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Abstract: In frequency-domain optical tomography (FDOT) the quality of 

the reconstruction result is affected by the choice of the source-modulation 

frequency. In general the accuracy of the reconstructed image should 

improve as the source-modulation frequency increases. However, this is 

only true for noise-free data. Experimental data is typically corrupted by 

noise and the accuracy is compromised. Assuming the validity of the widely 

used shot noise model, one can show that the signal-to-noise ratio (SNR) of 

the amplitude signal decreases with increasing frequency, whereas the SNR 

of the phase shift reaches peak values in the range between 400 MHz and 

800 MHz. As a consequence, it can be assumed that there exists an optimal 

frequency for which the reconstruction accuracy would be highest. To 

determine optimal frequencies for FDOT, we investigate here the frequency 

dependence of optical tomographic reconstruction results using the 

frequency-domain equation of radiative transfer. We present numerical and 

experimental studies with a focus on small tissue volumes, as encountered 

in small animal and human finger imaging. Best reconstruction results were 

achieved in the 600-800 MHz frequency range. 
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1. Introduction 

Frequency-domain optical tomography (FDOT) is an emerging biomedical imaging modality 

[1-4]. This method estimates the spatial distribution of optical properties in tissues by 

analyzing the amplitude and phase shift of transmitted amplitude-modulated light measured at 
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boundary surfaces. State-of-the-art image reconstruction codes employ a frequency-domain 

forward model of light propagation that leads to predictions of measured values on the 

boundary, assuming a certain distribution of optical properties inside the medium [1,5-9].  In 

these so-called model-based iterative image reconstruction (MOBIIR) codes an objective 

function is defined that quantifies the differences between model predictions and actual 

measurements. The minimum of this objective function is sought by updating the parameters 

of the forward model. Light propagation in tissue is typically modeled either by the equation 

of radiative transfer (ERT) [10] or by its diffusion approximation (DA) [11].  

Imaging of small tissue volumes is an area of great interest, mainly fueled by advances in 

small animal models of human diseases [12,13]. These models allow the study of disease 

genesis, progression and treatment and have already provides many new insights, especially 

in the case of cancer [14,15,16,]. Another promising application is imaging of fingers for the 

diagnosis of joint diseases [17-19]. 

Employing FDOT for imaging of small tissue volumes still poses a variety of challenges 

that have not yet been overcome. First of all, most frequency-domain reconstruction codes are 

based on the diffusion approximation to the equation of radiative transfer. This approximation, 

however, becomes less accurate when applied to small tissue-geometries and is further 

compromised if highly absorbing objects or fluid-filled regions, which contain, for example, 

cerebrospinal or synovial fluids, are considered [11]. Transport-theory-based codes can 

accurately model these types of tissues, and first algorithms [1,5,6,10] of this kind were 

recently developed. However, these codes have used the low-order spatial differencing 

scheme called the step (or upwind) scheme [20], which causes false scattering and can lead to 

large errors in predicted amplitudes and phase shifts, especially when small tissue geometries 

are considered. Therefore, in this study we make use of the second-order scheme [21].  

But even with this code in place, a practical challenge is to find optimal source-

modulation frequencies at which to perform optical tomographic imaging. In small tissue 

geometries, the phase-shift at low frequencies is typically very small and difficult to measure. 

Increasing the modulation frequency leads to larger phase shifts, but at the same time the 

amplitude signal decreases. Toronov et al. [22] and Gu et al. [23] have studied these tradeoffs. 

Gu et al. employed a transport-theory-based frequency-domain forward model. In numerical 

studies they have shown that for typical geometries encountered in small animal imaging, 

highest signal-to-noise-ratios (SNRs) can be achieved in the 400-600 MHz frequency range. 

What has not been done, however, is to show how these different SNR values in the measured 

data affect the reconstruction results. In this study we look to find source modulation 

frequencies that result in best image quality over a broad range of optical properties. We show 

results of numerical studies and experiments on tissue phantoms with well characterized 

optical properties that mimic small animals and human fingers. 

2. Methods 

2.1. Model of light propagation  

In frequency-domain imaging systems, the light source is amplitude modulated at frequencies 

in the 50-1000 MHz range, and the demodulation and phase shift of the resulting photon-

density waves are measured. It has been shown that, in general, the quality of frequency-

domain reconstructions [1,5] is superior to the steady-state approach.  

The frequency-domain forward problem for light propagation in turbid media can be 

accurately modeled by the frequency-domain equation of radiative transfer (FD-ERT) [1,5], 

given by 

π

Φ
π

4

( ) ( , , ) ( ) ( , , ) ( , , ) ( , ) ( , , )
4
s

a s m

i
d S

c


                      r r r r ,  (1) 
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where (r,,) is complex radiation intensity in unit [W/cm
2
/sr.], a and s are the 

absorption and scattering coefficients, respectively, in units of [cm
-1

],  is the external source 

modulation frequency and c is the speed of light inside the medium, (+
,) is the scattering 

phase function that describes scattering from incoming direction +
 into scattering direction 

,  and ( , , )mS r  is the source term due to medium emission. In this work we employ the 

widely used the Henyey-Greenstein phase function [24], which is given by  

2

2 3/2

1

(1 2 cos )

g

g g 


 

 
.                                 (2) 

Furthermore, to be able to consider the refractive index mismatch at air-tissue interface [7,20],
 

we implemented a partially-reflective boundary condition as 

0

0 0
( , , ) ( , , ) ( , ) ( , , )

b b
b b b bn n

R     
 

        r r r 
,         (3) 

where R(,) is the reflectivity at Fresnel interface from direction  to direction , 

0
(rb,,) is the radiation intensity due to the external source function and subscript b  

denotes the boundary surface of the medium, while bn


 is the unit normal vector pointing 

outwards the boundary surface.  

To find numerical solution for these equations, the spatial and angular variables have to be 

discretized. In particular, we employ a node-centered finite-volume discretization [21,25] in 

the spatial domain and use a discrete ordinate approach [20] for the angular domain. The 

node-centered finite-volume method takes advantage of the beneficial properties of both the 

finite-element and finite-volume methods, thus combining the conservation properties of the 

finite-volume formulation and the geometric flexibility of the finite-element approach [21]. 

When using the node-centered finite-volume discrete-ordinates method, the discretized form 

of radiative transfer equation is obtained by integrating equation (1) over the control volume 

with a divergence theorem as 

Ω

Δ Φ
1 1

( ) ( )
4

surfN N
m m m m m m ms

j j j a s N N N
j m

i
n dA V w

c


    


  

 

      
,       (4) 

where Nsurf and N are the number of surfaces surrounding the node N and the number of 

discrete ordinates based on the level symmetric scheme [20], respectively, jn


 and 
m
j  denote 

the surface normal vector and the radiation intensity defined on the j -th surface. Also the 

surface intensity 
m
j  is related to the nodal intensity 

m
N  by the second-order spatial 

differencing scheme [21]. After discretizations for all nodes, the resulting algebraic equations 

can be written as follows                      

Au b ,                                              (5) 

where each line of the matrix A  contains the coefficients of the discretized equation at node 

number N  and direction m [27]. The vector u  denotes the radiation intensity vector and  the 

vector b  is the vector of implementing both the discretized boundary condition and the 

source term. The sparse matrix given by Eq. (5) contains complex-valued elements since we 

treat the frequency-domain equation of radiative transfer Eq. (1) directly, instead of separating 

it into two real-valued equations as found in other works [1,6]. As a result, the complex-

valued sparse, linear system of equations given by Eq. (5) is iteratively solved for intensity 

into a discrete-ordinate direction by using a complex version of the GMRES Krylov-subspace 

solver [1,10,28]. In this study we employed the lower-upper-symmetric Gauss-Seidel 

(LUSGS) preconditioning matrix that outperforms the incomplete lower-upper (ILU) matrix 

[29,30].   
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The FD-ERT is used as a forward model within a model-based-iterative image 

reconstruction (MOBIIR). Therefore, the FD-ERT provides the prediction of the detector 

readings that are to be compared with actual measurements. Next we discuss the inverse 

model, which is used to obtain the spatial distribution of optical properties that best fit the 

measured data. 

2.2. Inverse model 

The inverse problem associated with optical tomography is to find the vector 
1 1( ,..., , ,..., )t tN N
a a s sx      that describes the spatial distribution of the optical properties 

inside the medium, given the measurement data obtained on the surface of the medium. This 

begins by defining an objective function that quantifies the mismatch between predicted and 

measured amplitude and phase shift of the photon density waves that travel through the 

medium. As mentioned in the introduction, as the source modulation frequency increases, the 

amplitude signal decreases and the phase shift increases. 

This leads to different magnitudes of errors in the amplitude and phase-shift 

measurements. In other words, the standard deviation is not only position-dependent, but it is 

also a function of frequency [22,23]. Accordingly the objective function has to be designed so 

that it can treat position-and frequency-dependent magnitudes of errors with different weights. 

In this study, we chose the weighted least-square error norm [31] given by  

*

, ,

1 1 , ,

1
min     ( ; )

2

s dN N
d s s d d s s d

s d s d s d

Q u z Q u z
f x u

  

                
 ,             (6) 

where 
s
N  and 

d
N  are the numbers of sources and detectors used, dQ  is the measurement 

operator that maps the calculated radiance vector 
s
u into predictions d sQ u of measurements 

,s dz  for source-detector pairs ( , )s d , ,s d  denotes the complex standard deviation at ( , )s d  

source-detector pair, and the operator 
*()  denotes the complex conjugate of the complex 

vector. Thus the optimization problem in Eq. (6) is characterized by tN N  forward variables 

and tN (or 2 tN ) inverse variables. With the objective function given by Eq. (6), less precise 

data is given a smaller influence over the solution, whereas precisely measured data is 

weighted stronger to have a large influence on the solution [31]. To obtain a stable solution, 

the optimization process should be stopped when the value of ( ; )f x u  is similar to the 

magnitude of the errors.  

 Furthermore, in this study the calculation of the gradient vector of the objective function 

with respect to each of unknown parameters is performed with an adjoint formulation 

[1,5,6,32]. In the frequency domain this can be formulated as  

,

1 ,

dN
d s s dT T

s d
d s d

Q u z
A Q







        
 ,                                (7) 

where 
TA denotes the adjoint operator equivalent to the transpose of the sparse matrix A  in 

Eq. (5).  Equation (7) is solved by the iterative GMRES method. The gradients of the 

objective function is obtained by differentiating ( ; )f x u  given by Eq. (6) with respect to 

( , )i i i
a sx    at the i -th control volume iV  as 

 
Re

1

s

i
a

N
T i

s s
s

f V u


 


  ,                         (8) 

1 Re

1
( )

4

s

i
s

N
T i

s s s
s m

f V u u w


 
 

        
  ,                 (9) 
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which represents the gradient vector ( , )a srg f f    . Finally the unknown optical 

properties are iteratively updated by using the limited-memory version of the BFGS 

optimization method [32]. 

 3. Results 

3.1. Numerical studies 

3.1.1. Analysis of SNR values using numerical phantoms 

Before we show results on how amplitude and phase noise influence the tomographic 

reconstruction results, we generalize some of the findings reported by Toronov et al. and Gu 

et al.. This will help us later in interpreting the results found in the reconstruction studies. 

The noise model introduced by Toronov et al. [22] and modified by Gu et al. [23], is 

given by: 

Φ ΦAC ACSNR = ;    SNR  = SNR
AC

AC AC

DC 


   ,           (10) 

where AC  and   are the standard deviations of the amplitude and the phase shift 

respectively, and   represents the ensemble average of the corresponding quantity.  AC  

and   are proportional to DC  and /DC AC , respectively, i.e., the phase noise increases 

with the frequency. This model is used to assess the SNR for a geometry specific to our study. 

In previous publications it has already been shown that the optical properties of the 

background medium have a strong influence on the SNR value, whereas small perturbations 

in either absorption or scattering, have little affect on the SNR, unless their volume is larger 

than that occupied by the background medium.  

 We start by studying the frequency dependence of the SNR value by changing the 

intrinsic optical properties of a homogenous medium for a specific geometry. To this end we 

consider a 3-cm by 3-cm square phantom with a homogenous distribution of optical 

properties in the medium as shown in Fig. 1. The synthetic data are generated by solving the 

frequency-domain transport Eq. (1) and corrupting the result by Gaussian random noise 

according to the noise model given in Eq. (10). We have obtained the SNR values at specified 

locations (see Fig. 1) from running forward simulations in the range of 0.05 cm
-1

  a   0.5 

cm
-1

 for the absorption coefficient and in the range  of 5.0 cm
-1

  s   20 cm
-1

 ) for the 

Table 1. Optical properties of the homogeneous numerical phantom for the SNR study. 

Case a (cm-1) s (cm-1) 

1 0.05 5 

2 0.05 20 

3 0.5 5 
4 0.5 20 

 
 

Fig. 1. Schematic of the numerical phantom used in this section. The source location is 

indicated by the read arrow, and the detector positions are given by the black arrows. 
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reduced scattering coefficient (see Table 1). The SNR values for the amplitude and the phase 

shift are shown in Figs. 2 and 3. Note that all the values are normalized to the SNR values at 

100 MHz since the proportionality constants in Eq. (10) are not explicitly known.  

Comparing Figs. 2(a) and 2(b), we observe that keeping a constant and increasing s , 
the frequency dependence of the SNR becomes more pronounced. On the other hand, when 

we keep  s  constant and increase a from 0.05 to 0.5 cm
-1

, the frequency dependence of the 

amplitude SNR becomes less pronounced [see Figs. 2(a) and 2(b)]. This behavior can be 

understood by introducing the formal solution [20]
 
of the frequency-domain transport 

equation at specified angular direction   

0
( ) ( )

0
( , , ) (0, , ) ( )

s s

a s a s
s

i isds ds
c c

s
s e Q s ds e

 
   

    
            .       (11) 

Here the first term is the contribution from the boundary on the opposite side, exponentially 

attenuated through the distance from 0 to s . Thus the first term is always zero unless it has an 

external source on the opposite side. The overall source term ( )sQ s  is defined as 

4

( , , ) ( , , ) ( , , ) ( , )
4
s

s m
Q s S s s d




   


             ,   (12) 

where the first term is the medium emission (e.g.,  fluorescence) and the second term is the in-

scattering term. Thus the integrand of the second term in Eq. (11) is the contribution from the 

source term ( )sQ s at position s  due to the medium emission as well as in-scattering, 

exponentially attenuated through the distance from s   to s . It is now obvious from the 

                  
                                          (a)                                                                                       (b) 

                 
                          (c)                                                                                           (d) 

 
Fig. 2. Normalized SNR values for the AC signal as a function of source-modulation 

frequency for six different source-detector pairs (see Fig. 1 for reference). The 4 graphs 

show 4 sets of optical properties. The absorption coefficient a increases with a column, 

while the reduced scattering coefficient s increases with a row. 
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second term of Eq. (11) that the change in a has a stronger impact on the amplitude signal 

than the change in s . In other words, the increased a augments the exponential attenuation 

term, which makes the medium’s absorption more dominant than the frequency dependent 

absorption. That is why the curves on Figs. 2(b) and 2(d) look somewhat frequency-

independent.  

On the other hand the effect of scattering is more complicated since s involves both the 

source term ( )Q s  and the exponential decay exp[ ( / ) ]
s

a ss
i c ds      in Eq. (11). 

Accordingly an increase in s augments the exponential decay but, at the same time, 

increasingly dominates the source term due to in-scattering. As a consequence, the effect 

produced by a change in s  is moderately compromised according to the degree of scattering. 

This can be clearly seen from the first and second columns in Fig. 3: the change in frequency 

dependence is only minor for both cases.  

The frequency dependence of the phase SNR value is much easier to understand. Looking 

at the noise model in Eq. (10) one can see that the phase SNR equals the amplitude SNR 

multiplied by a phase shift.  As the source modulation frequency increases the amplitude SNR 

decreases, while the phase shift increases. Therefore one can assumed that there will be a 

certain frequency for which the phase SNR takes on a maximum value. And indeed, Figs. 3a 

and 3c show that there exist a modulation frequency between 400 MHz and 800 MHz for 

which the phase SNR is largest at all positions except for locations 1 and 2. We also found 

that the position of this maximum moves to higher frequencies when a  is increased [Figs. 

3(b) vs. 3(a), Figs. 3(d) vs. 3(c)] and s  is decreased [Figs. 3(c) vs. 3(a)]. Another finding is 

that the SNR of the phase shift improves with frequency regardless of s  when a  is 

increased [compare Figs. 3(a) vs. 3(b), and 3(c) vs. 3(d) for 200 MHz and 1 GHz].   

    
                                                (a)                                                                            (b) 

     
                                                (c)                                                                                (d) 

 
Fig. 3. Normalized SNR of phase shifts at various frequencies. The absorption coefficient 

a goes higher in the column direction, while the reduced scattering coefficient s goes 

higher in the row direction. 
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Overall we observe that the SNR value of amplitude and phase shift depend on the source 

modulation frequency, the optical properties of the medium and the position of the detectors 

for a given source. For the cases considered in this study, which are typical for small animal 

and finger joint imaging, the optimal source modulation frequency with respect to largest 

SNR values seem to lie between 400-800MHz for most source-detector pairs and optical 

properties. In the following section we will study the influence of source-modulation 

frequencies and measurement SNR values on the reconstruction results. We will start by 

considering synthetic data and later use experimental data to test our theoretical findings. 

3.1.2. Influence of SNR values on tomographic reconstruction results 

In this section we present the reconstruction results using the noise-added synthetic data, 

which is based on the noise model given by Eq. (10). To this end, we consider a 3cm-by-3cm 

square phantom with three inclusions shown in Fig. 4(a). The first two inclusions are highly 

scattering while the other object is highly absorbing. The optical properties of the background 

medium are a = 0.62 cm
-1

 and s = 7.62 cm
-1

, while the two highly scattering inclusions are 

given a = 0.1 cm
-1

 and s = 25.7 cm
-1

 and the purely absorbing object is given a = 1.2 cm
-1

 

and s = 7.62 cm
-1

. We first examined the frequency dependence of the SNR value by using 

the forward data. The results are shown in Figs. 4(b)-4(c). The amplitude SNR decreases only 

moderately (approximately 20%) and the phase SNR increases with frequency in all positions. 

This behavior is similar to the amplitude and phase shift SNR curves as shown in Figs. 2(b) 

and 2(d), and Figs. 3(b) and 3(d). This implies that even at higher frequencies the loss of 

amplitude information is only small and the quality of the reconstruction will improve by 

increasing the frequency. 

Next we performed reconstructions at 5 different source modulation frequencies (0, 200, 

400, 600, 800 MHz). As before, the noise-added synthetic data was generated by applying the 

noise model in Eq. (10). Furthermore, we normalized both amplitude and phase independently 

for measurements on each side of the square phantom, since the experimental data as will be 

shown later, was obtained in this way. The 4 sources were placed around the phantom surface 

with the 29 detectors, and all sources were amplitude-modulated. The same setup and same 

procedure were repeated for the 5 modulation frequencies. The reconstruction procedure was 

started with an initial guess that was identical to the optical properties of the background 

medium.  

To quantify the quality of reconstructed images, we used the correlation factor ( , )e r    

and the deviation factor ( , )e r    as introduced in reference [7]: 

2

11

( )( )( )
( , ) ,      ( , )

( 1) ( ) ( ) ( )

tt
NN

e re e r r
i i ti i i i

ie r e ri
e r e
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    
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 
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
.       (13) 

 
                             (a)                                             (b)                                                      (c) 

 
Fig. 4. Problem set up and normalized SNR values; (a) schematic of a square phantom; (b) 

amplitude SNR values; (c) phase SNR values. 
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Here   and ( )   are the mean value and the standard deviation for the spatial function of the 

optical property that can be either the absorption coefficient a or the s .  Similarly, e  and 
r  are the exact and reconstructed distributions of optical properties, respectively. In terms of 

quality of the reconstruction results, the correlation coefficient indicates the degree of 

correlation between exact and estimated quantities while the deviation factor describes the 

discrepancy in absolute values of exact and estimated quantities. Accordingly, the closer 

( , )e r    gets to 1, and the closer ( , )e r    gets to 0, the better is quality of the 

reconstruction.  

The reconstructed images are shown in Fig. 5. Note that data points within 2mm from the 

boundary are excluded in the calculation of ( , )e r    and ( , )e r    in order to avoid 

simulation artifacts near the boundary surface. As can be seen in Fig. 5 there is considerable 

cross-talk between scattering and absorbing objects in the DC case ( f  = 0 MHz). Therefore, 

the two scattering inhomogeneities appear in the absorption maps and the absorbing object 

appears in the scattering reconstruction. As the source-modulation frequency is increased the 

cross-talk is greatly reduced and the reconstruction separates the absorbing and scattering 

objects.  

Figure 6(a) shows that the correlation factor ( , )e r    is largest at 800 MHz and smallest 

at 0 MHz, which is in good agreement with the results shown in Fig. 5. Note that the 

scattering images are more accurate than the absorption images for all frequencies when the 

correlation coefficient is considered. The deviation factor ( , )e r    of the scattering images 

gradually decreases with frequency and yields the smallest value at ~800 MHz. This is to be 

expected because the phase SNR improves steadily with frequency and this improvement 

leads to better reconstructions of s in the image.  

     

     
              Exact                      0 MHz                 200 MHz            400 MHz           600 MHz         800 MHz 

 

Fig. 5.  Reconstructed images of a and s  for 5 different source-modulation frequencies 

using a numerical phantom. Noise was added to the synthetic data in accordance with Eq. 

(10). 

 
(a)                                                                               (b) 

 

Fig.  6. Frequency dependence of correlation () and deviation () factors for the reconstructed 

images shown in Fig. 5. 
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It is well-known that the amplitude signal has more impact on the reconstruction accuracy 

of a . Hence at high frequencies one will lose more information about a . However for this 

particular case our observation shows that the image accuracy of a  improves steadily with 

increasing frequency. One explanation for this apparent paradox could be that the errors in 

amplitude and phase shift differ substantially. In other words, the amplitude SNR is decreased 

by only 20% at 800 MHz, whereas the phase SNR is improved by 300% at 800 MHz (see Fig. 

4). Thus the increase in phase SNR is large enough to compensate for the loss in the 

amplitude SNR; this leads to an overall improvement of the reconstruction results with 

increasing frequency. As shown in Fig. 6, the deviation factor ( , )e r    decreases with  

frequency and reaches the smallest value (i.e., most accurate) at 600-800 MHz. It is also 

notable that the curves of ( , )e r    follows the reciprocal property of ( , )e r   ; ( , )e r    is 

largest when ( , )e r    is smallest and vice versa. 

  3.2. Application to experimental data from general tissue phantoms 

With numerical results at hand, we studied the influence of the frequency-dependent SNR on 

the quality of reconstructions performed with experimental data. For this purpose we 

reconstructed the frequency-domain data obtained for two small-volume phantoms whose 

optical properties are nearly identical to those used in the numerical studies. We first give a 

brief description of our frequency-domain instrumentation and the phantom used. 

3.2.1. Frequency-domain imaging system 

The frequency-domain system [33] is designed for fast two-dimensional imaging of 

modulated light diffusely transmitted through small-tissue volume. As shown in Fig. 7, the 

main components of the system are the illumination part, the detection system, and the 

modulation sources for the light source and detector. The master signal generator provides a 

sinusoidal AC input to the laser diode driver that supplies the laser diode (wavelength λ=670 

nm) with a bias and AC current. The laser illuminates the surface of the object. The position 

of the laser spot is adjusted with translation stages. The modulated light transmitted through 

the object is imaged by a lens to an intensified CCD (ICCD) camera. 

The system operates in homodyne mode, i.e. the gain of the ICCD is modulated by a slave 

signal generator at the same frequency as the laser. As a result a steady state image at the 

intensifier output is imaged to the CCD. The signal in every pixel depends on the phase 

between source and detector modulation. Master and slave signal generators are linked 

together and the phase delay is adjustable. To detect the complete oscillation of the 

modulation multiple images are taken at phase delays covering the range of 2π and are 

transferred to a computer. 

      
(a)                                                                                       (b) 

Fig. 7. Experimental setup of the frequency-domain system; (a) photograph; (b) schematic: 
1. Laser diode, 2. Laser diode drive, 3. & 7. Signal generator, 4. Sample, 5. Lens, 6. ICCD 

camera, 8. High rate imager, 9. Computer. 
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The system is controlled via a graphical user interface. From the stack of images two-

dimensional amplitude and phase images are calculated by fast Fourier transformation (FFT) 

in every pixel. More details concerning this setup can be found in the reference [33]. 

3.2.2. Square phantom 

The phantom with a square base has three holes along the z-direction. The sides are 

numerated as I, II, III and IV and their dimensions are shown in Fig. 8(a). The holes are filled 

with whole milk (fat content 3.5%) as a purely scattering perturbation or with Evans Blue 

solution as purely absorbing perturbation.  

The measurements were made with a setup in which the laser and the camera are arranged 

at a right-angled as shown in Fig. 8(b). The phantom is illuminated at the center of each side.  

The distance from the object plane to the lens (50 mm, set to f/2) is approximately 20 cm, 

which forms the aperture angle of 7 degree when viewed from the optical components. On the 

CCD, an 8x8 binning is used that yields an image scale at which 1 mm equals 2.3 pixels. To 

image one side of the phantom with right-angled illumination, the phantom, mirror, and 

camera are moved so that the distance between phantom and camera is kept constant and the 

laser beam hits the phantom surface directly and not via the mirror [see for example Fig. 8(b), 

where the source is located side I and measurements are taken on side IV]. To image the 

phantom sides with illumination at the opposite side, e.g., illumination at side II and detection 

at side IV, the laser beam is redirected by the mirror [Fig. 8(c)]. At right-angled illumination 

we inserted a neutral density filter (NG9, D1.6, transmission T = 0.011) because the detected 

intensity was much higher than during the illumination at the opposite side. We used the three 

sides for the measurements, for example, with illumination at side I and measurements taken 

on sides II, III, IV. The illuminated side was excluded from measurements and 

reconstructions.  

 

 
        Exact                             0 MHz             200 MHz             400 MHz             600 MHz             800 MHz 
 

Fig. 9.  Reconstruction images of a and s  for a tissue phantom, with well-known optical 

properties. The source modulation frequency was varied from 0 to 800 MHz. 

 

 
                        (a)                                          (b)                                                   (c) 

 

Fig. 8. Schematic of an experimental square phantom; (a) dimensions; (b) & (c) camera 

orientation for measurments. The CCD camera is fixed to the left side from the phantom. The 

turning arrow indicates that measurements are taken counterclockwise over the three sides.  
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  All images were calibrated with respect to photocathode non-uniformity and to amplitude 

and phase of the laser source, measured by introducing neutral density filters. Therefore, the 

amplitude is relative to the filter transmission. The different positions of the phantom for 

opposite and right-angled illumination cause a difference in the optical path length and 

therefore a phase delay. We measured the phase delay for this path and excluded this phase 

delay in the calibration procedure. A phase delay can be quite accurately calibrated, but the 

amplitude signal is still relative to its absolute value because of some unknown filter effects. 

Therefore, for the image reconstruction we chose to use the normalized data that can eliminate 

this ambiguity. We obtained the measurement data at four frequencies: 0 (steady state), 200, 

400, 600 and 800 MHz.   

The reconstruction results are shown in Fig. 9. As already observed in the numerical 

studies, the DC data reveals strong crosstalk between scattering and absorption 

inhomogeneities. Using data obtained at higher source modulation frequencies, the cross-talk 

can be greatly diminished. The accuracy measures of these images in terms of correlation and 

deviation factors are also similar to those obtained from numerical studies (see Fig. 10). For 

the a  reconstruction, the correlation factor ( , )e r    increases with increasing frequency 

whereas the deviation factor ( , )e r    decreases with frequency. The s  reconstructions 

show a maximum ( , )e r    and a minimum ( , )e r   at 600 MHz whereas a  

reconstructions show largest correlation rho and smallest deviation delta at 800 MHz. 

 3.3. Finger phantom 

To extend our analysis to some practical applications, we furthermore considered 

measurements on a tissue phantom that mimics a human finger. It has been shown that 

 
 

Fig. 10. Correlation () and deviation () factors for the reconstructed images shown in Fig. 9. 

 
                                         (a)                                                                                    (b) 

 

Fig. 11.  Structure of a finger phantom; (a) layout of major parts; (b) schematic of source-
detector configuration. 
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measurements of light transmission through finger joints can be used to obtain information on 

the physiologic state of the joint [17,18]. However all studies performed so far were limited to 

continuous wave data. As we have just shown, in this case, significant cross-talk between a  

and s can occur. In this study we explore the hypothesis that better images of the finger joint 

can be obtained using frequency-domain data. 

To this end we consider a finger phantom of well-characterized optical properties as 

introduced by Netz et al. [33], which is shown in Fig. 11. The optical properties of this 

phantom can be varied and were adjusted to mimic the fingers of a healthy person and a 

patient with rheumatoid arthritis (RA) (see Table 2). More details on this phantom can be 

found in the reference [33]. 

The experimental setup for this study is identical to the previously described system (see 

Fig. 7), except that the square phantom is replaced here by the finger phantom. For this 

experiment we illuminated the phantom with the laser source at 11 different locations, and 

measured the transmitted light intensity with the CCD camera [Fig. 11(b)] at 5 different 

source-modulation frequencies (0, 200, 400, 600 and 800 MHz). At each frequency we 

scanned the phantom several times to improve the SNR of the measured data. In concordance 

with our previous work [17,18], 31 detector readings were taken on the opposite surface of the 

side that was illuminated with the laser.  

We start our analysis by comparing the difference in amplitude and phase shifts obtained 

at 600 MHz for the phantom representing a healthy person and a patient affected by RA. As 

can be shown in Fig. 12(a), the amplitude signal gradually increases towards the center of the 

finger, where the joint cavity is located. This increase is more pronounced in the healthy case 

when compared to the RA case. This can be explained by the increase of both a  and s  in 

the joint fluid and capsule. As for the phase delay, the RA phantom yields larger phase delays 

than the healthy phantom, which can be understood by the larger scattering coefficient of the 

joint fluid in the RA case.  

Table 2. Optical properties of the finger phantom shown in Fig. 11. The two sets of properties mimic the 

fingers of a normal healthy person and a patient affected by rheumatoid arthritis. 

 

 Healthy RA 
 

a [cm-1] s [cm-1] a [cm-1] s [cm-1] 

Bone 0.4 10 0.4 10 

Skin-tissue 0.15 10 0.15 10 
Capsule 0.8 3 1.2 6 

fluid 0.05 0.04 0.13 0.16 

 
(a)                                                                                (b) 

Fig. 12. Profiles of amplitude and phase shift obtained along the line-of-measurement at 

600MHz. The laser source is located at the joint center, on the opposite side of the 

phantom (see Fib. 11b). 
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We also examined the SNR values for the two cases. Figure 13 shows the SNR curves of 

amplitude and phase shifts obtained for a 10x10 pixel area opposite to the laser spot at the 

joint gap. It can be seen that the amplitude SNR weakly depends on the frequency, i.e., it 

decreases by only 2% per 100 MHz, whereas the phase SNR shows a strong dependence. It 

increases from 10 at 100 MHz to 80 at 800 MHz in the healthy case and 70 at 900 MHz in the 

RA case.  This behavior is consistent with the numerical studies of similar optical properties 

shown in Figs. 2 and 3.  

Three dimensional image reconstructions were performed using a computation domain 

that was discretized with 10234 tetrahedron elements as shown in Fig. 14. For the 

reconstructions we only used data from the center line of the images captured by the CCD 

camera.  The CCD image represents the projected image of the outgoing light distribution 

from the object’s surface onto the virtual imaging plane of the CCD camera. Thus it requires 

the knowledge of a projection operator to make use of the entire image for the detection 

geometry. However, this projection operator was not available at the time of measurement. 

All reconstructions were started with an initial estimate of a = 0.4 cm
-1

 and s  = 10 cm
-1

.  

 

 
(a)                                                                                      (b) 

Fig. 13. SNR values of amplitude and phase shift obtained for the real finger phantom; 

(a) no RA; (b) RA 

 
                       

                          (a)                                                                                                (b) 
 

Fig. 14. The schematic of the finger phantom: cylinder height H = 3.2 cm, diameter D = 
2 cm; (a) source-detector configuration; (b) computation domain with 11023 

tetrahedrons and simplified cross-section view of the orientation of the finger joint 

phantom (red: bone, blue: synovial fluid, green: skin tissue). 
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Results of the reconstructions are shown in Figs. 15 through 18. Figures 16 and 18 contain 

complete 3D data sets that can be viewed using the interactive VolView software; while Figs. 

15 and 17 show representative 2-D cross-sections extracted from the 3D data sets. Looking at 

Figs. 15 and 16 one notices that the spatial distribution of optical properties varies much 

stronger in the healthy case, when compared to the results obtained for the finger phantom 

that mimics RA. This can be quantified by computing the minimum and maximum values of 

a and s . Table 3 summarizes these results for 5 different source-modulation frequencies. 

Evaluating the table one can see that in most cases the contrast (defined as ratio of maximum 

and minimum of a  and s  respectively) between the joint center and the other areas is 

larger in the healthy joint,  except at 0 and 200 MHz where the contrast in the scattering 

images is slightly larger in the RA case . Furthermore we observe that in most cases the 

contrast appears to be strongest at 0 MHz. The reason for that is not quite clear at this point, 

but may be related to the fact that we use the relative rather than absolute data. 

            
 
                               (a)                                                                                            (b) 

 

Fig. 16.  Interactive images using VolView software, obtained for Fig. 15. (a) Healthy 
(View 1). (b) Affected (View 2). 

 

 

         
                                  Healthy                                                                                 Affected RA 

 

Fig. 15.  Example of reconstructed distributions of a values for the healthy (left) and 

RA (right) finger phantom. In this case the source-modulation frequency was 600 MHz. 
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Table 3. Min. and max. values of reconstructed a  and s  for the ROI that covers the joint center and the bone 

area while excluding 2mm from the boundary. The values in parentheses represent the ratios (max./min.).  

 

 Healthy RA 

MHz a [cm
-1

] 

Min.     Max. 

s [cm
-1

] 

Min.    Max. 

a [cm
-1

] 

Min.     Max. 

s [cm
-1

] 

Min.   Max. 

0  0.12 1.7   (14.2) 2.5 28 (11.2) 0.14 1.71 (12.2) 1.9 28 (14.7) 

200 0.15 1.4   (9.3) 2.2 23 (10.5) 0.30 0.91 (3.0) 1.6 18 (11.3) 

400 0.19 1.2   (6.3) 2.0 18 (9.0) 0.34 0.74 (2.2) 4.5 15 (3.3) 

600 0.20 0.90 (4.5) 1.6 15 (9.4) 0.34 0.78 (2.3) 3.8 13 (3.4) 

800 0.16 0.91 (5.7) 1.3 15 (11.5) 0.36 0.68 (1.9) 4.9 13 (2.7) 

 
 

                 0 MHz                                                                400 MHz                                   600 MHz             

 

Fig. 17.  Reconstruction images of s obtained for the healthy finger-joint phantom at 

different frequencies. Note that the cross-talk in the bone is greatly diminished with 
increasing frequency. Note that the cross-talk in the bone is greatly diminished with 

increasing frequency. 

 

            
   

                            (a)                                                                                          (b) 

                 

Fig. 18.  Interactive images using VolView software, obtained for Fig. 17. The images 
are shown here for (a) 0 MHz (View 3) and (b) 600 MHz (View 4) only.  
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The loss in contrast at higher modulation frequencies is offset by the reduction in cross-

talk between absorption and scattering effects at higher frequencies (see Fig. 17 and 18). We 

found that the reconstructed images generated with 600 or 800 MHz source-modulation 

frequencies more closely reflect the true distribution of optical properties given in Table 2. 

For example, in the case of the healthy phantom, the reconstructed- a  in the bone area is 

approximately 1.4~1.7 cm
-1

 at lower frequencies, and decreases to the more accurate value of 

~0.9 cm
-1

 at higher frequencies (see Fig. 15, 16, and Table 3). Furthermore, according to 

Table 2, s ’s of the bone and the skin-tissue complex are the same. However, in the 

reconstructed s -image the lower frequency data reveals absorbing effect of the bone, while 

this effect is greatly diminished at higher frequencies (see Figs. 17 and 18). All these results 

comply well with the SNR characteristics shown in Fig. 13. 

3.4 Small animal studies 

In addition to the forgoing applications, we performed studies to explore how the choice of 

different source-modulation frequencies affects reconstruction results in small animal imaging. 

For these studies we use an anatomically accurate 3D model of a mouse shown in Fig. 19. The 

model was created from 90 axial magnetic resonance images with a slice separation of 0.6 

mm. Each image was segmented into a whole mouse section by thresholding in combination 

with some minimal manual smoothing. Furthermore, to perform numerical simulation that 

mimic the “real world” as close as possible, we used the noise-characteristics of the 

measurement system described in section 3.2.1 [33]. With the mouse model and the noise 

characteristic at hand, we simulated measurements at 5 source-modulation frequencies (0, 

200, 400, 600, 800 MHz) at several cross sections including the brain, lung, liver, and 

kidneys. These simulated measurements were input to our frequency-domain code and the 

reconstruction results were compared to the known target medium. As measures of the 

accuracy we calculated again the correlation factor ( , )e r    and deviation factor ( , )e r    

as defined in Eq. (15).  

 A reconstruction example is shown in Fig. 20. This figure shows a cross section through 

the model of the mouse’s head and the reconstruction results for a  (top row) and s  (bottom 

row) at source modulation frequencies of f = 0 MHz (steady state) and 600 MHz. Clearly 

visible is the much higher accuracy of the 600 MHz reconstructions. At f
 
= 0 MHz, a strong 

cross-talk between absorption and scattering effects can be observed, with the a  

reconstruction being too low and the s  reconstruction too high. Figure 21 shows the 

frequency-dependent values of ( , )e r    and ( , )e r    respectively for both a and s . It 

 
 

 
 

Fig. 19. Numerical model of a mouse anatomy. Black arrows indicate cross-section for which 

reconstructions results were produced. 

 

#99812 - $15.00 USD Received 9 Jul 2008; revised 15 Oct 2008; accepted 18 Oct 2008; published 21 Oct 2008

(C) 2008 OSA 27 October 2008 / Vol. 16,  No. 22 / OPTICS EXPRESS  18099



can be seen that the correlation coefficient ( , )e r    takes on a maximal value at 600 MHz 

for both a  and s  reconstruction. The deviation factor ( , )e r    is smallest at 600 MHz for 

the s  reconstruction, while for the a  reconstruction is smallest at 800 MHz. 

Similarly Figs. 22 and 23, show the frequency dependence of  ( , )e r    and ( , )e r     

for cross section through the lungs and liver. It can be seen that dependent on the particular 

cross section and dependent on the optical properties ( a  or s reconstruction), ( , )e r    and 

( , )e r    take on optimal values (largest in the case of ( , )e r    and smallest in the case of 

( , )e r    at different frequencies. For example a  reconstructions in the lung (Fig. 22) show 

a weak maximum of the value between 400-600 MHz. The deviation factor ( , )e r   has a 

clear minimum at f  = 600 MHz. Interestingly the  a  reconstruction yields a ( , )e r    that 

is worse (higher) at 200 MHz than in the steady state case (0 MHz). However, at 600 MHz, 

( , )e r    is clearly smaller better than at 0 MHz.  

 Overall these studies show that a frequency-domain system provides superior 

reconstruction results for the tissue intrinsic background optical properties compared to a 

steady-state. 

4. Conclusion 

In this work we have studied the frequency dependence of amplitude and phase shift on 

              

                 
 

                                        Exact                                          0 MHz                                 600 MHz 

 

Fig. 20. Cross-sectional images of a and s in the brain of the virtual mouse, obtained with 

source-modulation frequencies of  f = 0 MHz (steady state) and  f = 600 MHz. 

        
 

Fig. 21. Correlation ()(left) and deviation ()(right) factors for the reconstructed a and 

s images in a cross-section that includes the brain of the virtual mouse (see Figs. 19 and 20), 

obtained with the noise-added synthetic data at 0 (steady-state), 200, 400, 600, and 800 MHz. 
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optical properties typically encountered in small-tissue volumes. Employing an optical 

tomographic image reconstructions code that is based on the frequency-domain equation of 

radiative transfer, we have performed numerical and experimental studies to determine a 

range of frequencies for which the reconstruction results are best. 

First we examined the signal-to-noise ratios (SNR) of measurement data using the 

transport theory forward code and altering the optical properties of the medium. We found 

that an increase of s  in the medium makes the frequency dependence more dominant, 

whereas an increase of a  weakens the frequency dependence of the amplitude SNR value. 

We also showed that the source modulation frequency for which the highest SNR values are 

found increases when a  is increased and s  is decreased. Next we performed image 

reconstructions using numerical and experimental data obtained with two different two tissue 

phantoms: a simple square phantom with 3 inhomogeneities and an anatomically correct 

finger phantom. Furthermore we use numerical studies involving an anatomically correct 

mouse model to determine optimal frequencies for small-animal imaging. In general we found 

that best image qualities can be achieved if source-modulation frequencies in the 400-800 

MHz range are used. 
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Fig. 22. Same as Fig. 21, however for images of a cross-section that includes the lungs of 
the virtual mouse in Fig. 19. 

 

  
 

Fig. 23. Same as Fig. 22, however for images of a cross-section that includes the liver of the 

virtual mouse in Fig. 19. 
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