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Abstract

The presented study consists of two parts. The overall goal is to introduce and experimentally test a
novel optical tomographic imaging algorithm that is based on the equation of radiative transfer. Using
the equation of radiative transfer rather than the di<usion equation permits the consideration of highly
scattering media that contain void-like regions that have very low absorption and scattering coe>cients.
In part I we concentrate on the detailed description and evaluation of a numerical forward model that
accurately describes photon propagation in such media. In part II we focus on the inclusion of this
forward model into a model-based iterative image reconstruction (MOBIIR) scheme. Using the MOBIIR
scheme one can determine the spatial distribution of optical properties inside highly scattering media from
measurements acquired on the surface of the medium. The mathematical and numerical background for
the reconstruction algorithm, especially the adjoint di<erentiation scheme for the gradient calculation, will
be presented. The code is tested with experimental data from tissue-phantoms that contain water-@lled,
void-like regions.
The forward model to be described in part I is based on an upwind-di<erence discrete-ordinate for-

mulation of the time-independent equation of radiative transfer. The upwind-di<erence representation has
the advantage that it provides a convenient mathematical framework for calculating the derivative of
the Auence with respect to the optical parameters using an adjoint di<erentiation technique, to be de-
scribed in part II. The performance of the forward model is tested with experimental data obtained from
homogeneous tissue-phantoms and from phantoms that contain void-like regions. We @nd good agreement
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between experimental measurements and theoretical predictions of the measurements. ? 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Optical tomography (OT), also referred to as di<use optical tomography (DOT), or photon
migration tomography (PMT), has made considerable advances in recent years [1–3]. In this
technique near-infrared light in the wavelength region of approximately 650 nm¡�¡ 900 nm
is used to illuminate highly scattering media. Based on measurements of transmitted and=or
reAected intensities on the surface of the medium, a reconstruction of the spatial distribution
of the optical properties (e.g. absorption coe>cient, �a, and scattering coe>cient, �s) inside
the medium is attempted. While similar problems can be found in many di<erent scienti@c
areas, ranging from oceanography and atmospheric science, to astronomy and neutron physics,
the recent advances in OT have mainly been driven by applications in biomedical optics. This
@eld is concerned with the use of visible and near-infrared light for diagnosis and treatment of
biological tissues. Examples include optical monitoring of blood oxygenation [4,5], detection
of cerebral hemorrhages [6,7], functional imaging of brain activity [8–10], and diagnosis of
Alzheimer’s disease [11,12], rheumatoid arthritis [13,14], or cancer [15–17]. These applications
rely on the fact that various disease processes and most physiological changes a<ect the optical
properties of biological tissue. The optical properties of interest are the absorption coe>cient �a,
the scattering coe>cient �s, and the anisotropy factor g, or a combination thereof. The di<erences
in these optical properties between healthy and pathological tissues provide the contrast for this
imaging technology.

Because near-infrared light is strongly scattered in tissue, standard backprojection techniques
[18] as applied in X-ray tomography have been of limited success [19,20]. Therefore, most
groups are currently employing so-called model-based iterative imaging reconstruction (MO-
BIIR) techniques [21–45]. These techniques employ a forward model that provides predictions
of the detector readings based on a guess of the distribution of optical properties inside the
medium. The predicted detector readings are compared with experimental data using an ap-
propriately de@ned objective function. The true distribution of optical properties is determined
by iteratively updating the guess and performing new forward calculations with these updated
optical properties until the predicted data agree with the detector readings. The @nal distribution
of optical properties is displayed as an image.

It is clear that the quality of the reconstructed image depends strongly on the accuracy
of the forward model. If the forward model does not accurately describe the propagation of
photons inside the medium, the model-based reconstruction scheme will fail. At present, most
algorithms rely on the validity of the di<usion approximation to the more generally applicable
equation of radiative transfer [46–54]. While in many cases this is indeed a good approximation
for describing light propagation in biological tissues, several researchers have theoretically and
experimentally determined what the limits of this approximation are [55–57]. For example, it
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was shown that the di<usion approximation fails when the medium contains regions in which
the absorption coe>cient is not much smaller than the scattering coe>cient, or regions in which
the scattering and absorption are very low, so-called void-like regions. Turbid media that contain
void-like areas play an important role in several biomedical imaging applications. For example,
the highly scattering brain tissue is enclosed in a layer of almost clear cerebrospinal Auid, which
has very low scattering and absorption coe>cients. How this layer e<ects light propagation has
recently been the subject of many studies and discussions [57–62]. Another example is the
almost clear synovial Auid in joints [13,14,63].

Some groups have attempted to overcome the disadvantages of di<usion-equation-based
schemes. For example Arridge et al. presented a hybrid radiosity-di<usion approach for hand-
ling non-scattering regions with di<using domains [64,65]. The method treats light propagation
in highly scattering regions with the di<usion approximation and uses a ray-tracing method
for the void areas. However, this approach does not address highly absorbing regions, and it
requires a priori knowledge about the exact position of the void-like regions. Therefore, this
approach appears to be of limited use for optical tomography, even though the results of the
forward calculations are impressive [59,60].

In another study [66], Dorn recently reported on a so-called transport-backtransport method.
He applied this non-linear inversion method to the two-dimensional time-dependent equation of
radiative transfer, and used a @nite-di<erence discrete-ordinates method to describe photon prop-
agation in a heterogeneous medium with non-reentry boundary conditions. Using synthetic data,
he showed in numerical studies that this approach is capable of reconstructing scattering and
absorbing inhomogeneities inside turbid media. However, Dorn did not consider void-like re-
gions in his work. Furthermore, the algorithm was not compared with experimental data. In
this case the refractive index mismatch at the tissue–air boundary has to be considered, and the
non-reentry boundary condition needs to be modi@ed.

Our group reported in earlier studies on a radiative-transfer-based forward model, which is
part of a MOBIIR scheme [41]. That algorithm employed an upwind-di<erence discrete-ordinates
method applied to the two-dimensional time-dependent equation of radiative transfer. A Jacobi
method was used to solve the associated matrix equation. Time-independent results were ob-
tained by using a time-independent source term. Photon propagation was described in isotropi-
cally scattering media with non-reentry boundary conditions. Numerical results were presented
that showed the reconstructed spatial distribution of the scattering coe>cient.

In this work we extend our previous code to include anisotropically scattering media. Fur-
thermore, a boundary condition that is capable of describing the refractive index mismatch at
the tissue–air boundary is included. In this way, it is for the @rst time possible to test the
algorithm with experimental data from well-characterized tissue phantoms, something that has
not been done previously. Furthermore, the discretized time-independent equation of radiative
transfer is solved with a successive over-relaxation (SOR) method. This considerably accelerates
the rate of convergence of the algorithm, while still providing a structure amenable to adjoint
di<erentiation (AD) techniques. AD techniques are a crucial component of the iterative image
reconstruction scheme, which will be presented in part II of this study.

In part I, we describe in detail the implementation of the modi@ed forward code, focusing
on the improvements that have been made with respect to the earlier algorithm [41]. To test
our forward model, we compare numerical calculations to measured data. Detailed descriptions
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of the tissue phantoms and of the experimental set-up are presented. In addition to detailed
studies on homogeneous media, which show the dependence of the predicted data on variations
of optical properties, we pay special attention to media that contain void-like inclusions. A
discussion of the results and a summary of the main @ndings conclude part I.

2. Numerical methods

Photon transport in scattering media can be described by the time-independent equation of
radiative transfer [67–69], given by

!∇�(r; !) + (�a + �s)�(r; !)= S(r; !) + �s
∫ 2


0
p(!;!′)�(r; !′) d!′: (1)

The fundamental quantity in radiative transport theory is the radiance �(r; !) at the spatial
position r, which is directed into a solid unite angle !, with units of W cm−2 sr−1. The integral
of the radiance over all angles ! at one point r yields the Auence 
(r):


(r)=
∫
2

�(r; !) d!: (2)

Other quantities that are included in the transport equation are the scattering coe>cient �s and
the absorption coe>cient �a, both given in units of cm−1, and the scattering phase function
p(!;!′). In this work we employ the commonly used Henyey–Greenstein scattering function
[70],

p(cos �)=
1− g2

2(1 + g2 − 2g cos �)3=2
: (3)

where � is the angle between the two directions ! and !′. The parameter g is called the
anisotropy factor and is used to characterize the angular distribution of scattering.

Various computational techniques exist that numerically solve the equation of radiative trans-
fer [71]. Techniques commonly applied include the singular eigenfunction method, the method
of spherical harmonics, the method of characteristics, the @nite-element method, and the @nite-
di<erence discrete-ordinate method. A concise review of these techniques has been presented
by Sanchez and McCormick [72]. The discrete-ordinates method is widely used with sev-
eral di<erent @nite-di<erence approximations [73,74] such as the diamond-di<erence scheme,
the weighted diamond-di<erence scheme, or the centered-di<erence scheme [75–80]. In this
paper we employ the upwind-di<erence scheme in connection with the discrete-ordinates
method to the equation of radiative transfer [81]. This is a computationally e>cient method
for the calculation of the radiance and has the advantage that it easily supplies the required
mathematical structure for the adjoint di<erentiation calculation. This adjoint calculation
is a central part of the solution of the inverse problem, which is the focus of part II of
this study.

To solve the equation of radiative transfer using an upwind-di<erence discrete-ordinates
method, the angular and spatial variables have to be discretized. First, the integral term in
Eq. (1) is replaced by a quadrature formula that uses a @nite set of K angular directions
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!k with k=1; : : : ; k. This yields a set of K coupled ordinary di<erential equations for the
angular-dependent radiance �k(r)=�(r; !k) in the directions !k . The coupling term is the
internal source term �s

∑k
k′=1 ak′p(!k′ ; !k)�(r; !′). The parameter ak′ is a weighting factor that

depends on the chosen quadrature formula. In this work we employ the extended trapezoidal
rule [82].

Additionally, the spatial variable r needs to be discretized. The domain � is de@ned by
a rectangular spatial mesh with I grid points on the x-coordinate and J grid points on the
y-coordinate. The distance between two adjacent grid points along the x-axis is Ux and along
the y-axis is Uy. The angular radiance at the grid point (i; j) with position r=(xi; yj) for a
particular direction !k is represented by �k;i; j =�k(xi; yj). The angular direction !k can be
expressed in cartesian coordinates with �k = ex ·!k =cos(!k) and �k = ey ·!k =sin(!k). Finally,
the spatial derivatives have to be replaced with a @nite-di<erence scheme. The upwind-di<erence
formula depends on the direction !k of the angular-dependent radiance �k . Thus, the set of
all angular directions !k are subdivided into four quadrants and we get four di<erent di<erence
formulas for the radiance �k;i; j, depending on the sign of �k and �k :

I) �k ¿ 0; �k ¿ 0:
9�
9x ≈ �x�k; i; j =

�i;j −�i−1; j

Ux
;

9�
9y ≈ �y�k; i; j =

�i;j −�i;j−1

Uy
; (3a)

II) �k ¡ 0; �k ¿ 0:
9�
9x ≈ �x�k; i; j =

�i+1; j −�i;j

Ux
;

9�
9y ≈ �y�k; i; j =

�i;j −�i;j−1

Uy
; (3b)

III) �k ¿ 0; �k ¡ 0:
9�
9x ≈ �x�k; i; j =

�i;j −�i−1; j

Ux
;

9�
9y ≈ �y�k; i; j =

�i;j+1 −�i;j

Uy
; (3c)

IV) �k ¡ 0; �k ¡ 0:
9�
9x ≈ �x�k; i; j =

�i+1; j −�i;j

Ux
;

9�
9y ≈ �y�k; i; j =

�i;j+1 −�i;j

Uy
: (3d)

The time-independent radiative transfer equation, with the external and internal source terms
on the right-hand side, can now be written as

�k�x�k; i; j + �k�y�k; i; j + (�a + �s)�k;i; j = Sk; i; j + �s
k∑

k′=1

ak′pk;k′�k′; i; j : (4)

Recasting the left-hand side of the preceding equation as a single operator acting upon �k;i; j,
we get

{�k · �x + �k · �y + (�a + �s)}�k;i; j = Sk; i; j + �s
k∑

k′=1

ak′pk;k′�k′; i; j : (5)

For example, for a @xed k with �k ¿ 0; �k ¿ 0 this becomes

�k
�k; i; j −�k;i−1; j

Ux
+ �k

�k; i; j −�k;i; j−1

Uy
+ (�a + �s)�k;i; j = Sk; i; j + �s

K∑
k′=1

ak′pk;k′�k′; i; j

(6)
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It is apparent that the system of equations (5) corresponding to all K directions can be written
as a single matrix equation

A�= b (7)

The resulting system of equations for the radiance �k;i; i for all grid points can be solved for
each ordinate index k by a Gauss–Seidel method [83]. Accordingly, we split the matrix A into a
diagonal part D, an upper-triangular part U, and a lower-triangular part L, with A=L+D+U.
The original matrix equation (6) can now be written as

(L+D+U)�= b; (8a)

(D+ L)�=−U�+ b: (8b)

In our case an upper matrix U does not exist. Thus, we get for example for the case �k ¿ 0;
�k ¿ 0:{

�k
Ux

+
�k
Uy

+ (�a + �s)
}
�k;i; j − �k

Ux
�k; i−1; j − �k

Uy
�k; i; j−1 = Sk; i; j +�s

k∑
k′=1

ak′pk;k′�k′; i; j :

diagonal matrix D lower matrix L b
(9)

Now the iterative form with the iteration matrix (D+ L) is expressed as

(D+ L)�z+1 =−U�z + b; (10)

and for the case �k ¿ 0; �k ¿ 0 we obtain{
�k
Ux

+
�k
Uy

+ (�a + �s)
}
�z+1

k; i; j −
�k
Ux

�z+1
k; i−1; j −

�k
Uy

�z+1
k; i; j−1 = Sk; i; j + �s

k∑
k′=1

ak′pk;k′�z
k′; i; j ;

(11)

�z+1
k; i; j =

{
Sk; i; j + �s

∑k
k′=1 ak′pk;k′�z

k′; i; j + (�k=Ux)�z+1
k; i−1; j + (�k=Uy)�z+1

k; i; j−1

}
{�k=Ux + �k=Uy + (�a + �s)} : (12)

All �z+1
k; i−1; j and �z+1

k; i; j−1 are already calculated at the current iteration step because of the
vector ordering. For all other ordinates !k besides �k ¿ 0, �k ¿ 0, the radiance vector � has
to be re-ordered to get the same matrix structure with (D + L)�= − U� + b. The iteration
process is repeated until the error norm E= ||�z+1

k; i; j −�z
k; i; j|| at the grid point (i; j) is smaller

than a de@ned #.
A signi@cant improvement in convergence speed can be achieved by a slight modi@cation

to the Gauss–Seidel method. The SOR method uses a relaxation parameter $ with 1¡$¡ 2
in order to correct the solution �z+1

k; i; j of the Gauss–Seidel iteration, now denoted as V�
z+1
k; i; j. The

updated value �z+1
k; i; j of the SOR is a linear combination of the Gauss–Seidel value V�

z+1
k; i; j and

the previously computed value �z
k; i; j of the SOR using

�z+1
k; i; j =(1− $)�z

k; i; j + $ V�
z+1
k; i; j: (13)
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The boundary conditions are treated between each successive iteration steps. Because of the
refraction index mismatch at the air–tissue interface, the outgoing radiance is partly reAected
on the boundary and only a fraction of that light escapes the medium. The internally reAected
light contributes further to the photon propagation inside the medium, while the transmitted
light enters the detectors. Using Fresnel’s formula, the transmissivity T and reAectivity R are
calculated at the boundary grid points for each ordinate !k and for the given refractive indices.
The reAectivity R and the transmissivity T are de@ned as

R=
sin2(!trans −!in) + sin2(!trans +!in)

2
; (14)

T =1− R: (15)

The angles !trans, which pertain to radiances escaping the object, are determined by Snell’s
law (nobject sin!in = nair sin!trans) given the angle !in of the radiance, which hits the boundary
inside the object. The angle !ref = − !in is just the angle of the reAected radiance on the
boundary inside the object. The transmitted and the reAected radiance are calculated with

�z
trans =T�z

in; (16)

�z
ref =R�z

in: (17)

The Auence 
ij on the boundary at the grid point (i; j), which enters the detector, is calculated
for a given detector aperture AP using the transmitted radiance


(xi; yj)=
∫
AP

�(xi; yj; !) d! ≈
k=k2∑
k=k1

ak�k; i; j =
i;j: (18)

The weighting factors ak are given by the extended trapezoidal rule [82], which provides the
quadrature formula in this work.

3. Tissue phantoms and experimental setup

3.1. Tissue phantoms

The tissue phantoms were composed of clear epoxy resin into which silicon-dioxide (SiO2)
monospheres and ink were mixed. The scattering properties were adjusted by varying the concen-
tration of the monospheres, while the absorption properties were controlled by the concentration
of the ink. The g-factor could be varied by using spheres with di<erent diameters. The optical
properties of the phantoms were determined by two di<erent methods. First, we employed an
integrating sphere approach [84]. In this case, a thin slice of the phantom material was illu-
minated by a collimated laser beam, and the collimated, di<use, and reAected light intensities
were measured with an integrating sphere. Subsequently, a Monte-Carlo simulation was used
to determine the absorption coe>cient �a, scattering coe>cient �s, and the anisotropy factor
g. Secondly, a time-resolved transillumination technique was used. In this case, we measured
the time-dependent distribution of the photons that traveled through a 2 cm thick slab of the
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Fig. 1. (a) Geometry and optical properties of the three phantoms used in this study. (b) Details of the experimental
setup.

medium. The transmitted pulse was compared to an analytical solution given by the di<usion
equation for a slab geometry [85]. Thus, the reduced scattering coe>cient �′

s = (1−g)�s and the
absorption coe>cient �a could be determined. Both methods gave similar results for �′

s (within
4%), but showed larger di<erences for �a.
A total of three tissue phantoms were made of two di<erent materials (Fig. 1a). First, a 3×

3×14 cm3 homogeneous Phantom I was generated, which has a reduced scattering coe>cient of
�′
s = 11:6±0:3 cm−1. The absorption coe>cient was determined to be �a = 0:35±0:1 cm−1, with

the Monte-Carlo technique giving higher absorption values than the time-resolved slab technique.
Using the diameter of the monospheres (d=0:51 �m) and the Mie-theory for light scattering, an
anisotropy factor g=0:805 was calculated. This is in agreement with the measurement obtained
by the double-integrating-spheres approach, which provided a value of 0:8±0:17. The refractive
index of the resin is n=1:56 at a wavelength of at �=678 nm [86].

From the same material we fabricated a 4× 4× 14 cm3 Phantom II that contained a ring
with an inner diameter of 2.8 cm and an outer diameter of 3:0 cm. The ring was oriented along
the 14-cm-long z-axis of the phantom and was @lled with water to mimic void-like regions in
tissues.
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Finally, we prepared Phantom III, which had dimensions of 3× 3× 14 cm3 and contained 3
cylindrical voids with a diameter of 0.5 cm. The optical properties of the background medium
were determined to be �′

s = 7:5±0:3 cm−1; �a = 0:62±0:12, and g=0:85. The cylindrical holes
were @lled with water.

3.2. Light source

The phantoms were continuously illuminated with near-infrared light from a laser diode at
�=678 nm. (Laser 2000 GmbH (Germany), LAS-670-20). As the phantoms were three-dimen-
sional but the calculations were two-dimensional, we had to provide a z-axis-independent
Auence. This was achieved by illuminating the phantom with an extended line source along
the z-axis (Fig. 1b). The line source was realized by a laser diode with a light-emission angle
of 20◦ along the z-axis, while along the x-axis the beam was collimated. In this way, the source
consisted of a 6.0-cm long line with a width of 0:1 cm on the surface of the phantom. The
source power applied to an area of 0:01 cm2 was 0:2 ± 0:01 mW. Measurements were taken
with the line source positioned at di<erent locations along the x-axis.

3.3. Light detection system

To measure the Auence 
 we used an avalanche photodiode APD (Hamamatsu, C5460-01).
The detector was placed in the x–y plane of the phantom at the midpoint of the z-axis
(z=7:0 cm), and could be translated around the phantom along the x-axis and y-axis (Fig.
1a and b). The detection area at the boundary of the phantom was limited by a pinhole, which
had a diameter of 0:1 cm. Two lenses projected the detection area onto the APD chip, whose
diameter was 0:3 cm. An iris was placed in between the lenses, in order to adjust the aperture
angle to 45± 5:0◦.
We used a lock-in technique to improve the signal-to-noise ratio. A frequency generator

(Hewlett Packard, Waveform Generator 33120A) provided a sinusoidal modulation of the laser
diode input with a frequency of 1014 Hz. The lock-in ampli@er (Stanford Research Systems,
Model SR 830) had a time constant of 3:0 s. An active bandwidth @lter was connected between
the detector output and lock-in ampli@er input. The working point was set to 1014:0 Hz, with
a bandwidth of 7:0 Hz. This e>ciently suppressed the noise contributed by other frequencies,
especially background light. At each detection spot the measuring time was approximately 10 s.
During this time interval the measured Auence varied less than 0.2%. In general, signal levels
were reproducible within 1.0% after removal and reinsertion of the sample into the measurement
setup and realignment of both source and detector. The largest variations were observed for
measurement points located close to the corners of the phantom.

4. Results

The calculated Auence was compared to the experimental data. We compared only relative
Auence pro@les on the boundary, not absolute Auences. This situation is typically encountered in
clinical settings, because of the di>culty in calibrating the measurement system to an accurate
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absolute value of the source strength [87]. The exact absolute value is di>cult to determine
because of often unknown and changing losses in the delivery- and collection-@ber systems,
and inaccurate knowledge of the coupling coe>cients between the skin and source and detector
@bers. Thus, the measurement data and simulated data were normalized by their mean value to
provide relative Auence pro@les.

4.1. Homogeneous phantom

First, we compared measured and predicted Auence pro@les of the homogeneous Phantom I.
The numerical calculations with the upwind-di<erence discrete-ordinates method were performed
on a 181× 181 grid, with Ux=Uy=0:0167 cm · 1=�s. Thirty-two discrete ordinates were used
for each calculation. The aperture of the APD detector was 45:0◦ in the x–y plane, therefore,
the Aux at the boundary in the simulation was summed over 4 ordinates. For the SOR method
we chose an over-relaxation parameter $=1:1. One forward calculation took approximately
700–1200 SOR iterations, which amounted to approximately 30 min of computation time on a
Linux Workstation with a 450 MHz Pentium II processor.

The calculated Auence pro@le was compared to the measured data on the boundary of the
phantom. The source was placed at three di<erent positions along the edge of the phantom
(A: 1:5 cm; B: 0:9 cm, and C: 0:3 cm) (Fig. 1a). For each source position measurements were
taken along the side opposite of the source (x-axis) and the side adjacent to the source (y-axis)
(see Figs. 1a and b). The separation between measurement points was 0:1 cm, resulting in
28 measurements on each side. Fig. 2 shows the experimental measurements and numerical
calculations for the 3 di<erent source positions. In Fig. 2a the results along the side opposite of
the source are presented (x-axis), and Fig. 2b shows the results for the adjacent side (y-axis).
The measurement error is not displayed because the error bars are smaller than the circles and
diamonds in the @gure.

To investigate how the predictions of the forward model depend on variations in optical
properties, we studied the sensitivity of the numerical predictions to changes in the scattering
coe>cient, the absorption coe>cient, and the anisotropy factor. In Fig. 3, numerical results are
shown for the case of a @xed reduced scattering coe>cient �′

s = (1− g)�s, but varying �s and
g-factor. Fig. 4 displays results for di<erent �s while all other parameters (�a and g) are kept
constant. The absorption coe>cient is varied in Fig. 5, and the anisotropy factor is varied in
Fig. 6. In all @gures the experimental results are given as open circles.

To evaluate the degree of agreement between numerical data, P, and experimental data, M ,
we calculated for each numerical set of data the average error given by

R=
100
N

√√√√ N∑
i

(Mi − Pi)2

M 2
i

: (19)

The R value is calculated separately for the x-axis data and y-axis data. Therefore the sum in
Eq. (19) is taken over all detector readings along one side for one source. Table 1 shows the R
values for all data shown in Figs. 3–6, plus additional measurements for the o<-center sources,
which are not displayed in the @gures. The average error between numerical and experimental
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Fig. 2. Comparison of measured and calculated normalized Auence rates of the homogeneous phantom. Data were
generated for three di<erent source positions at di<erent distances from the edge of the phantom (A: 1:5 cm, B:
0:9 cm, and C: 0:3 cm). For each source position, 28 detector points were measured along the x-axis (Fig. 2a) and
along the y-axis (Fig. 2b).

data varies from 0.4% to 63.4%. For comparison, the average di<erences between two measure-
ments on the same phantom with the same source–detector con@guration are typically less than
0.2% along the side opposite the source (x-axis), and less than 1% along the side adjacent to
the source (y-axis).

4.2. Phantoms with void-like regions

The results of measurements and predictions for Phantom II, which contained a water-@lled,
void-like ring, are shown in Figs. 7a and b. The forward calculations were done on a 241× 241
grid, with a grid point separation of Ux=Uy=0:0167 cm and 32 ordinates. The measurements
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Fig. 3. Comparison of measured and calculated normalized Auence rates of the homogeneous phantom along the
x-axis (Fig. 3a) and along the y-axis (Fig. 3b). Calculations were performed for di<erent scattering coe>cients and
anisotropy factors, keeping all other optical parameters constant. The source was located at position A (see Fig.
1a).

were taken along the x-axis (Fig. 7a) and y-axis (Fig. 7b) at 38 detector points, with a spacing
of 0.1 cm. Measurements were performed with the sources located at three di<erent positions
along the edge of the phantom (A: 2:0 cm, B: 1:2 cm, and C: 0:4 cm).

Figs. 8a and b show the results of measurements and simulations for Phantom III, which
contained three cylindrical void-like regions. The simulations were performed on a 181× 181
grid, with Ux=Uy=0:0167 cm. Thirty-two discrete ordinates were used for each calculation.
Results are shown for 15 measurements and calculations along the x-axis (Fig. 8a) and the
y-axis (Fig. 8b), respectively. The source was located in the middle of the side opposite from
where the x-axis measurements were taken (Fig. 1a).
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Fig. 4. Comparison of measured and calculated normalized Auence rates of the homogeneous phantom along the
x-axis (Fig. 4a) and along the y-axis (Fig. 4b). Calculations were performed for di<erent scattering coe>cients
keeping all other optical parameters constant. The source was located at position A (see Fig. 1a).

4.3. Discussion

Overall, we observed good agreement between measurements and calculations based on the
assumed, independently veri@ed, optical properties. For the homogeneous medium we found
that the average error between the measured and calculated data for �s = 58:0 cm−1; g=0:8,
and �a = 0:35 cm−1 was between 0.82% and 1.83% for various source detector con@gurations
(Fig. 2 and bold entries in Table 1). This error increases if other sets of optical properties are
used as parameters for the forward code.

Several key observations can be made when evaluating the sensitivity of the predicted data
for the homogeneous phantom to changes in the optical properties. For example, we found that
the data along the y-axis is more sensitive to changes in optical properties than data along
the x-axis. As can be seen in Table 1, the error between calculated and measured data is
consistently higher for data sets taken on the side of the phantom as compared to data sets
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Fig. 5. Comparison of measured and calculated normalized Auence rates of the homogeneous phantom along the
x-axis (Fig. 5a) and along the y-axis (Fig. 5b). Calculations were performed for di<erent absorption coe>cients,
keeping all other optical parameters constant.

taken on the backside of the phantom. This suggests that for the successful reconstruction of
optical properties it is advantageous to employ not only transmitted intensities measured on the
backside of a target medium, but to include measurements on the sides of the object.

The importance of exact knowledge of both �s and g to characterize homogeneous media is
illustrated in Fig. 3. In this graph, �′

s = (1− g)�s is @xed and di<erent combinations of �s and
g are used in the calculations of the intensity distribution along the x-axis and y-axis. It can
be seen that only one combination (�s = 58 cm−1 and g=0:8) @ts the data well. In algorithms
that employ the di<usion approximation to the radiative transfer equation only the parameter
�′
s appears as independent variable. However, in Fig. 3 all combination of �s and g yield the

same �′
s, yet the results are not the same.
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Fig. 6. Comparison of measured and calculated normalized Auence rates of the homogeneous phantom along the
x-axis (Fig. 6a) and along the y-axis (Fig. 6b). Calculations were performed for di<erent anisotropy factors, keeping
all other optical parameters constant.

Figs. 2–6 and Table 1 can be used to estimate the sensitivity of the forward calculation to
variations in the scattering coe>cient, absorption coe>cient, and g. For example, comparing
Figs. 3–6 we notice that a change of g from 0.7 to 0.9, which is approximately ± 12% about
the optimal value of g=0:8, results in a similar variability of the predicted data, as do changes
of more than ± 50% around the optimal value of either �a or �s. To quantify this observation,
we plotted the average errors in Table 1 as a function of changes in the optical properties from
the optimal values of �a = 0:35 cm−1; �s = 58 cm−1, and g=0:8. Fig. 9 shows a representative
result for the case where we take the average error for the measurements along the y-axis with
the source in the center of the adjacent side (source A, in Table 1). We see that small variations
in g lead to large increases in the error between measured and calculated data. For example
a 5% deviation from the optimal value of g=0:8 results in an average error increase between
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Table 1
Average error R (Eq. (20)) between the measured and calculated normalized Auences along the x-axis and y-axis
of the homogeneous phantom I for di<erent optical parameters. The error R is calculated for three source positions
A, B, and C at di<erent distances from the edge of the phantom (A: 1:5 cm, B: 0:9 cm, and C: 0:3 cm)

x-axis y-axis

Source A Source B Source C Source A Source B Source C

�′s = 11:6 cm−1 and �a = 0:35 cm−1

�s = 11:6 cm−1 3.27 3.78 4.97 7.83 9.79 12.81
g=0:0
�s = 23:2 cm−1 2.35 2.51 3.1 5.39 6.96 10.02
g=0:5
�s = 38:6 cm−1 1.57 1.66 1.79 3.17 3.77 5.87
g=0:7
�s= 58 cm−1 0.82 1.15 0.9 1.83 1.17 1.42
g =0.8
�s = 116 cm−1 0.98 1.74 1.47 4.46 7.74 18.14
g=0:9

�a = 0:35 cm−1 and g=0:8

�′s = 5:8 cm−1 0.51 1.43 1.24 5.93 9.52 21.95
�′s = 8:7 cm−1 0.47 1.2 0.85 2.79 3.67 7.11
�′s= 11:6 cm−1 0.82 1.15 0.9 1.83 1.17 1.42
�′s = 17:4 cm−1 1.51 1.6 1.89 3.68 4.58 6.75
�′s = 23:2 cm−1 2.03 2.2 2.9 5.44 6.97 9.75

�s = 58:0 cm−1 and g=0:8

�a = 0:1 cm−1 0.53 3.02 4.34 9.01 13.65 22.82
�a = 0:2 cm−1 0.62 2.11 2.58 4.9 6.58 10.10
�a= 0.35 cm−1 0.82 1.15 0.9 1.83 1.17 1.42
�a = 0:5 cm−1 1.08 1.15 2.01 3.59 4.31 5.6
�a = 0:7 cm−1 1.47 2.1 3.97 6.23 7.57 9.38

�s = 58:0 cm−1 and �a = 0:35 cm−1

g=0:7 2.22 2.4 3.05 5.53 7.12 10.09
g=0:75 1.58 1.67 1.93 3.61 4.48 6.73
g =0:8 0.82 1.15 0.9 1.83 1.17 1.42
g=0:85 0.59 1.47 1.2 4.29 6.96 15.47
g=0:9 1.88 2.44 2.48 11.5 20.57 63.33

measured and calculated data from 1.83% to 4%. The absorption and scattering coe>cient have
to deviate from their optimal values of �a = 0:35 cm−1 and �s = 58 cm−1 by about 40% to
generate a similar increase in the average error R. Furthermore, note the qualitatively similar
impact that variations of �a and �s have on the accuracy of the forward calculation.
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Fig. 7. Comparison of measured and calculated normalized Auence rates of tissue phantom II, which contains a
water-@lled ring. Data were generated for three di<erent source positions at di<erent distances from the edge of
the phantom (A: 2:0 cm, B: 1:2 cm, and C: 0:4 cm, see Fig. 1a). For each source position 38 detector points were
measured along the x-axis (Fig. 7a) and along the y-axis (Fig. 7b).

We also @nd good agreement between measurements and predictions for the Phantoms II
and III, which contained a void-like ring and three cylindrical water inclusions, respectively
(Figs. 7 and 8). The average error R (Eq. (19)) varied between 0.81% and 4.43% for all
source–detector con@gurations. This experimentally con@rms our previous numerical @ndings
that, unlike di<usion-theory-based codes, algorithms based on the equation of radiative transfer
can accurately describe light propagation in media that contain void-like regions.

While good overall agreement between measurement and simulated data was found, some
di<erences remain. There appear to be two main reasons for this. First, the experimental de-
termination of the optical properties of the phantom that was used to validate the algorithm is
subject to errors. Di<erent methods, such as single integrating sphere, double integrating sphere,
time-resolved technique, time-independent methods, etc., all have advantages and disadvantages
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Fig. 8. Comparison of measured and calculated normalized Auence rates of tissue phantom III, which contained
three water-@lled, void-like cylinders. Shown are measurements along the x-axis (Fig. 8a) and along the y-axis
(Fig. 8b), as indicated in the inset.

and often lead to di<erent results, especially for �a. For example, over the last 15 years several
groups have measured the optical properties of Intralipid, which is a milk-like emulsion of fat
particles [88–91]. Flock et al. summarizes these studies by giving the mean and standard de-
viation of all cited works combined. They @nd that the optical properties of 10% Intralipid at
633 nm are �a = (0:027± 0:154) cm−1; �′

s = (144± 9) cm−1; and g=(0:75± 0:18) [91]. There-
fore, in agreement with our observations, they @nd that �a values di<er strongly from method to
method, while �′

s is determined rather consistently. Unfortunately no single technique has been
accepted within the biomedical optical community as a standard for measuring optical proper-
ties. Currently, no National Institute of Standards in the world is providing optical phantoms
with certi@ed optical properties. Therefore, the validation of any algorithm remains somewhat
uncertain, especially with respect to �a.
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Fig. 9. Average error R (Eq. (19)) for di<erent optical properties, of the homogeneous phantom I. Measurements
were taken along the y-axis for source position A.

Second, the upwind-di<erence, discrete-ordinates scheme used in this work is, like any other
@nite-di<erence scheme, an approximation to the equation of radiative transfer. In our study
the spatial derivative was discretized to @rst-order. Higher-order discretizations that yield more
complex formulas may further improve the match between the experimental and measured data.
A detailed analysis of how much higher-order approximations improve current results, remains
a subject for further study.

5. Summary

Most of the currently employed image reconstruction schemes in optical tomography are
model-based algorithms, in which numerically predicted data are compared to measured data.
The predictions are obtained by forward models that describe light propagation in tissue. The
most commonly employed model is based on the di<usion equation, which is an approxi-
mation to the more generally applicable equation of radiative transfer. Several groups have
shown in the past that di<usion-equation based algorithms fail to describe photon propagation
in void-containing media. These types of media play an important role, for example, in studies
of light propagation in the human head and joints. The goal of this two-part study is to develop
an image reconstruction algorithm based on the equation of radiative transfer.

In part I we presented an upwind-di<erence, discrete-ordinates algorithm that solves the
time-independent equation of radiative transfer for media with an arbitrary distribution of op-
tical properties. Because Fresnel boundary conditions and anisotropic scattering were explicitly
considered, it was for the @rst time possible to test the performance of this algorithm against
experimental data. Fluence measurements on homogeneous tissue-like phantoms were performed
and showed good agreement with calculated detector readings. An analysis of the inAuence of
the various optical properties on detector readings showed that without an accurate knowledge
of g, the measured data could not be predicted accurately. Furthermore, Auence measurements
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performed on the surface of tissue phantoms that contained void-like regions were performed,
and these measurements also agreed well with the simulated data.

Acknowledgements

The authors would like to thank Dr. Uwe Sukowski, Physikalisch-Technische Bundesanstalt
Berlin, Germany for the phantom preparation. Furthermore, we would like to thank Dr. Ntzi-
achristos and Dr. Chance, University of Pennsylvania, Philadelphia, for the determination of
the optical properties with a time-resolved measurement system. We also would like to thank
Avraham Bluestone and Dr. Harry Graber, State University of New York—Downstate Medical
Center (SUNY DMC), for their helpful comments concerning this manuscript.

This work was supported in part by the National Institute of Arthritis and Musculoskeletal
and Skin Diseases, a part of the National Institute of Health (grant #R01 AR46255-01), the
Whitaker Foundation (grant # 98-0244), the City of New York Council Speaker’s Fund for
Biomedical Research: Towards the Science of Patient Care, and the Dean’s O>ce of the College
of Medicine at the State University of New York Downstate Medical Center (SUNY DMC).

References

[1] Chance B, Alfano RR, Tromberg BJ, Tamura M, Sevick-Muraca EM. Optical tomography and Spectroscopy
iv. Proceeding of the SPIE vol. 4250, 2001.

[2] Chance B, Alfano RR, Tromberg BJ. Optical tomography and spectroscopy of tissue III. Proceeding of the
SPIE vol. 3597, 1999.

[3] Chance B, Alfano RR, Katzir A. Optical tomography and spectroscopy of tissue II: theory, instrumentation,
model, and human studies. Proceeding of the SPIE vol. 2979, 1997.

[4] Kirkpatrick PJ. Use of near-infrared spectroscopy in the adult. Philos Trans Roy Soc London Ser B: Biol Sci
1997;352:701–5.

[5] Henson LC, Calalang C, Temp JA, Ward DS. Accuracy of a cerebral oximeter in healthy volunteers under
conditions of isocapnic hypoxia. Anesthesiology 1998;88:58–65.

[6] Benaron DA, Vanhouten JP, Cheong W, Kermit EL, King RA. Early clinical results of time-of-Aight optical
tomography in a neonatal intensive care unit. Proc SPIE 1995;2389:582–96.

[7] Cheong WF, Vanhouten JP, Kermit EL, Machold TR, Stevenson DK, Benaron DA. Pilot comparison of
light-based optical tomography versus ultrasound for real-time imaging of neonatal intraventricular hemorrhage.
Pediatr Res 1996;39:1189.

[8] Hoshi Y, Oda I, Wada Y, Ito Y, Yamashita Y, Oda M, Ohta K, Yamada Y, Tamura M. Visuospatial imagery
is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography. Cognitive
Brain Res 2000;9:339–42.

[9] Maki A, Yamashita Y, Watanabe E, Koizumi H. Visualizing human motor activity by using non-invasive
optical topography. Front Med Biol Eng 1996;7:285–97.

[10] Hirth C, Obrig H, Valdueza J, Dirnagl U, Villringer A. Simultaneous assessment of cerebral oxygenation and
hemodynamics during a motor task. A combined near infrared and transcranial Doppler sonography study.
Adv Exp Med Biol 1997;411:461–9.

[11] Hock C, Villringer K, M7uller-Spahn F, Hofmann M, Schuh-Hofer S, Heekeren H, Wenzel R, Dirnagl U,
Villringer A. Near infrared spectroscopy in the diagnosis of Alzheimer’s disease. Ann New York Acad Sci
1996;777:22–9.

[12] Fallgatter AJ, Roesler M, Sitzmann L, Heidrich A, M7uller TJ, Strik WK. Loss of functional hemispheric
asymmetry in Alzheimer’s dementia assessed with near-infrared spectroscopy. Brain Res Cognitive Brain Res
1997;6:67–72.



A.D. Klose et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 691–713 711

[13] Prapavat V, Runge W, Mans J, Krause A, Beuthan J, M7uller G. The development of a @nger joint phantom
for the optical simulation of early inAammatory rheumatic changes. Biomed Tech 1997;42:319–26.

[14] Klose A, Prapavat V, Minet O, Beuthan J, M7uller G. RA diagnostics applying optical tomography in
frequency-domain. Proc SPIE 1997;3196:194–204.

[15] Nioka S, Yung Y, Shnall M, Zhao S, Orel S, Xie C, Chance B, Solin L. Optical imaging of breast tumor by
means of continuous waves. Adv Exp Med Biol 1997;411:227–32.

[16] Alfano RR, Demos SG, Gayen SK. Advances in optical imaging of biomedical media. Ann New York Acad
Sci 1997;820:248–70.

[17] Franceschini MA, Moesta KT, Fantini S, Gaida G, Gratton E, Jess H, Mantulin WW, Seeber M, Schlag PM,
Kaschke M. Frequency-domain techniques enhance optical mammography: Initial clinical results. Proc Natl
Acad Sci USA 1997;94:6468–73.

[18] Parker JA. Image reconstruction in radiology. Boca Raton, FL: CRC Press, 1990.
[19] Walker SA, Fantini S, Gratton E. Image reconstruction by backprojection from frequency domain optical

measurements in highly scattering media. Appl Opt 1997;36:170–9.
[20] Colak SB, Papaioannou DG, ‘t Hooft GW, van der Mark MB, Schomberg H, Paasschens JCJ, Melissen JBM,

van Asten NAAJ. Tomographic image reconstruction from optical projections in light-di<using media. Appl
Opt 1997;36:180–213.

[21] Hielscher AH, Klose AD, Hanson KM. Gradient-based iterative image reconstruction scheme for time resolved
optical tomography. IEEE Trans Med Imag 1999;18(3):262–71.

[22] Arridge SR, Schweiger M. A gradient-based optimisation scheme for optical tomography. Opt Express
1998;2(6):213–26.

[23] Arridge SR, Hebden JC. Optical imaging in medicine: II. Modelling and reconstruction. Phys Med Biol
1997;42:841–53.

[24] Arridge SR. Photon-measurement density functions. Part I: analytical forms. Appl Opt 1995;24:7395–409.
[25] Arridge SR, Schweiger M. Photon measurement density functions. Part 2: @nite-element-method calculation.

Appl Opt 1995;34:8026–37.
[26] Schweiger M, Arridge SR. A system for solving the forward and inverse problems in optical spectroscopy

and imaging. In: Alfano RR, Fujimoto JG, editors. Advances in optical imaging and photon migrations, OSA
Trends in Optics and Photonics Series, vol. 2. Washington DC: Optical Society of America, 1996. p. 263–8.

[27] Barbour RL, Graber HL, Wang Y, Chang JH, Aronson R. A perturbation approach for optical di<usion
tomography using continous-wave and time-resolved data. In: M7uller G, editor. Medical optical tomography.
SPIE Institute for Advanced Optical Technologies Series, vol. IS11, SPIE Optical Engineering Press,
Bellingham, WA, 1993. p. 87–120.

[28] Graber HL, Chang J, Aronson R, Barbour RL. A perturbation model for imaging in dense scattering media:
Derivation and Evaluation of Imaging Operators. In: M7uller G, editor. Medical optical tomography. Bellingham,
WA: SPIE Optical Engineering Press, vol. IS11, 1993. p. 121–43.

[29] Barbour RL, Graber HL, Chang JW, Barbour SLS, Koo PC, Aronson R. MRI-guided optical tomography:
prospects and computation for a new imaging method. IEEE Comput Sci Eng 1995;2:63–77.

[30] Yao YQ, Wang Y, Pei YL, Zhu WW, Barbour RL. Frequency-domain optical imaging of absorption and
scattering distributions by Born iterative method. J Opt Soc Am A 1997;14:325–42.

[31] Paulsen KD, Jiang H. Spatially varying optical property reconstruction using a @nite element di<usion equation
approximation. Med Phys 1995;22:691–701.

[32] Paulsen KD, Jiang H. Enhanced frequency domain optical image reconstruction in tissues through total variation
minimization. Appl Opt 1996;35:3447–58.

[33] Jiang H, Paulsen KD, Osterberg UL. Optical image reconstruction using DC data: simulations and experiments.
Phys Med Biol 1996;41:1483–98.

[34] Jiang H, Paulsen KD, Osterberg UL, Pogue BW, Patterson MS. Simultaneous reconstruction of optical
absorption and scattering maps in turbid media from near-infrared frequency-domain data. Opt Lett
1995;20:2128–30.

[35] Jiang HB, Paulsen KD, Osterberg UL, Pogue PW, Patterson MS. Optical image reconstruction using frequency
domain data: Simulations and experiments. J Opt Soc Am A 1996;13:253–66.



712 A.D. Klose et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 691–713

[36] O’Leary MA, Boas DA, Chance B, Yodh AG. Experimental images of heterogeneous turbid media by
frequency-domain di<usion-photon tomography. Opt Lett 1995;20:426–8.

[37] Paithankar DY, Chen AU, Pogue BW, Patterson MS, Sevick-Muraca EM. Imaging of Auorescent yield and
lifetime from multiply scattered light reemitted from random media. Appl Opt 1997;36:2260–72.

[38] Klibanov MV, Lucas TR, Frank RM. A fast and accurate imaging algorithm in optical di<usion tomography.
Inverse Problems 1997;13:1341–61.

[39] Saquib SS, Hanson KM, Cunningham GS. Model-based image reconstruction from time-resolved di<usion
data. Proc SPIE 1997;3034:369–80.

[40] Hielscher AH, Klose A, Catarious Jr D, Hanson KM. Tomographic imaging of biological tissue by
time-resolved, model-based, iterative, image reconstructions. In: Alfano RR, Fujimoto JG, editors. OSA Trends
in Optics and Photonics: Advances in optical imaging and photon migration II, vol. 21. Washington DC: Optical
Society of America, 1998. p. 156–61.

[41] Klose AD, Hielscher AH. Iterative reconstruction scheme for optical tomography based on the equation of
radiative transfer. Med Phys 1999;26(8):1698–707.

[42] Roy R, Sevick-Muraca EM. Truncated Newton’s optimization scheme for absorption and Auorescence optical
tomography. Part I: theory and formulation. Opt Express 1999;4(10):353–71.

[43] Ye JC, Webb KJ, Bouman CA, Millane RP. Optical di<usion tomography by iterative-coordinate-descent
optimization in a Bayesian framework. J Opt Soc Am A 1999;16(10):2400–13.

[44] Ye JC, Webb KJ, Millane RP, Downar TJ. Modi@ed distorted Born iterative method with an approximate
Frechet derivative for optical di<usion tomography. J Opt Soc Am A 1999;16(7):1814–27.

[45] Eppstein MJ, Dougherty DE, Troy TL, Sevick-Muraca EM. Biomedical optical tomographyusing dynamic
parameterization and Bayesian conditioning on photon migration measurements. Appl Opt 1999;38(10):
2138–51.

[46] Ishimaru A. Di<usion of light in turbid material. Appl Opt 1989;28(12):2210–5.
[47] Ishimaru A. Wave propagation and scattering in random media. New York: Academic Press, 1978.
[48] van de Hulst HC. Light scattering by small particles. New York: Wiley, 1957.
[49] van de Hulst HC. Multiple light scattering. New York: Academic Press, 1980.
[50] Groenhuis RAJ, Ferwerda HA, Ten Bosch JJ. Scattering and absorption of turbid materials determined from

reAection measurements. 1: Theory. Appl Opt 1983;22(16):2456–62.
[51] Groenhuis RAJ, Ten Bosch JJ, Ferwerda HA. Scattering and absorption of turbid materials determined from

reAection measurements. 2: Measuring method and calibration. Appl Opt 1983;22(16):2463–7.
[52] Pro@o AE. Light transport in tissue. Appl Opt 1989;28(12):2216.
[53] Aronson R, Barbour RL, Lubowsky J, Graber H. Application of transport theory to infra-red medical imaging.

In: Greenberg W, Ploewczak J, editors. Modern mathematical methods in transport theory. Basel: Birkh7auser,
1991. P. 64–75.

[54] Yoon G, Welch AJ, Motamedi M, van Gemert MCJ. Development and application of three-dimensional light
distribution model for laser irradiated tissue. IEEE J Quant Electron 1987;QE-23(19):1721–33.

[55] Hielscher AH, Alcou<e RE, Barbour RL. Comparison of @nite-di<erence transport and di<usion calculations
for photon migration in homogeneous and heterogeneous tissue. Phys Med Biol 1998;43:1285–302.

[56] Firbank M, Arridge SR, Schweiger M, Delpy DT. An investigation of light transport through scattering bodies
with non-scattering regions. Phys Med Biol 1996;41:767–83.

[57] Dehghani H, Delpy DT, Arridge SR. Photon migration in non-scattering tissue and the e<ects on image
reconstruction. Phys Med Biol 1999;44(12):2897–906.

[58] Ripoll J, Nieto-Vesperinas M, Arridge SR, Dehghani H. Boundary conditions for light propagation in di<usive
media with nonscattering regions. J Opt Soc Am A 2000;17(9):1671–82.

[59] Arridge SR, Dehghani H, Schweiger M, Okada E. The @nite element model for the propagation of light in
scattering media: a direct method for domains with nonscattering regions. Med Phys 2000;27(1):252–65.

[60] Firbank M, Arridge SR, Schweiger M, Delpy DT. An investigation of light transport through scattering bodies
with non-scattering regions. Phys Med Biol 1996;41(4):767.

[61] Okada E, Firbank M, Schweiger M, Arridge SR, Cope M, Delpy DT. Theoretical and experimental investigation
of near-infrared light propagation in a model of the adult head. Appl Opt 1997;36(1):21–32.



A.D. Klose et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 691–713 713

[62] Schweiger M, Arridge SR. Optical tomographic reconstruction in a complex head model using a priori region
boundary information. Phys Med Biol 1999;44(11):2703.

[63] Klose A, Hielscher AH, Hanson KM, Beuthan J. Three-dimensional optical tomography of a @nger joint model
for diagnostic of rheumatoid arthritis. Proc SPIE 1998;3566:151–60.

[64] Arridge SR, Dehghani H, Schweiger M, Okada E. The @nite element model for the propagation of light in
scattering media: a direct method for domains with nonscattering regions. Med Phys 2000;27:252–64.

[65] Riley J, Dehghani H, Schweiger M. Arridge SR, Ripoll J, Nieto-Vesperinas M. #D Optical tomography in the
presence of void regions. Optics Express 2000;7(13):462–67.

[66] Dorn O. A transport-backtransport method for optical tomography. Inverse Problems 1998;14:1107–30.
[67] Case KM, Zweifel PF. Linear transport theory. Massachussetts: Addison-Wesley, 1967.
[68] Duderstadt JJ, Martin WR. Transport theory. New York: Wiley, 1979.
[69] Davis B. Neutron transport theory. London: Oxford University Press, 1957.
[70] Welch AJ, Van Gemert MJC. Optical-thermal response of laser irradiated tissue. New York: Plenum Press

1995. p. 144–8.
[71] Lewis EE, Miller WF. Computational Methods of neutron transport. New York: Wiley, 1984.
[72] Sanchez R, McCormick NJ. A Review of neutron transport approximations. Nucl Sci Eng 1982;80:481–535.
[73] Carlson BG, Lathrop KD. Transport theory—the method of discrete ordinates. In: Greenspan H, Kelber CN,

Okrent D, editors. Computing methods in reactor physics. New York: Gordon and Breach, 1968.
[74] Lathrop KD. Discrete-ordinates methods for the numerical solution of the transport equation. Reactor Technol

1972;15(2):107–34.
[75] Richtmyer RD, Morton KW. Di<erence methods for initial-value problems. New York: Wiley, 1967.
[76] Lathrop KD. Spatial di<erencing of the transport equation: positivity vs. accuracy. J Comp Phys 1969;4:475.
[77] Reed WH. New di<erence schemes for the neutron transport equation. Nucl Sci Eng 1971;46:309–14.
[78] Madsen NK. Convergent centered di<erence schemes for the discrete ordinate neutron transport equations.

SIAM J Num Anal 1975;12(2):164–76.
[79] Alcou<e RE. An adaptive weighted diamond di<erencing method for three-dimensional xyz geometry. Trans

Am Nuc Soc 1993;68 A:206–12.
[80] Alcou<e RE. Di<usion synthetic acceleration: method for the diamond di<erenced discrete ordinates equation.

Nuc Sci Eng 1977;64:344–52.
[81] Sewell G. The numerical solution of ordinary and partial di<erential equations. San Diego: Academic Press,

1988.
[82] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. New York: Cambridge

University Press, 1992.
[83] Ames WF. Numerical methods for partial di<erential equations. New York: Academic Press, 1977.
[84] Roggan A, Albrecht H, D7orschel K, Minet O, M7uller G. Experimental set-up and Monte-Carlo model for the

determination of optical properties in the wavelength range 330–1100 nm. Proceedings of SPIE 1995;2323:
21–36.

[85] Patterson MS, Chance B, Wilson BC. Time-resolved reAectance and transmittance for the non-invasive
measurement of tissue optical properties. Appl Opt 1989;28:2331–6.

[86] Firbank M, Oda M, Delpy D. An improved design for a stable and reproducible phantom material for use in
near-infrared spectroscopy and imaging. Phys Med Biol 1995;40:955–61.

[87] Boas DA, Gaudette T, Arridge SR. Simultaneous imaging and optode calibration with di<use optical
tomography. Opt Express 2001;8:263–70.

[88] Star WM, Marijnissen JPA, Jansen H, Keijzer M, van Gemert MJC. Light dosimetry for photodynamic therapy
by whole bladder wall irradiation. Photchem Photobiol 1987;46:619–24.

[89] Moes CJM, van Gemert MJC, Star WM, Marijnissen JPA, Prahl SA. Measurements and calculations of the
energy Auence rate in a scattering and absorbing phantom at 633 nm. Appl Opt 1989;28:2292–6.

[90] van Staveren HJ, Moes CJM, van Marle J, Prahl SA, van Gemert MJC. Light scattering in Intralipid-10% in
the wavelength range of 400–1100 nm. Appl Opt 1991;30:4507–14.

[91] Flock ST, Jacques SL, Wilson BC, Star WM, van Gemert MJC. Optical properties of Intralipid: A phantom
medium for light propagation studies. Lasers Surg Med 1992;12:510–9.


