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Abstract

We present the first tomographic reconstruction algorithm for optical molecular imaging that is based on the equa-

tion of radiative transfer. The reconstruction code recovers the spatial distribution of fluorescent sources in highly scat-

tering biological tissue. An objective function, which describes the discrepancy of measured near-infrared light with

predicted numerical data on the tissue surface, is iteratively minimized to find a solution of the inverse source problem.

At each iteration step the predicted data are calculated by a forward model for light propagation based on the equation

of radiative transfer. The unknown source distribution is updated along a search direction that is provided by an

adjoint differentiation technique.
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1. Introduction

Traditional biomedical imaging techniques differentiate pathological from normal tissue by detecting

macroscopic changes in tissue structures. Using molecular imaging, on the other hand, one tries to monitor

the development of disease-associated processes on a molecular level prior to the appearance of macro-

scopic tissue changes. Specifically designed molecular probes are used as source of image contrast. Tomo-

graphic imaging techniques, such as positron emission tomography (PET), single photon emission
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computed tomography (SPECT), and magnetic resonance tomography (MRI), have already widely

adopted the concept of this new imaging modality, and have been successful in imaging of gene expressions,

protein–protein interactions, and drug effects at a cellular and molecular level [1–8]. In addition optical

molecular imaging has emerged which uses near-infrared fluorescent probes [1,9–14]. A fluorescent bio-

chemical marker is injected into a biological system and will emit near-infrared light upon excitation by
an external light source. From measurements of the light intensity on the tissue surface one seeks to deter-

mine the spatial concentration distribution of the marker inside the tissue. Different biochemical mecha-

nisms within the tissue can influence the fluorescent probe concentration distribution. For example, the

biochemical marker accumulates in tissue parts with specific targets such as cell receptors [10,11,15–17],

or the fluorophore is quenched in its native state and only emits light after activation, i.e. when a specific

enzyme is encountered [10,11,18–20]. In both cases the fluorescent light signal is proportional to the accu-

mulated or activated fluorescent probe concentration. Most work in optical molecular imaging has been

limited to direct imaging of fluorescent light that escapes the surface of small animals
[10,12,15,18,21,22]. In this instance, an exact localization of light-emitting sources inside the tissue is not

possible. However, fluorescent source distributions in small animals could be determined by recording tom-

ographical data sets and employing appropriate tomographic image reconstruction schemes [19,20,23].

A major difficulty in determining the fluorescent source distribution is imposed by multiple scattering of

photons that propagate through biological tissue. The mean free path of scattered photons in biological

tissue is typically in the range 10�1–10�3 cm for near-infrared light. That limits the application of well-

established image reconstruction methods of transmission and emission tomography. For example, X-

ray computed tomography (CT) deals only with non-scattered or single-scattered photons and the particle
transport within the tissue can be described by a solution of an integral equation [24]. An inversion formula

is used to determine the tissue parameters of interest such as the X-ray attenuation coefficient. In emission

tomography, such as PET or SPECT, similar inversion formulas can be employed.

In contrast to CT which requires the solution of an integral equation, in near-infrared fluorescence

tomography an integro-differential equation needs to be solved that takes multiple scattering into account.

This integro-differential equation is known as equation of radiative transfer (ERT). Solving the ERT for a

given fluorescent source distribution is also referred to as solving the forward problem. The problem of

finding the fluorescence source distribution from measured light intensities on the tissue surface is called
the inverse problem.

To solve the inverse source problem in highly scattering media using the ERT one can use explicit and

implicit methods [25]. Explicit methods provide analytical solutions to the inverse source problem directly

from measured data. No forward problem for radiative transfer needs to be solved. Explicit methods based

on the ERT are limited to simple medium geometries with spatially non-varying optical parameters [26–30].

For more complex geometries and heterogeneous media no explicit methods are available and implicit

methods need to be employed.

Implicit methods for solving the inverse source problem iteratively utilize a solution of a forward model
to provide predicted measurement data. An update of an initial source distribution is sought by minimizing

a functional that describes the goodness of a fit between the predicted and experimental data. Implicit meth-

ods are computationally expensive when the forward model is based on the ERT. Implicit methods based

on the ERT have been used before in various scientific fields such as in inverse heat source problems or

inverse hydrologic bioluminescence problems [25,31–36], but not yet in optical molecular imaging.

The inverse fluorescent source problem in optical molecular imaging has already been solved using the

diffusion equation as a forward model for light propagation [37–48]. The diffusion model is an approxima-

tion to the ERT and has limitations in optically thin media, in media with small geometries where boundary
effects are dominant, and in media where sources and detectors are not sufficiently far apart [49–52]. This

poses particular problems, for example, in the area of small animal fluorescence imaging, where fluorescent

sources are potentially very close to detectors on the tissue surface.
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An image reconstruction method based on the ERT has the potential to overcome these limitations.

Therefore, we have developed a tomographic reconstruction scheme based on the ERT that solves the in-

verse fluorescent source problem by recovering the spatial distribution of fluorescent sources in scattering

media. This method is similar to a previously developed reconstruction scheme that was applied to a dif-

ferent inverse problem in optical tomography, where the unknown spatial distribution of the intrinsic
absorption and scattering properties of biological tissue was sought [53–56].

Our fluorescence image reconstruction technique is an implicit method and can be viewed as a nonlinear

optimization approach. A forward model for light transport based on the ERT predicts the detector read-

ings on the tissue boundary for a given initial source distribution. An objective function is defined that is the

v2-error norm of the predicted and measured detector readings. An updating scheme is used to iteratively

modify the initial distribution along a search direction and determines a new source distribution inside the

medium. The search direction is provided by the derivative of the objective function with respect to the pre-

sent source distribution. The optimization process is finished after the measured and predicted data match
and a minimum of the objective function is found. The final source distribution is displayed in an image.

Besides using the ERT for the first time in optical molecular image reconstruction we also introduce an

adjoint differentiation method as a novelty to fluorescence tomography. An adjoint differentiation tech-

nique computes the gradient of the objective function by exploiting the numerical structure of the light

propagation model. The concept of the adjoint differentiation technique can also be applied to similar in-

verse problems or sensitivity analysis where the derivative of an error function is sought. A distinct advan-

tage of using that technique is its relatively simple numerical implementation and the resulting low

computational costs.
In a previous Letter we already presented first numerical results for reconstructing the absorption coef-

ficient and the quantum yield of a two-dimensional fluorophore distribution using synthetic measurement

data [57]. The image reconstruction method could be employed in two different modes, the absorption-con-

trast mode and fluorescent-contrast mode. The present article describes the physical and numerical details

of the absorption contrast mode for reconstructing the fluorophore absorption coefficient. In addition to

the previous work, we included partly reflected boundary conditions (Fresnel reflection) that take the

refractive index mismatch at the air–tissue interface into account. Furthermore, for the first time we tested

the reconstruction algorithm with experimental data obtained from a three-dimensional, anisotropically
scattering, tissue-like fluorescent phantom.

In the following sections we will first describe the ERT-based forward model for light propagation in

tissue using a finite-difference discrete-ordinates method. Next we present the nonlinear optimization tech-

nique that is used to minimize the objective function. This part includes specifics of the derivative calcula-

tion of the objective function by means of an adjoint differentiation technique. Finally, we illustrate the

performance of the reconstruction code using experimental data.
2. Forward model for light propagation in tissue

The forward model of a fluorescent system in tissue consists of two stages: (1) excitation of fluorophores

inside tissue and (2) subsequent emission of fluorescent light. External light sources with wavelength kx illu-
minate the tissue surface and the light propagates through the tissue. Fluorescent molecules in their ground

state with a specific extinction coefficient � in units of M�1 cm�1 absorb the light and are elevated into an

excited state. Some proportion, defined by the quantum yield g, of the excited fluorescent molecules emits

again light at a different wavelength, km > kx, and returns to its ground state. The fluorophore with concen-
tration c in units of M constitutes an internal light source with the strength proportional to g and the fluor-

ophore absorption lx!m
a ¼ c� in units of cm�1 at the excitation wavelength kx. The light originating from

the fluorescent source distribution escapes the tissue and is measured at the tissue surface.
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2.1. Equation of radiative transfer

The forward model for light propagation determines the fluorescent light distribution given an external

excitation light source at the tissue boundary and a spatial distribution of optical properties. The light dis-

tribution for both the excitation and emission wavelengths can be described by a hierarchal system of two
time-independent ERTs for the radiance w(r,X) with units of W cm�2 sr�1. The first equation of radiative

transfer (ERT I) describes the propagation of the excitation light at the wavelength kx originating from an

external light source Sx(r,X) with units of W cm�3 sr�1. The ERT is an energy balance equation for the

radiance wx(r,X) and is given as
X � rwx þ ðlx!
a þ lx!m

a þ lx
s Þw

x ¼ lx
s

Z
4p
pðX �X0ÞwxðX0ÞdX0 þ Sx: ð1Þ
Here, the spatial position r = (x,y,z) of the radiance is given in Cartesian coordinates. The direction

X = (J,u) of the radiance is given in spherical coordinates, but can also be expressed in Cartesian coordi-
nates X = (n,g,l) with
n ¼ sin# cosu;

g ¼ sin# sinu;

l ¼ cos#:

ð2Þ
Both coordinate systems are shown in Fig. 1. The propagating light undergoes scattering and absorption

processes that are described by the scattering, lx
s ðrÞ, and absorption, lx

aðrÞ, coefficients at the wavelength

kx in units of cm�1. The absorption coefficient lx
aðrÞ consists of the intrinsic absorption lx!

a ðrÞ of the tissue
and the absorption lx!m

a ðrÞ due to the fluorochrome. The scattering phase function p(X ÆX 0) with units of

sr�1 gives the probability that a single photon coming from X 0 is deflected by an angle h into X. The angle h
encloses the directions formed byX andX 0 in the interval h 2 [0,p] withX ÆX 0 = cosh. A commonly applied

scattering phase function in tissue optics is the Henyey–Greenstein function [58–60], which is given by
pðcos hÞ ¼ 1� g2

4pð1þ g2 � 2g cos hÞ3=2
ð3Þ
with the normalization condition
2p
Z 1

�1

pðcos hÞd cos h ¼ 1: ð4Þ
Fig. 1. Coordinate systems for spatial position r and direction X.
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The radiation field described by the ERT I [Eq. (1)] excites fluorescent molecules at position r. The amount

of excited fluorescent molecules depends linearly on the absorbed fluence /x(r) if saturation and bleaching

effects are neglected. The fluence distribution /x(r) in units of W cm�2 is obtained by integrating the radi-

ance wx(r,X) at position r over all directions X:
/xðrÞ ¼
Z
4p
wxðr;XÞdX: ð5Þ
The excited fluorophore with the quantum yield g and absorption coefficient lx!m
a ðrÞ constitutes a light

source at the fluorescence wavelength km with the strength
Smðr;XÞ ¼ 1

4p
glx!m

a ðrÞ/xðrÞ ð6Þ
in units of W cm�3 sr�1. It emits isotropic light since all directional information is lost after excitation.

The second equation of radiative transfer (ERT II) describes the light propagation at the wavelength km

originating from spatially distributed fluorescent light sources Sm(r,X). We obtain the ERT II with the flu-

orescent source term (6)
X � rwm þ ðlm
a þ lm

s Þw
m ¼ lm

s

Z
4p
pðX �X0ÞwmðX0ÞdX0 þ 1

4p
glx!m

a /x: ð7Þ
The radiance distribution wm(r,X) depends on the optical tissue parameters, lm
a ðrÞ and lm

s ðrÞ, at wave-
length km and on the fluorescent source distribution. The fluorescent light escapes through the tissue bound-

aries and is measured by a detector at position rd. The light intensity /
m(rd) is given in units of W cm�2 with
/mðrdÞ ¼
Z
n�X>0

wmðrd ;XÞdX ð8Þ
with n as the normal outward vector at the boundary.
2.2. Boundary condition

Biological tissue has an optical refractive index (n > 1) that is different from the refractive index of the

surrounding medium such as air (n0 = 1). Light is reflected and refracted when escaping the medium due to

the refractive index mismatch (n > n0) at the tissue–air interface. The escaping radiance w(X) along the out-

ward direction X with n ÆX > 0 is partly reflected at the interface and contributes to the light propagation
inside the tissue. Furthermore, some fraction of the light leaving the tissue along X changes its direction

into X00 due to refraction. The relation between the outward direction X, the outward direction X00 of

the refracted radiance, and the inward direction X 0 of the reflected radiance is shown in Fig. 2.

The radiance that is reflected back into the medium can be obtained from the relation
wðX0Þ ¼ RwðXÞ; n �X0 < 0; ð9Þ

where R is the reflectivity, which determines the amount of reflected light. R is given by Fresnel�s law [61]
R ¼ 1

2

sin2ðb� aÞ
sin2ðbþ aÞ

þ tan2ðb� aÞ
tan2ðbþ aÞ

 !
: ð10Þ
The angle a is enclosed by the normal vector n and the outward direction X of the escaping radiance
a ¼ arccosðn �XÞ: ð11Þ

The angle b is enclosed by the normal vector n and the outward direction X00 of the refracted light and is

determined by means of Snell�s law



Fig. 2. Relation between the outward directions X and X00, and the inward direction X 0 at the air–tissue interface. Light is reflected

into the medium (refractive index n) along X 0 and refracted along X00 when leaving the medium.
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b ¼ arcsin
n sinðaÞ

n0

� �
: ð12Þ
Total reflection (R = 1) is taken into account for b > p/2. As can be clearly seen, for a refractive index match

(n = n0) of both media at the interface we obtain the none-reentry boundary condition
wðX0Þ ¼ 0; n �X0 < 0: ð13Þ
2.3. Finite-difference discrete-ordinates method

Both transport equations, Eqs. (1) and (7), need to be solved numerically because no analytical solutions

of the ERT are available for spatially heterogeneous media with finite geometrical boundaries [62]. Since

the numerical solution method is the same for both transport equations, we will omit the superscript x
and m in both equations for distinguishing the excitation and fluorescence field. We employ a finite-differ-

ence discrete-ordinates ðSNÞ method that converts the integro-differential equation into a system of alge-

braic equations [62–71]. The radiance w(r,X), which is a continuous function in space, is replaced by a

finite set of H discrete radiances. The ERT is substituted by a set of approximate algebraic equations.

The size of the algebraic system with its H unknown radiance values depends on the spatial (finite-differ-

ence) and angular (discrete-ordinates) discretization.

First, the direction X is replaced with a set of discrete ordinates Xk = (nk,gk,lk) with full level symmetry

[65,66,70,72]. The total number of ordinates Xk with k 2 {1..K} is given by K ¼ NðNþ 2Þ and N the
number of direction cosines of the SN method. The integral in the ERT is approximated with a quadrature

rule
 Z
4p
pðX �X0ÞwðX0; rÞdX0 �

XK
k0¼1

wk0pðXk �Xk0 ÞwðXk0 ; rÞ ¼
XK
k0¼1

wk0pkk0wk0 ðrÞ ð14Þ
where wk0 are weights determined by full level symmetry of the ordinates [66]. The angular discretization

yields a set of K coupled differential equations for the radiance w(r,Xk) = wk(r) in the directions Xk:
Xk � rwkðrÞ þ ðlaðrÞ þ lsðrÞÞwkðrÞ ¼ lsðrÞ
XK
k0¼1

wk0pkk0wk0 ðrÞ þ SkðrÞ: ð15Þ
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The fluence /(r) is obtained with
/ðrÞ ¼
XK
k¼1

wkwkðrÞ: ð16Þ
Next, the continuous spatial variable r is discretized on a three-dimensional Cartesian grid constituting a
parallelepiped. Hence, the radiance wk(r) is only defined on grid points r = (xm,yn,zl) with m 2 {1..M},

n 2 {1..N}, and l 2 {1..L}. The grid spacing between adjacent points is given by Dx, Dy, and Dz. We define

for a given direction Xk and grid point (mnl) the radiance wmnlk. The total number of unknown wmnlk is

H = M ÆN ÆL ÆK.
Furthermore, the spatial derivatives rwkðrÞ ¼ ðowk=ox; owk=oy; owk=ozÞ in Eq. (15) are substituted with

first-order finite-difference approximations known as step method [65,66,70,73,74]. The difference formula

of the step method depends on the directionXk of the angular-dependent radiance wmnlk. The set of all ordi-

nates Xk for the unit sphere is subdivided into eight octants and we obtain eight different difference formu-
las for the radiance wmnlk. For example, for all ordinates Xk with positive direction cosine nk > 0 we have

the following finite difference term along the x-axis
ow
ox

� wmnl � wm�1nl

Dx
: ð17Þ
The difference formula changes for negative direction cosine nk < 0 and we obtain
ow
ox

� wmþ1nl � wmnl

Dx
: ð18Þ
The same finite-difference approach is applied along the y-axis and z-axis for direction cosines gk and lk.
Hence, the discretized ERT for a grid point (mnl) is, for example, for all ordinates Xk within the octant

nk > 0, gk > 0, and lk > 0:
nk
wmnlk � wm�1nlk

Dx
þ gk

wmnlk � wmn�1lk

Dy
þ lk

wmnlk � wmnl�1k

Dz
þ ð½ls�mnl þ ½la�mnlÞwmnlk

¼ ½ls�mnl
XK
k0¼1

wk0pkk0wmnlk0 þ Smnlk: ð19Þ
Using the short-term notation (dx,dy,dz) for the discretized spatial derivative of ðo=ox; o=oy; o=ozÞ we ob-

tain an algebraic system of equations for the discretized ERT for all grid points and ordinates
fnkdx þ gkdy þ lkdz þ ½la�mnl þ ½ls�mnlgwmnlk ¼ ½ls�mnl
XK
k0¼1

wk0pkk0wmnlk0 þ Smnlk: ð20Þ
The elements wmnlk can be cast into a vector W and we obtain in matrix notation
AW ¼ BWþ S; ð21Þ

with A as the discretized streaming and collision operator, B as the discretized integral operator or in-scatter

term, and S as source term [68]. Furthermore, we introduce in Eq. (19) the vector notation [..] for all optical

parameters that will be used in the remaining article. The nth element of a vector [..] is denoted by [..]n.
2.4. Source iteration

We solve the system (21) for the radiance vector W by employing a source iteration (SI) method

[65,66,68,73]. This method is an iterative build-up of the radiance. By starting from an initial source term
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(z = 0), i.e. an external light source or an internal fluorescent source, an initial radiance vector W0 is com-

puted as shown in Eq. (22)
AW0 ¼ S: ð22Þ

The radiance W0 is now used to determine the in-scatter source term BW0 on the right hand side of Eq. (23).

Since the right hand side for the next source iteration step (z + 1) is known from the previous step a new

radiance vector Wz+1 can be determined
AWzþ1 ¼ BWz þ S: ð23Þ

A single iteration step for computing Wz + 1 is also called transport sweep. The iteration process is repeated

until the relative difference of the radiance of subsequent iteration steps is smaller than a predefined value j
given by the relation
Wzþ1 �Wz

Wzþ1

����
���� < j: ð24Þ
The radiance vector WZ of the last transport sweep Z is the solution of the discretized ERT. For example, at

each transport sweep a single vector element wzþ1
mnlk for all ordinates Xk with nk > 0, gk > 0, and lk > 0 [see

Eq. (19)] is calculated with
wzþ1
mnlk ¼

Smnlk þ ½ls�mnl
P
k0
wk0pkk0w

z
mnlk0 þ ðnk=MxÞwzþ1

m�1nlk þ ðgk=MyÞwzþ1
mn�1lk þ ðlk=MzÞwzþ1

mnl�1k

ðnk=MxÞ þ ðgk=MyÞ þ ðlk=MzÞ þ ½la�mnl þ ½ls�mnl
: ð25Þ
According to the ERT at the excitation wavelength, see Eq. (1), the source term Smnlk is the external light

source Sx
mnlk. The optical parameters are ½la�mnl ¼ ½lx!

a �mnl þ ½lx!m
a �mnl, ½ls�mnl ¼ ½lx

s �mnl. At the emission

wavelength, see Eq. (7), we replace Smnlk with the fluorescent source term Sm
mnlk ¼ ð1=4pÞg½lx!m

a �mnl/
x
mnl,

and the optical parameters with ½la�mnl ¼ ½lm
a �mnl and ½ls�mnl ¼ ½lm

s �mnl.

2.5. Delta–Eddington method for highly anisotropically scattering media

A strongly anisotropic scattering phase function (g > 0.7) would require many discrete ordinates to suf-

fice the normalization condition of the phase function in Eq. (4). Instead of using many discrete ordinates

(e.g. S16 method with 288 ordinates) that increases the computational cost we employ a Delta–Eddington

(DE) method. The DE method requires only, for example, an S6 approximation with 48 ordinates for media
with g � 0.8. In doing so, the scattering coefficient ls in both ERTs is replaced with
lDE
s ¼ ð1� g3Þls: ð26Þ
The Henyey–Greenstein function is also expanded into a series of Legendre polynomials up to second order
and is replaced in both ERTs [Eqs. (1) and (7)]. More details of the DE method can be found in [75–77].
3. Inverse source problem

The inverse source problem derives the unknown spatial source distribution Sm(r), which is proportional

to the fluorophore absorption coefficient lx!m
a ðrÞ in Eq. (6), from the measured fluorescent light at wave-

length km escaping the tissue surface. Since the fluorophore absorption coefficient is a linear function of
the fluorophore concentration inside the tissue a reconstructed map of the fluorophore absorption can di-

rectly be translated into a map of the concentration distribution of the biochemical probe. All other intrinsic

tissue properties, i.e. the optical parameters lx
s ðrÞ; lm

s ðrÞ; lx!
a ðrÞ; and lm

a ðrÞ, are typically given, for
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example, from a previously performed reconstruction. Reconstruction algorithms in optical tomography for

absorption and scattering coefficients are widely available and have been documented [53,54,56,78]. Further-

more, the quantum yield g of the fluorophore is also known and usually provided by the manufacturer.

3.1. Nonlinear optimization

The spatial distribution of the fluorophore absorption, lx!m
a ðrÞ, is reconstructed by applying a nonlinear

optimization technique to an objective function U that is an explicit function of lx!m
a ðrÞ:
U lx!m
a ðrÞ

� �
:¼ uð/m lx!m

a ðrÞÞ
� �

: ð27Þ
The function u(/m(rd)) describes the difference between the measured, Mm(rd), and predicted data, /m(rd)
[see Eq. (8)], at detector positions rd for all D source–detector pairs
uð/mðrdÞÞ ¼
1

2

XD
d¼1

/mðrdÞ �MmðrdÞ
rmðrdÞ

� �2

: ð28Þ
The quantity rm exhibits the confidence we have in the accuracy of our measurement data. It is largely influ-

enced by the system noise of the experimental set-up that measures the light intensities at the tissue bound-

ary. The main contribution to rm for an individual source–detector pair is the shot noise of a laser diode

(source) and a charged-coupled-devices (CCD) camera (detector). Shot noise is a fundamental property of
the quantum nature of light and varies according to a Poisson distribution. Its power is proportional to the

square root of the measured signal rm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MmðrdÞ

p
.

We minimize the objective function by using a limited-memory Broyden–Fletcher–Goldfarb–Shanno

(BFGS) technique that belongs to the class of quasi-Newton methods [56]. This technique updates itera-

tively an initial guess of the fluorophore absorption along a search direction. Once the minimum is found,

the final result is the unknown distribution of the fluorophore absorption coefficients.

The updating procedure can be formulated as [79,80]
½lx!m
a �iþ1 ¼ ½lx!m

a �i þ aiui; ð29Þ
where ½lx!m
a �i is a vector at iteration step i containing a set of fluorophore absorption coefficients ½lx!m

a �mnl
for all spatial grid points (mnl) from which the new vector ½lx!m

a �iþ1
is obtained. The vector ui is a search

direction. The parameter ai is the step length in the direction ui. After the update in Eq. (29) was performed
a new search direction ui+1 is determined with [81,82]
uiþ1 ¼ � dU
dlx!m

a

� �iþ1

þ csþ ky ð30Þ
with the vectors s and y:
s ¼ lx!m
a

	 
iþ1 � lx!m
a

	 
i

y ¼ dU
dlx!m

a

� �iþ1

� dU
dlx!m

a

� �i
: ð31Þ
The scalars c and k are defined by
c ¼ � 1þ yTy

sTy

� �
sT½dU=dlx!m

a �iþ1

sTy
þ yT½dU=dlx!m

a �iþ1

sTy
; k ¼ sT½dU=dlx!m

a �iþ1

sTy
: ð32Þ
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At each iteration step i a new derivative ½dU=dlx!m
a �i needs to be calculated in order to determine the search

direction ui. The derivative calculation is an essential part of the image reconstruction algorithm because it

is computationally expensive. We have developed an adjoint differentiation method to compute the gradi-

ent. The details of this technique for the application in fluorescence tomography are described in the next

section.
3.2. Adjoint differentiation

The optimization method requires calculating the derivative ½dU=dlx!m
a � of the objective function that is

a function of 103–105 variables ½lx!m
a �mnl for all grid points (mnl). To approximate the derivative for a single

variable ½lx!m
a �mnl at grid point (mnl) we could apply the divided difference for a sufficiently small pertur-

bation Dlx!m
a ,
dU
dlx!m

a

� �
mnl

�
U ½lx!m

a �mnl þ Dlx!m
a

� �
� U ½lx!m

a �mnl
� �

Dlx!m
a

: ð33Þ
This method, however, is computationally too expensive, since for each perturbation of ½lx!m
a �mnl at grid

point (mnl) a separate forward calculation has to be performed. That leads to a total of (M ÆN ÆL + 1)

forward calculations when all unknown fluorophore absorption coefficients are considered. Instead of

perturbing each component of ½lx!m
a � we employ an adjoint method [83,84]. A particular implementa-

tion of that method is the adjoint differentiation technique [85–94]. We have already applied this tech-
nique to the image reconstruction problem of intrinsic tissue properties in optical tomography based on

the ERT [55]. The adjoint differentiation method, also termed as computational or algorithmic differen-

tiation in the reverse direction, is directly applied to the existing numerical code of the forward model.

The main advantage of this approach is that the gradient can be calculated according to simple rules at

a level of single steps in the forward code instead of solving an adjoint equation of radiative transfer

that constitutes an entire new numerical problem [83,93,95,96]. Furthermore, the adjoint differentiation

technique computes the derivative in a period of time equivalent to only one to three forward

calculations.
The forward model of light propagation at wavelength km, that provides a solution to the ERT [Eq. (7)]

and a value of the objective function for a given fluorophore absorption distribution, is decomposed into a

sequence of single differentiable functions. This sequence of functions is built up in the forward direction as

the solution of the forward model is computed. Applying systematically the chain rule of differentiation to

each single function in the reverse direction a numerical value of the derivative of the objective function

with respect to the fluorophore absorption distribution is obtained.

3.2.1. Decomposition of the forward model

The adjoint differentiation approach exploits the algorithmic structure of the numerical forward model

given by the source iteration scheme, see Eq. (23). The iterative build-up of the forward model calculates a

sequence (W0,W1, . . .,Wz, . . .,WZ) of radiance distributions that converges towards a solution wm of the ERT

in Eq. (7). The radiance vector Wz+1 at the transport sweep z + 1 is a function of the radiance vector Wz at

the previous transport sweep z and of a given fluorophore absorption ½lx!m
a �. This functionWzþ1ðWz; ½lx!m

a �Þ
is represented by the iteration rule in Eq. (25) for an individual vector element [Wz + 1]mnlk. The final value

WZ of the last transport sweep is used for the determination of the function
uðWZÞ ¼ 1

2

XD
d¼1

P
k
wkw

Z
ðdÞk �MmðrdÞ

� �2

MmðrdÞ
; ð34Þ
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where the subscript ‘‘d’’ pertains to a detector position rd on the Cartesian mesh with grid point (d) = (mnl).

Thus, the objective function U, as defined in Eq. (27), is a composition of the function u and Z functions Wz

of all transport sweeps:
U ¼ u �WZ �WZ�1 � � � � �Wzþ1 �Wz � � � � �W1 �W0
� �

: ð35Þ
The operation ‘‘�’’ is defined as a composite function
Wzþ1 �Wz ¼ Wzþ1ðWz; ½lx!m
a �Þ �Wzð½lx!m

a �Þ :¼ Wzþ1ðWzð½lx!m
a �Þ; ½lx!m

a �Þ: ð36Þ

Starting with an initial input vector ½lx!m

a � a value of the objective function U can be obtained. That also

defines the forward direction of the forward algorithm.

3.2.2. Algorithmic differentiation of the forward model

The derivative of the objective function U with respect to the input parameter of the forward algorithm,

i.e. the fluorophore absorption vector ½lx!m
a �, is given by the vector
dU
dlx!m

a

� �
¼
XZ
z¼0

oðu �WZ �WZ�1 � � � � �WzÞ
olx!m

a

� �
: ð37Þ
Each component of the above sum can be obtained by applying the chain rule of differentiation along the

forward direction of the forward algorithm
oðu �WZ �WZ�1 � � � � �WzÞ
olx!m

a

� �
¼ ou

oWZ

� �
oWZ

oWZ�1

oWZ�1

oWZ�2
� � � oW

zþ1

oWz

oWz

olx!m
a

: ð38Þ
Eq. (38) consists mainly of repeated matrix–matrix multiplications with oWzþ1=oWz and oWz=olx!m
a as

matrices. The derivative ½ou=olx!m
a � is not included in the sum since u is not an explicit function of

½lx!m
a � and thus its derivative vanishes.

We will now provide an algorithmic procedure that derives the gradient of U by applying systematically
the chain rule of differentiation along the reverse direction of the forward algorithm in order to avoid re-

peated matrix–matrix multiplications. The algorithmic differentiation in the reverse direction requires only

matrix–vector multiplications that leads to less computational effort. This procedure can be achieved by

taking the transpose, or adjoint, of each component in (38)
oðu �WZ �WZ�1 � � � � �WzÞ
olx!m

a

� �T
¼ oWz

olx!m
a

ToWzþ1

oWz

T

� � � oW
Z�1

oWZ�2

T
oWZ

oWZ�1

T
ou

oWZ

� �T
: ð39Þ
Thus, we obtain with Eqs. (37) and (39)
dU
dlx!m

a

� �T
¼
XZ
z¼0

oWz

olx!m
a

T
oU
oWz

� �T
: ð40Þ
Additionally, the relation between subsequent steps, ½oU=oWz�T and ½oU=oWzþ1�T, in Eq. (40) is for all

z < Z,
oU
oWz

� �T
¼ oWzþ1

oWz

T
oU

oWzþ1

� �T
; ð41Þ
and for z = Z,
oU

oWZ

� �T
¼ ou

oWZ

� �T
: ð42Þ
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By providing the derivatives ½oU=oWz�; oWz=olx!m
a ; and oWzþ1=oWz for each transport sweep we are able

to calculate the adjoint derivative vector ½dU=dlx!m
a �T in Eq. (40) by stepping through the forward algo-

rithm in the reverse direction. Starting with the last transport sweep we compute the partial derivative in

Eq. (42) by differentiating Eq. (34) and obtain for each component at detector position rd:
oU

owZ
ðdÞk

¼ ou

owZ
ðdÞk

¼

P
k
wkw

Z
ðdÞk �MmðrdÞ

� �
MmðrdÞ

wk: ð43Þ
Next, the derivative of wz
mnlk with respect to ½lx!m

a �mnl in Eq. (40) is given by
owz
mnlk

o½lx!m
a �mnl

¼ ð1=4pÞg/x
mnl

ðnk=MxÞ þ ðgk=MyÞ þ ðlk=MzÞ þ ½lm
a �mnl þ ½lm

s �mnl
: ð44Þ
Finally, the matrix components in Eq. (41) are given by the partial derivatives
owzþ1
mnlk

owz
m0n0l0k0

¼ ½lm
s �mnlwk0pkk0dmm0nn0ll0 þ

nk
Mx

owzþ1
m�1nlk

owz
m0n0l0k0

þ gk
My

owzþ1
mn�1lk

owz
m0n0l0k0

þ lk

Mz
owzþ1

mnl�1k

owz
m0n0l0k0

� �
nk
Mx

þ gk
My

þ lk

Mz
þ ½lm

s �mnl þ ½lm
a �mnl

� �

ð45Þ
with
dmm0nn0ll0 ¼ dmm0dnn0dll0 and daa0 ¼
1 if a0 ¼ a

0 if a0 6¼ a:

�

We also approximate the partial derivatives on the right-hand-side in Eq. (45) with
owzþ1
m�1nlk

owz
m0n0l0k0

:¼ dðm�1Þm0nn0ll0kk0

owzþ1
mn�1lk

owz
m0n0l0k0

:¼ dmm0ðn�1Þn0ll0kk0

owzþ1
mnl�1

owz
m0n0l0k0

:¼ dmm0nn0ðl�1Þl0kk0

ð46Þ
since wzþ1
m�1nlk; wzþ1

mn�1lk; and wzþ1
mnl�1k are slowly varying functions of wz

m0n0l0k0 for sufficiently small Dx, Dy, and
Dz. We found that in general the error introduced by this approximation is negligible.

The differentiation of the objective function along the reverse direction of the forward algorithm consti-

tutes a computational advantage over the differentiation along the forward direction. In the reverse direc-

tion a matrix always operates on a vector [see Eq. (39)]. For example, multiplication of a squared matrix

with size of q2 elements and a vector with q elements involves a total of 2q2 � q operations (q multiplica-

tions and q � 1 summations for each new vector element). However, by calculating the derivative in the

forward direction [see Eq. (38)] a matrix operates on a matrix. A matrix–matrix multiplication requires

a total of 2q3 � q2 operations (q multiplications and q � 1 summations for each new matrix element). Since

matrix–vector multiplications consist of q times fewer operations than matrix–matrix multiplications com-
puting the derivative along the reverse direction involves less computational effort and is q times faster.
4. Inverse problem of total absorption

Besides lx!m
a ðrÞ of the fluorophore the total absorption coefficient lx

aðrÞ ¼ lx!
a ðrÞ þ lx!m

a ðrÞ at the exci-
tation wavelength kx can be reconstructed to provide information about the intrinsic tissue and fluorophore

absorption. In this case we define an objective function, Uðlx
aðrÞÞ ¼ uð/xðlx

aðrÞÞÞ, similar to Eq. (28) as
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uð/xðrdÞÞ ¼
1

2

XD
d¼1

/xðrdÞ �MxðrdÞð Þ2

MxðrdÞ
: ð47Þ
The predicted detector readings /x(rd) are calculated by solving the ERT in Eq. (1). The measurement data
Mx(rd) are given at the excitation wavelength kx. The objective function Uðlx

aðrÞÞ is iteratively minimized by

using the nonlinear optimization method to find the unknown distribution of absorption coefficients lx
aðrÞ.

Again, we employ the adjoint differentiation technique applied to the forward algorithm of Eq. (1) to pro-

vide the derivative vector of U with respect to ½lx
a�.

The derivative vector ½dU=dlx
a� is computed in the same manner as explained in Section 3.2. Eq. (40) is

modified and we obtain
dU
dlx

a

� �T
¼
XZ
z¼0

oWz

olx
a

T
oU
oWz

� �T
: ð48Þ
Again, Eq. (41) as applied to ERT I is used for calculating the subsequent step ½oU=oWz�T from ½oU=oWzþ1�T
in the reverse direction. A matrix element of oWz=olx

a in Eq. (48) is
owz
mnlk

o½lx
a�mnl

¼ �
Sx
mnlk þ ½lx

s �mnl
P
k0
wk0pkk0w

z�1
mnlk0

nk
Mx þ

gk
My þ

lk
Mz þ ½lx

a�mnl þ ½lx
s �mnl

� �2 �
nk
Mxw

z
m�1nlk þ

gk
My w

z
mn�1lk þ

lk
Mzw

z
mnl�1k

nk
Mx þ

gk
My þ

lk
Mz þ ½lx

a�mnl þ ½lx
s �mnl

� �2 : ð49Þ
5. Experimental results

In the following section we show the first experimental results of recovering the spatial distribution of

fluorescent sources in a tissue-like phantom using the transport-theory based reconstruction code. Exper-

imental data were recorded at both the excitation and emission wavelengths in order to reconstruct the total

absorption, lx
a ¼ lx!

a þ lx!m
a , and fluorophore absorption, lx!m

a . The instrumental design we used for

acquiring the experimental data are described in more detail by Graves et al. [97].

The given tissue-like phantom had a size of 4 cm · 4 cm · 1.3 cm with the optical parameters
lx
s ¼ 30 cm�1 and lx!

a ¼ 0:4 cm�1 at the excitation wavelength, and lm
s ¼ 30 cm�1 and lm

a ¼ 0:4 cm�1 at

the emission wavelength, see Fig. 3. The refractive index of the phantom was n = 1.33. The anisotropy fac-

tor was assumed to be g = 0.8. The highly forward-peaked scattering phase function and the use of an S6

method with only 48 ordinates required the DE method to suffice the normalization condition [Eq. (4)].

Hence, the scattering coefficient for both wavelengths was rescaled with relation (26) that yielded
Scattering phantom with three embedded tubes. Tubes I and II contained a fluorochrome with lx!m
a < lx

a of background

. Tube III is purely absorbing and had a higher absorption than the background medium.
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lDE
s ¼ 14:64 cm�1. All forward calculations and reconstructions were performed on a 41 · 41 · 14 grid with

spatial separation Dx = Dy = Dz = 0.1 cm.

Two fluorescent tubes (I and II) with a diameter of 0.2 cm were embedded inside the medium at depths

dI = 0.55 cm and dII = 0.55 cm, measured from the top plane of the phantom (d = 0 cm). Both tubes con-

tained a fluorochrome (Cy5.5 Amersham Pharmacia Biotech, NJ, USA) that pertains to the group of car-
bocyanine dyes [12]. This fluorescent dye had an extinction coefficient � = 250,000 M�1 cm�1 and a

quantum yield g = 0.28. The concentration inside the tubes was c = 2·10�7 M yielding a fluorophore

absorption lx!m
a ¼ 0:05 cm�1. The intrinsic absorption was lx!

a ¼ 0 cm�1 and same scattering properties

as background medium were present.

Additionally, an absorbing tube (III) with a diameter of 0.3 cm and no fluorescent properties was in-

cluded at depth dIII = 0.3 cm. This tube had an increased absorption coefficient with respect to the back-

ground medium.

Thirty-two source fibers were placed on the bottom plane of the phantom (d = 1.3 cm) on an area of
1.2 · 1.8 cm2, and 150 equally distributed detector points were on the top plane (d = 0 cm) on an area

of 1.9 · 2.5 cm2. The source fibers illuminated the phantom at the excitation wavelength kx = 675 nm.

The light propagation model took the partially collimated light source with an aperture �p/3 into account

by assigning a non-zero source power density S(Xk) > 0 to only four ordinates that pointed inside the med-

ium. The escaping light at the detection plane was recorded at the excitation and fluorescent wavelength

(km = 694 nm) using wavelength selective filters and a CCD camera. We obtained a tomographical data

set with D = 32 · 150 source–detector pairs.

In the next sections we show the reconstructed fluorophore absorption distribution and the total absorp-
tion distribution by employing measurement data sets at either the fluorescence wavelength, the excitation

wavelength, or at both wavelengths.
5.1. Fluorophore absorption reconstruction using measurement data at fluorescent wavelength km

Given the experimental set-up we independently measured for 32 sources the fluorescent light that es-

caped the top plane of the medium. The measured data became input to the image reconstruction algo-

rithm. The optimization process started from an initial guess ½lx!m
a �0 ¼ 0 cm�1. The optimization was

stopped when the relative difference j(Ui + 1 � Ui)/Uij of the objective function between two consecutive iter-

ation steps became smaller than 10�8. It took 28 iterations with 28 adjoint derivative and 33 forward cal-

culations for each source position. One complete forward calculation comprised solving the ERT for all 32

source positions. Hence, one complete adjoint derivative calculation involved the solution of the ERT for

all source positions of the forward code. Therefore, the reconstruction time was approximately 25 h on a

Linux Beowulf Cluster consisting of 10 Intel Pentium III Xeon processors with 2.4 GHz clock rate. The

reconstructed fluorophore distribution lx!m
a ðrÞ is shown in Fig. 4. In this case it was not possible to derive

quantitative information about the fluorophore distribution due to the unknown source strength at the
excitation wavelength kx. Therefore, we display in Fig. 4 a relative fluorophore absorption coefficient dis-

tribution with arbitrary units. The relative fluorophore absorption distribution is normalized to its maxi-

mum value. Thus, the image scale is 0...1 with maximum fluorophore absorption at 1 and no

fluorophore absorption at 0.
5.2. Fluorophore absorption reconstruction using measurement data at fluorescent wavelength km and

excitation wavelength kx

Absolute values of the measured light intensity at the fluorescent wavelength km need to be accessible

for a given excitation source strength at kx to reconstruct the absolute fluorophore absorption distribu-



Fig. 4. Reconstructed relative fluorophore absorption lx!m
a in different depths d measured from top plane (d = 0 cm). The fluorophore

distribution is normalized to its maximum value. The excitation sources were located at d = 1.3 cm and the detector plane for

measuring the fluorescent light was located at d = 0 cm. Both fluorescent tubes (Tube I and II) can be clearly seen.
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tion. However, the experimental situation does often not allow to determine the absolute fluorescent

light intensity, e.g. due to unknown excitation source strengths, unknown filter attenuation and fiber

coupling coefficients, and unknown losses at the tissue–air interfaces [44,45,48,98,99]. These quantities

can be described by a re-scaling factor that depends on the particular experimental set-up. This re-scal-

ing factor can be obtained by relating measured light intensities ~M
x

0 at the excitation wavelength kx for
the homogeneous phantom with known optical properties without any tubes present to numerically pre-

dicted light intensities /x
0 for the same medium. The measured fluence ~M

m
at the emission wavelength km

for the phantom with the unknown fluorophore distribution is re-scaled by that factor which is defined

as the ratio /x
0=

~M
x

0. Hence, the re-scaled measurement data Mm at detector positions rd are given by the

relation
MmðrdÞ ¼
~M

mðrdÞ � /x
0ðrdÞ

~M
x

0ðrdÞ
; ð50Þ
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and are independent of all experimental design-dependent light intensity losses. Subsequently, the re-scaled

measurement data Mm(rd) became input to the objective function (28) of the image reconstruction algo-

rithm. A similar re-scaling approach is described elsewhere [44,45,48].

The reconstructed fluorophore absorption lx!m
a is shown in Fig. 5. The images show the positions of the

fluorescent tubes I and II. The maximum value of the reconstructed fluorophore absorption distribution is
lx!m
a ¼ 0:032 cm�1. The fluorophore absorption lx!m

a was reconstructed starting from a homogeneous ini-

tial guess ½lx!m
a �0 ¼ 0 cm�1. The reconstruction process was terminated when the relative difference

j(Ui + 1 � Ui)/Uij of subsequent iteration steps of the optimization process was smaller than 5·10�4. The

optimization technique needed 23 iterations that included a total of 35 forward calculations and 23 adjoint

derivative calculations. The computation time was approximately 21 h.

5.3. Total absorption reconstruction using measurement data at excitation wavelength kx

The spatial distribution of the total absorption coefficient lx
a ¼ lx!

a þ lx!m
a was reconstructed given the

experimental measurement data at excitation wavelength kx. Again, we needed to re-scale the measurement

data ~M
xðrdÞ due to the unknown light intensity losses of the experimental design:
Fig. 5. Reconstructed fluorophore absorption lx!m
a in different depths d measured from top plane (d = 0 cm). The excitation sources

were located at d = 1.3 cm. The excitation and fluorescent light intensities were measured at the detector positions in the top plane at

d = 0 cm. Both fluorescent tubes (Tube I and II) can be clearly seen.
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MxðrdÞ ¼
~M

xðrdÞ � /x
0ðrdÞ

~M
x
0ðrdÞ

: ð51Þ
The re-scaled measurement data Mx(rd) became input to the objective function [see also Eq. (47)] of the

reconstruction algorithm.

The image reconstruction started from an initial guess ½lx
a�
0 ¼ 0:4 cm�1. The stop criterion was set to

j(Ui + 1 � Ui)/Uij < 10�2. The reconstruction process was finished after 58 iterations with a total of 58 for-

ward and 58 adjoint derivative calculations. The computation time was approximately 40 h. All recon-
structed images for different depths measured from the top plane of the phantom are shown in Fig. 6.

All three tubes (I, II, and III) can be seen in the images. The central tube (III) is the highly absorbing

tube that contains no fluorophore and has a higher absorption coefficient than the background medium.

Its maximum value of absorption is lx
a ¼ 1:29 cm�1 at depth d = 0.4 cm. Both fluorescent tubes, I and

II, have an absorption coefficient lx
a < 0:1 cm�1 smaller than the background medium in tomographic

plane d = 0.6 cm.
Reconstructed total absorption lx
a in different depths d measured from top plane (d = 0 cm). The background medium has an

tion of lx
a ¼ 0:4 cm�1. The excitation sources were located at d = 1.3 cm and the detectors were located at d = 0 cm. Both

cent tubes (I and II) can be seen as dark areas with a low absorption lx
a < 0:1 cm�1 due to the fluorophore. The purely absorbing

II) with lx
a > 1 cm�1 is present in the center as a white elongated area.
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6. Discussion and summary

We have developed a reconstruction algorithm for recovering the spatial distribution of fluorescent

sources in highly scattering media. The code provides tomographic images of the fluorophore absorption

coefficient that can be used in molecular imaging of biological tissue. The presented reconstruction algo-
rithm includes two original aspects that have not been used before in fluorescence tomography.

First, the forward model for light propagation is based on the ERT and not the widely employed diffu-

sion approximation. By not relying on the diffusion approximation, this algorithm has the potential to pro-

vide more accurate solutions in cases where the diffusion approximation fails, such as in media with small

geometries, media with high absorption coefficients, or small source–detector separations. Having provided

an ERT-based reconstruction code we are now in the position to quantify the advantages in future studies.

Second, an adjoint differentiation method for fluorescence tomography has been developed. This method

is used to compute the derivative of an objective function to provide search directions for the nonlinear
optimization technique. By applying the chain rule of differentiation to all transport sweeps of the forward

algorithm the derivative can be built up in an iterative manner. The chain rule can be executed in two dif-

ferent ways, either in the forward direction or reverse direction of the numerical code of the light propa-

gation model. By applying the chain rule of differentiation in the forward direction matrix–matrix

multiplications need to be performed for all transport sweeps as can be seen in Eq. (38). On the other hand,

in the reverse or adjoint direction, as shown by Eqs. (40) and (41), only matrix–vector multiplications are

necessary that considerably decreases the amount of computational operations. The adjoint differentiation

technique has also the advantage that the existing code of the forward model can be utilized to compute the
derivative. A numerical implementation of an adjoint ERT as shown, for example, by Ustinov et al. [95] is

not required.

In general, the tomographic images calculated from experimental measurement data show a qualitatively

accurate distribution of the fluorophore absorption coefficient [Figs. 4 and 5] and the total absorption coef-

ficient [Fig. 6]. The fluorescent tubes I and II can clearly be resolved with the original diameters of 0.2 cm in

a tomographic plane for a specific depth d. The depth resolution is not as good since detectors were only

placed on the top plane opposite to the sources. In order to obtain a better depth resolution the medium

needs to be illuminated and the escaping light needs to be measured from different views. We further ob-
serve that the resolution of the fluorescent images is higher than the images of the total absorption. We still

notice image artifacts close to the detector plane (d � 0.1 cm) and to the source plane (d � 1.3 cm) as can be

seen, for example, in Fig. 5. These artifacts are most likely caused by the high sensitivity of the objective

function with respect to changes in the fluorophore absorption coefficient in the vicinity of source and

detector points.

We used two different types of measurement data for reconstructing the fluorophore absorption dis-

tribution. First, only measurement data at the emission wavelength were employed, and second, measure-

ment data at the emission and excitation wavelengths were used. In the first case, the image
reconstruction method was able to reconstruct qualitatively the fluorophore absorption distribution.

The tomographic images in Fig. 4 show both fluorescent tubes with a significantly higher light emission

than the background medium. However, no quantitative information, i.e. the absolute fluorophore

absorption coefficient, could be retrieved because of unknown excitation source strengths and unknown

intensity losses at the tissue–air interface. Quantitative information of lx!m
a ðrÞ may still be obtained by

using a set of reference solutions with well-known concentrations of Cy5.5. Furthermore, our reconstruc-

tion results show that all numerical approximations and assumptions made within the light propagation

model (step method, S6 approximation, DE method) and within the optimization process (using approx-
imate partial derivatives for the adjoint differentiation, uncertainty of intrinsic optical parameters) have

relatively little impact on the qualitative image reconstruction. On the other hand, the reconstructed

images are noisier when compared to images in Fig. 5 that uses re-scaled measurement data. That is
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mostly due to the unknown intensity losses which is dependent on each individual source and detector

point position.

In the second case, where measurements at the emission and excitation wavelengths are used, the uncer-

tainties of unknown intensity losses can be overcome. This is achieved by re-scaling the measurements at km

prior to reconstruction with measurements at kx taken from the homogeneous medium. In this way we
could reconstruct images with little noise as shown in Fig. 5. Besides that, we were also able to determine

the absolute fluorophore absorption coefficient. That enables us to derive the fluorophore and molecular

probe concentration for a future small animal imaging system without employing reference solutions of

Cy5.5. Another important characteristic of using re-scaled measurement data are that it may correct short-

comings of the used light propagation model. For example, the reconstruction method may be less prone to

errors introduced by a coarse spatial Cartesian grid or errors caused by ray-effects and false scattering

[69,100]. In contrast, a reconstruction code that uses re-scaled measurement data may not be able to model

correctly light propagation in physical domains where the same code might work when unprocessed data
are used.

Besides the distribution of the fluorophore absorption lx!m
a , we can also reconstruct the total absorption

distribution lx
a ¼ lx!

a þ lx!m
a as illustrated in Fig. 6 that shows all three tubes. This example is of particular

interest, because it deals with a non-diffusive regime. In Tube III the absorption coefficient ðlx
a > 1 cm�1Þ is

approximately six times smaller than the reduced scattering coefficient l0x
s ¼ ð1� gÞlx

s ¼ 6 cm�1 of the

background medium. Hielscher et al. [101] have shown that the diffusion model inaccurately describes light

propagation in this domain.

Despite the ill-posedness of the inverse source problem we still achieve quite accurate reconstruction re-
sults. In our example we have an underdetermined inverse problem with 23,534 unknowns but only 4800

measurement data. That we nevertheless get reasonable results may be explained by two major aspects.

First, only 1.21% of the phantom�s volume contained fluorophores with a fluorophore absorption coeffi-

cient lx!m
a larger than zero. The remaining phantom volume (98.79%) had no fluorescent properties with

lx!m
a ¼ 0 cm�1. Since we started the optimization process from an initial guess ½lx!m

a �0 ¼ 0 cm�1 we as-

signed to most of the unknown fluorophore absorption coefficients the correct value. This is a reasonable

approach, as this mimics the practical situation. In practice, an administered fluorescent molecular probe

will mainly accumulate in the side of interest, while the rest of the tissue will not show increased levels of
fluorophore concentration. Therefore, an initial guess of ½lx!m

a �0 ¼ 0 cm�1 for the entire medium will pro-

vide an initial guess close to the true solution, which will often result in a satisfactory convergence of the

optimization process.

Second, due to the source–detector configuration of the experimental set-up we have a limited field of

view (FOV). Consequently, the objective function is most sensitive to a fluorophore absorption distribution

within a phantom volume that is enclosed by the source area (2.16 cm2) and detector area (4.75 cm2) on the

bottom and top plane of the phantom. The enclosed volume with approximately 7000 unknown fluoro-

phore absorption coefficients only accounts for 30% of the entire phantom volume. Fluorophore absorp-
tion coefficients lx!m

a outside of the targeted volume do not or only little contribute to the overall

sensitivity dU=dlx!m
a of the objective function U. Hence, the inverse source problem becomes less

underdetermined.

The presence of measurement noise and a model error prohibit the uniqueness of the inverse problem. A

comprehensive uncertainty analysis, that describes the impact of the measurement error on the image error,

has not been performed yet, neither for transport-theory-based reconstruction methods nor for the widely

applied diffusion-theory-based reconstruction methods. In the future, other approaches could be considered

to decrease the ill-posedness. For example, some researchers employ different regularization methods such
as Tikhonov regularization; or the inverse source problem can also be formulated within a Bayesian frame-

work that allows the incorporation of prior knowledge and uses all available information about the prob-

lem model (forward and inverse model) within the objective function [48].



342 A.D. Klose et al. / Journal of Computational Physics 202 (2005) 323–345
Acknowledgments

This work was supported in part by a postdoctoral fellowship awarded to Dr. Klose from the Ernst

Schering Research Foundation, Germany, and a grant from the National Institute of Biomedical Imaging

and Bioengineering (5 R33 CA 91807-3), which is part of the National Institutes of Health. We also thank
Dr. Gassan Abdoulaev (Department of Biomedical Engineering, Columbia University) and Dr. Guillaume

Bal (Department of Applied Mathematics, Columbia University) for helpful comments reviewing this

paper.
References

[1] R. Weissleder, U. Mahmood, Molecular imaging, Radiology 219 (2001) 316.

[2] P.R. Contag, Whole-animal cellular and molecular imaging to accelerate drug development, Drug Discovery Today 7 (2002) 555.

[3] R.J. Gillies, In vivo molecular imaging, J. Cell. Biochem. Suppl. 39 (2002) 231.

[4] T.F. Massoud, S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light, Genes

Dev. 17 (2003) 545.

[5] R.G. Blasberg, Molecular imaging and cancer, Mol. Cancer Therap. 2 (2003) 335.

[6] R.G. Blasberg, J.G. Tjuvajev, Molecular-genetic imaging: current and future perspectives, J. Clin. Invest. 111 (2003) 1620.

[7] S.R. Cherry, In vivo molecular imaging and genomic imaging: new challenges for imaging physics, Phys. Med. Biol. 49 (2004)

R13.

[8] D. Piwnica-Worms, D.P. Schuster, J.R. Garbow, Molecular imaging of host-pathogen interactions in intact small animals, Cell.

Microbiol. 6 (2004) 319.

[9] J. Allport, R. Weissleder, In vivo imaging of gene and cell therapies, Exp. Hematol. 29 (2001) 1237.

[10] C. Bremer, V. Ntziachristos, R. Weissleder, Optical-based molecular imaging: contrast agents and potential medical

applications, Eur. Radiol. 13 (2001) 231.

[11] D.J. Bornhop, C.H. Contag, K. Licha, C.J. Murphy, Advances in contrast agents, reporters, and detection, J. Biomed. Opt. 6

(2001) 106.

[12] K. Licha, Contrast agents for optical imagingTopics in Current Chemistry, vol. 222, Springer, Heidelberg, 2002, pp. 1–29.

[13] R. Weissleder, V. Ntziachristos, Shedding light onto live molecular targets, Nat. Med. 9 (2003) 123.

[14] G. Choy, P. Choyke, S.K. Libutti, Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent

optical imaging in cancer research, Mol. Imaging 2 (2003) 303.

[15] J.E. Bugaj, S. Achilefu, R.B. Dorshow, R. Rajagopalan, Novel fluorescent contrast agents for optical imaging of in vivo tumors

based on a receptor-targeted dye-peptide conjugate platform, J. Biomed. Opt. 6 (2001) 122.

[16] A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grötzinger, Receptor-targeted
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