040-nm sphere suspensions will
ot build up any polarization.
These effects are readily understood as a conse-

uence of the single-scattering matrix M204~u! for
204-nm particles shown in Fig. 7. Here, each non-
zero matrix element is plotted on a logarithmic scale
as a function of the scattering angle u. Several
things can be observed. First, the diagonal elements
have the largest amplitude for most angles. How-
ever, the elements m12 and m21 have significant am-
plitudes compared with the other elements,
especially at scattering angles of 90°. ~Note that
this angle is not the azimuthal angle used in the
diffuse backscattering matrix.! This structure
closely resembles that of a partial linear polarizer
and is typical for particles small compared to the
wavelength, i.e., in the Raleigh regime. We can see
that the effects of the single-scattering matrix are
preserved in multiple-scattering suspensions,
namely, that in both cases polarized light is gener-
ated even for unpolarized incident light.

Suspensions of optically nonactive spheres, large
compared to the wavelength, do not display strong
amplitudes in m21, m31, m12, and m13. This also
may be understood if we consult the single-scattering
matrix M2040~u! of the 2040-nm spheres ~Fig. 8!.
Here we observe a strong preference for small angles
u in all matrix elements. Furthermore, M2040~u! is

iagonally dominant over the whole range of scatter-
ng angles and effectively represents an identity op-
rator, which when applied to an incident Stokes
ector preserves the initial state over many scatter-
ng events. This single-scattering matrix is not ca-
able of generating polarized light from an incident
npolarized beam, which is reproduced in the diffuse
ackscattering Mueller matrix.
This qualitative reasoning, which is confirmed by

oth our simulations and the experimental results,
llows us to distinguish suspensions of differently
ized particles. Furthermore, note that for both
ypes of particles the matrix elements m41 and m14

are zero. Because optically nonactive spheres pro-
vide no mechanism to transform unpolarized light
into circularly polarized light, m41 necessarily van-
ishes. In isotropic particle suspensions, the m14 el-
ement also vanishes because of the intrinsic radial
symmetry of a circular state of polarization, which
rules out any azimuthal-dependent scattering.

5. Summary

We have developed a Monte-Carlo-based algorithm
that accurately models the single-scattering event
according to Mie theory and keeps track of the polar-
ization state of individual photons in multiple-
Fig. 7. Nonzero elements of the single-scattering Mueller matrix
M204 for a 204-nm-diameter polystyrene sphere at a wavelength of
l 5 543 nm. The log of each matrix element is given as a function
of the scattering angle u.
Fig. 8. Nonzero elements of the single-scattering Mueller matrix
M2040 for a 2040-nm-diameter polystyrene sphere at a wavelength
of l 5 543 nm.
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scattering media. We compared simulations of
multiple-scattered light to experiments on 204-nm-
diameter and 2040-nm-diameter sphere suspensions.
The simulations well reproduce the 16, two-
dimensional elements of the diffuse backscattering
Mueller matrices. We showed that the diffuse back-
scattering Mueller matrices display characteristics
that correspond to features found in the related
single-scattering matrices. The developed algo-
rithm provides a tool to examine the effects of differ-
ent particle sizes and optical properties on observable
backscattering polarization patterns from highly
scattering media. This allows for future systematic
studies regarding the characterization of biological
tissue by its backscattering Mueller matrix.
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