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Abstract

Optical tomography is a novel imaging modality that is employed to reconstruct cross-sectional im-
ages of the optical properties of highly scattering media given measurements performed on the surface
of the medium. Recent advances in this 5eld have mainly been driven by biomedical applications in
which near-infrared light is used for transillumination and re6ectance measurements of highly scattering
biological tissues. Many of the reconstruction algorithms currently utilized for optical tomography make
use of model-based iterative image reconstruction (MOBIIR) schemes. The imaging problem is formu-
lated as an optimization problem, in which an objective function is minimized. In the simplest case the
objective function is a normalized-squared error between measured and predicted data. The predicted
data are obtained by using a forward model that describes light propagation in the scattering medium
given a certain distribution of optical properties.
In part I of this two-part study, we presented a forward model that is based on the time-independent

equation of radiative transfer. Using experimental data we showed that this transport-theory-based forward
model can accurately predict light propagation in highly scattering media that contain void-like inclusions.
In part II we focus on the details of our image reconstruction scheme (inverse model). A crucial com-
ponent of this scheme involves the e=cient and accurate determination of the gradient of the objective
function with respect to all optical properties. This calculation is performed using an adjoint di>erentiation
algorithm that allows for fast calculation of this gradient. Having calculated this gradient, we minimize the
objective function with a gradient-based optimization method, which results in the reconstruction of the
spatial distribution of scattering and absorption coe=cients inside the medium. In addition to presenting
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the mathematical and numerical background of our code, we present reconstruction results based on
experimentally obtained data from highly scattering media that contain void-like regions. These types of
media play an important role in optical tomographic imaging of the human brain and joints. ? 2002
Elsevier Science Ltd. All rights reserved.
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1. Background and introduction

Optical tomography (OT) is concerned with reconstructing the spatial distribution of op-
tical properties inside scattering and absorbing media by using near-infrared-light transmis-
sion measurements performed on the surface of the media [1]. Most of the currently em-
ployed imaging algorithms make use of so-called model-based iterative image reconstruction
(MOBIIR) schemes. These schemes use a forward model to predict detector readings assuming
a certain distribution of optical properties inside the medium. The predicted detector readings
are compared to actual measurements by de5ning an appropriate objective function �. The ob-
jective function � is minimized by iteratively updating an initial guess of the distribution of
optical properties. MOBIIR schemes in OT mainly di>er in their choice of forward model and
in what way the spatial distribution of optical properties is updated.
In part I of this study we focused on the importance of choosing a correct forward model

in MOBIIR schemes. We introduced and experimentally tested an upwind-di>erence discrete-
ordinates algorithm that computes numerical solutions of the time-independent equation of radia-
tive transfer. Unlike the widely used di>usion approximation, this model is capable of accurately
describing light propagation in media that contain void-like regions with very low scattering and
absorption coe=cients [2,3]. These types of media have drawn the attention of several research
groups in recent years because void-like regions play an important role in several biomedical
imaging applications. For example, in applications of OT to brain imaging one has to take into
account the e>ects of the low-scattering and low-absorbing cerebrospinal 6uid, which surrounds
the brain. The e>ect of this layer on light propagation has been the subject of many studies and
discussions [2–9]. Another example is the almost clear synovial 6uid in joints, which plays an
important role in the optical detection of rheumatoid arthritis [10–12].
In this part II we focus on how the radiative-transfer forward model can be used within

gradient-based MOBIIR schemes. In recent years, several groups have embraced the concept of
gradient-based MOBIIR schemes for optical tomography. Arridge et al. [13], Davis et al. [14],
Hielscher et al. [15], and Roy et al. [16] have presented schemes for the di>usion equation,
while Klose and Hielscher [17] have employed the gradient-based approach using the equa-
tion of radiative transfer. Gradient-based schemes use information about the gradient of the
objective function with respect to the optical properties to 5nd updates of the initial guess of
the optical properties. For example, steepest-gradient-descent and conjugate-gradient schemes
are well-established techniques in optimization theory [18]. Compared to other widely used
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Newton-type algorithms, gradient-based schemes have the advantage that a full Jacobian matrix
J neither needs to be explicitly created nor repeatedly inverted [1,15].
The major challenge concerning gradient-based MOBIIR algorithms, is to 5nd a way to

e=ciently calculate the gradient ∇��=d�=d� of the objective function � with respect to the
optical properties �=[�a(r); �s(r)]. A straightforward approach would be to approximate the
derivative with the method of divided di>erence, given by

d�
d�

≈ �(�+Q�)−�(�)
Q�

: (1)

If � is a vector of n unknown optical properties, one has to run n + 1 forward problems to
obtain this gradient. Given that in optical tomography the number of unknowns typically is on
the order of 103–105; this requirement results in an unacceptable computational burden. This
is especially true in the case of transport-theory-based schemes, in which solving the forward
model requires substantial computational time.
Instead of perturbing each component of the vector � using Eq. (1), we employ an adjoint

model to e=ciently calculate the gradient ∇��. The power of this approach lies in its ability
to calculate the derivatives with respect to all the variables in a CPU time that is comparable
to one forward calculation. This method is widely used in meteorology and oceanography for
sensitivity studies, data assimilation, and parameter estimation [19–21]. For a good overview
of the adjoint model as applied to atmospherical sciences see, for example, Errico [20]. In
atmospherical sciences a forward model B; for example an ocean circulation or climate model,
is used to calculates the output parameters b given the input parameters a with

b=B(a): (2)

The output parameters b are used in a forecast error E(b). In general, it is of interest is how the
forecast error depends on the input variables a. Researchers in atmospherical sciences typically
refer to adjoint models, when they describe the equations that provide the sensitivity @E=@a
(gradient) as a function of the derivative @E=@b. Therefore, equations of the form

@E
@a
=
(
@b
@a

)T @E
@b

(3)

are called adjoint models, where now the input parameters are the derivatives @E=@b and the
output parameters are the derivatives @E=@a. In general (@b=@a)T is the adjoint matrix of @b=@a;
which in the case of real-valued parameters equals the transpose of @b=@a. In this work we
have adapted this technique to OT and use it to calculate the gradient ∇��=d�=d�; which is
similar to a calculation of the gradient @E=@a. The input parameters of the forward model are
the optical properties � (a in Eq. (2)) and the output parameters are the detector readings P
(b in Eq. (2)). On the other hand, the adjoint model uses the derivative of � with respect to
the detector readings P as input parameters, and yields the derivative of � with respect to the
optical parameters � as output parameters (Eq. (3)).
One can distinguish between three di>erent approaches to the calculation of ∇�� utilizing

an adjoint model (Fig. 1) [21]. In the 5rst method one obtains the gradient ∇�� by using
the solution of the adjoint equation of the forward model. The challenge in this approach is
to derive the adjoint equation from a given forward model and to solve it. A good general
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Fig. 1. There are basically three di>erent ways to obtain the gradient of an objective function using adjoint schemes.
All methods start from the formulation of the equation that presents the forward model (e.g. the di>usion equation
or the radiative-transfer equation.) In Method I one derives 5rst the adjoint equation, then discretizes the adjoint
equation, implements a numerical code for the adjoint equation, and from that obtains the gradient of the objective
function. In Method II one formulates the discretized equation 5rst, then derives the discretized adjoint equation,
and programs the numerical adjoint equation. In Method III, one formulates the discretized equation, programs the
numerical code for the discretized equation, and implements a numerical code for the adjoint equation. A detailed
discussion can be found in the main text.

overview on the theory of adjoint equations in dynamical systems can be found, for example,
in works by Marchuk et al. or Cacuci [22–25]. Talagrand gives an example how this approach
can be used for sensitivity calculation in meteorological applications [26]. Norton uses this
method for computing the Frechet derivative for inverse scattering problems and compares it
to other techniques [27]. In optical tomography no group has adapted the adjoint transport
equation in the calculation of the gradient within a MOBIIR scheme. However, Dorn uses the
time-dependent adjoint transport equation to determine the Frechet derivative of a residual that is
proportional to the di>erence between predicted and measured data [28]. The resulting nonlinear
system of equations is solved by a nonlinear generalization of the algebraic reconstruction
technique (ART), where the optical parameters are iteratively updated. Dorn presents numerical
results for scattering media with non-reentry boundary conditions. A similar approach is applied
by Arridge et al. to the di>usion equation in OT [13]. Arridge et al. derived the gradient
∇�� from the solution to the di>usion equation for a source and from the solution to the
adjoint di>usion equation for the boundary residual. The boundary residual is a function of the
di>erence of the measured and predicted data. The solutions of the di>usion equation and its
adjoint equation are obtained numerically by a 5nite element method (FEM). Since numerically
solving the adjoint di>usion equation requires approximately the same time as solving the
di>usion equation itself, Arridge et al. obtain the gradient in a time comparable to two forward
calculations.
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Several authors [21,29] have pointed out that the appropriate discretization scheme for the
adjoint equation is in general di>erent from the appropriate discretization of the forward equa-
tion. Therefore it is a priori not clear that the gradient obtained with a discretized version of
the adjoint equation truly equals the gradient of the discretized version of the forward equation.
Therefore Shah [30] and Talagrand et al. [31] have argued that it is favorable to derive the
adjoint model from the discretized form of the forward equation. This is a second way to use
adjoint schemes for the gradient calculation. This approach has been applied mainly to weather
forecast models [32] and to ocean circulation models [33], but has not been pursued in optical
tomography.
The third approach for calculating the gradient by means of an adjoint model does not require

the formulation of an adjoint equation, neither of the continuous nor discretized version of the
equation that describes the forward model. This method is usually referred to as computational
di>erentiation in the adjoint or reverse mode, reverse di>erentiation, or adjoint di>erentiation
[34]. Here, the numerical code of the forward model, which is a sequence of arithmetic opera-
tions, is directly di>erentiated to compute the gradient. The procedure used to 5nd the derivatives
of arbitrary algebraic functions, such as the gradient of an objective function, was 5rst intro-
duced by Wengert [35]. Over the last 15 years, Griewank has generalized and re5ned Wengert’s
initial ideas [36]. Again, the main applications so far lie outside the 5eld of optical tomography,
as for example, in geoscience [21,37,38]. The key to this method is the decomposition of a
given forward model into a series of elementary di>erentiable function steps. By systematically
applying the chain rule of di>erentiation to every single elementary step of the forward code in
the reverse direction, a value for the gradient is obtained. The main advantage of this approach
is that on the level of the elementary steps in the forward model code the gradient can be
attained according to simple rules [21]. Thus the task of gradient determination can be handled
independently from any knowledge of the nature of the main problem.
In optical tomography only the groups of Davis et al. [14], Roy et al. [16], and ours [15,17]

have made use of the concept of adjoint di>erentiation. Davis and Roy have applied the adjoint
di>erentiation technique to the time-independent di>usion equation and to di>usion 6uorescent
problems in the frequency domain. Hielscher et al. [15] described an adjoint di>erentiation
scheme for the time-dependent di>usion equation. Most recently, Klose and Hielscher [17] em-
ployed adjoint di>erentiation in a reconstruction algorithm that uses the time-dependent transport
equation. They considered isotropically scattering media with none-reentry boundary conditions
and showed, using simulated data, reconstructions of the spatial distribution of the scattering
coe=cients �s.
Fig. 1 depicts the relationships among the three di>erent approaches to the gradient calculation

using an adjoint model. All methods start from the forward model, which in OT is based on
the di>usion equation or radiative transfer equation. In method I, one 5rst derives the adjoint
equation of the forward model, which is then discretized and implemented as a computer code.
Employing method II one 5rst discretizes the equations used in the forward model, then derives
the adjoint discretized model, and implements the discretized model as a computer program.
Using method III, one 5rst discretizes the forward model, implements a forward computer code,
and from this derives the code for the adjoint model. In the last case, which is used in this paper,
the gradient is directly determined from the forward computer code without explicit knowledge
of the adjoint equation.
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In part I of this work we described how our previous transport code [17] was extended
to include anisotropic scattering and Fresnel boundary conditions at the air–tissue interface.
Therefore, the new code considers a refractive index mismatch between tissue and air. With
this additions it is for the 5rst time possible to test the algorithm with experimental data
from well-characterized tissue phantoms. Furthermore, as described in detail in the compan-
ion manuscript, we solve the discretized equation of radiative transfer with a successive over-
relaxation (SOR) method instead of using the Jacobi method, which was employed in our
previous work [17]. The use of the SOR method considerably improves the convergence rate
of the forward algorithm.
In part II we now focus on how adjoint di>erentiation can be used to obtain the gradient of

the objective function. The use of the SOR method in the forward code results in a di>erent
adjoint code from the one presented in Ref. [17]. First, we show how the calculation of the
objective function is decomposed into sub-functions of elementary computational units. Then
we describe how these sub-functions are di>erentiated by applying the adjoint di>erentiation
technique. This yields the gradient of the objective function, which in turn is used to optimize
the objective function. To illustrate the performance of our code, we analyze experimental data
obtained from media that contain void-like regions. As already mentioned, these types of media
have drawn considerable attention in recent years, since they are signi5cant in several areas of
optical tomography [4–12].

2. Numerical methods

First, a forward model is employed to provide predictions of detector readings as a function of
certain system parameters. (In OT these system parameters are the optical properties.) Second,
an objective function is evaluated that compares the predicted with measured data. And Third,
an updating scheme is used to provide a new set of system parameters for the next iteration.
The forward model was described and tested in detail in part I of this work. Here we focus
on the second and third component, namely the objective function and the updating scheme, in
which adjoint di>erentiation is used for the gradient calculation.

2.1. Objective function

OT can be viewed as an optimization problem with a nonlinear objective function. The
discrepancy between the actual measurements, represented by the vector M, and the pre-
dictions, given by the vector P, for m source–detector pairs is de5ned by a scalar-valued
objective function �(P). The predictions P are mapped onto a scalar ’ using the �2-error
norm

� :Rm → R; (4a)

P �→ ’= 1
2

m∑
i

(Pi −Mi)2; (4b)

where Rm is the m-dimensional space of real numbers.
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The predictions P are determined for all m source–detector pairs by evaluating the forward
model F , given the spatial distribution of optical parameters � (see part I):

F :Rn → Rm; (5a)

� �→ P(�): (5b)

The vector � is of length n=2IJ , and contains the optical parameters �s and �a. The parameters
I and J denote the number of grid points of a 5nite-di>erence grid along the x-axis and y-axis,
respectively.
The goal in image reconstruction is to determine a vector � that minimizes the objective

function �. As already mentioned in the introduction, gradient-based optimization techniques,
such as the conjugate-gradient method, employ the gradient ∇��(�) to calculate a sequence of
points �0; �1; : : : ; �i that lead to ever-improving values of �. This iterative process is terminated
when |(�(�i+1) − �(�i+1))| becomes smaller than a prede5ned value �. A crucial task within
this process is the computationally e=cient calculation of the gradient ∇��(�i). In the follow-
ing section we will describe in detail how this can be done using an adjoint di>erentiation
scheme.

2.2. Gradient calculation with adjoint diAerentiation

In adjoint di>erentiation schemes the numerical code that calculates the objective function
� is directly di>erentiated to obtain the gradient ∇��(�i). To apply this method one has to
decompose the objective function into a series of elementary di>erentiable function steps. By
systematically applying the chain rule of di>erentiation to each of these elementary steps in the
reverse direction of the forward model computation, a value for the gradient is obtained.
In our particular problem we notice that �=�(P(�)) which can be decomposed into Z sub-

functions Fz in the following way:

�(F(�)) = �(FZ(FZ−1(FZ−2(: : : (F2(F1(�); �)) : : :)�)�))

:= (� ◦ FZ(�) ◦ FZ−1(�) ◦ FZ−2(�) ◦ · · · ◦ F2(�) ◦ F1)(�): (6)

The sub-functions Fz are de5ned by the SOR-method that is used to solve the forward model
(see part I). The SOR-method is an iterative approach and the zth iteration yields the intermedi-
ate result �zk; i; j. The radiance vector � is of length p=K × I × J with k ∈ [1; K]; i∈ [1; I ], and
j∈ [1; J ]. The detector readings P(�) are the angular-dependent radiances �Zk; i; j at the last itera-
tion step Z at detector positions (i; j) on the boundary. The computational graph of the forward
model is depicted in Fig. 2a. Starting with the optical parameters � as the input variables, the
sub-function F1 produces the intermediate result and output variable �1. The output variable
�z of Fz and the optical parameters � always serve as input variables for the next sub-function
Fz+1 for all subsequent steps of the decomposition. The step Fz calculates the predictions P,
which become the input to the 5nal step of the objective function � determination, which is
the calculation of the scalar ’.
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Fig. 2. (a) Computational graph of the forward model calculating the objective function. (b) Computational graph
of the adjoint di>erentiation technique.

The sub-functions Fz map the intermediate variables �z−1 and the input values of � onto
the intermediate result �z=Fz(�z−1; �) for all iteration steps of the transport forward model

Fz :Rp × Rn → Rp; (7a)

(
�z−1

�

)
�→ �z: (7b)

For the ordinates with �k ¿ 0; !k ¿ 0 this mapping is given explicitly by (see part I)

�zk; i; j = (1− ")�z−1k; i; j

+"
{Sk; i; j + �s

∑K
k′=1 ak′Pk;k′�

z−1
k′; i; j + (�k=Qx)�

z
k; i−1; j + (!k=Qy)�

z
k; i; j−1}

{�k=Qx + !k=Qy + (�a + �s)} : (8)

For the 5rst iteration step z=1; Fz only maps the input variables �:

F1 :Rn → Rp; (9a)

� �→ �1 (9b)

and we have

�1k; i; j="
{Sk; i; j + (�k=Qx)�1k; i−1; j + (!k=Qy)�1k; i; j−1}

{�k=Qx + !k=Qy + (�a + �s)} : (10)
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Eqs. (8) and (10) are the smallest computational units in the forward code and play an important
role in the adjoint di>erentiation step, which we discuss next.
To obtain the gradient of the objective function, we start by di>erentiating Eq. (6) with

respect to the optical properties �. We derived the following equation for the gradient (see
Appendix A):

∇��:=
(
d�
d�

)T
=

(∑
z

(
@�
@�z

)T @�z
@�

)
+
(
@�
@�

)T
(11)

which contains three distinct terms. The last term (@�=@�)T is zero, because � is not an explicit
function of the optical properties. The middle term @�z=@� can be calculated from Eq. (8) of
the forward model. For the derivatives with respect to �a and �s we obtain

(
@�z

@�s

)
k;i;j
= "

∑K
k′=1 ak′pk;k′�

z−1
k′; i; j

{�k=Qx + !k=Qy + (�a + �s)}

−"
{Sk; i; j + �s

∑K
k′=1 ak′pk;k′�

z−1
k′; i; j + (�k=Qx)�

z
k; i−1; j + (!k=Qy)�

z
k; i; j−1}

{�k=Qx + !k=Qy + (�a + �s)}2
;

(12a)

(
@�z

@�a

)
k;i;j
=− "

{Sk; i; j + �s
∑K
k′=1 ak′pk;k′�

z−1
k′; i; j + (�k=Qx)�

z
k; i−1; j + (!k=Qy)�

z
k; i; j−1}

{�k=Qx + !k=Qy + (�a + �s)}2
:

(12b)

At this point we have not yet used the adjoint di>erentiation technique, since we have not
stepped backward through the forward code. This procedure comes into play in the calculation
of the 5rst term (@�=@�z)T in Eq. (11). This can be best understood while looking at the
computational graph of the adjoint di>erentiation technique in Fig. 2b. Starting with the last
step (output) of the forward code, which is the calculation of the objective function given the
predictions P=�Z , we di>erentiate � with respect to �Z and multiply it with (@�=@�)T =1.
The result is the di>erence between the measured and predicted data

(
@�
@�z

)T
=
(
�Z −M)T : (13)

This is the input parameter to our adjoint model, which will eventually provide the ouput
parameter ∇�� (see also Eq. (3)). More speci5cally, continuing to step backward through the
forward code we calculate (@�=@�Z−1)T, which is given by

(
@�
@�z−1

)T
=
(
@�z

@�z−1

)T( @�
@�z

)T
: (14)
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The remaining derivatives (@�=@�z)T of all intermediate steps in Eq. (11) are computed using
the previously calculated derivatives (@�=@�z+1)T, such that(

@�
@�z

)T
=
@(� ◦ · · · ◦�z+1)(�z)T

@�z

=
(
@�z+1

@�z

)T @(� ◦ · · · ◦�z+2)(�z+1)T
@�z+1

=
(
@�z+1

@�z

)T( @�
@�z+1

)T
: (15)

This step, in which (@�=@�z)T is calculated from (@�=@�z+1)T, constitutes the adjoint di>eren-
tiation step in our code. The matrix (@�z+1=@�z)T is calculated by analytically di>erentiating
the (z + 1)th SOR-iteration step, given in Eq. (8), with respect to �z. We get, for example in
the case of ordinates with �k ¿ 0; !k ¿ 0:

@�z+1k; i; j
@�zk′; i′; j′

=(1− ")$k; i; j + "

{
�sak′pk;k′$i; j +

�k
Qx
$k; i−1; j +

!k
Qy
$k; i; j−1

}
{
�k
Qx

+
!k
Qy

(�a + �s)
} (16)

with $a;b;c= $a$b$c and

$x=
{
1 if x= x′;
0 if x 
= x′:

Here, we made the approximations

�k
Qx

@�z+1k; i−1; j
@�zk′; i′; j′

∼= �k
Qx
$k; i−1; j

and

!k
Qy

@�z+1k; i; j−1
@�zk′; i′; j′

∼= !k
Qy
$k; i; j−1

for the relevant terms on the right-hand side of Eq. (16).
As can be seen, the gradient of the objective function is calculated by stepping backward

through all previously calculated iteration steps of the forward model without solving an entirely
new numerical adjoint equation of radiative transfer. Furthermore, the particular underlying
physical system does not have to be known, because the derivative is computed directly from
the elementary steps of the forward model code (Eqs. (8) and (10)). A disadvantage of the
reverse mode of di>erentiation is that all intermediate results of the forward calculation have
to be stored for subsequent use in the backward pass.
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2.3. Gradient-based optimization

Once the gradient ∇��(�0) for a point �0 is obtained, a one-dimensional line minimization
along the given gradient direction is performed until a minimum, �(�1) is found. Various
techniques can be applied to perform such one-dimensional minimizations [39,40]. Our approach
is to start with three points, the initial guess �0; �1 =�0 +Q�, and �2 =�0 +2Q� chosen along
the direction of the gradient. After calculating the objective function at these three points, the
largest calculated value is neglected, and a new point �3 is determined using the golden section
rule until a minimum is bracketed [40]. At that time a parabola is 5t through these three points.
The smallest value of the objective function on this parabola is determined to be the minimum.
Once the minimum is found, a new gradient calculation ∇��(�1) is performed at the new
minimum and a new direction is chosen in a conjugate-gradient framework. In our work we
employed a Polak–Riberie conjugate-gradient scheme [39,40].

3. Tissue phantoms and experimental setup

The inverse model was tested using experimental data from scattering phantoms that contained
void-like perturbations. As mentioned in the Introduction, these types of media play an impor-
tant role in optical tomography for two reasons. First, void-containing media are encountered
in several important applications, such as brain or joint imaging. Second, the widely applied
di>usion theory fails to describe light propagation in void-containing media and the equation
of radiative transfer needs to be employed. We constructed two phantoms of di>erent size and
di>erent void-like perturbations.
Phantom A measured 4 × 4 × 14 cm3 and contained a void-like ring 5lled with clear water.

The water-ring had a thickness of 0:3 cm and an inner diameter of 2:4 cm. The background
material of the phantom was a mixture of silicon-dioxide monospheres and ink embedded in
clear epoxy resin. The optical properties of the background medium were �′s = 11:6± 0:3 cm−1,
�a = 0:35±0:1 cm−1, g=0:8, and n=1:56 (see part I). The cross-sectional shape of the phantom
is shown in Fig. 3a.
Phantom B had dimensions of 3 × 3 × 14 cm3 and contained three cylindrical holes with a

diameter of 0:5 cm. The holes were 5lled with clear water. In this case the optical properties of
the background medium were �′s = 7:5± 0:3 cm−1, �a = 0:62± 0:12, and g=0:85, and n=1:56.
The cross-sectional shape of the phantom is shown in Fig. 3b.
Both phantoms were illuminated with near-infrared light at 678 nm using a laser diode with

a collimated beam. The applied power on the phantom surface was approximately 10 mW.
To detect the light we used an avalanche photodiode (APD) with a lock-in detection sys-
tem. A frequency generator provided a 1014 Hz sinusoidal modulation of the laser diode.
The detection area at the boundary of the phantom was limited by a pinhole, which had a
diameter of 0:1 cm. The detector aperture was 45◦. At each detection spot the acquisition time
was approximately 10 s yielding a signal-to-noise ration of approximately 30 dB. The detector
was translated along the two sides adjacent to, and one side opposite to, the source position.
The outgoing 6uences on each of the surfaces of the phantom were normalized to the mean
values.
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Fig. 3. Geometry and source–detector arrangements for the media with water-5lled, void-like inclusions that are
used in this study. Phantom A contains a water-5lled ring (Fig. 3a), while phantom B contains three water-5lled
cylindrical inclusions (Fig. 3b).

The outgoing light was measured on phantom A for 12 di>erent source positions, three
symmetrically placed on each side of the phantom, with a separation of 0:8 cm. Ten detector
points with a separation of 0:4 cm were recorded on each side, except the source side. This was
repeated for each of the 12 di>erent source positions yielding a total of 12× 30 measurement
points. For phantom B we used fewer sources but more detectors. Only one source was located
at the center of each of the 4 sides of the phantom. We placed 15 detectors on each side with a
separation of 0:2 cm yielding a total of 4×45 measurement points. A more detailed description
of the experimental setup can be found in the companion manuscript (part I).

4. Results

The experimental data was used as input for the reconstruction algorithm, which calculated
cross-sectional images of the �s and �a distribution in a horizontal section through the phantoms.
As initial guesses for the reconstructions we chose homogeneous media with optical properties
equal to those of the background medium. Therefore reconstructions for phantom A started
from �a = 0:35 cm−1, �s = 58 cm−1 and g=0:8, while reconstructions for phantom B started
from �a = 0:62 cm−1, �s = 50 cm−1, and g=0:85. The reconstruction process was stopped when
the change of the objective function in subsequent iterations, |(�(�i+I)−�(�i))=�(�i+1)|, was
smaller than �=10−3.
The reconstructions for phantom A were done on a 81 × 81 grid with a grid point sepa-

ration of 0:05 cm. For the angular discretization we chose 16 ordinates. Figs. 4a and b show
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Fig. 4. Reconstruction results that are based on experimental data obtained with phantom A, which contains a
water-5lled void-like ring. Fig. 4a shows the results for the scattering coe=cient and Fig. 4b shows the results for
the absorption coe=cient.

Fig. 5. Reconstruction results that are based on experimental data obtained with phantom B, which contains three
water-5lled perturbations. Fig. 5a shows the results for the scattering coe=cient and Fig. 5b shows the results for
the absorption coe=cient.

the reconstruction results for �s and �a after 4 iterations, which took 98 h on a LINUX work-
station with a 700 MHz Pentium III Xenon processor (ASL Workstations, Milpitas, CA). It
can be seen that the ring-structure was found in both reconstructions. The lowest �s values in
Fig. 4a form a ring with a diameter of 2:65 cm, which agrees well with that of the ring of
the original (diameter 2:7 cm). However, the width of the ring appears broadened. The absolute
values within the ring zone only decrease from the initial guesses of �s = 58:0 to 35:0 cm−1,
and �a = 0:35 to 0:12 cm−1. That equals a relative change from the initial guesses of 39.7% for
�s and 65.7% for �a.
The reconstructions for phantom B were done on a 61×61 grid with a grid point separation of

0:05 cm. For the angular discretization we chose 16 ordinates. The results of the reconstruction
for �s and �a are shown in Figs. 5a and b. The algorithm found the locations of all three
water perturbations in both the �a reconstruction and the �s reconstruction. The location of the
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smallest �s value in each reconstructed perturbation deviates by less than 0:15 cm from the
center of the original location of the perturbation. The circular shape of the perturbations is
slightly distorted in both reconstructed cross-sectional images. The perturbation in the upper-left
corner, which is closest to the boundary, is reconstructed more accurately than the other two
perturbations. We 5nd that areas closer to the boundary, where the sources and detectors are
located, are very sensitive to changes in the optical parameters whereas changes in the center
of the phantom contribute less to the objective function. Therefore, perturbations close to the
boundary are reconstructed with a higher accuracy than perturbations closer to the center of the
phantom. Finally we observe that the smallest reconstructed scattering coe=cient in the image is
�s = 25 cm−1 and the smallest absorption coe=cient is �a = 0:53 cm−1. Compared to the initial
guesses of �s = 50 cm−1 and �a = 0:62 cm−1 this equals relative changes of 50.0% and 14.5%
for �s and �a, respectively.
In both cases, void-like ring and three void-like cylinders, we 5nd that while the position

of the voids are accurately determined, the absolute values of the optical properties inside the
voids are overestimated. This is most likely caused by the fact that the initial guess is very far
away from the true value in these areas. It is well known that OT is an ill-posed problem and
that di>erent distribution of optical properties can yield similarly low values of the objective
function [41–43]. For example, in the case of the void-like ring, smaller changes in optical
properties in a broader area yield almost the same objective function as a stronger change
in optical properties in a smaller area. This problem possibly could be overcome by using
time-resolved or frequency domain measurements, which contain more information. Schweiger
and Arridge recently showed that di>erent data types may lead to a better de5ned minimum
of the objective function [44]. In addition, better reconstruction results may be obtained when
regularization schemes [42,43] are used, which we have not considered in this study.
Furthermore, we 5nd that the scattering images show larger artifacts than the absorption im-

ages. For example in the case of the void-like ring (Fig. 4a), we can see streaks of low scattering
areas that seem to originate from the sources. The reasons for this behavior are currently un-
clear, but may be explained by the particular use of the upwind-di>erence discrete-ordinates
method and highly anisotropic sources. Other groups [45,46] that employ dicrete-ordinates
methods have observed similar “ray e>ects”, especially in void-like areas that are close to a
source.

5. Summary

We have developed an image reconstruction algorithm for optical tomography that is based
on the equation of radiative transfer. This algorithm consists of three major parts. First, an
upwind-di>erence discrete-ordinates formulation of the time-independent equation of radiative
transfer is used to predict detector readings on the surface of a medium, given the location of the
sources and an estimate of the spatial distribution of the optical parameters �s, �a, and g inside
the medium. Second, the predicted detector readings are compared to actual measurements by
de5ning a �2-error norm. Third, an update of the estimated spatial distribution of the optical
properties is obtained by calculating the gradient of the objective function with respect to all
optical properties. This gradient calculation is performed by employing an adjoint di>erentiation



A.D. Klose, A.H. Hielscher / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 715–732 729

scheme. Unlike other adjoint schemes currently employed in optical tomography our scheme
does not require the formulation of an adjoint equation of the forward model, either in its
continuous or its discretized form. Using this algorithm, we presented reconstructions based
on experimental data obtained from media that contain void-like regions. It has been shown
previously that di>usion-theory based algorithms cannot be used in these cases. Our algorithm
converges in the presence of voids and provides information about their locations. While there
are still some artifact issues to overcome, the results obtained are very promising. To our
knowledge the presented results are the 5rst experimentally obtained reconstructions of media
that contain void-like areas.
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Appendix A. Derivation of gradient ∇��

The total derivative ∇�� can be obtained by systematically applying the chain rule of di>er-
entiation to Eq. (4). The total derivative ∇�� is a composition of derivatives of all intermediate
steps of the forward model due to the explicit dependence of the intermediate results on the
optical parameters. Starting from the last step Z of the forward code, in which the objective
function � is calculated given the predicted detector readings P=�Z; the total derivative is
given by the chain rule as(

d�
d�

)T
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(
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@�Z

)T d�Z
d�
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(
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: (A.1)

The derivative d�z=d� is obtained by again applying the chain rule of di>erentiation:
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In the next step the total derivative d�Z−1=d� is replaced again. This process is repeated for
all total derivatives down to the 5rst step d�1=d�= @�1=@�; and we obtain(
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we rewrite Eq. (A.4):(
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which equals Eq. (11) in the main text.
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