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Diffuse optical tomography is emerging as a viable new

biomedical imaging modality. Using visible and near-infrared

light this technique can probe the absorption and scattering

properties of biological tissues. The main applications are

currently in brain, breast, limb and joint imaging; however,

optical tomographic imaging of small animals is attracting

increasing attention. This interest is fuelled by recent advances

in the transgenic manipulation of small animals that has led to

many models of human disease. In addition, an ever

increasing number of optically reactive biochemical markers

has become available, which allow diseases to be detected at

the molecular level long before macroscopic symptoms

appear. The past three years have seen an array of novel

technological developments that have led to the first optical

tomographic studies of small animals in the areas of

cerebral ischemia and cancer.
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Introduction
Over the past decade considerable progress has been

made towards the development of a novel tomographic

imaging modality that uses light in the wavelength range

500 nm < l < 900 nm to probe biomedical tissues [1–3].

Besides diffuse optical tomography (DOT), various other

names have been used to describe this technology, such
cedirect.com
as optical diffuse tomography, photon migration tomo-

graphy or just optical tomography. DOT has so far been

mainly applied to breast cancer diagnostics [4,5], joint

imaging [6,7] and blood oximetry in human muscle and

brain tissue [8–10].

More recently, the first studies and systems to focus on the

optical tomographic imaging of small animals have

emerged [11��,12��,13�,14,15��]. The interest in small-

animal imaging is motivated by progress in the transgenic

manipulation of small animals, which has allowed models

to be developed for a variety of human diseases. Using

these models it is possible to link specific genes, proteins

and enzymes to molecular and cellular processes that

underlie various disorders. In addition, the advent of novel

biochemical markers that are sensitive to molecular pro-

cesses, defect genes and cell receptors, makes it possible

for the first time to detect diseases on a molecular level

long before actual phenotypical symptoms appear [16,17].

Employing small-animal imaging systems it has become

possible to perform noninvasive assays for monitoring the

progression of diseases and biological processes. Small-

animal optical tomography has several advantages over

other, more traditional, imaging modalities. For example,

optical markers emit low-energy near-infrared photons

that are less harmful than more energetic g-rays emitted

from radioactive markers (used in single-photon emission

computed tomography [SPECT] and positron emission

tomography [PET], for instance) [18]. This simplifies

synthesis procedures and experimental designs and will

be of particular importance for future applications in

humans. Furthermore, optical methods typically offer

higher sensitivity (as compared with magnetic resonance

imaging [MRI] and SPECT) and are relatively inexpen-

sive (as compared with PET, SPECT and MRI).

In this paper we will review the underlying principles of

optical tomographic imaging, as applied to studies invol-

ving small animals. We will describe the basic contrast

mechanism involved in imaging of both endogenous and

exogenous contrast agents, and discuss common instru-

mentation and image reconstruction strategies. Further-

more, we will provide an overview of the most recently

published small-animal imaging studies in the areas of

blood oximetry, and fluorescence- and bioluminescence-

enhanced imaging.

Imaging with endogenous contrast
The basis of contrast

In DOT, low-energy electromagnetic radiation (�1 to

2.5 eV) is delivered to one or more locations on the surface
Current Opinion in Biotechnology 2005, 16:79–88
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Different modes of data acquisition for optical tomography. (a) Time

domain (TD), (b) frequency domain (FD) and (c) steady-state domain

(SSD; also commonly referred to as continuous wave domain).
of the body part under investigation and transmitted and/

or back-reflected light intensities are measured at dis-

tances up to 10 cm. Unlike medical X-rays (photon

energy �5 to 150 keV), which pass through the body

almost unscattered, photons used for optical tomography

undergo multiple scattering before they leave the med-

ium. The scattering properties of the tissue are described

by the spatially varying scattering coefficient, ms(r). Also

commonly used is the reduced or transport scattering

coefficient ms
0 = (1�g)ms, where g 2 [�1,1] is a parameter

that describes the anisotropic scattering properties of a

tissue [19]. Differences in the refractive index between

intracellular and extracellular fluids, and between various

subcellular components such as mitochondria or nuclei, as

well as varying tissue densities give rise to differences in

scattering coefficients and g factors [20,21].

Besides being scattered, near-infrared light can also be

absorbed by a multitude of chromophores inside the

tissue; for example, endogenous chromophores include

hemoglobin, cytochromes, flavins and porphyrins. Of

special interest for tissue oximetry are oxyhemoglobin

and deoxyhemoglobin and derived parameters such as

oxygen saturation [13�]. Differences in chromophore con-

tent and concentration lead to different absorption coef-

ficients ma(r).

Optical tomographic imaging modalities

In general, optical imaging systems can be divided into

three different categories: time-domain (TD) systems,

frequency-domain (FD) devices, and steady-state domain

(SSD) instrumentation, often also referred to as contin-

uous wave systems [22]. When TD methods are

employed, a short laser pulse (typically of duration less

than 1 � 10�10 seconds) is injected into the tissue. Tra-

velling through the tissue this pulse broadens and its peak

intensity becomes smaller (Figure 1a). The extent of

these effects is influenced by the optical properties and

the distances travelled inside the tissue before being

recorded. For example, the time at which the maximum

of the response function is reached is indicative of ms. The

decreasing slope of the response curve yields information

about ma [23]. Time-resolved systems for small-animal

imaging are still in their nascent state. The smaller tissue

volumes encountered in small animals require especially

high temporal resolutions, which poses added technolo-

gical challenges [24�].

Instead of using a short light pulse, FD systems use

sinusoidally amplitude-modulated light sources [25].

The modulation frequency is typically between 100–

1000 MHz [26]. The measured parameters are the phase

shift, F, and the demodulation, M = (ACo/DCo)/(ACi/

DCi), of the light transmitted through the tissue relative

to the incident light (Figure 1b). MeasuringF and M for all

frequencies amounts to performing the Fourier transform

of the TD data. FD systems that focus on small-animal
Current Opinion in Biotechnology 2005, 16:79–88
imaging have been developed by Yodh and colleagues

[27,28�] and by Thompson and Sevick-Muraca [29].

Originally thought to be of limited use, SSD systems

have made a comeback in recent years and are now

among the most widely used in clinical settings as well as

for small-animal imaging. In SSD systems the light

source continuously emits light into the tissue and the

transmitted light intensities are measured (Figure 1c).

An example of such a system is the dynamic near-

infrared optical tomography (DYNOT) instrument,

recently developed by Schmitz et al. [30�]. In this

instrument, two wavelengths between 700 nm and

850 nm are provide by two laser diodes, the light of

which is sequentially coupled into 32 different fiber

bundles. These optical fibers deliver the light to various

positions on the surface of the tissue and are also used to

collect transmitted light intensities. A full tomographic

dataset (two wavelength at 32 � 32 = 992 source-

detector configuration) can be obtained in approx-

imately 0.5 s, leading to a data acquisition rate of
www.sciencedirect.com
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2 � 992/0.5 = 3968 measurements per second. This is

the fastest data acquisition rate (measurement points per

second) of all currently available optical tomography

instruments. Similar instruments have been developed

by Siegel et al. [31,32�] and Cheung et al. [27].

Image reconstruction algorithms

The majority of currently available image reconstruction

codes can be classified as model-based iterative image

reconstruction (MOBIIR) algorithms [33,34]. These

iterative reconstruction schemes usually contain three

major components: a forward model, an analysis scheme,

and an updating scheme (see Figure 2). Variations

between different codes in the updating scheme usually

affect the convergence rate of the algorithm [35], whereas

differences in the objective function [36–38] and forward

model affect the accuracy of the code. The most accurate

forward model is given by the equation of radioactive

transfer [39,40��,41��,42]. However, if ms>> ma, which is

often the case in practical situations, the simpler diffusion

equation can be used. It has been argued that because of

the small geometries encountered in small-animal imag-

ing, diffusion-equation-based codes should not be

applied because the inherent approximations are no

longer valid [43��,44�]. Nevertheless, most of the current
Figure 2
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small-animal imaging systems use the diffusion equation

in the reconstruction process, and what type of algorithm

will perform best under the given circumstance is still to

be determined. There is some indication that when

relative changes rather than absolute values of optical

properties are sought, the accuracy of the forward model

plays less of a role [45,46�].

Overall the image reconstruction problem in optical

tomography is highly ill-posed [34]. This means that

different distribution of optical properties inside the

tissue can lead to the same measurements observed on

the surface of the tissue. To nevertheless obtain reason-

able results, some sort of constraints typically have to be

imposed on the solution [36–38]. For example it is often

assumed that the results are within a certain range of

absorption or scattering values or that scattering proper-

ties do not change during hemodynamic perturbations.

Comparison of different systems

The information content and the complexity of hardware

and imaging software increases from SSD to FD and TD

systems. The obtainable spatial resolution, given the

same number of sources and detectors, also increases

from SSD to FD to TD systems. However, SSD systems
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Figure 3
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(a) (c) (e)

(b) (d) (f)

Frequency domain versus steady-state domain image reconstruction. (a) Original map of spatial distribution of the absorption coefficient ma.

(b) Original map of spatial distribution of the scattering coefficient ms
0. (c,d) Reconstruction results using SSD data. (e,f) Reconstruction results

using FD data at a source modulation frequency of v = 200 MHz. For the reconstructions, data from four source and 16 detectors equally

distributed on the circumference of the 2 � 2 cm square were used. All reconstructions started with an initial guess of a homogenous medium

with ma = 0.12 cm�1 and ms
0 = 7.2 cm�1. The MOBIIR code used for this example is based on the equation of radiative transfer [89]. Clearly

visible is the cross-talk between absorption and scattering effects in the images (c) and (d) that were obtained from SSD data (v = 0 MHz).

(e,f) As expected, a much better separation of scattering and absorption effects is obtained when FD data are used.
allow for much faster data acquisition than TD systems.

While SSD systems allow for data acquisition rates for one

source and one detector of up to 8000, FD system are

currently limited to �10–400 and TD systems to typically

less than 1 [30�]. This allows SSD systems to look at fast

physiological changes, such as hemodynamic effects in

the brain or limbs. TD systems usually take more than

1 min and fast physiological changes cannot be imaged.

Another important aspect in DOT is the ability to dis-

tinguish between scattering and absorption effects. As

SSD measurements provide less information, in general,

it is more difficult to distinguish scattering from absorp-

tion effects using SSD-type data than when FD or TD

data are used [34��,47,48] (see example in Figure 3).

Theoretical studies have shown that SSD imaging is

highly ill-posed and does not, in general, allow separation

of absorption and scattering effects. However, in practical

cases additional constraints can often be introduced,

which makes the separation of absorption and scattering

possible even with SSD systems [49,50].
Current Opinion in Biotechnology 2005, 16:79–88
Applications

In the past three years, applications of small-animal

imaging with endogenous contrast have focused on two

areas: blood oximetry, as it relates to cerebral ischemia,

and functional imaging [51��]. In these cases, ma and ms

are not the goal of the image reconstruction, but rather the

concentration of oxyhemoglobin [HbO2] and deoxyhe-

moglobin [Hb] and derived parameters such as total

hemoglobin concentration [THb] = [HbO2] + [Hb] or

blood saturation S = [HbO2]/[THb]. Assuming that the

primary influence on ma is a linear combination of [HbO2]

and [Hb], one arrives at [52,53]:

ml
a ¼ elHbO½HbO	 þ elHb½Hb	

By performing tomographic reconstructions of ma at two
wavelengths, l1 and l2, one can solve the resulting set of

two algebraic equations for the concentrations of [HbO2]

and [Hb], respectively. This concept is easily extended to

more than two chromophores, by employing n different

wavelengths if n chromophores are sought. Recent works
www.sciencedirect.com
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Figure 4
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Optical tomographic image reconstruction of cerebral ischemia in a Wistar rat. (a–f) The images show coronal cross-sections of changes in

oxy-, deoxy- and total hemoglobin through the rat brain midway between the lambda and bregma sutures (see line labeled ‘cut’ in (g)).

The cross-sections were obtained by inducing unilateral carotid artery occlusions on the left side (a–c) and right side (d–f). An SSD system was

used to measure the transmitted light intensities with four sources (white circles in (g)) and 12 detectors (black circles in (g)) placed on the top

of the shaven rat head. Clearly visible are the lateral effects on the three hemodynamic parameters. (For more details see [11��].)
by Corlu et al. [54��] and Li et al. [55��] have shown that

instead of performing ma reconstruction first, the multiple

wavelength information can be used to calculate chro-

mophore concentration directly. They showed that these

new codes are much more stable and converge much

faster to a correct result.

An example of a cerebral ischemia study in small animals

is shown in Figure 4. Here, the previously described

DYNOT imaging system was used in combination with

a three-dimensional diffusion-theory-based MOBIIR

scheme (Figure 2) to look at the effects of unilateral

carotid occlusion in rodents [11��,12��]. Another SSD

device was used by Culver et al. [13�] to establish the

usefulness of DOT for studying stroke physiology. They

occluded the middle cerebral artery in Sprague–Dawly

rats and generated tomographic maps of relative cerebral

blood volume changes, oxygen saturation, metabolic rate

and oxygen consumption.

Functional stimulation studies were recently performed

by Siegel et al. [32�]. Employing SSD data this group
www.sciencedirect.com
generated impressive maps of localized changes in

cortical hemodynamics in response to forepaw stimula-

tions and compared results with functional MRI data.

They derived values for oxy-, deoxy- and total hemo-

globin concentrations, using an algorithm that was based

on the diffusion theory for semi-infinite media. In

another study the same group also performed volu-

metric reconstructions [56]. In addition to SSD systems,

FD methods were also employed to study hemody-

namic responses to forepaw stimulation [28�]. The

importance of proper source and detector placement

was recently shown in a theoretical paper by Deghani

and colleagues [57].

Imaging with exogenous contrast
Contrast mechanisms

In addition to endogenous contrast mechanisms that are

used in blood oximetry studies, exogenous chromophores

can also be employed for tomographic imaging. In gen-

eral, one can distinguish between two different types of

exogeneous contrast agents that lead to similar, yet dif-

ferent, imaging problems. The first class of probes con-
Current Opinion in Biotechnology 2005, 16:79–88
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sists of bioluminescent markers [58�]. These markers

emit light when they encounter certain biomolecular

environments inside the animal [17,59] and the energy

for this radiation is drawn directly from the local bio-

chemical processes. The best-known examples for this

type of effect are fireflies, which emit visible radiation

upon release of luciferase into certain parts of their body

[60].

The second class of probes is formed by fluorescent

markers [29,44�,61]. Fluorescent markers, unlike biolu-

minescent markers, require an external excitation source

to emit radiation. The light from this external source is

absorbed by the fluorophore and re-emitted at a longer

wavelength. Examples of frequently used fluorophores

are indocyanine green, green and red fluorescence pro-

teins [62], peptide-fluorescent dye conjugates that target

specific cellular receptors [63], and enzyme-activatable

fluorescence probes [64].

Fluorescence and bioluminescence imaging system

With some minor modifications, all of the systems

described for endogenous systems can also be used for

bioluminescence or fluorescence tomographic imaging.

Bioluminescence systems can be thought of as SSD

systems without an external light source. Fluorescence

systems require the detection of the transmitted light

intensities at the excitation and emission wavelength.

Therefore, these systems involve either more detectors

that are sensitive at these different wavelengths or two set

of measurements during which wavelength-dependent

filters are used to distinguish between the two wave-

lengths. Fluorescence measurements can be performed in

all three domains (SSD, FD and TD), whereas biolumin-

escence is limited to SSD.

To apply MOBIIR schemes in fluorescence systems, two

equation are necessary: one for the excitation wavelength

and one for the emission wavelength [65��,66�]. These

two equations are coupled through the source term of the

emission wavelength, which depends on the solution of

the equation of the excitation wavelength. The source

term for the excitation wavelength is given by the known

location of the optical fibers on the skin of the animal.

The source term of the emission wavelength equation is

itself an unknown, as location and concentration of the

fluorescent marker that forms the sources are sought as

part of the reconstruction process. Almost all codes cur-

rently available employ the diffusion equation, but first

transport-theory-based codes have emerged [43��,67�].

Bioluminescence tomography (BLT) is basically the

fluorescence problem without the excitation term. The

source position and strength inside the medium are

sought in a similar manner to SPECT; however, BLT

is even more ill-posed than SPECT imaging, as light is

strongly scattered. Therefore, BLT remains the most
Current Opinion in Biotechnology 2005, 16:79–88
challenging of all optical tomographic imaging systems,

and the first publications to investigate this problem have

only recently appeared [68,69�].

Comparison of different systems

Although fluorescence imaging is experimentally and

computationally somewhat more involved, it offers sev-

eral distinct advantages over bioluminescence imaging.

First, fluorescence probes generate a much stronger signal

than bioluminescence probes and yield a higher signal-to-

noise ratio. Therefore, fluorescence imaging systems

require much less sensitive (and therefore less expensive)

detectors than bioluminescence imaging systems.

Furthermore, many fluorophores emit light in the near-

infrared wavelength range, which allows for deeper pene-

tration into biological tissue. Most bioluminescent probes

emit light at a shorter wavelength, where tissue is more

absorbing and can therefore only be used for superficial

lesion. In addition, the image reconstruction problem in

bioluminescent imaging is much more ill-posed than in

fluorescence imaging, which severely limits the achiev-

able resolution. No BLT code has yet been presented,

whereas first fluorescence tomographic imaging algo-

rithms do exist and have shown promising results in

small-animal imaging [46�,70–74,75��]. Of special impor-

tance here is the first non-contact tomographic imaging

system developed by Schulz and coworkers [76��,77��].

Furthermore, as already mentioned, unlike BLT fluores-

cence imaging can be performed in the time or frequency

domain. In this way, more information can be obtained

about the fluorescent sources and the scattering and

absorption properties of the background medium.

Employing FD or TD techniques, fluorescence imaging

also offers the possibility of obtaining spatial lifetime

maps of fluorophore distribution inside tissues [78,79].

Fluorescence lifetime imaging could be used to analyse

the local biochemical environment of a fluorophore, such

as pH or oxygen levels or calcium ion concentrations

[78,80]. These types of study are already widely per-

formed in the fluorescence microscopy of single cells or

tissue slices and could potentially be translated into

fluorescence tomography for whole-body imaging of small

animals. The only drawback of fluorescence imaging is

that the tissue intrinsic auto-fluorescence is often higher

than auto-bioluminescence; this can lead to increased

noise.

Applications

There has been a great number of studies on inanimate

tissue phantoms that mimic tissue anatomy and physio-

logy. These studies have demonstrated that one can use

optical tomography to reconstruct the spatial distribution

of fluorophore concentrations and lifetimes from SSD-

type measurements [46�,75��,76��,77��], as well as from

FD systems [44�,65��,66�,70,81,82] and using TD meth-

ods [83]. In vivo studies that employ tomographic
www.sciencedirect.com
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Figure 5
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The figure shows the first in vivo transport-theory-based, three-dimensional, tomographic reconstruction results for fluorescence molecular

imaging. The transport-theory-based model is particularly well suited to take small geometries and small source-detector separations into

account, as they are encountered in small animals. The animal was injected with a Cy5.5-based fluorescent probe with high sensitivity to

cathepsins produced in a Lewis lung carcinoma implanted in the left lung of the animal. For data acquisition the mouse was immersed into an

imaging chamber containing a scattering matching fluid. One side of the chamber was illuminated with light (wavelength = 674 nm) emerging

from 46 fibers arranged in a symmetric pattern (red crosses in (a)). A CCD camera captured the excitation and fluorescence light (wavelength = 694 nm)

on the side opposite to the illuminating fibers (blue circles in (a)). The measured light intensities became input to the image reconstruction algorithm.

(a) Shows the direct fluorescence image obtained with the CCD camera. The lung tumor can be seen as bright spot on the left-hand side.

(b–f) Tomographic images of the fluorophore concentration at different depths: (b) 1 mm, (c) 2 mm, (d) 3 mm, (e) 4 mm and (f) 5 mm.
techniques have only just begun and mainly focus on

cancer research. For example, it was shown that cathepsin

B activity in 9L gliosarcomas implanted into one brain

hemisphere of nude mice could be imaged using a

cathepsin-B-sensitive molecular beacon (an enzyme-

activatable fluorochome) [84,85��]. For this study the

animals were immersed into a cylinder filled with match-

ing fluid. The cylinder was surrounded by 24 source fibers

and 36 detector fibers. The system was operated in SSD

mode using 672 nm excitation light and detecting emis-

sions at 710 nm � 10 nm. In other studies, subcuta-

neously implanted HT1080 fibrosarcomas [86] and

Lewis lung carcinomas [14] where imaged also using

enzyme-activatable fluorescent probes. In both cases

animals were immersed–in a rectangular container and

transmission measurements performed using a CCD

(charge-coupled device) camera. Figure 5 shows an

example where a novel transport-theory-based code

[43��,87] was used to produce a three-dimensional image

of a lung carcinoma. Recently, Chen et al. [88] demon-

strated the feasibility of tomographic detection of

2-cm-deep subsurface tumors in mice with a localization

accuracy of 2–3 mm, using an FD system. Going beyond

proof-of-principle studies, first fluorescence tomographic

studies have started to emerge that show tumor response

to chemotherapy [15��].
www.sciencedirect.com
In vivo bioluminescence studies are currently limited to

two-dimensional surface imaging of small animals [58�].
First studies have emerged that suggest the possibility of

BLT imaging [68,69�]; however, these algorithms have

only been applied to tissue phantoms and further valida-

tion studies in small animals need to be performed.

Conclusions
DOT is developing into a viable addition to currently

existing biomedical imaging modalities, such as

ultrasound, X-ray computed tomography, MRI, PET

and SPECT. This novel imaging technique uses visible

and near-infrared light (�500 nm < l < 900 nm) to probe

the absorption and scattering properties of tissues. Recent

technological and computational advances have led to

first small-animal imaging systems, which are currently

used to study cerebral ischemia and hemodynamics. The

use of exogenous fluorescence and bioluminescence mar-

kers in optical tomography appears particularly promising

in studying the molecular origins of cancer.

Future advances can be anticipated in the development

of more accurate image reconstruction algorithms that use

better models of light propagation in small animals, as

well as hardware advances that will allow non-contact

optical tomographic imaging. Finally, it can be expected
Current Opinion in Biotechnology 2005, 16:79–88
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that the application of DOT will grow to include studies

of cardiac diseases, arthritis and Alzheimer’s, to name just

a few.
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