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Abstract
Optical tomography (OT) recovers the cross-sectional distribution of optical
parameters inside a highly scattering medium from information contained in
measurements that are performed on the boundaries of the medium. The image
reconstruction problem in OT can be considered as a large-scale optimization
problem, in which an appropriately defined objective function needs to be
minimized. In the simplest case, the objective function is the least-square error
norm between the measured and the predicted data. In biomedical applications
that apply near-infrared light as the probing tool the predictions are obtained
from a model of light propagation in tissue. Gradient techniques are commonly
used as optimization methods, which employ the gradient of the objective
function with respect to the optical parameters to find the minimum. Conjugate
gradient (CG) techniques that use information about the first derivative of the
objective function have shown some good results in the past. However, this
approach is frequently characterized by low convergence rates. To alleviate
this problem we have implemented and studied so-called quasi-Newton (QN)
methods, which use approximations to the second derivative. The performance
of the QN and CG methods are compared by utilizing both synthetic and
experimental data.

1. Introduction

Over recent years optical tomography (OT) has made considerable advances and promises to
become a novel biomedical imaging modality. For example, initial studies have begun that
explore the clinical usefulness of this emerging technique for imaging breast cancer, brain
function or rheumatoid arthritis in finger joints [Colak99, Benaron00, Netz01]. In these and
similar studies near-infrared light (λ = 650–900 nm) is delivered through optical fibres to
multiple sites on the surface of the body part that is under investigation. Another set of optical
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fibres is used to collect the transmitted and reflected light intensities. From these measurements
the distribution of optical properties inside the medium is sought. The optical properties can be
further used to derive physiologically important parameters such as blood oxygenation or blood
volume. In recent years, considerable advances have been made with respect to instrument
design, which allows for more accurate as well as faster data acquisition. A major challenge
remains the reconstruction of two-dimensional cross sections of the optical parameters µ.

The image reconstruction problem in OT is distinctly different from the imaging problem
that arises in other imaging modalities such as computed tomography (CT), magnetic resonance
imaging (MRI), position emission tomography (PET) or single photon emission computed
tomography (SPECT) [Herman80, Natterer99]. For example, in x-ray tomography the
probing photons traverse the medium on a straight line and well-known backprojection
algorithms can be applied that are based on the inverse radon transform [Radon17]. In
OT, multiple scattering of photons is significant and backprojection algorithms have only
been of limited use [Benaron94, Colak97, Matson97]. Therefore, most of the currently
available reconstruction algorithms for OT use some form of a model-based iterative image
reconstruction (MOBIIR) scheme [Hanson98, Arridge99, Hielscher99] for recovering the
distribution ofµ. The most prevalent MOBIIR schemes in OT are the perturbation approach and
other similar techniques [Schottland93, OLeary95, Arridge95, Paulsen95, Chang96, Jiang96,
Arridge97, Yao97, Dorn98, Ye99]. The image reconstruction problem, however, can also
be formulated within the MOBIIR scheme as a numerical optimization problem [Saquib97,
Arridge98b, Hielscher99, Klose99, Roy01] consisting of three major parts.

First, a forward model for light transportation is used to predict the measured data. This
model is a function of the distribution of optical properties inside the medium and the position
and strength of the light source. Initially, a estimation of the distribution of optical parameters
µ0 is used to calculate the first prediction of the measurement data. Secondly, a scalar objective
function,�, is evaluated to obtain a measure of difference between the predicted and measured
data. In a third step the initial estimation of the optical properties is updated in a way that reduces
the difference between predicted and measured data as defined by the objective function. These
steps are repeated until a distribution µ∗ is found for which the objective function is minimal.

In addition to the type of forward model being used (e.g. diffusion-equation-based models
or radiative-transfer-equation-basedmodels), the algorithms that are currently available for OT
mainly differ in what type of updating scheme is employed. In general, the updating procedure
can be formulated as [Nocedal99]

µk+1 = µk + αkuk, (1)

where µk is a vector containing a set of optical properties from which the new set µk+1 is
obtained. The vector uk is a search direction in N-dimensional space, given a problem with N
unknowns. The parameter αk is the step length in the direction uk . In the most general form
the search direction can be written as [Nocedal99]

uk = Ak∇µ�(µk) + βkuk−1. (2)

For example, using the steepest descent method, one chooses βk = 0 and Ak = −I , where
I is the identity matrix. In OT the most common method to determine the search direction
has been the nonlinear conjugate gradient (CG) technique with Ak = −I and βk �= 0 to
ensure that uk and uk−1 are conjugate. A commonly applied formula for βk is given by the
Polak–Ribiere formula [Luenberger84, Fletcher87]

βk = yT
k−1∇µ�(µk)

∇µ�(µk−1)
T ∇µ�(µk−1)

. (3)
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In this work we explore the performance of so-called quasi-Newton (QN) methods,
in which βk = 0 and Ak is chosen as an approximation to the inverse of the second
derivative of the objective function [Davidon91, Martinez00]. In general, QN methods
are often found to be more reliable and converge faster than CG methods [Luenberger84,
Nash96]. However, they have not yet been applied to the image reconstruction problems that
are encountered in OT. In particular, we will focus on two implementations known as the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [Broyden65, Broyden65, Fletcher70,
Goldfarb70, Shanno70, Dennis77] and the limited-memory Broyden–Fletcher–Goldfarb–
Shanno (lm-BFGS) method [Nocedal80, Liu89]. We compare reconstruction results obtained
with the CG, lm-BFGS and BFGS methods and discuss the impact of measurement noise
and different initial estimations on the performance of the updating scheme. Noise corrupted
measurement data and the appropriate choice of an initial estimation still constitute major
difficulties in OT.

2. Numerical methods

2.1. Forward model

As a forward model for light propagation in biological tissue we use the equation of radiative
transfer (ERT) [Chandrasekhar60, Case67] for the domain �, which is given by

ω · ∇ψ(r,ω) + (µa(r) + µs(r))ψ(r,ω) = S(r,ω) + µs(r)

∫
∂�

p(ω,ω′)ψ(r,ω′) dω′. (4)

The fundamental quantity in radiative transport theory is the radiance ψ(r,ω), with units of
W cm−2 sr−1, at the spatial position r and unit direction ω in the three-dimensional domain�.
Other quantities in addition to the radianceψ that are included in the ERT are the source term
S(r,ω)with the unit W cm−3 sr−1, the scattering coefficient,µs(r), the absorption coefficient,
µa(r), both given in units of cm−1, and the scattering phase function p(ω,ω′) with units of
sr−1 [Patterson91]. The scattering phase function gives the probability that a single photon is
deflected by an angle θ . The angle θ encloses the two directions formed by ω and ω′ in the
interval θ ∈ [0, π] with ω · ω′ = cos θ . A commonly applied scattering phase function in
tissue optics is the Henyey–Greenstein function with g depicting the anisotropy factor

p(cos θ) = 1 − g2

4π(1 + g2 − 2g cos θ)3/2
. (5)

We solve the ERT in a two-dimensional plane of � with a finite-difference discrete-ordinates
method, which yields the detector readings p on the tissue boundary given the distribution of
optical parameters, µs and µa , inside the medium. A detailed description of this algorithm as
well as experimental studies that validate the code can be found elsewhere [Klose02a].

2.2. Objective function

The difference between the actual measurements m and the predictions p for ND source-
detector pairs is mapped onto a scalar ϕ̃ by the objective function �̃(p). In this work we
employ the widely applied least-square error norm as an objective function given by

�̃ : R
ND → R

p �→ ϕ̃ = �̃(p) = 1

2

ND∑
d=1

(
pd − md

κd

)2

.
(6)
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The predictions p are determined for all ND source-detector pairs, using the forward model F
and given the N-dimensional vector µ of optical parameters

F : R
N → R

ND

µ �→ p(µ),
(7)

where N = 2 × I × J . I and J denote the number of grid points of a finite-difference grid
along the x- and y-axes, respectively. The vector µ contains the distribution of the optical
parameters, specifically the scattering (µs) and absorption (µa) coefficients. The parameter
κ is used for normalizing the predictions and measurements. We usually set κd = md . Other
objective functions can and have been defined and tested [Hielscher01]. However, in this
work we focus on the effects of different optimization schemes rather than the advantages
and disadvantages of different objective functions. Using definitions (6) and (7), we get
the composite function �(µ) = �̃(p(µ)). The objective function � is nonlinear because
the predictions depend nonlinearly on the optical parameters. The goal of an optimization
technique is now to determine a vector µ that minimizes the objective function �(µ). This
vector will be a solution to the minimization problem and is displayed as a two-dimensional
image.

2.3. Quasi-Newton methods

Most reconstruction algorithms for OT iteratively update the optical parameters that are used
in the forward model starting with an initial estimation that is assumed to be close to the true
distribution of optical parameters. CG methods have been popular [Saquib97, Arridge98b,
Hielscher99, Klose99, Roy01], where the gradient of the objective function is calculated and
updates are determined based on equation (1). In this work we suggest that QN methods, which
make use of information on the second derivative (Hessian matrix), may lead to an improved
image reconstruction algorithm.

QN methods are derived from Newton’s method, which is often used for finding zeros of
a nonlinear function. Applied to optimization schemes in OT one needs to find the zeros of
the first derivative ∇µ�(µ). Given an estimate µk of the solution, the nonlinear function is
approximated by a linear function r(uk) that consist of the first two terms of the Taylor series
expansion of ∇µ�(µk + uk) at µk

∇µ�(µk + uk) = q(µk + uk) ≈ q(µk) + ∇µq(µk)uk = r(uk). (8)

Newton’s method is derived by setting r(uk) = 0 and one can solve the resulting equation for
the direction uk

∇µq(µk)uk = −q(µk). (9)

The Hessian matrix ∇µq(µk) = ∇2
µ�(µk) consists of second derivatives of the objective

function with respect to the optical parameters. After determining uk by means of equation (9),
an updated set of optical properties µk+1 can be found with equation (1). However, Newton’s
method is rarely used in its ‘classical’ form for nonlinear programming problems, because it
is often difficult to obtain the Hessian matrix for a given problem. To overcome this problem
QN methods have been employed in many optimization problems.

QN methods are generalizations of the secant method for one-dimensional
problems [Nash96]

f ′′(xk+1) ≈ f ′(xk+1)− f ′(xk)

xk+1 − xk
. (10)

Applied to our multi-dimensional problem we arrive at the secant condition

∇2
µ�(µk+1) · (µk+1 − µk) ≈ ∇µ�(µk+1)− ∇µ�(µk). (11)
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In the QN approach the Hessian matrix is replaced by a matrix Hk+1 that approximates
∇2
µ�(µk+1) and can be obtained at a lower computational cost. We now have

Hk+1sk = yk (12)

where the vectors sk and yk are

sk = µk+1 − µk

yk = ∇µ�(µk+1)− ∇µ�(µk).
(13)

Furthermore, QN methods compute the matrix Hk+1 from the previous matrix Hk in an
iterative manner throughout the optimization process. For example the BFGS formula for the
matrix H is given by [Nash96]

Hk+1 = Hk − (Hksk)(Hksk)
T

sT
k Hksk

+
yky

T
k

yT
k sk

. (14)

Typically, the problem is further simplified by using directly the inverse A = H−1 as
shown in [Nash96] and [Nocedal99]. In this case it is even easier to compute the search
direction according to equation (2) without having to solve a system of linear equations (see
equation (9)). An iterative way of calculating Ak+1 is, for example, given by [Nash96]

Ak+1 = Ak +
(yk − Aksk)y

T
k

yT
k sk

− (yk − Aksk)
T sk

(yT
k sk)2

(yky
T
k ). (15)

This BFGS formula for the inverse matrix A together with equations (1) and (2)
was implemented in this study. In addition, we also coded the lm-BFGS method. This
method reduces the memory requirements for storing the matrix Ak which is the major
disadvantage of the BFGS method, especially when large-scale problems with many unknowns
are considered [Nash96]. In this case Ak in equation (15) is replaced with the identity matrix
I and one obtains using equation (2) [Bishop97]

uk = −∇µ�(µk) + γ sk + λyk . (16)

The scalars γ and λ are defined by

γ = −
(

1 +
yT

k yk

sT
k yk

)
sT

k ∇µ�(µk+1)

sT
k yk

+
yT

k ∇µ�(µk+1)

sT
k yk

,

λ = sT
k ∇µ�(µk+1)

sT
k yk

.

(17)

QN methods require that the Hessian matrix Hk is positive definite. Only in this case, the
descent property [Nocedal99]

uT
k (µk) · ∇µ�(µk) < 0, (18)

which is equivalent to the curvature condition [Nocedal99]

sT
k · yk > 0, (19)

is satisfied.
In particular, if the initial estimate µ0 is too far from the minimum the curvature condition

might not be satisfied and Hk is not positive definitely.
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2.4. Line search

In addition to finding a search direction uk , one needs to determine the step lengths αk in
order to use equation (1). Here a line search is employed along the search direction uk , which
computes a sequence of step length αk and accepts one when certain conditions are fulfilled.
A simple condition is that the line search provides a new value of the objective function with
�(µk +αkuk) < �(µk). But this condition does not always lead to a sufficient decrease in�.
A sufficient decrease in the objective function� is given by the inequality

�(µk + αkuk) � �(µk) + c1αk∇µ�(µk)
T uk (20)

for some constant c1 ∈ (0, 1), which is also called the Armijo condition or sufficient decrease
condition [Nash96]. Furthermore, line searches are distinguished between exact and inexact
searches depending on what method for calculating the step length αk is employed. An exact
line search performs a one-dimensional line-minimization �(αk) = �(µk + αkuk) along
the direction uk to find the step length αk . Therefore, αk is iteratively changed until � is
minimal along the direction uk . The CG method requires an exact line search for calculating
the step size αk to obtain the conjugate search directions [Shanno78, Nocedal92, Nash96,
Bishop97, Nocedal99]. QN methods do not require such a search, and computationally less
demanding inexact line searches, such as backtracking methods [Press92, Ruggirero96] can be
employed. Backtracking algorithms start with αk = 1 and choose their candidate step length
αk = 1, 1/2, 1/4, 1/8, . . . , 2−n, . . . until the sufficiently decreasing condition (20) is satisfied.
In most cases αk = 1 is sufficient and one does not need to track back. We found the best
results for c1 in the range of 10−4 to 10−8 in equation (20). The inexact line search used with
the QN methods requires only a fraction of the function evaluations of�(µ) per given search
direction as compared to CG methods.

3. Numerical studies

The main focus of our study was the comparison of computational speed, robustness and
accuracy of the BFGS, lm-BFGS and CG methods in situations that are typically encountered
in OT. The two most commonly encountered problems are noisy data m and an initial estimate
µ0 for the distribution of the optical parameters which is not very close to the actual parameter.
Different levels of noise change the appearance of the objective function� and subsequently
may lead to different reconstruction results. Furthermore, starting the optimization process
from different initial estimates may also lead to different reconstruction results. The study was
carried out on numerical examples that contained several heterogeneities.

3.1. Problem set-up and method

A two-dimensional numerical model of a scattering medium used in this study is shown
in figure 1. The cross section to be reconstructed consists of three objects with scattering
coefficients of µs = 2.9 cm−1 (black), µs = 8.7 cm−1 (gray) and µs = 11.6 cm−1 (white).
These are embedded in a 3×3 cm2 background medium withµs = 5.8 cm−1. In this example,
the absorption coefficient µa = 0.35 cm−1 does not vary within the isotropically scattering
medium (g = 0). The general character of the objective function is independent of the physical
properties of the tissue-like medium, and primarily depends on the data type used, i.e. data
in the time domain, the frequency domain or in the continuous wave domain [Schweiger99].
Therefore, other tissue samples with different optical parameters do not lead to qualitatively
different results as studies with different types of media that vary in absorption and scattering
properties have shown. The results are qualitatively the same as presented for this example.
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Figure 1. Scattering coefficientsµs of original medium with dimensions of 3 cm × 3 cm containing
three heterogeneities (µs = 2.9 cm−1, µs = 8.7 cm−1 and µs = 11.6 cm−1). The bulk medium
had a scattering coefficient of µs = 5.8 cm−1.

The medium was surrounded by 8 equally spaced sources and 116 equally spaced detectors
(tow sources and 29 detectors were placed on each side of the medium). Detector readings on
the same side as the source were not used for the reconstruction. Hence, we obtained a total of
8×87 source-detector pairs. The measured data at the detector positions were generated using
the correct spatial distribution of the optical parameters. The forward calculations were done
on a 61 × 61 grid with 16 ordinates using a finite-difference discrete-ordinates method based
on the ERT [Klose99, Klose02a]. We used partly reflective boundary conditions based on
Fresnel’s law with a homogeneous refractive index n = 1.54 for the scattering medium. The
synthetic data were used as input to the reconstruction algorithm. The reconstruction process
was terminated after the normalized difference

‖(�k+1 −�k)/�k‖ < ε (21)

of the objective function between two subsequent iteration steps k and (k + 1)was smaller than
ε = 10−3.

3.2. Definition of image accuracy

For evaluating the image accuracy of the reconstructed images, we determined the correlation
coefficient ρa of the reconstructed image and the original medium (target image). This
coefficient is defined as [Press92]

ρa =
∑I J

i (µ
r
si

− µ̄r
s )(µ

t
si

− µ̄t
s)

(I J − 1)�µr
s�µ

t
s

. (22)

The standard deviation �µt
s of the target medium and the standard deviation �µr

s of the
reconstructed image are given by

�µt
s =

√√√√ 1

I J − 1

I J∑
i

(µt
si

− µ̄t
s)

2 (23)

and

�µr
s =

√√√√ 1

I J − 1

I J∑
i

(µr
si

− µ̄r
s)

2. (24)

The index i ∈ [1, I J ] constitutes one pixel of the image or one element of the vector µs ,
respectively. The quantities µ̄t

s and µ̄r
s indicate the mean values of the scattering coefficients
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Table 1. Image accuracy; a large ρa value and a small ρb value depicts a high image quality.

Number of Correlation Deviation
Example basic operations Method coefficient ρa factor ρb

No noise 395 CG 0.80 0.62
92 lm-BFGS 0.85 0.54

172 BFGS 0.87 0.50
92 CG 0.69 0.74
92 lm-BFGS 0.85 0.54
92 BFGS 0.86 0.52

20 dB SNR 365 CG 0.57 0.89
26 lm-BFGS 0.62 0.82
23 BFGS 0.61 0.83
23 CG 0.56 0.87
23 lm-BFGS 0.62 0.82
23 BFGS 0.61 0.83

Initial estimate 30% higher 421 CG 0.72 0.72
84 lm-BFGS 0.74 0.69

213 BFGS 0.82 0.59
84 CG 0.56 0.87
84 lm-BFGS 0.74 0.69
84 BFGS 0.77 0.65

Initial estimate 30% higher 408 CG 0.45 1.24
and 20 dB SNR 31 lm-BFGS 0.55 1.01

41 BFGS 0.54 1.04
31 CG 0.43 1.01
31 lm-BFGS 0.55 1.00
31 BFGS 0.54 1.02

µs (simultaneous) 237 CG 0.74 0.70
95 lm-BFGS 0.81 0.61

130 BFGS 0.84 0.56
µa (simultaneous) 237 CG 0.25 0.98

95 lm-BFGS 0.27 0.97
130 BFGS 0.28 0.96

of the target image and the reconstructed image, respectively. A large value of ρa shows a high
correlation between the reconstructed and the target image and indicates a reconstructed image
with a high level of accuracy. Almost no correlation between the target and the reconstructed
image is present if ρa is very small. In addition to the correlation coefficient ρa , we also define
a deviation factor ρb as

ρb =
√

1/(I J )
∑I J

i (µ
r
si

− µt
si
)2

�µt
s

. (25)

This parameter is a measure of the deviation of the reconstructed image from the target image.
It is defined as the ratio of the χ-square error norm, which was obtained from the target
and reconstructed image, and the standard deviation of the target image. A small value of
ρb indicates a reconstructed image with high accuracy. The correlation coefficient and the
deviation factor of all reconstructed images of the numerical study are shown in table 1.

3.3. Impact of noise

The detector readings, obtained from an experimental setting, are typically corrupted by noise to
various degrees. In our numerical study we determined the effects of different noise levels based
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on the assumption that shot noise1 and thermal noise2 from the source (laser diode) and the
detector (avalanche photodiode) are the dominant noise contribution during the measurement
process. Therefore, we defined the noise level σmd as the standard deviation of the Gaussian
distribution around the signal md of the dth source-detector pair of the measurement vector
m. The signal-to-noise ratio (SNR) of the measurement data in units of dB is obtained from

SNR = 10 log10
md

σmd

. (26)

Typical SNRs in an experimental setting are within 15–25 dB. Given that range of SNRs
we determined the noise level or standard deviation σmd from equation (26). Subsequently, a
Gaussian distributed random number was calculated [Press92] using this standard deviation
σmd . A new noise-corrupted measurement value was obtained by adding this random number
to the measurement value md .

We carried out numerical studies on four examples with different SNRs present in the
synthetic measurement data (SNR = ∞ (no noise), SNR = 45, 20 and 15 dB) using the
test medium as explained in section 3.1. First, the noise-free case was considered. We
reconstructed the scattering coefficients µs starting from an initial estimate µs0 that had the
same optical parameters as the background medium. The reconstruction was performed using
the CG method, lm-BFGS method and the BFGS method. The objective functions of all three
methods are depicted in figure 2(a).

The value of the objective function is displayed as a function of the number of basic
operations. A basic operation is either a forward or a gradient calculation. The gradient was
obtained by an adjoint differentiation (AD) technique applied to the numerical forward model
based on the ERT. The AD technique derives the gradient of the objective function by applying
the chain rule of differentiation to the forward model. With employing the AD technique the
time required to calculate the gradient is approximately the same as that needed for one forward
calculation (for more details see [Klose02b]). Therefore, the abscissa can be interpreted as the
execution time of the optimization process3. Furthermore, we define the number of iterations
as the number of gradient calculations.

As can be seen in figure 2(a) the lm-BFGS method reached the stopping criterion
(equation (21)) after 92 basic operations, consisting of 54 forward and 38 gradient
calculations4(54 + 38). The BFGS method converged after 172 basic operations (98 + 74).
The CG method took the longest time to reach the stopping criterion, requiring 395 basic
operations (363+32). The absolute number of forward runs and gradient calculations differed,
depending on the method used. Usually the CG method made more forward runs and fewer
gradient calculations than the QN methods, because the CG method relies on an exact line
search (line-minimization, see section 2.4). The BFGS method and the lm-BFGS method only
require an inexact line search (backtracking method, see section 2.4), which use less forward
runs for each search direction. The final value ϕ̃ of the objective function was different for all
three methods. The BFGS method had the smallest value log10(ϕ̃) = −5.32, whereas the CG
method had the largest value log10(ϕ̃) = −4.48.

1 Shot noise is the time-dependent fluctuation in electrical current associated with the discreteness of the charge
carrier in semiconductor devices. The charge carriers create photons by recombination processes in laser diodes.
Since noise represents randomly fluctuating events, we must use statistical distributions to characterize noise. When
the photon numbers are large a continuous probability distribution such as the Gaussian distribution is needed.
2 Thermal noise is a quantum statistical phenomenon where the thermal motion of charge carriers cause macroscopic
fluctuations in electrical state of system. The thermal noise is described by a Gaussian distribution.
3 The processing time for one forward calculation was approximately 40–60 s using an Intel Pentium III Xeon
1.26 GHz processor.
4 From now on we will write the number of forward and gradient calculations within parentheses (number of forward
calculations + number of gradient calculations).
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Figure 2. Objective functions for different SNRs of the synthetic measurement data. Note that in
some iteration steps the objective function actually increases. This can be best understood when
considering that the minimization of the objective function consists of two types of iteration cycles.
One iteration cycle consists of updating the search direction according to equation (2). After a new
search direction is determined, a second iteration cycle (a line search as described in section 2.4)
seeks to find iteratively a new step length α along that search direction. However, a new update α
might be too large sometimes at the start of the line search and leads subsequently to an increase
in the objective function. (a) SNR = ∞ (no noise), (b) SNR = 45 dB, (c) SNR = 20 dB and
(d) SNR = 15 dB.

The resulting image reconstructions of µs are displayed in figure 3. In figure 4 we show
reconstructions of all three methods for the same number of basic iterations. The interval
between adjacent isolines is µs = 1 cm−1. The image accuracy is highest (ρa is highest and
ρb is smallest) for the image obtained by the BFGS method (ρBFGS

a > ρlm-BFGS
a > ρCG

a and
ρBFGS

b < ρlm-BFGS
b < ρCG

b ), see also table 1.
In a second example, we added noise to the synthetic measurement data resulting in a SNR

of 45 dB. The objective functions are shown in figure 2(b). The lm-BFGS method needed 91
basic operations (55 + 36), and the BFGS method took 98 basic operations (54 + 44). The CG
method took 495 basic operations (454+41) for completion. The final values after termination
are log10(ϕ̃) = −4.48 for the BFGS and lm-BFGS methods, and log10(ϕ̃) = −4.38 for the
CG method.
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Figure 3. The final image reconstructions ofµs . No noise was present in the synthetic measurement
data. The distance between the adjacent isolines is 1 cm−1. (a) The CG method, after 395 basic
operations, (b) the lm-BFGS method, after 92 basic operations and (c) the BFGS method, after 172
basic operations.

Figure 4. The image reconstructions of µs after 92 basic operations. No noise was present in the
synthetic measurement data. The distance between the adjacent isolines is 1 cm−1. (a) The CG
method, after 92 basic operations, (b) the lm-BFGS method, after 92 basic operations and (c) the
BFGS method, after 92 basic operations.

The SNR in the third example was 20 dB. This value is typical for experimental data
that involve human tissues. The objective functions of all three optimization techniques
are presented in figure 2(c), and the image reconstructions are shown in figure 5. The
final reconstructions were obtained after 26 basic operations (15 + 11) (lm-BFGS), 23 basic
operations (12 + 11) (BFGS) and 365 basic operations (343 + 22) (CG), respectively. The final
value of the objective function was log10(ϕ̃) = −2.07 for the BFGS and lm-BFGS methods,
and log10(ϕ̃) = −2.08 for the CG method. The image accuracy is highest for both the lm-BFGS
and BFGS methods (see table 1).

In figure 6 we show reconstructed images of all three methods after 23 basic operations.
During these 23 basic operations the CG method only completed one line search along one
gradient, which required 22 forward calculations. The BFGS and limited-BFGS methods
performed 11 and 10 inexact line searches, respectively, which on average only required one
forward calculation each. As can be clearly seen, the image accuracy is highest for the images
obtained by the QN methods (see table 1).

In a fourth example we decreased the SNR of the synthetic measurement data to 15 dB.
The BFGS method needed 27 basic operations (15 + 12), the lm-BFGS method took 22 basic
operations (12 + 10) and the CG method terminated after 297 basic operations (281 + 16). The
objective functions are shown in figure 2(d) with the final values log10(ϕ̃) = −1.53 for the
BFGS and lm-BFGS methods and log10(ϕ̃) = −1.54 for the CG method.
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Figure 5. The final image reconstructions of µs . The SNR of the synthetic measurement data was
20 dB. The distance between the adjacent isolines is 1 cm−1. (a) The CG method, after 365 basic
operations, (b) the lm-BFGS method, after 26 basic operations and (c) the BFGS method, after 23
basic operations.

Figure 6. The image reconstructions of µs after 23 basic operations. The SNR of the synthetic
measurement data was 20 dB. The distance between the adjacent isolines is 1 cm−1. (a) The CG
method, after 23 basic operations, (b) the lm-BFGS method, after 23 basic operations and (c) the
BFGS method, after 23 basic operations.

In summary, we found that the BFGS and the lm-BFGS methods lead to smaller values
ϕ̃ of the objective function when no noise is present in the measurement data. Furthermore,
the QN methods required fewer basic operations than the CG method to satisfy the stopping
criterion. The CG method needed at least twice as many basic operations (see figure 2(a)).
The image accuracy, represented by the correlation coefficient ρa and deviation factor ρb, is
highest for the BFGS and lm-BFGS methods (see table 1). The advantages of QN methods over
CG methods were diminished once noise was added to the measurement data. All three (CG,
lm-BFGS and BFGS) methods reached approximately the same final value ϕ̃ of the objective
function for a SNR < 45 dB. The image accuracy of the final reconstructed images is not
significantly different. However, the lm-BFGS and BFGS methods were considerably faster
than the CG method, as they needed 10–15 times fewer basic operations than the CG method
(see figures 2(c) and (d)).

3.4. Impact of different initial estimates

Optimization schemes require an initial estimate of the optical properties as a starting point
for the iterative minimization. Usually this estimate is a homogeneous medium, described by
a spatially independent optical parameter. To study the influence of different homogeneous
initial estimates µs0 on the reconstruction results, we chose three different examples of µs0

with a 20, 30 and 50% higher scattering coefficient as compared to the original background
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Figure 7. The objective functions for the different initial estimate µs0 . (a) The initial estimate µs0

was 20% higher than the background scattering of the original medium. (b) The initial estimate
µs0 was 30% higher than the background scattering of the original medium. (c) The initial estimate
µs0 was 50% higher than the background scattering of the original medium.

medium. The values of the objective function as a function of the basic operations are shown
in figure 7 for all three examples.

Figure 7(a) shows the results of the first example where a 20% higher scattering coefficient
for the initial estimate was chosen. The QN methods were faster than the CG method, and
also reached a smaller value ϕ̃ of the objective function when the stopping criterion was
satisfied. The BFGS method needed 148 basic operations (87 + 61) and the lm-BFGS method
completed after 150 basic operations (89 + 61)with log10(ϕ̃) = −5.12 and log10(ϕ̃) = −5.05,
respectively. The CG required 398 basic operations (366 + 32) with log10(ϕ̃) = −4.4.

The second example with a 30% higher scattering coefficient (see figure 7(b)) leads to
similar results. The lm-BFGS method needed 84 basic operations (51 + 33) with log10(ϕ̃) =
−4.42 to converge. The BFGS method converged after 213 basic operations (126+87)with the
smallest value of log10(ϕ̃) = −5.25 compared to the other techniques. The CG method took
the longest time to satisfy the stop criterion. It finished after 421 basic operations (389 + 32)
with log10(ϕ̃) = −4.25. The final reconstructed images are shown in figure 8. Additionally,
we also compared all three methods after 84 basic operations in figure 9, at which the lm-BFGS
method was the first to satisfy the stopping criterion. During this time the lm-BFGS method
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Figure 8. The final image reconstructions of µs . The initial estimate µs0 was 30% higher than
the background scattering of the original medium. The distance between the adjacent isolines is
1 cm−1. (a) The CG method, after 421 basic operations, (b) the lm-BFGS method, after 84 basic
operations and (c) the BFGS method, after 213 basic operations.

Figure 9. The image reconstructions of µs after 84 basic operations. The initial estimate µs0

was 30% higher than the background scattering of the original medium. The distance between
the adjacent isolines is 1 cm−1. (a) The CG method, after 84 basic operations, (b) the lm-BFGS
method, after 84 basic operations and (c) the BFGS method, after 84 basic operations.

performed 33 inexact line searches requiring 33 gradient calculations and the BFGS method
determined 40 gradients. The CG method only performed six exact line searches requiring six
gradient calculations. The BFGS method yielded images with the highest image accuracy (ρa

was the highest and ρb was the smallest), see also table 1.
This last example used a starting point µs0 with a 50% higher scattering coefficient (see

figure 7(c)). The lm-BFGS method needed 175 basic operations (98 + 77). The BFGS method
finished after 217 basic operations (118 + 99). The CG technique took the longest time to
reach the stop criterion. It finished after 412 basic operations (381 + 31). The final values of
the objective function were log10(ϕ̃) = −5.19 for the BFGS method, log10(ϕ̃) = −4.99 for
the lm-BFGS method and log10(ϕ̃) = −4.13 for the CG method.

Furthermore, the last reconstruction example illustrates a particular point to be considered
when using QN methods in OT. The Hessian Hk at the starting point µs0 was not positive
definite and the curvature condition (see equation (19)) was not satisfied. If this happens the
approximated inverse Hessian Ak in equation (2) has to be replaced with a positive definite
matrix, in order to assure a descent direction. In this and similar cases we replaced the inverse
Hessian matrix with the positive definite identity matrix until a point was found for which the
curvature condition holds.

In conclusion, we found that when the initial estimate of the optical properties was chosen
to be different from the background medium, the CG method always needed at least twice as
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Figure 10. Objective functions starting from an initial estimate µs0 that was 30% higher than the
background scattering of the original medium. Additionally, the synthetic measurement data were
corrupted by noise with a SNR of 20 dB.

many basic operations than the QN methods. Moreover, the BFGS and the lm-BFGS methods
found smaller values of ϕ̃ than the CG method resulting in reconstructed images with higher
image accuracy (see table 1).

3.5. Impact of noise and initial estimate

In practice, we typically encounter the situation where the measurement data are corrupted by
noise and the initial estimate does not closely match the background medium. To illustrate
the performance of all three optimization techniques in this case, we generated a data set with
SNR = 20 dB (see figures 2(c) and 5) and started the reconstruction process with an initial
estimate µs0 that was 30% higher than the scattering coefficient of the background medium
(see figures 7(b) and 8).

The lm-BFGS method took 31 basic operations (18 + 13) and the BFGS method needed
41 basic operations (25 + 16), with log10(ϕ̃) = −2.05 and −2.06, respectively. The longest
reconstruction time was again required by the CG method with 408 basic operations (382+26)
and with log10(ϕ̃) = −2.09. The objective functions are shown in figure 10. The reconstructed
images are shown in figures 11 and 12. Again, we find that the image accuracy was highest
for the QN methods (see table 1), while the final value of the objective functions after the
termination of the reconstruction process are close to each other.

3.6. Simultaneous reconstruction of µs and µa

As a final example we reconstructed simultaneously the scattering coefficient, µs , and the
absorption coefficient, µa . We replaced the scattering perturbation with µs = 8.7 cm−1 in
figure 1 with a low-absorbing heterogeneity withµa = 0.1 cm−1. We started the reconstruction
process with an initial estimate of µs0 = 5.8 cm−1 and µa0 = 0.35 cm−1 and measured the
performance of all three optimization methods by determining the image accuracy, the number
of basic operations and the final values of the objective function.
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Figure 11. The final image reconstructions of µs . The initial estimate µs0 was 30% higher than
the background scattering of the original medium. The SNR of the synthetic measurement data
was 20 dB. The distance between the adjacent isolines is 1 cm−1. (a) The CG method, after 408
basic operations, (b) the lm-BFGS method, after 31 basic operations and (c) the BFGS method,
after 41 basic operations.

Figure 12. The image reconstructions of µs after 31 basic operations. The initial estimate µs0

was 30% higher than the background scattering of the original medium. The SNR of the synthetic
measurement data was 20 dB. The distance between adjacent isolines is 1 cm−1. (a) The CG
method, after 31 basic operations, (b) the lm-BFGS method, after 31 basic operations and (c) the
BFGS method, after 31 basic operations.

Figure 13. Objective function for simultaneous reconstruction of µs and µa .
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Figure 14. The final image reconstructions of µs . The initial estimate was µs0 = 5.8 cm−1 and
µa0 = 0.35 cm−1. The distance between the adjacent isolines is 1 cm−1. Both the scattering
heterogeneities are clearly present in the images. A slight cross talk of the absorption perturbation
can be observed on the upper left side. (a) The CG method, after 237 basic operations, (b) the
lm-BFGS method, after 95 basic operations and (c) the BFGS method, after 130 basic operations.

Figure 15. The final image reconstructions of µa . The initial estimate was µs0 = 5.8 cm−1 and
µa0 = 0.35 cm−1. The distance between the adjacent isolines is 0.005 cm−1. A weak absorbing
heterogeneity is reconstructed in the upper left side of the images. However, strong cross talk of
µs is observed. Both scattering heterogeneities show up as absorbing perturbations in the lower
part of the images. (a) The CG method, after 237 basic operations, (b) the lm-BFGS method, after
95 basic operations and (c) the BFGS method, after 130 basic operations.

The lm-BFGS method took only 95 basic operations (59 + 36) and the BFGS method
needed 130 basic operations (75 + 55), with the final values of log10(ϕ̃) = −4.84 and
log10(ϕ̃) = −5.21, respectively. The CG method again required the longest reconstruction
time with 237 basic operations (218 + 19) with log10(ϕ̃) = −4.12. Figure 13 shows the
objective functions of all three optimization techniques. The reconstructed images of µs and
µa are shown in figures 14 and 15.

The image accuracy of µs , as shown in table 1, is similar to that of the first example
of our numerical study where no noise was present in the synthetic measurement data (see
also figure 3). The objective functions of both examples behave in the same way as seen in
figures 13 and 2(a).

However, we observed some cross-talk between µs and µa due to the illposedness
of the optical image reconstruction problem. The cross-talk is more pronounced in the
absorption images. Several authors have already reported on the cross-talk of both optical
parameters [Arridge98a, Schweiger99, McBride01, Xu02]. We find that the image accuracy
of the µa images is lowest for all reconstructions done so far. The correlation coefficient ρa is
much smaller than in other reconstruction examples. That can be explained with the observed
cross-talk between µs and µa, where the scattering perturbations appear as heterogeneities in
the absorption image.
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Figure 16. Schematic and source-detector configuration of the phantom that contained a single
scattering heterogeneity. The phantom was illuminated from all four sides with three sources on
each side. The measurements were taken on the sides opposite the sources at 28 points.

4. Experimental studies

4.1. Problem set-up

In addition to the numerical studies, we also compared the BFGS, lm-BFGS and CG methods
for experimental data. Experiments were carried out on a scattering phantom illuminated
with near infrared light. The phantom was composed of clear epoxy resin into which silicon-
dioxide (SiO2) monospheres and ink were mixed. The scattering properties were adjusted by
varying the concentration of the monospheres, while the absorption properties were controlled
by the concentration of the ink. The g-factor could be varied by using spheres with different
diameters. The phantom had dimensions of 3 × 3 × 14 cm3 and contained a cylindrical hole
with a diameter of 0.5 cm (figure 16). The hole was filled with Intralipid [Flock89a, Flock89b],
a scattering fluid with µ′

s = (1 − g)µs = 23.2 ± 5 cm−1 and µa = 0.006 75 ± 0.003 cm−1 for
the measurement wavelength. The optical parameters of the bulk medium were determined to
be µs = 58 ± 5 cm−1, µa = 0.35 ± 0.3 cm−1 and g = 0.8 ± 0.08.

The phantom was continuously illuminated with a laser diode (Laser 2000 GmbH,
Germany, LAS-670-20) at λ = 678 nm. Measurements were taken with the source positioned
at 12 different locations around the phantom. We used an avalanche photodiode (APD;
Hamamatsu, C5460-01) to measure the fluence φ(x, y) at 28 points on the side opposite
the source. Therefore, only transmitted measurement data were used. The distance between
two adjacent measurement points was 0.1 cm. The detector could be translated around the
phantom. The detection area at the boundary of the phantom was limited by a pinhole, which
had a diameter of 0.1 cm. We used a lock-in technique (Stanford Research Systems, model
SR 830) to improve the signal-noise ratio. For this purpose, a frequency generator (Hewlett
Packard, Waveform Generator 33120A) provided a sinusoidal modulation of the laser diode
input with a frequency at 1014 Hz. For more details on the experimental set-up see Klose et al
[Klose02a].
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Figure 17. The objective function of the experimental data.

The forward calculations were performed on a 61 × 61 grid with 16 ordinates. The
refractive index was n = 1.54. We assumed a constant anisotropy factor g = 0.86 throughout
the optimization process. The reconstruction was terminated after the normalized difference
‖(�k+1 − �k)/�k‖ of the objective function between two subsequent iteration steps k and
(k + 1) was smaller than ε = 10−3.

4.2. Experimental results

The cross sectional images of the scattering coefficients were reconstructed using the CG,
lm-BFGS and the BFGS methods given the near-infrared measurements on the boundary of
the scattering phantom (see figure 16). We started with an initial estimate of a homogeneous
medium ofµs0 = 50 cm−1 and µa0 = 0.45 cm−1. In figure 17 we show the objective function
of all three methods throughout the optimization process. The CG optimization was terminated
after two iterations, yielding a total of 36 combined forward and gradient calculations (34 + 2).
The lm-BFGS method finished after six iterations with a total of 12 combined forward and
gradient calculations (6 + 6), and the BFGS method finished after 11 iterations (11 + 11). With
respect to the value of the objective function (log10(ϕ̃) = −3.2) the BFGS method achieves the
same result as the CG method after 10 combined forward and gradient calculations compared
to 36 calculations for the CG method. The same can be said about the lm-BFGS method,
however, no further decrease in the objective function can be achieved. The optimization
process stops after 12 forward and gradient calculations.

In figure 18 the reconstructed images of the scattering coefficients are shown. The distance
between the two subsequent isolines in the images is µs = 2 cm−1. The absolute scattering
coefficients do not differ much in all images. All three methods localized the scattering
perturbation in the phantom, but it varies in its size. The largest scattering coefficient of the
perturbation is 20% off the background medium.

These experimental studies confirm our numerical investigations that reconstruction
results can be achieved in less computational time by using QN methods. If the SNR is large
enough then QN methods can also find smaller values of the objective function as compared
to CG methods.
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Figure 18. The reconstructedµs values of the phantom. The lm-BFGS method achieves the highest
image accuracy after 12 basic operations. (a) The CG method, after 36 basic operations, (b) the
lm-BFGS method, after 12 basic operations and (c) the BFGS method, after 22 basic operations.

5. Summary and conclusion

OT is used to determine the cross sectional distribution of optical parameters of highly scattered
biological tissue. The image reconstruction process can be viewed as an optimization problem,
in which an objective function that compares predicted values with actual measurements,
is minimized. Typically, optimization techniques start from an initial estimate of optical
parameters and determine iteratively new updates of these parameters along search directions
until the minimum value of the objective function is found. The final distribution of the optical
parameters is displayed in an image.

The computational speed and performance of the reconstruction process crucially depends
on the effectiveness of the updating scheme. In general, optimization techniques employ
either the first derivative (e.g. CG methods) or the first derivative in combination with some
approximation of the second derivative (QN methods) of the objective function for calculating
the update. QN methods, which have proven to be computationally superior to CG methods in
many fields, have so far not been applied to OT. In this work, we compared the performance
of QN techniques (BFGS and lm-BFGS methods) with the already widely used CG method.

We found that in general the QN methods outperform the CG method. Numerical studies
with synthetic data showed that for data with (SNR > 45 dB) and an initial estimate of optical
properties that is equal to that of the background medium the objective function always reaches
a smaller value when QN methods are used as compared to when CG methods are employed.

Furthermore, using QN rather than CG methods the minimum is reached 2–10 times faster.
When the measurement data are increasingly corrupted by noise (SNR < 45 dB), we observe
that the objective function and consequently the image quality are about the same for QN and
CG methods. However, the advantage of faster convergence towards the minimum remains.
This result was also confirmed with the experimental data obtained from a tissue phantom
model.

The reason for the better performance of the QN method compared to the CG method
appears to be twofold. First, the QN methods follow a better search direction by using the
inverse of the approximated Hessian. Second, the QN methods use an inexact line search,
whereas the CG method requires an exact line search (line minimization). The exact line search
typically requires far more forward calculations for each gradient calculation. For certain
problems, as reported in the literature [Shanno78], CG methods might also work without an
exact line search. However, we did not observe a better performance with inexact line searches
but instead found a premature convergence of the reconstruction process.

As the reason for the advantages of the QN methods compared to the CG methods does
not depend on the form of the objective function, QN methods may also be invaluable when
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additional regularization terms are added to the objective function. Regularization terms
have shown to improve the overall performance of image reconstruction codes when carefully
applied [Hielscher01].

Furthermore, we observed that the approximated Hessian matrix is not always positive
definite and the optimization process leads consequently to a premature convergence. This
problem, for example, might occur if the initial estimate is too far from the solution. Here,
the linear function r(uk), that consists of the first two terms of the Taylor series expansion of
∇µ�(µ) at µk , is a poor approximation of the nonlinear function ∇µ�(µ). We could solve
this problem by forcing the Hessian to be positive definite and replacing it with the identity
matrix.

A disadvantage of using the BFGS method is the memory requirement for storing the
matrix Ak in order to calculate an update of that matrix at the next iteration step. The storage
space can be quite large and leads to a computational burden for large-scale problems. However,
our studies showed that the lm-BFGS method can alleviate this problem, while maintaining
the image reconstruction speed and image quality.

A difficulty for all three methods remains the cross-talk between µs and µa when both
parameters are reconstructed simultaneously. This problem is well known to the optical
imaging community and might be alleviated with modified objective functions that contain
prior knowledge about the scattering medium. We observed a strong cross-talk of scattering
heterogeneities in the absorption images, whereas in the opposite case this effect is negligible.
Again, both QN methods outperformed the CG method in terms of computational speed and
reached a smaller value of the objective function at the final iteration step.
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