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Abstract: The reconstruction problem in diffuse optical tomography can be
formulated as an optimization problem, in which an objective function has
to be minimized. Current model-based iterative image reconstruction
schemes commonly use information about the gradient of the objective
function to locate the minimum. These gradient-based search algorithms
often find local minima close to an initial guess, or do not converge if the
gradient is very small. If the initial guess is too far from the solution,
gradient-based schemes prove inefficient for finding the global minimum.
In this work we introduce evolution-strategy (ES) algorithms for diffuse
optical tomography. These algorithms seek to find the global minimum and
are less sensitive to initial guesses and regions with small gradients. We
illustrate the fundamental concepts by comparing the performance of
gradient-based schemes and ES algorithms in finding optical properties
(absorption coefficient µa, scattering coefficient µs, and anisotropy factor g)
of a homogenous medium.
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1. Introduction

In recent years considerable progress has been made towards the development of tomographic
imaging systems that rely on strongly scattered near-infrared (NIR) light. [1-3] In this novel
medical imaging technique, commonly referred to as diffuse optical tomography (DOT), one
attempts to reconstruct the spatial distribution of optical properties (e.g., absorption
coefficient µa(r), scattering coefficients µs(r), and scattering anisotropy factor g) within the
body from surface measurements of transmitted light intensities. The technology for making
such measurements on human subjects is readily available and has been applied in a variety of
non-clinical and clinical pilot studies. [4-7] The development of algorithms that accurately
and efficiently transform these measurements into cross-sectional images of the internal
optical properties remains a major challenge.

Most of the currently employed reconstruction techniques in DOT are model-based
iterative image reconstruction schemes (MOBIIR). [8-17] These schemes rely on a model of
photon propagation in tissue to predict expected detector readings. All algorithms in
References 8-17 employ as a forward model the diffusion equation, which is an
approximation to the equation of radiative transfer. While the diffusion equation is easier to
solve, it considers only the two parameters µa and µs' = (1-g)µs.  Use of the equation of
radiative transfer is required when, besides µa and µs', the anisotropy factor g is to be included
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as an independent variable.[18,19] Therefore, depending on what equation is used, the input
parameters for the forward model are either given by the vector ξ(r) = (µa(r), µs'(r)) or ξ(r) =
(µa(r), µs(r), g(r)) with r being a position inside the medium under consideration.  Starting
with an initial guess ξ0(r) the forward model generates an initial prediction of detector
readings Ps,d(ξ(r)) for each specific source s and detector d. These predictions are then
compared to physical measurement data Ms,d using an appropriately defined objective
function Φ. Typically the χ2-error norm, which is given by

Φ( ) ( )
( ( )), ,

,

ξ χ ξ
ξ

η
= ≡

−
∑∑2

2

22

M Ps d s d

s dds
(1)

is used. The parameter ηs,d is a normalization constant, which for example can be set to Ms,d

(ξξξξ ). In this case the error norm minimizes the sum of the squared percentage difference
between measured and theoretical data. The challenge remains to find efficient ways of
updating the initial guess ξ0(r) such that the differences between predicted and measured data
become smaller and the value of the objective function decreases.

A host of different updating schemes have been devised over the past 8 years.[8-18]
Of increasing interest are gradient-based iterative image reconstruction (GIIR) algorithms.
[19-23] These codes make use of dΦ/dξ(r), which is the gradient of the objective function
with respect to the spatial distribution of the optical properties. In the gradient approach the
image reconstruction problem is interpreted as a nonlinear optimization problem, in which the
distribution ξmin(r) that minimizes the objective function is sought. These schemes have
somewhat alleviated the computational burden of the image reconstruction problem in DOT.
However, it is well known that gradient-based minimization methods are prone to become
trapped in a minimum close to the initial guess.  They also have difficulties escaping from
parameter regions in the search space with gradients close to zero. In general, gradient
methods are not well suited to find the global minimum.

To overcome problems related to gradient-based schemes, we investigate in this
work the use of so-called evolution-strategy (ES) algorithms in DOT. ES algorithms borrow
from ideas in biological evolution theory to find global minima of objective functions. [24-
26] They don't make use of gradient information during the optimization process and are
therefore not sensitive to areas with gradients close to zero. In general, ES algorithms have
four major components. (see also Fig. 1) Firstly, a parent population is randomly chosen
(initialization). Each of the N members of the parent population is characterized by its
phenotype consisting of n variables. In the next step, pairs of parents are formed, which
produce a fixed number of offspring so that a total of M new individuals are available. The
offspring are generated by so-called recombination and mutation rules. Finally, the fitness of
each member of the offspring population is evaluated (selection). The members with the
highest fitness become the new parent generation and go on to generate offspring by
recombination and mutation.

To demonstrate how the concepts of ES algorithms can work in DOT we focus in
this study on the simple yet significant problem of finding the optical properties of a
homogenous medium based on measurements at the boundary of the medium. While this
appears to be the simplest of all possible reconstruction problems, it surprisingly has attracted
very little attention in the past. Indeed we are not aware of a single publication that addresses
this problem. Currently there does not exist a unique and widely accepted method to
determine optical properties of homogenous samples. It is noteworthy that neither the
National Institute of Standards (NIST) in the US nor any other comparable organization in the
world supplies standards with known optical properties for diffuse optical tomography. This
poses a particular problem for researchers in optical tomography who want to validate their
reconstruction codes. Scientists often use Intralipid suspensions to validate their algorithms.
However, over the last 15 years several groups have measured the optical properties of
Intralipid with different outcomes. [27-30] Flock et al [30] summarizes these studies by
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giving the means and standard deviations of all works combined. They find that the optical
properties of 10% Intralipid at 633nm are µa = (0.027 ± 0.154) cm-1, µs = (144 ± 9) cm-1, and g
= (0.75 ± 0.18). Given these huge standard deviations, especially for µa and g, it is clear that
code validation is problematic, and that the accurate determination of optical properties of
homogeneous media is still a challenging problem in itself.

2. Methods

We compare gradient-based MOBIIR schemes with evolution-strategy-based MOBIIR
schemes. Both approaches use the same forward model to predict detector readings and the
same definition of the objective function. The forward model used in this study is an upwind-
finite-difference, discrete-ordinate code that solves the equation of radiative transfer. [19]
This algorithm allows specifying the absorption coefficients µa(r ), the scattering coefficient
µs(r ), and the angle-dependent scattering phase functions. We use in this work the widely
applied Henyey-Greenstein phase function

p
g

g g
(cos )

( cos ) /θ
θ

=
−

+ −
1

2 1 2

2

2 3 2  , (2)

where g is the already mentioned anisotropy factor, which characterizes the angular
distribution of scattering. [31] We apply Fresnel boundary conditions that take the refractive-
index mismatch at the air-medium boundary into account. For more details concerning the
code, we refer readers to Reference 19. The forward model is used to numerically obtain
predictions of the detector readings, Ps,d(ξξξξ). These predictions depend on the source position,
the detector position, and the optical properties ξξξξ  = (µa(r), µs(r), g). The predicted data is
compared to measured data using the objective function defined in Eq. 1. The goal is to find
the minimum of this objective function.

2.1. Gradient-Based Optimization Scheme

To minimize Φ the gradient of the objective function γγγγo  = dΦ(ξξξξo)/dξξξξ at the initial guess
ξξξξo is calculated. To do this we use in this work a technique called adjoint differentiation.
Adjoint differentiation provides an efficient means to calculate the gradient of a numerically
evaluated function in a time comparable to one forward calculation.[19,20,22,23] The
gradient information is then used within a Polak-Ribieri conjugate-gradient scheme to find
the minimum of Φ. [32,33] This approach consists of an inner and an outer iteration (Fig. 2).
During the inner iteration a line minimization along a search direction dk is performed
according to

ξ ξ αk k kd+ = + ⋅1     (3)

where α is a real number representing the step size. The inner iteration consists of several
forward calculations in which the parameters ξξξξ  are updated until the minimum along this
direction is found. Once the minimum is found, a new gradient is calculated at this minimum
(outer iteration) and another line-minimization along a new direction dk+1 is  performed. In
the Polak Riberie conjugate gradient scheme this new direction is calculate as follows:

d dk k
k
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γ

(4)

with d0 = γγγγ0. These steps are repeated until a distribution ξξξξk is found for which |Φ(ξξξξk)- Φ(ξξξξk-1)|
is smaller than a user defined value ε.  A more detailed description of the GIIR algorithm
used in this work can be found elsewhere.[19]
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2.2. Evolution Strategies(ES)

Evolution strategies do not require the gradient calculation and the search for a
minimum is not performed along certain directions. To illustrate the concept we have focused
on a simple but important case of determining the optical properties of a homogeneous
medium. In this case we deal with only three unknowns, ξξξξ = (ξ1 = µa, ξ2 = µs, ξ3 = g). We start

the search process by randomly choosing three ξξξξ  with values of 0.1 < µa < 1,  2.0 < µs < 12,

and 0 < g < 1.  This is our parent population. The vectors (ξ1, ξ2, ξ3)
k = (µa, µs, g)k, k=1,2,3,

represent the phenotypes of each member of the parent population.
Next we need to generate the offspring generation that correspond to new vectors ξξξξ. In

our case, this is done by randomly pairing 12 couples from the parent population. The
following six different pairs of parents are equally likely to be chosen: [ξ1- ξ1], [ ξ1- ξ2], [ξ1- ξ3],
[ξ 2-ξ2], [ξ 2-ξ3], [ξ 3-ξ3]. From each pair of parents one child is generated in a two-step process.
In the first step properties of the two parents are combined in a procedure generally referred
to as recombination. In our case we chose a simple recombination rule by just averaging the
optical properties of both parents.

ξ ξ ξi
new

i
k

i
k* ( ) /= +1 2 2 (5)

 In the second step, the average optical properties are further modified by a process
referred to as mutation. We define the mutation rule as

ξ ξ σi
new

i
new

iy= +*  for i ∈ {1,2,3}, (6)

where y is a normally (Gaussian) distributed random number, which is obtained from

y = −2 21 2log( ) sin( )ν πν (7)

with ν1  and ν2 being independent and uniformly distributed between 0 and 1. [34,35] The
values of σi where set to σi

 = 1/3 ξ i,old. Therefore the optical properties of the offspring are
Gaussian distributed around the average optical properties of the parents. The width of the
Gaussian distribution is given by 1/3 of the actual value of µa, µs, and g respectively.  Other
values for σ and other distributions are also possible [24, 26] but have not been explored by
us at this point.

Once the offspring are generated, the fitness off all members of the offspring
generation is evaluated to select the three fittest members as the new parent generation. The
selection is done by performing a set of forward calculations using the finite-difference
transport code. The input parameters for the forward code are source and detector positions,
and the optical properties (µa, µs, g)i  that characterize each member.  The results of the
forward calculation are used to determine the value of the objective function as given in Eq.
2. The lower the value of the objective function, the "fitter" is that member of the offspring
population. Only the three children that result in the lowest objective-function values survive,
and they become the new parents for the next generation. This procedure is iterated until the
optical properties of the next generation converge within 2%. The flowchart of the ES scheme
is displayed in Fig. 1. A schematic comparison of the gradient-based scheme and the ES
schemes is depicted in Fig. 2.
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Fig. 1. Basic scheme of the evolution strategy employed in this work. The parent population is
initialized by randomly choosing three parents, p1, p2, p3, each with different optical properties µa,
µs, and g. During the recombination process 12 parent pairs (pi,pj)1 to (pi,pj)12 are randomly
generated. For each pair the average optical properties are calculated (Eq. 5 recombination rule) and
one child (c1 to c12) is produced by mutation in which optical properties are randomly drawn from a
Gauss distribution centered at the average optical properties of the parents (Eq. 6). In the selection
process the fittest members of the offspring population are determined by evaluating the objective
function for each child (Eq. 2). The three children with the lowest objective function become the
three new parents for the next iteration.

Fig. 2. Comparison of gradient-based reconstruction algorithms (a-left) and evolution-strategy
algorithms (b-right) for diffuse optical tomography.  The lower index k indicates different updates
and generations. The upper indices n and m indicate different parents and children.
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3. Results

To illustrate the use of ES schemes in optical tomography we consider the following example.
A 4cm x 4cm homogeneous medium is discretized with a spatial resolution of 0.1 cm
resulting in a 40x40 finite-difference grid. The optical properties of the medium are µa = 0.6
cm-1, µs = 6.0 cm-1, and g = 0.5. Synthetic measurements Ms,d were generated for 2 source
positions and 32 detectors (Fig. 3), using the aforementioned optical parameters and the
transport-equation-based forward model. [19]

Fig. 3. Setup and measurement geometry for  the numerical model. Synthetic data were generated
for 2 sources (open circles) and 32 detectors (gray circles) with a time-independent transport-theory-
based algorithm.

Using different sets of optical properties (µa, µs, g), we generated predicted data Ps,d

and calculated the value of the objective function Φ (Eq. 2). The absorption coefficients µa

ranged from 0.1 to 1.0 cm-1 and g values ranged from 0.3 to 0.8. The µs values were chosen so

that 1 cm-1 ≤ µs' = (1-g) µs  ≤  6 cm-1 in each image. The results are displayed in Fig. 4, where

values of Log(Φ) are shown as a function of µa and µs for six different g values.  For each g-

value we observe an elongated "blue" valley in which the objective function is smallest. The
minimum within the valley shifts from the lower left quadrant to the upper right quadrant as g
is increased. For g = 0.3 the minimum is at (µa= 0.53 cm-1, µs = 4.37 cm-1 => µs' = 3.06 cm-1),
and for g = 0.8  the minimum is at (µa= 0.76 cm-1, µs = 23.4 cm-1 => µs' = 4.68 cm-1). (The
strong influence of the g value on the position of the minimum is noteworthy. Diffusion-
equation-based codes that consider only µs' cannot distinguish between pairs of g and µ s

values that result in a same µs' value. Since the µs' range is the same in all 6 maps in Fig. 4,
using a diffusion model to predict detector readings and calculate the objective function
would yield 6 identical maps!) The global minimum, with Φ = 0, is at µa = 0.6 cm-1, µs = 6.0
cm-1, and g = 0.5 (Fig. 4c). However, as can be seen from Fig. 4 many combinations of
optical properties (µa, µs, g) lead to similar low values. Assuming that one does not know
where the true minimum is, the questions of what algorithm is best suited to find the global
minimum arises?

To answer this question, we first employed the gradient-based scheme starting with
three different initial guesses (µa, µs), while keeping the anisotropy factor fixed at g = 0.5. The
reconstruction scheme found different pairs of (µa, µs) values for each initial guess. Starting
from (µa = 0.8 cm-1, µs = 7.0 cm-1) the recovered values were  (µa = 0.52 cm-1, µs =6.96 cm-1),
starting from (µa = 0.2 cm-1, µs = 4 cm-1) the algorithm found (µa = 0.59 cm-1, µs = 6.04 cm-1),
and starting from (µa = 0.4 cm-1, µs' = 10 cm-1) the code determined values of (µa = 0.39 cm-1,
µs = 9.9 cm-1).  Figure 5 shows how the value of the objective function monotonically
decreases for all three initial guesses during the first 10 outer iterations. It can also be seen
that starting from (µa = 0.8 cm-1, µs = 7.0 cm-1) the value of the objective function decreases
considerably after the first iteration, but remains almost constant thereafter. Starting from

µs  = 6.0 cm-1

µa = 0.6 cm-1

g = 0.5 
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(µa = 0.2 cm-1, µs = 4 cm-1) the objective function reaches a plateau value after 7 iterations.
Starting from (µa = 0.4 cm-1, µs = 10 cm-1), which is a point inside the valley, the value of the
objective function changes very little.

Fig. 4. Contour-map representations of 3-dimensional slices through the 4-dimensional objective
function (Eq. 2).  Slices are taken for different g values, which results in Log(Φ) versus µa and µs

maps. The minimum of Log(Φ) is at µa = 0.6 cm-1, µs = 6.0 cm-1, g = 0.5.  Note that the x-axis is
chosen so that the reduced scattering coefficient µs' = (1-g) µs ranges from 1 to 6 cm-1 in all figures. It
can be seen that many combinations of µa, µs,  g lead to similar low values in the log(Φ).
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Fig. 5. Objective function (Eq. 2) as a function of outer iterations (conjugate-gradient scheme) and
number of generations (evolution-strategy scheme). For the evolution algorithm only the member
with the smallest objective function for each generation is shown. The time required to complete all
calculations for one generation equals the time it takes to complete one outer iteration within ±10%.

Figures 6 and 7 display the path of the iterations on the surface of the objective
function in a 3-dimensional and 2-dimensional graph, respectively. Fig. 7 is identical to Fig.
4c, except that in Fig. 7 the µa -axis has not been stretched. Therefore the units on both axes
are the same, which further emphasizes the narrow character of the valley. It can be seen that
the first iteration step in the gradient-based algorithm takes the parameters along the gradient
direction directly into the elongated "blue" valley. Once inside the valley only points to the
left of the minimum at (µa = 0.6 cm-1, µs = 6.0 cm-1) are significantly improving and get close
the minimum. Starting from (µa = 0.8 cm-1, µs = 7.0 cm-1) the search basically stops as soon
as the valley is reached.  Starting from a point inside the valley at  (µa = 0.4 cm-1,  µs = 8.0
cm-1) only negligible  improvement towards the minimum is observed. In general we found
that the gradient-based scheme can find the real minimum only for a limited range of initial
guesses. In particular, initial guesses that are located in the lower left quadrant of Fig. 4c fare
the best, while initial guesses located in the upper right quadrant perform the worst. This can
be understood by taking a closer look at the objective function along the bottom of the valley
(Fig. 8). The gradient within the valley is steeper to the left of the minimum than to the right.
Furthermore, as can be seen in Figs. 4c, Fig.6, and Fig. 7, the gradient below the valley is in
general larger than the gradient above the valley. Therefore starting at a point below the
valley to the left (lower left quadrant) the search algorithm will encounter steeper gradients
than starting from a point above the valley to the right (upper right quadrant). The steeper the
gradient, the better the gradient based algorithm will perform.

For the ES-based algorithm we randomly chose 3 initial sets of (µa, µs) representing
the initial parents generation. Each subsequent offspring generation had 12 members, which
is equivalent to 12 sets of (µa, µs). We found that for almost any pair of three initial parents
we were able to recover the global minimum within 5% after less than 10 generations. Only
in the pathological case when the randomly chosen 3 initial sets of (µa, µs), where within 10%
of each other would the algorithm not converge to the true minimum. Choosing the same
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three initial guesses used for the gradient based schemes in Fig. 5, we plotted the objective
function with the lowest value for the each generation alongside the values for the gradient-
based schemes. In addition to the lowest value of Φ for each generation, we show in Figs. 6
and 7, the values of all sample points in the ES scheme (blue diamonds).

Fig. 6: Three-dimensional depiction of objective function Φ (see Fig. 4c). The µa-axis has been stretched
by a factor of 10. Open circles indicate values of Φ for outer iterations during the gradient-based algorithm starting
from (µa = 0.2 cm-1, µs = 4 cm-1), circles with a line show values of Φ starting from (µa = 0.8 cm-1, µs = 7 cm-1),
circles with a cross show values of Φ starting from (µa = 0.4 cm-1, µs = 10 cm-1).  The diamonds show sampling
points during the ES algorithms.

Fig. 7: Same as Fig. 6 and Fig. 4c, only displayed as a 2-dimensional map and without a stretched µa-axis. The

minimum is located at (µa = 0.6 cm-1, µs = 6.0 cm-1).

The time it takes to complete 10 generations of the ES scheme is on the same order
as finding a minimum using 1 initial guess and the gradient-based scheme. In the ES scheme
the objective function is evaluated 120 times during 10 generations. The gradient-based
scheme requires about the same number of objective function evaluations, since one outer
iteration requires about 10-15 inner iterations. Each inner iteration requires one forward
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calculation. To assure that a global minimum has been found using a gradient-based
optimization scheme one could perform several minimizations starting from different initial
guesses and compare the final values of the objective function. In the examples studied so far,
we have found that this always takes longer than using the ES algorithm.

Evolution-strategy algorithms do not require more memory than gradient-based
schemes.  Once the forward calculations for different sets of optical properties are done, only
the values of the objective functions for these sets of data need to be stored to perform the
recombination, mutation, and selection. In gradient based schemes that use adjoint
differentiation for the calculation of the gradient all intensities as calculated by the forward
model need to be stored. [19, 22] This typically requires more memory than storage of only
the value of the objective function.

Fig.8: Values of the objective function at the bottom of the elongated, curved (blue) valley in Fig.
6.  See also blue valleys in Fig. 4c and 7. Note that in Fig. 4c, 6, and 7 Log(Φ) is displayed while
here Φ is plotted. It can be seen that the gradient of the objective function is much steeper to the
left of the minimum at µs = 6 cm-2 than to the right of the minimum

4. Summary and Outlook

We have introduced the concept of evolution-strategy for diffuse optical tomography. Unlike
currently widely employed gradient-based reconstruction algorithms, evolution-strategy
codes don't make use of gradient information during the reconstruction process. Interpreting
the reconstruction process as a minimization problem, gradient schemes often get trapped in
local shallow valleys, in which the gradient is very small. Therefore these schemes have to
rely on a good initial guesses close to the true minimum to be successful. Evolution-strategy
algorithms promise to overcome this problem, since they are less dependent on good initial
guesses and sample the solution space more effectively.  Using the example of finding the
correct optical properties of a homogenous medium, we have shown that an evolution-
strategy algorithm finds the global minimum more reliably than a conjugate gradient-based
reconstruction scheme.

Applying evolution-strategy-based schemes to heterogeneous media, which contain
a larger number of unknowns, will result in computationally more intensive operations. For
example the convergence speed of an evolution strategy is commonly described by the rate of
progress ϕ.  The rate of progress is the ratio of the number of successful mutations to the total
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number of mutations. The maximum rate of progress ϕmax is inversely proportional to the
number of unknown variables n with ϕmax ∝  1/n using Rechenberg's sphere model [24, page
127-141]. That means if the number of variables is increased the maximum rate of progress is
decreased, which leads to fewer successful mutations and therefore to a lower convergence
speed. In general that means that more generations are required, which in turn leads to a
larger number of forward calculations. Furthermore, larger sets of parents are necessary,
which will further slow the optimization process. The particular performance of evolution-
strategies in optical tomographic problems that involve a larger number of unknowns remains
to be studied. It appears likely that some hybrid method that employs gradient-based
techniques as well as evolution-strategies may be most successful.

Finally, it should be mentioned that other global minimization techniques exist that
are similar to the evolution-strategy (ES) algorithm presented in this work. These other
approaches are commonly referred to as evolutionary programming (EP) and genetic
algorithms (GAs). The main difference between these three types of approaches (ES, EP and
GA) lies in the way the recombination, mutation, and selection rules are formulated and
weighted in the search algorithm. Furthermore, GAs represent the object variables (e.g.
optical properties) in bit strings that can be thought of as genotypic level of information.  In
contrast, ES algorithms work on a phenotypic level represented by real-valued vectors. A
detailed discussion of the differences among these various approaches and their potential
benefits for diffuse optical tomography is beyond the scope of this work, and the interested
readers may be directed to References 24-26.  However, we believe that the present study
clearly encourages further exploration into the many different aspects of global minimization
schemes and their potential use in diffuse optical tomography.
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