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PDE-Constrained Fluorescence Tomography With the
Frequency-Domain Equation of Radiative Transfer
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Abstract—We present the first fluorescence tomography algo-
rithm that is based on a partial differential equation (PDE) con-
strained approach. PDE methods have been increasingly employed
in many numerical applications, as they often lead to faster and
more robust solutions of many inverse problems. In particular, we
use a sequential quadratic programming (SQP) method, which al-
lows solving the two forward problems in fluorescence tomography
(one for the excitation and one for the emission radiances) and one
inverse problem (for recovering the spatial distribution of the flu-
orescent sources) simultaneously by updating both forward and
inverse variables in simultaneously at each of iteration of the op-
timization process. We evaluate the performance of this approach
with numerical and experimental data using a transport-theory
frequency-domain algorithm as forward model for light propaga-
tion in tissue. The results show that the PDE-constrained approach
is computationally stable and accelerates the image reconstruction
process up to a factor of 15 when compared to commonly employed
unconstrained methods.

Index Terms—Fluorescence tomography, frequency-domain
equation of radiative transfer (ERT), partial differential equation
(PDE) constrained optimization, sequential quadratic program-
ming (SQP).

I. INTRODUCTION

O PTICAL fluorescence tomography has emerged as a
new imaging modality that makes use of light-emitting

biomarkers, for diagnostic imaging of pathological changes
in tissues [1]–[7]. By recovering fluorescence measurement
data, this technique provides a spatial distribution of fluorescent
biomarkers in tissue, which can be used in preclinical and clini-
cal studies to monitor the migration of cells, the protein–protein
interaction and the progression of a disease including cancerous
tumors [5]. To this end, fluorescent biomarkers have been used
to target specific molecules that provide functional information
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about biochemical processes preceding the development of dis-
eases [6], [7]. Thus, fluorescence tomography allows for the
early detection of diseases on a molecular level before typical
symptoms or macroscopic changes appear.

Many imaging codes currently used employ a so-called
model-based iterative image reconstruction (MOBIIR) scheme
in which a forward model of light propagation in tissue is
needed [8]–[10]. The light distribution inside the medium can
be described by a system of two coupled forward equations: one
for the excitation radiance caused by an external light source
and one for the emission radiance by an internal fluorescent
source. For high-scattering, low-absorbing media, both exci-
tation and emission radiances can be accurately modeled by
the diffusion approximation (DA) to the equation of radiative
transfer (ERT) [11]–[19]. It is, however, well known that the
DA becomes less accurate when absorption is increased and the
medium is no longer scattering dominated. Problems also arise
in low-scattering regions, such as void-like, fluid-filled areas
and when small tissue volumes are considered, where boundary
effects dominate [20]–[24]. In small animal imaging, many of
these issues are encountered and the DA is of limited applicabil-
ity. The problems related to the DA can be overcome by using
the ERT that provides accurate prediction of light propagation
in all types of media [25], [26]. However, in general, the ERT
requires much longer computation times as compared to the DA
and are much more complex to implement. ERT-based image
reconstruction codes can take anywhere from several hours to
even days to solve one single image reconstruction case. Thus,
it is highly desirable to develop computationally efficient image
reconstruction schemes that allow for using the ERT for opti-
cal fluorescence tomography. Motivated by this background, we
have adapted a so-called PDE-constrained approach that makes
use of a reduced Hessian SQP (rSQP) method. In this approach
the forward and inverse problems are solved simultaneously,
which has shown in other applications [27]–[40] to lead to sig-
nificant savings in the total image reconstruction time.

Recently, our group has introduced the PDE-constrained ap-
proach to the field of optical tomography. However, that work
was limited to recover the absorption and scattering coeffi-
cients inside biological tissues and had not addressed the prob-
lems encountered in fluorescence tomography. First, using the
frequency-domain version of the radiative transport equation as
the forward model of light propagation in tissues, Abddoulaev
et al. [41] suggested an augmented Lagrangian method (ALM)
that solves the forward and inverse problems simultaneously.
In numerical phantom studies, they demonstrated that PDE-
constrained ALM codes can significantly reduce computation
times. Subsequently, Kim and Hielscher [42] replaced the ALM
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by the rSQP method and showed that even faster convergence
and higher numerical stability can be obtained. Using numerical
and experimental data, they observed an increase in the recon-
struction speed by up to a factor of 30 as compared to standard
codes that do not use PDE constraints. In the study at hand,
we have adapted the approach previously presented by Kim and
Hielscher to the problem of fluorescence tomography.

So far only one publication exists that applies the PDE-
constrained methods to fluorescence tomography. Recently,
Joshi et al. [43], [44] have reported on a Gauss–Newton-based
constrained method. However, their work used the frequency-
domain DA as a forward model of light propagation and not the
ERT. Moreover, the authors reported that the Gauss–Newton
approach is computationally more expensive than the reduced
Hessian approach with a BFGS updating formula.

In this paper, we go beyond past studies and present the first
PDE-constrained fluorescence image reconstruction algorithm.
The adaptation of the nonfluorescence code for problems in
fluorescence tomography is nontrivial. Inverse source problems
are known to be notoriously ill-posed and unlike in nonfluo-
rescence problems, two coupled ERTs for the excitation and
emission radiances have to be treated simultaneously in the
framework of PDE-constrained optimization. In the following,
we will first provide details on the structure and implemen-
tation of the fluorescence forward model (see Section II-A).
This is followed by a description of the implementation of
the PDE-constrained rSQP approach for fluorescence tomog-
raphy (see Section II-B–II-D). Subsequently, we evaluate the
performance of the PDE-constrained scheme using numerical
and experimental results (see Section III). We focus on com-
putational efficiency by comparing the new algorithm with
an unconstrained code that makes use of the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (lm-BFGS) method [45].
The lm-BFGS method is known to be the most efficient gradient-
based unconstrained optimization method [46], [47], and there-
fore, provides a good standard for comparison. Finally we draw
some conclusions in Section IV.

II. METHODS

A. Light Propagation Model

In frequency-domain optical fluorescence tomography, the
external light source is amplitude-modulated in the 10 Hz–
1 GHz frequency range and the demodulated transmitted inten-
sities and phase shifts are measured on the tissue surface, using
wavelength-dependent filters to distinguish between excitation
and emission signals.

The generation and propagation of fluorescence light in bi-
ological tissue can be accurately modeled by two coupled
frequency-domain equations of radiative transfer [47], [48] as

[
(∇ · Ω) + µx

a + µx
s + µx→m

a +
i�

c

]
ψx(r,Ω,�)

=
∫

4π

p(Ω′,Ω)ψx(r,Ω′,�)dΩ′ (1)

[
(∇ · Ω) + µm

a + µm
s +

i�

c

]
ψm (r,Ω,�)

=
∫

4π

p(Ω′,Ω)ψm (r,Ω′,�)dΩ′ +
1
4π

ηµx→m
a φ(r,�)

(1 − �τ(r))
.

(2)

The first equation describes the propagation of excitation light
emanating from the external light source and the second repre-
sents the propagation of emission light due to the fluorescent
source in tissue. Here, the superscripts x and m denote excitation
and emission, respectively. Hence, µx

a and µx
s are the absorp-

tion and scattering coefficients in units of cm−1 at the excitation
wavelength; µx→m

a is the absorption coefficient of a fluorescent
source in tissue, in unit of cm−1 ; µx

a and µx
s are the absorp-

tion and scattering coefficients in units of cm−1 at the emission
wavelength. ψx(r,Ω,�) and ψm (r,Ω,�) denote the excitation
and emission radiances, respectively, in units of W·cm−2 ·st−1 ;
η denotes the quantum yield by which the fluorescent source
emits light in transit from excitation state to ground state; τ(r)is
the local lifetime of a fluorescent source. Note that φ(r,�) ap-
pearing in (2) denotes the excitation fluence at position r defined
by φ(r,�) =

∫
4π ψxdΩ in unit W/cm2 . For a phase function

denoted by p(Ω′,Ω), we use here the Henyey–Greestein phase
function [49] that is commonly used in tissue optics. As shown in
(1), the excitation light ψx(r,Ω,�) is absorbed and scattered by
the intrinsic medium, and further attenuated by the fluorophore
absorption µx→m

a , and then excites a fluorochrome inside the
tissue at position r. The excited fluorophore constitutes a light
source inside the medium that reemits radiation ψm (r,Ω,�)
typically at longer wavelength [see (2)]. The local strength of
a fluorescent source is directly proportional to the local fluo-
rophore absorption µx→m

a φ(r,�) and the quantum yield η and
the local fluorophore lifetime τ(r).

The corresponding boundary conditions for the two coupled
equations are given

ψx
b |�nb ·Ω<0 = ψx0

∣∣
�nb ·Ω<0 + R(Ω′,Ω) · ψx |�nb ·Ω ′>0 (3)

ψm
b |�nb ·Ω<0 = R(Ω′,Ω) · ψm |�nb ·Ω ′>0 (4)

where R(Ω′,Ω) is the reflectivity at Fresnel interface [50] from
direction Ω′ to direction Ω, ψx0

b is the radiation intensity due to
the external source function and subscript b denotes the bound-
ary surface of the medium, while �nb is the unit normal vector
pointing outward the boundary surface. For discretization of the
two equations (1) and (2), we employ a node-centered finite-
volume approach in the spatial domain and a discrete ordinates
method in the angular domain. The node-centered finite-volume
method takes advantage of the beneficial properties of both the
finite-element and finite-volume methods by combining the con-
servation properties of the finite-volume formulation and the
geometric flexibility of the finite-element approach.

Following an unstructured finite-volume discrete-ordinates
method [42], [51], the discretized forms of the two ERTs given
by (1) and (2) are obtained by integrating (1) and (2) over the
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control volume with a divergence theorem as

N s u r f∑
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1
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where Nsurf and NΩ are the number of surfaces surrounding
the node N(=1, . . . , Nt) and the number of discrete ordinates
based on the level symmetric scheme, respectively, �nj denotes
the surface normal vector, and ψx,l

j and ψm,l
j denote the ex-

citation and emission radiances defined on the jth surface in
direction l. Also the surface intensities ψx,l

j and ψm,l
j are related

to the nodal intensities ψx,l
N and ψm,l

j by the second-order spatial
differencing scheme [51]. It can be easily seen that each ERT
involves Nt spatial unknown intensities coupled into NΩ direc-
tions, thus leading to the total Nt · NΩ unknowns. The system of
(1) and (2) can be solved by using any iterative solvers as far as
they are reliable. We employ here a matrix-based iterative linear
solver that enables updating all the radiation intensities ψx,l

N (or
ψm,l

N ) simultaneously, which leads to fast convergence as com-
pared to source iteration-based techniques. After discretization
for all nodes, we finally obtain two linear systems of algebraic
equations as

Axψx = bx (7a)

Am ψm = bm . (7b)

Each line denoted by i (i = 1, . . . , NtNΩ) of the matrix A
contains the coefficients of the discretized forms [see (7a) and
(7b)] established at node number N and direction l.

The excitation light source comes into the term bx after
discretization on a boundary node Nb , while the fluorescent
source comes into the term bm after discretization on internal
node N , as

bx,l
Nb

= −
∑

j

[
1 − max(nj · Ωl/

∣∣nj · Ωl
∣∣ , 0)

]
(nj · Ωl)Ajψ

0,l
Nb

(8a)

bm,l
N =

1
4π

ηµx→m
a φ(r,�)

(1 − �τ(r))
∆VN (8b)

where ψx0,l
Nb

is the external source function on boundary node
Nb in direction l.

Since we treat the frequency-domain equations of radiative
transfer directly, the matrix formulations given by (7) contain
complex-valued elements. As a result, the complex-valued al-

gebraic linear equations are solved with a complex version of
the generalized minimum residual (GMRES) solver [52], [53].

The two equations given by (1) and (2) provide the predictions
of the excitation radiance ψx,l

j and transmitted emission radiance
ψm,l

j on the boundary surface. Also these two equations are used
as the constraints within the PDE-constrained SQP method.
Next we discuss the inverse model, which is used to obtain the
spatial distribution of a fluorescent source inside the medium
that best fits the measured emission data.

B. PDE-Constrained Optimization for Fluorescence
Tomography

To understand the PDE-constrained approach to fluorescence
tomography, we first summarize the most important aspects, pre-
viously described in [42]. The optical fluorescence tomographic
problem can be formulated in more general terms as

min f(x, u)

s.t. C(x, u) = 0 (9)

where x ∈ Rn is the vector of inverse variables, u ∈ Zm is the
vector of forward variables, f(x;u) is an objective function that
quantifies the difference between measured and predicted in-
tensities and c(x;u) = 0 is a discretized version of combined
excitation and emission equations. The problem given by (9)
is often referred to as “PDE-constrained” optimization since
the optimal solution at minimum of f is constrained by equal-
ity condition c(x;u) = 0 represented by two partial differential
equations (PDEs).

Traditional methods for solving (9) is to treat the forward
variable u as a dependent variable of the inverse variable x,
i.e., u = c̃(x), which makes it possible to replace the prediction
vector u in f of (9) by its forward solution vector. As a result,
the problem (9) can be reformulated as

minf̃(x) = f(x, c̃(x)) (10)

which is often referred to as “unconstrained” because the equal-
ity constraint c(x;u) = 0 is eliminated in (10), i.e., f̃ is now a
function of x only. Thus, the forward solution u = c̃(x) has to
be obtained for evaluation of f̃ , i.e., the complete solutions of
the two ERTs are required for the excitation and emission radi-
ances at each of optimization iterations. As a consequence, the
associated optimization procedure becomes a computationally
very demanding process, both with respect to time and memory.
Nonetheless, this approach has been widely used for the solution
of optical fluorescence tomographic problems mainly because
of easiness of implementation. The existing fluorescence tomo-
graphic codes [11]–[19] belong to this approach: the conjugate
gradient (CG) approach [12], the quasi-Newton (QN) approach
[14], [25], [26], the Jacobian approach [11], [13]–[19], etc. [15].

Another approach to solve (9) is to treat the forward vari-
able u and the inverse variable x independently, which enables
solving the PDE-constrained problem (9) directly by updating
the forward and inverse variables simultaneously at each of op-
timization iterations. Typically, an extended objective function
called "Lagrangian" is introduced as follows:

L(x, u; λ) = f + λT c. (11)
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Here, λ ∈ Zm is called the vector of Lagrange multipliers.
The simultaneous solutions of forward and inverse problems can
be achieved at points satisfying first-order necessary conditions
[41], [42] where the gradient of L in (11) vanishes with respect
λ, u, and x, respectively.

One major advantage of this PDE-constrained approach is
that the complete solution of the forward problem is not required
until convergence is reached. In other words, PDE-constrained
methods allow for using the inexact solution of the forward
problem into solving the inverse problem, which leads to a sig-
nificant reduction in the total reconstruction time. The solution
accuracy of the forward problem is iteratively controlled as the
inverse solution goes toward the optimum. Optimization tech-
niques of this kind have seen rapid developments mainly in
applications with airfoil design, flow variable optimization, and
electromagnetic inverse problems [27]–[40].

As discussed in Section II, the fluorescence tomographic
problem is to find a vector of unknowns x = (µx→m

a , τ, η), as-
suming that all other intrinsic properties inside the medium,
µx

a , µx
s and µm

a , µm
s , are already known at the excitation and

emission wavelengths, such that

min f(ψm ) =
1
2

∑
s,d

|Qdψ
m
s − zs,d |2

subject to

Cx
s = Axψx

s − bx
s = 0, s = 1, . . . , Ns

Cm
s = Am ψm

s − bm
s = 0, s = 1, . . . , Ns (12)

where f(ψm
s ) is the objective function that quantifies the dif-

ference between predictions and measurements of emitted light
made on the tissue surface; Cx and Cm are the discretized ver-
sions of the two coupled radiative transfer equations. In this
study we focus our attention to the inverse problem of recon-
structing the spatial distribution of the fluorophore absorption
µx→m

a assuming a spatially homogenous τ and η distribution
inside the medium, which means that no quenching occurs.
Therefore, we hereafter denote µx→m

a by µ omitting its super-
script and subscript.

By introducing a Lagrangian function, the previous PDE-
constrained optimization problem can be restated as

L(µ;ψx, ψm ; λx , λm ) =
1
2
|Qψm − z|2 + λxT (Axψx − bx)

+ λmT (Am ψm − bm ) . (13)

The simultaneous solutions of the forward and inverse prob-
lems can then be obtained at points in which the following five
PDEs, i.e., the first derivatives of the Lagrangian function with
respect to each of variables, become zero

Lµ ≡ ∂L

∂µ
= (ψxT AxT )µλx − (bmT )µλm = 0 (14a)

Lψx ≡ ∂L

∂ψx
= AxT λx − (bmT )ψx λm = 0 (14b)

Lψm ≡ ∂L

∂ψm
= QT (Qψm − z) + AmT λm = 0 (14c)

Lλ
x ≡ ∂L

∂λx = Axψx − bx = 0 (14d)

Lλ
m ≡ ∂L

∂λm = Am ψm − bm = 0 (14e)

where the first equation represents the sensitivity equation with
respect to the inverse variable µ, and the second and third equa-
tions can be viewed as the adjoint equations for λx and λm , and
the last two equations represent the two forward equations given
by (7).

The so-called Karush–Khun–Tucker (KKT) system given by
(14) can be solved with Newton’s method as[

W AT

A 0

] [
∆p
∆λ

]
= −

[
Lp

Lλ

]
(15)

where the block matrix W denotes the Hessian matrix of the
Lagrangian function L with respect to each of unknowns p =
(µ, ψx, ψm ) and the block matrix A denotes the Jacobian matrix
of constraints Cx and Cm with respect to each of unknowns
p = (µ, ψx, ψm ). Also ∆p and ∆λ denote [∆µ,∆ψx,∆ψm ]T

and [∆λx ,∆λm ]T , respectively. The algebraic system given by
(15) can then be solved efficiently through the reduced Hessian
SQP scheme as will be shown shortly.

C. Reduced Hessian SQP

The reduced Hessian SQP method is an established method
that solves nonlinear optimization problems with relatively low
cost and fast convergence [27]. Employing this rSQP method for
solving the previous KKT system (15) is equivalent to finding
the minimum to a quadratic approximation of the Lagrangian
function L subject to the linearized constraints Cx and Cm ,
which gives the following quadratic programming problem so
that

min ∆pT gp +
1
2
∆pT W∆p

subject to

A∆p + C = 0 (16)

where g = ∇f = [gµ , gψx , gψm ] denotes the gradients of the ob-
jective function f with respect to each of unknowns (µ, ψx, ψm )
and Wk is the full Hessian (or approximations) of the Lagrangian
function. Since the quadratic problem (16) is equivalent to the
system (15), the linearized constraints in (16) correspond to the
last block of the KKT system (15) as

Lµλ
x ∆µ + Lψx λ

x ∆ψx + Lψm λ
x ∆ψm = −Lλ

x (17a)

Lµλ
m ∆µ + Lψx λ

m ∆ψx + Lψm λ
m ∆ψm = −Lλ

m (17b)

where

Lµλ
x = (Axψx)µ , Lψx λ

x = Ax,Lψm λ
x = 0 (18a)

Lµλ
m = (−bm )µ , Lψx λ

m = (−bm )ψx , Lψm λ
m = Am . (18b)

Again (17) can be explicitly written into the following form:

Ax∆ψx = −{Cx + (Axψx)µ∆µ} (19a)

Am ∆ψm = −{Cm − (bm )µ∆µ − (bm )ψx ∆ψx} . (19b)
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The full Hessian of the Lagrangian function is often diffi-
cult to obtain and its approximation by the updating schemes
tends to create large dense matrix (n + m) × (n + m). These
difficulties can be overcome by dropping certain noncritical
second-order terms of the full Hessian matrix. In what follows,
we describe the standard reduced Hessian SQP method based
on separation of variables.

Since Ax and Am are invertible, the vector ∆p can be de-
composed into two parts as follows:

∆p = Z + Y ∆µ (20)

where

Z =


 0

−(Ax)−1Cx

−(Am )−1{Cm + (bm )ψx (Ax)−1Cx}


 (21)

and

Y =


 I

−(Ax)−1(Axψx)µ

(Am )−1
{
(bm )µ − (bm )ψx (Ax)−1(Axψx)µ

}

 . (22)

The choices of Zk and Y k is one challenging problem arising
in practical implementation of the reduced SQP scheme. In this
study, we have followed the popular choices for Zk and Y k as
used by many authors [27], [31], [36], [37], [40].

By substituting (20) into (16) and differentiating the resulting
expression with respect to ∆µ, and using the identity Y T AT =
0, we can obtain the reduced Hessian of the form:

Hr∆µ = −(gr + d) (23)

where Hr = Y T WY denotes the reduced Hessian, gr = Y T g
denotes the reduced gradient, and d = Y T WZ is called the
cross-term. Thus, the reduced SQP method requires much less
memory than the full SQP one, i.e., only a small (n × n) matrix
needs to be maintained and updated at each of optimization
iterations. From (23), the inverse solution ∆µ and the forward
solutions ∆ψx and ∆ψx can be obtained, respectively, as

∆µ = −(Hr )−1(gr + dr ) (24)

∆ψ =
[

∆ψx

∆ψm

]
= Z − Y (Hr )−1(gr + dr ). (25)

At the new iterate, the Lagrangian multiplier vectors are up-
dated from

λm =
[
AmT

]−1
QT (Qψm − z) (26a)

λx =
[
AxT

]−1
(bmT )ψx λm . (26b)

Using (22), we can rewrite the reduced gradient as

gr = Y T g

= (bmT )µλm − (ψxT AxT )µλx . (27)

For large-scale applications, it is desirable to avoid the direct
computation of the reduced Hessian Hk

r and its matrix inversion

(Hk
r )−1 . Accordingly, we approximate the matrix-vector prod-

uct of (Hk
r )−1gk

r directly by using the limited-memory BFGS
updating formula [42], [45], which is another important fea-
ture of our study that enables the proposed rSQP scheme to
be applied to large-scale optimization problems. Also note that
we ignore the cross-term vector dk

r = Y kT WkZk as in other
works [27], [36], [37].

The global convergence of the rSQP scheme is ensured by line
search on the following real-valued l1 merit function defined as:

ϕη (µ, ψx, ψm ) = f(ψm ) + η ‖C‖1 (28)

which is chosen here for its simplicity and low computational
cost. The directional derivative of ϕη (µ, ψx, ψm ) along the de-
scent direction ∆p is given by

Dϕη = gkT ∆p − η ‖C‖1 . (29)

Thus, the descent property Dϕη (µ, ψx, ψm ) < 0 can be
maintained by choosing [50]

η >
gT ∆p

‖C‖1
. (30)

At the new iterate given by pk+1 = pk + αk∆p, the merit
function (28) is successively monitored to ensure the global
progress toward the solution while line search is performed to
find a step length that can provide the sufficient decrease in the
merit function as [40]

ϕηk
(pk + αk∆pk ) ≤ ϕηk

(pk ) + βαkDηk
(pk ;∆pk ) (31)

where β is a small value that determines the line search accuracy,
typically set to 0.01 (or smaller).

D. Computational Algorithm of the rSQP Scheme

The algorithm that makes use of the reduced Hessian SQP
method, as described in Section II-B and II-C has the following
structure:

1) Set k = 0 and initialize µ0 , ψx,0 , ψm,0 , and H0
r = I .

2) Solve AmT λm,0 = −QT (Qψm,0 − z) for λm0 , and solve
AxT λx,0 = (−bmT )ψx 0 λ

m,0 for λx0 .

3) Compute g0
r = (bmT )µλm,0 − (ψxT AxT )µλx,0 .

4) Check the stopping criteria: if satisfied, stop.
5) Solve Hk

r ∆µk = −gk
r for ∆µ via a damped BFGS updat-

ing formula.
6) Solve the two QP problems for ∆ψxk and ∆ψmk .

Ax∆ψx,k = −
{
Cx + (Axψx)µ∆µk

}
Am ∆ψm,k = −

{
Cm − (bm )µ∆µk − (bm )ψx ∆ψx

}
.

7) Set αk = 1 and check if it ensures the sufficient decrease
in the merit function

ϕηk
(pk + αk∆pk ) ≤ ϕηk

(pk ) + βαkDηk
(pk ;∆pk )

where ϕη (µ, ψx, ψm ) = f(ψm ) + η ‖C‖1
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8) If the sufficient decreasing condition is satisfied by the
searched step length, then set

µk+1 = µk + αk∆µk

ψx,k+1 = ψx,k + αk∆ψx,k

ψm,k+1 = ψm,k + αk∆ψm,k

otherwise the following restricted quadratic interpolation
is performed:

αk = max
{

−0.5Dϕηk
(αk )2

ϕηk
(pk + αk∆pk ) − ϕηk

(pk ) − αkDϕηk

, αmin
}

with a minimum step size αmin .
9) Evaluate Ck+1 , gk+1 and Ak+1 , and compute Y k+1 and

Zk+1 .
10) Solve for λx,k+1 and λm,k+1 with a GMRES solver

λm,k+1 =
[
AmT

]−1
QT (Qψm − z)

λx,k+1 =
[
AxT

]−1
(bmT )ψx λm,k+1

and update the merit function parameter ηk by

ηk+1 = 1.001 + ‖λk+1‖∞ .

11) Evaluate gk+1
r = (bmT )µλm,k+1 − (ψxT AxT )µλx,k+1 .

12) Get yk = Y T ,k+gk+ − Y T ,k gk and sk = µk+1 − µk .
13) Set k = k + 1 and return to Step 4 to check the

convergence.
Note that our algorithm stated previously is similar to the

reduced Hessian SQP algorithm applied to solving nonfluores-
cence optical tomographic problems [42].

As mentioned earlier, the rSQP algorithm does not require the
exact solutions of the two radiative transfer equations involving
the excitation and emission radiances during the reconstruction
process. Instead, the rSQP scheme solves the two linearized
forward equations as described in step 6), which allows us to
utilize the incomplete solution obtained with the loose tolerance
(10−2–10−3). Accordingly, we stop the GMRES iteration for
the linearized forward solution of the rSQP scheme when its
relative residual becomes smaller than 10−2–10−3 , whereas for
the forward solution of the lm-BFGS method, the tolerance of
10−10–10−14 is used [41], [42].

III. RESULTS AND DISCUSSION

A. Numerical Experiments

In this section, we show numerical results for reconstruc-
tions of the fluorescence absorption distribution µx→m

a inside the
medium by using the rSQP method and the lm-BFGS method.
To illustrate the code performance, we compare the results of
both schemes on two types of problems, with an emphasis on
computational efficiency.

1) Setup of the Test Problems: We consider two different
problems, which both involve a cylinder with an outer diameter
of 2 cm. The chosen dimensions mimic fluorescence tomo-
graphic problems typical for small animal imaging. In the first
case a fluorescent heterogeneity with a diameter of 0.15 cm
is embedded inside the cylinder at Γ = {(x, y)|(x − 0.35)2 +

Fig. 1. Schematic of the test problems 1 and 2: circle with diameter of 2 cm.
(a) Source–detector configuration: four sources (•) and 66 detectors around the
surface; (b) computation domain with 4886 triangular elements.

TABLE I
PARAMETERS USED IN THE TWO EXAMPLES

(y − 0.35)2 = 0.22} (see Fig. 1). The background medium has
optical parameters of µx

a = 0.4 cm−1 and µx
s = 15 cm−1 at the

excitation wavelength and µx
a = 0.4 cm−1 and µx

s = 15 cm−1

at the emission wavelength. The fluorescence heterogeneity has
the absorbing coefficient of µx→m

a = 0.05 cm−1 . In the second
example, a stronger absorbing medium is considered: the optical
parameters of the background medium are µx

a = 1.0 cm−1 and
µx

s = 15 cm−1 at the excitation wavelength and µx
a = 1.0 cm−1

and µx
s = 15 cm−1 at the emission wavelength, and the absorp-

tion coefficient of the fluorescence heterogeneity is µx→m
a =

0.5 cm−1 . In both examples, the quantum yield and fluorescence
lifetime are assumed spatially constant at the values of τ = 4 ns
and η = 0.95, which is taken to match the corresponding prop-
erties of fluorophore (Fluorescein) used later in the experimental
study. As shown in Fig. 1, four external sources are located on
the tissue boundary close to the target fluorescent source and 66
detectors are equally distributed around the circular circumfer-
ence of the medium defined by Γ = {(x, y)|x2 + y2 = 1}. The
corresponding values of optical parameters for the two cases are
given in Table I.

For numerical experiments, we obtain synthetic data at de-
tector locations for the emission wavelength by solving the two
frequency-domain ERTs given by (1) and (2) with an original
distribution of fluorescent sources and intrinsic absorption and
scattering coefficients inside the medium. All synthetic data are
generated on the mesh that is two times finer than that used
for the reconstructions. The solution of the forward problem at
detector locations provides the exact measurements zex . Since
measurements always contain some noise, we add an error term
to zex in the form zobs = zex + �σ, where σ is the estimated
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standard deviation of measurement errors and � is the random
variable with normal distribution, zero mean and unitary stan-
dard deviation. With the use of such noisy data as the input to the
reconstruction code, we examine the stability of the algorithms
with respect to noises.

We stop the optimization process of the schemes when the
following stopping criteria are satisfied:∣∣J k+1(u;x) − J k (u;x)

∣∣ /J k (u;x) ≤ ε1 (32a)

J k (u;x) ≤ ε2 (32b)

rx = ‖Axψx
s − bx

s ‖ < ε3 (32c)

rm = ‖Am ψm
s − bm

s ‖ < ε4 (32d)

where ε1 and ε2 are the small tolerances and ε1 is set to 10−5

throughout this study, and ε2 is chosen to have the same order
of magnitude of measurement errors, which leads to sufficiently
stable results in the principle of discrepancy [54]. Also the
stopping criteria [see (33c) and (33d)] indicate the accuracy of
the forward solutions: therefore ε3 and ε4 are set to the initial
residual multiplied by a small value 10−2–10−3 for the PDE-
constrained method and 10−10 for the unconstrained method,
i.e., ε3(4) = r

x(m )
0 · (10−2–10−10). When the noise-free data

is considered, the tolerance ε3 is assigned a sufficiently small
number (typically 10−6). The four stopping criteria given by
(32) are applied to both of the PDE-constrained (rSQP) and
unconstrained (lm-BFGS) methods.

To measure the quality of reconstruction, we introduce the
correlation factor ρ(µe, µr ) and the deviation factor δ(µe, µr )
as used in [42], to give

ρ=
∑Nt

i=1 (µe
i − µ̄e

i )(µ
r
i − µ̄r

i )
(Nt − 1)σ(µe)σ(µr )

, δ =

√∑Nt

i=1 (µe
i − µr

i )2Nt

σ(µe)
(33)

where µ̄ and σ(µ) are the mean value and the standard de-
viation for the spatial function of the fluorescence absorption
coefficient. Similarly, µe and µr are the exact and reconstructed
distributions of fluorescent sources, respectively. In terms of
quality of the reconstruction results, the correlation coefficient
indicates the degree of correlation between exact and estimated
quantities while the deviation factor describes the discrepancy in
absolute values of exact and estimated quantities. Accordingly,
the closer ρ(µe, µr ) gets to unity, and the closer δ(µe, µr ) gets
to zero, the better is quality of reconstruction.

In the following sections, the PDE-constrained rSQP method
and the unconstrained lm-BFGS method [32], [33] are applied
to functional estimations of unknown fluorescence absorption
coefficients for the two test problems, as given in Table I. All
the simulations are carried out on a Pentium IV 3.0 GHz CPU
processor.

2) Case 1 (CPU Times and Influence of Noise): With the first
example, we compare the CPU time and the influence of noise
in rSQP-based and lm-BFGS-based algorithms. To examine the
effects of noise on the algorithm we use different SNR values
varying from infinity (no noise) to 15 dB and 10 dB, with the later
two representing typical noise levels encountered in [41]. Fig. 2
shows the maps of the reconstructed fluorescence absorption

Fig. 2. Reconstructed fluorescence absorption coefficients µx→m
a obtained

for the first example using the 15 and 10 dB noise data by the PDE-constrained
rSQP method. (a) 15 dB. (b) 10 dB.

TABLE II
RECONSTRUCTION QUALITY AND COMPUTATION TIMES WITH DIFFERENT

NOISE LEVELS

coefficients obtained for the 15 dB case. As shown in figures,
the circular fluorescence perturbation, as shown in Fig. 1(a), is
well identified by the two methods.

First, the CPU times are measured for the two methods.
Table II shows that the PDE-constrained rSQP method leads
to a significant reduction in the computation time in all cases
considered here. For the case of the noise-free data, the PDE-
constrained method takes only 0.31 h to converge, while the
unconstrained lm-BFGS method takes about 3.98 h to meet
the same convergence criterion. Therefore, the PDE-constrained
method reduces the reconstruction time by a factor of about 13.
A similar reduction is observed in the two other cases of differ-
ent noise levels (see Table II). The 15 dB data take 0.33 h using
the PDE-constrained method, while the unconstrained methods
require 4.28 h. With the 10 dB data, the PDE-constrained code
requires 0.35 h, while the unconstrained codes take 5.89 h to
converge, which is approximately 17 times slower.

The main reason for this significant reduction in the CPU
time can be explained by the fact that the PDE-constrained
rSQP method does not require the exact solution of the forward
problem at each iteration of optimization until it converges to
the optimal solution, as mentioned earlier. Indeed, the PDE-
constrained method utilizes the incomplete solution of the two
linearized forward equations, obtained with the loose tolerance
of 10−2 to 10−3 empirically chosen from our extensive study.
We found that even a tolerance of 10−2 can generate a sequence
of intermediate solutions satisfying the first order necessary
conditions, while making reasonable progress toward the true
solution through the optimization process. Fig. 3 illustrates this
convergence behavior of the PDE-constrained method. It can
be seen that the forward and inverse solutions converge simul-
taneously toward their optimal solutions, even when a loose
tolerance is used. We usually terminate the GMRES iteration
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Fig. 3. Convergence history of the PDE-constrained method in the forward
and inverse solutions when a loose tolerance of 0.01 is used for solving the QP
problems.

process when the relative error in the solution becomes smaller
than 10−10 , which is necessary for accurate evaluation of the ob-
jective function in the unconstrained method. Thus, the GMRES
iteration process essentially has to perform a sufficient number
of matrix-vector multiplications to reach the desired accuracy,
which is the case using the unconstrained lm-BFGS method. On
the other hand, the PDE-constrained rSQP scheme uses a less
strict tolerance and stops the GMRES iteration at a much earlier
stage of the iterations process. As a consequence, this scheme re-
quires a smaller number of matrix-vector multiplications, which
leads to significant time savings [42].

In addition to the CPU time, we measured the accuracy of
reconstruction as a function of the SNR. The correlation factor
ρ(µe, µr ) and the deviation factor δ(µe, µr ), as defined in (33),
are computed and the corresponding values are given in Table II.
At noise levels of 10 to 15dB, the constrained and unconstrained
methods make no significant difference in the accuracy; both
schemes show a decrease in the correlation factor and an increase
in the deviation factor as compared to the corresponding values
of the noise-free data (∞ dB; see Table II). Therefore, it can
be stated that the constrained and unconstrained methods are
similar to each other in terms of response to noise in the data.

3) Case 2 (Effect of Initial Guess): In fluorescence tomogra-
phy, the optimization scheme starts with a homogeneous initial
guess of unknown fluorescence absorption coefficients, which
is typically zero. However, it is well known that different initial
guesses affect the reconstruction accuracy. For this reason, we
discuss the robustness of the PDE-constrained rSQP code to
initial guess.

For this study, we consider problem 2 (see Table I). The initial
guesses of µx→m,0

a = 0.1 and 0.2 are made for the entire medium
that correspond to 20% and 40%, respectively, of the absorption
coefficient of the fluorescence target. We performed the recon-
struction simulations with 20 dB noisy data and measured the
image quality with the correlation factor ρ(µe, µr ) and the devi-
ation factor δ(µe, µr ). The reconstruction results and measures
of ρ(µe, µr ) and δ(µe, µr ) are given in Fig. 4 and Table III, re-
spectively. It can be seen from Table III that the PDE-constrained
rSQP and unconstrained lm-BFGS method lead to similar re-
construction results when the initial guesses of the fluorescence

Fig. 4. Reconstructed fluorescence absorption coefficients µx→m
a obtained

for the second example using the initial guess of µx→m ,0
a = 0.1. (a) PDE

constrained. (b) Unconstrained.

TABLE III
RECONSTRUCTION QUALITY AND COMPUTATION TIMES WITH DIFFERENT

INITIAL GUESSES

absorption in the background medium are 20% and 40% of that
of the target. For the 20% case, we observe ρ(µe, µr ) = 0.77
and δ(µe, µr ) = 0.81 using the PDE-constrained method and
ρ(µe, µr ) = 0.76 and δ(µe, µr ) = 0.83 using the constrained lm-
BFGS method. In the 40% case, ρ(µe, µr ) = 0.75 and δ(µe, µr )
= 0.79, and ρ(µe, µr ) = 0.78 and δ(µe, µr ) = 0.81 employing
the constrained and unconstrained approach, respectively. How-
ever, the PDE-constrained code yields these results about 10 to
12 times faster than the unconstrained code. In the 20% case, the
times to convergence are 0.47hrs and 5.2 h, respectively, and in
the 40% case 0.45 h versus 4.9 h, respectively. We made similar
observations for cases where the background optical properties
differ as much as 50% or 100% from the target value.

B. Applications to the Experimental Data

In addition to numerical results, we studied the reconstruction
of fluorescence absorption coefficients inside the medium using
experimental data.

The lab phantom with a square base has a size of 2.2 cm ×
2.2 cm × 10.3 cm (X × Y × Z). A fluorescent cylinder rod
of d = 2 mm is filled with Fluorescein and embedded inside
the medium. The optical properties of Fluorescein are µx→m

a =
0.4 cm−1 , τ = 4.0 ns, and η = 0.93 (see Table IV). With this
phantom, we consider two setups. In both cases, a single fluo-
rescent source (a cylindrical rod) is used, but it is placed in a dif-
ferent location inside the medium. Furthermore, the background
optical properties are different. All other experimental condi-
tions are kept the same. In the first case, a cylindrical rod that
contains the fluorophore is placed in the center of the phantom.
The background optical properties (a mixture of Intralipid and
India ink) are µx

a = 1.04 cm−1 , µ′x
s = 5.83 cm−1 at excitation
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TABLE IV
OPTICAL PARAMETERS USED FOR THE PHANTOM EXPERIMENT

Fig. 5. Experimental setup for the phantom experiment.

wavelength of 475 nm and µx
a = 0.97 cm−1 , µ′x

s = 5.36 cm−1

at emission wavelength of 515 nm. In the second example, the
fluorescent rod is positioned about 6 mm off-center and the
background medium is filled only with a 2% Intralipid solution.

Fig. 5 shows a schematic of the experimental setup. A
frequency-domain system is used for fast 2-D imaging of mod-
ulated light transmitted through small-tissue volume. The main
components of the system are the illumination module, the
light detection module, and the modulation sources for the light
source and detector. The master signal generator provides a si-
nusoidal ac input to the laser diode driver that supplies the laser
diode (wavelength λ = 475 nm) with a bias and ac current.
The modulated light that is transmitted through the phantom is
imaged by a lens to an intensified CCD (ICCD) camera.

The system operates in homodyne mode, i.e., the gain of the
ICCD is modulated by a slave signal generator at the same fre-
quency as the laser [55]. As a result, a steady-state image at
the intensifier output is imaged to the CCD. The signal in every
pixel depends on the phase between source and detector modula-
tion. Master and slave signal generators are linked together and
the phase delay is adjustable. To detect the complete oscillation
of the modulation, multiple images are taken at phase delays
covering the range of 2π and are transferred to a computer.

Each side of the phantom was illuminated by a focused light
source (λ1 = 475 nm) and measurements of transmitted light in-
tensities were made on the opposite side of the illumination side
at λ2 = 515 nm, for which Fluorescein emission is largest. The
position of the laser spot (∼1 mm in diameter) is at the center
of each side of the phantom. We used one transmission side for
the measurement: each side is illuminated and its opposite side
only is measured with the CCD camera. The absolute phase de-

Fig. 6. Reconstructed maps of fluorophore absorption coefficients µx→m
a

(in centimeters inverse) inside the phantom using the dc and 150 MHz data.
(a) 150 MHz. (b) DC.

Fig. 7. Reconstructed maps of fluorophore absorption coefficients µx→m
a

(in centimeters inverse) inside the phantom using the dc and 150 MHz data.
(a) 150 MHz. (b) DC.

lay can be accurately calibrated; however, the amplitude signal
can only be determined relative to its absolute value. Therefore,
for the image reconstruction, we chose to use the rescaled data
that can eliminate this ambiguity: the measured data zf due
to fluorophores at the emission wavelength were rescaled to the
reference data. In other words, we use the measured data zf mul-
tiplied by the rescaling factor r = pr/zr , where zr denotes the
measurement of the background medium without a fluorescent
probe at excitation wavelength and pr denotes the prediction
data obtained from the forward model for the same excitation
wavelength [26]. For the second example, we measured the
emission data only (i.e., we did not take the measurement of the
background medium) and calibration procedure was different.
In this case, we use the normalized data for reconstruction. We
obtained the measurement data for dc and 150 MHz frequency.

We performed the reconstruction for a 2-D plane where the
laser illumination and detection is performed. The spatial do-
main is discretized into a grid of 47 × 47 points and the angular
domain into 24 discrete ordinates (S4) to solve the radiative
transfer equation. We started the reconstruction from an initial
guess µx→m,0

a = 0 for both of the two cases. Figs. 6 and 7 show
the reconstruction results for the first and second cases. Note
that the reconstruction results of the constrained SQP method
only are presented here because the unconstrained lm-BFGS
method yielded almost same results with respect to the size and
location of a fluorescent probe, as in the numerical study. Also
the different metrics, i.e., the location and size of a reconstructed
fluorescent probe, are used to assess the reconstruction results
(see Table V) since, for the second case, there are some unknown
effects caused by the unknown strength of a source.

For the first case, the difference between the dc and 150 MHz
data is not significant: both methods yielded almost same
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TABLE V
MEASURES OF ACCURACY IN THE RECONSTRUCTED IMAGES WITH THE

EXPERIMENTAL DATA (UNIT: cm−1 )

results with respect to the location and size of a fluorescent
probe: µx→m

a,dc = 0.40 cm−1 and µx→m
a,150 MHz = 0.34 cm−1 (see

Table V). However, in the second case, with the 150 MHz data
we obtained the more accurate reconstruction in the location of
the fluorescent probe as compared to the dc data, which shows
that the frequency data give better results than the dc data, espe-
cially in the identification of the target location. Note that since
the source strength is not known, the reconstructed image is
shown in a normalized scale [0, 1]. Again, CPU times are com-
pared between the two methods. Here, we observed a similar
speedup factor as previously determined in the numerical stud-
ies. The PDE-constrained rSQP method took about 6 min, while
the unconstrained lm-BFGS method required 58 min to reach
the same accuracy; hence a∼10-fold acceleration was achieved.

IV. CONCLUSION

To accelerate the image reconstruction process for optical
fluorescence tomography, we present here a PDE-constrained
reduced Hessian SQP (rSQP) method. The proposed algorithm
solves the two forward problems and one inverse problem, en-
countered in fluorescence tomography, at once by updating the
excitation and emission radiances and the fluorescence absorp-
tion coefficient simultaneously in one iteration process. The
frequency-domain ERT was employed as a light transport model
for both excitation and emission radiances. To evaluate the per-
formance of the proposed PDE-constrained scheme, we per-
formed numerical experiments varying the optical parameters
of the test problem and compared the results of the constrained
approach with an unconstrained lm-BFGS method (the fastest
unconstrained scheme in OT) in terms of computation time, ac-
curacy, and robustness. Furthermore, we applied our code to the
experimental data obtained for the lab phantom with a fluores-
cent probe inside.

In general, we found that the PDE-constrained method leads
to a significant reduction in the computation time. We typically
observe acceleration factors between 10 and 15 as compared to
the unconstrained lm-BFGS method. We also studied the im-
pact of noise on the image quality in the reconstruction process.
While the image quality depends on the signal-to-noise level of
the data, there appear to be little difference between the con-
strained and unconstrained methods. Furthermore, we found that
the two approaches respond similarly to the choice of the ini-
tial guess. Therefore, the image quality deteriorates in a similar
fashion as the initial guess is chosen further and further away
from the actual background optical properties. However, the
PDE-constrained codes yields results approximately ten times
faster than the unconstrained code.
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PDE-Constrained Fluorescence Tomography With the
Frequency-Domain Equation of Radiative Transfer

Hyun Keol Kim, Jong Hwan Lee, and Andreas H. Hielscher, Member, IEEE

Abstract—We present the first fluorescence tomography algo-
rithm that is based on a partial differential equation (PDE) con-
strained approach. PDE methods have been increasingly employed
in many numerical applications, as they often lead to faster and
more robust solutions of many inverse problems. In particular, we
use a sequential quadratic programming (SQP) method, which al-
lows solving the two forward problems in fluorescence tomography
(one for the excitation and one for the emission radiances) and one
inverse problem (for recovering the spatial distribution of the flu-
orescent sources) simultaneously by updating both forward and
inverse variables in simultaneously at each of iteration of the op-
timization process. We evaluate the performance of this approach
with numerical and experimental data using a transport-theory
frequency-domain algorithm as forward model for light propaga-
tion in tissue. The results show that the PDE-constrained approach
is computationally stable and accelerates the image reconstruction
process up to a factor of 15 when compared to commonly employed
unconstrained methods.

Index Terms—Fluorescence tomography, frequency-domain
equation of radiative transfer (ERT), partial differential equation
(PDE) constrained optimization, sequential quadratic program-
ming (SQP).

I. INTRODUCTION

O PTICAL fluorescence tomography has emerged as a
new imaging modality that makes use of light-emitting

biomarkers, for diagnostic imaging of pathological changes
in tissues [1]–[7]. By recovering fluorescence measurement
data, this technique provides a spatial distribution of fluorescent
biomarkers in tissue, which can be used in preclinical and clini-
cal studies to monitor the migration of cells, the protein–protein
interaction and the progression of a disease including cancerous
tumors [5]. To this end, fluorescent biomarkers have been used
to target specific molecules that provide functional information
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about biochemical processes preceding the development of dis-
eases [6], [7]. Thus, fluorescence tomography allows for the
early detection of diseases on a molecular level before typical
symptoms or macroscopic changes appear.

Many imaging codes currently used employ a so-called
model-based iterative image reconstruction (MOBIIR) scheme
in which a forward model of light propagation in tissue is
needed [8]–[10]. The light distribution inside the medium can
be described by a system of two coupled forward equations: one
for the excitation radiance caused by an external light source
and one for the emission radiance by an internal fluorescent
source. For high-scattering, low-absorbing media, both exci-
tation and emission radiances can be accurately modeled by
the diffusion approximation (DA) to the equation of radiative
transfer (ERT) [11]–[19]. It is, however, well known that the
DA becomes less accurate when absorption is increased and the
medium is no longer scattering dominated. Problems also arise
in low-scattering regions, such as void-like, fluid-filled areas
and when small tissue volumes are considered, where boundary
effects dominate [20]–[24]. In small animal imaging, many of
these issues are encountered and the DA is of limited applicabil-
ity. The problems related to the DA can be overcome by using
the ERT that provides accurate prediction of light propagation
in all types of media [25], [26]. However, in general, the ERT
requires much longer computation times as compared to the DA
and are much more complex to implement. ERT-based image
reconstruction codes can take anywhere from several hours to
even days to solve one single image reconstruction case. Thus,
it is highly desirable to develop computationally efficient image
reconstruction schemes that allow for using the ERT for opti-
cal fluorescence tomography. Motivated by this background, we
have adapted a so-called PDE-constrained approach that makes
use of a reduced Hessian SQP (rSQP) method. In this approach
the forward and inverse problems are solved simultaneously,
which has shown in other applications [27]–[40] to lead to sig-
nificant savings in the total image reconstruction time.

Recently, our group has introduced the PDE-constrained ap-
proach to the field of optical tomography. However, that work
was limited to recover the absorption and scattering coeffi-
cients inside biological tissues and had not addressed the prob-
lems encountered in fluorescence tomography. First, using the
frequency-domain version of the radiative transport equation as
the forward model of light propagation in tissues, Abddoulaev
et al. [41] suggested an augmented Lagrangian method (ALM)
that solves the forward and inverse problems simultaneously.
In numerical phantom studies, they demonstrated that PDE-
constrained ALM codes can significantly reduce computation
times. Subsequently, Kim and Hielscher [42] replaced the ALM

1077-260X/$26.00 © 2009 IEEE
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by the rSQP method and showed that even faster convergence
and higher numerical stability can be obtained. Using numerical
and experimental data, they observed an increase in the recon-
struction speed by up to a factor of 30 as compared to standard
codes that do not use PDE constraints. In the study at hand,
we have adapted the approach previously presented by Kim and
Hielscher to the problem of fluorescence tomography.

So far only one publication exists that applies the PDE-
constrained methods to fluorescence tomography. Recently,
Joshi et al. [43], [44] have reported on a Gauss–Newton-based
constrained method. However, their work used the frequency-
domain DA as a forward model of light propagation and not the
ERT. Moreover, the authors reported that the Gauss–Newton
approach is computationally more expensive than the reduced
Hessian approach with a BFGS updating formula.

In this paper, we go beyond past studies and present the first
PDE-constrained fluorescence image reconstruction algorithm.
The adaptation of the nonfluorescence code for problems in
fluorescence tomography is nontrivial. Inverse source problems
are known to be notoriously ill-posed and unlike in nonfluo-
rescence problems, two coupled ERTs for the excitation and
emission radiances have to be treated simultaneously in the
framework of PDE-constrained optimization. In the following,
we will first provide details on the structure and implemen-
tation of the fluorescence forward model (see Section II-A).
This is followed by a description of the implementation of
the PDE-constrained rSQP approach for fluorescence tomog-
raphy (see Section II-B–II-D). Subsequently, we evaluate the
performance of the PDE-constrained scheme using numerical
and experimental results (see Section III). We focus on com-
putational efficiency by comparing the new algorithm with
an unconstrained code that makes use of the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (lm-BFGS) method [45].
The lm-BFGS method is known to be the most efficient gradient-
based unconstrained optimization method [46], [47], and there-
fore, provides a good standard for comparison. Finally we draw
some conclusions in Section IV.

II. METHODS

A. Light Propagation Model

In frequency-domain optical fluorescence tomography, the
external light source is amplitude-modulated in the 10 Hz–
1 GHz frequency range and the demodulated transmitted inten-
sities and phase shifts are measured on the tissue surface, using
wavelength-dependent filters to distinguish between excitation
and emission signals.

The generation and propagation of fluorescence light in bi-
ological tissue can be accurately modeled by two coupled
frequency-domain equations of radiative transfer [47], [48] as

[
(∇ · Ω) + µx

a + µx
s + µx→m

a +
i�

c

]
ψx(r,Ω,�)

=
∫

4π

p(Ω′,Ω)ψx(r,Ω′,�)dΩ′ (1)

[
(∇ · Ω) + µm

a + µm
s +

i�

c

]
ψm (r,Ω,�)

=
∫

4π

p(Ω′,Ω)ψm (r,Ω′,�)dΩ′ +
1
4π

ηµx→m
a φ(r,�)

(1 − �τ(r))
.

(2)

The first equation describes the propagation of excitation light
emanating from the external light source and the second repre-
sents the propagation of emission light due to the fluorescent
source in tissue. Here, the superscripts x and m denote excitation
and emission, respectively. Hence, µx

a and µx
s are the absorp-

tion and scattering coefficients in units of cm−1 at the excitation
wavelength; µx→m

a is the absorption coefficient of a fluorescent
source in tissue, in unit of cm−1 ; µx

a and µx
s are the absorp-

tion and scattering coefficients in units of cm−1 at the emission
wavelength. ψx(r,Ω,�) and ψm (r,Ω,�) denote the excitation
and emission radiances, respectively, in units of W·cm−2 ·st−1 ;
η denotes the quantum yield by which the fluorescent source
emits light in transit from excitation state to ground state; τ(r)is
the local lifetime of a fluorescent source. Note that φ(r,�) ap-
pearing in (2) denotes the excitation fluence at position r defined
by φ(r,�) =

∫
4π ψxdΩ in unit W/cm2 . For a phase function

denoted by p(Ω′,Ω), we use here the Henyey–Greestein phase
function [49] that is commonly used in tissue optics. As shown in
(1), the excitation light ψx(r,Ω,�) is absorbed and scattered by
the intrinsic medium, and further attenuated by the fluorophore
absorption µx→m

a , and then excites a fluorochrome inside the
tissue at position r. The excited fluorophore constitutes a light
source inside the medium that reemits radiation ψm (r,Ω,�)
typically at longer wavelength [see (2)]. The local strength of
a fluorescent source is directly proportional to the local fluo-
rophore absorption µx→m

a φ(r,�) and the quantum yield η and
the local fluorophore lifetime τ(r).

The corresponding boundary conditions for the two coupled
equations are given

ψx
b |�nb ·Ω<0 = ψx0

∣∣
�nb ·Ω<0 + R(Ω′,Ω) · ψx |�nb ·Ω ′>0 (3)

ψm
b |�nb ·Ω<0 = R(Ω′,Ω) · ψm |�nb ·Ω ′>0 (4)

where R(Ω′,Ω) is the reflectivity at Fresnel interface [50] from
direction Ω′ to direction Ω, ψx0

b is the radiation intensity due to
the external source function and subscript b denotes the bound-
ary surface of the medium, while �nb is the unit normal vector
pointing outward the boundary surface. For discretization of the
two equations (1) and (2), we employ a node-centered finite-
volume approach in the spatial domain and a discrete ordinates
method in the angular domain. The node-centered finite-volume
method takes advantage of the beneficial properties of both the
finite-element and finite-volume methods by combining the con-
servation properties of the finite-volume formulation and the
geometric flexibility of the finite-element approach.

Following an unstructured finite-volume discrete-ordinates
method [42], [51], the discretized forms of the two ERTs given
by (1) and (2) are obtained by integrating (1) and (2) over the



KIM et al.: PDE-CONSTRAINED FLUORESCENCE TOMOGRAPHY WITH THE FREQUENCY-DOMAIN ERT 3

control volume with a divergence theorem as

N s u r f∑
j=1

(�nj · Ωl)ψx,l
j dAj +

(
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s + µx→m

a +
iω

c

)
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N ∆VN

= µx
s
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N pl ′lwl ′ (5)

N s u r f∑
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(�nj · Ωl)ψm,l
j dAj +
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s +

iω

c
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ψm,l

N ∆VN

= µm
s ∆VN

NΩ∑
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ψm,l ′

N pl ′lwl ′ +
1
4π
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a φ(r,�)

(1 − �τ(r))
∆VN (6)

where Nsurf and NΩ are the number of surfaces surrounding
the node N(=1, . . . , Nt) and the number of discrete ordinates
based on the level symmetric scheme, respectively, �nj denotes
the surface normal vector, and ψx,l

j and ψm,l
j denote the ex-

citation and emission radiances defined on the jth surface in
direction l. Also the surface intensities ψx,l

j and ψm,l
j are related

to the nodal intensities ψx,l
N and ψm,l

j by the second-order spatial
differencing scheme [51]. It can be easily seen that each ERT
involves Nt spatial unknown intensities coupled into NΩ direc-
tions, thus leading to the total Nt · NΩ unknowns. The system of
(1) and (2) can be solved by using any iterative solvers as far as
they are reliable. We employ here a matrix-based iterative linear
solver that enables updating all the radiation intensities ψx,l

N (or
ψm,l

N ) simultaneously, which leads to fast convergence as com-
pared to source iteration-based techniques. After discretization
for all nodes, we finally obtain two linear systems of algebraic
equations as

Axψx = bx (7a)

Am ψm = bm . (7b)

Each line denoted by i (i = 1, . . . , NtNΩ) of the matrix A
contains the coefficients of the discretized forms [see (7a) and
(7b)] established at node number N and direction l.

The excitation light source comes into the term bx after
discretization on a boundary node Nb , while the fluorescent
source comes into the term bm after discretization on internal
node N , as

bx,l
Nb

= −
∑

j

[
1 − max(nj · Ωl/

∣∣nj · Ωl
∣∣ , 0)

]
(nj · Ωl)Ajψ

0,l
Nb

(8a)

bm,l
N =

1
4π

ηµx→m
a φ(r,�)

(1 − �τ(r))
∆VN (8b)

where ψx0,l
Nb

is the external source function on boundary node
Nb in direction l.

Since we treat the frequency-domain equations of radiative
transfer directly, the matrix formulations given by (7) contain
complex-valued elements. As a result, the complex-valued al-

gebraic linear equations are solved with a complex version of
the generalized minimum residual (GMRES) solver [52], [53].

The two equations given by (1) and (2) provide the predictions
of the excitation radiance ψx,l

j and transmitted emission radiance
ψm,l

j on the boundary surface. Also these two equations are used
as the constraints within the PDE-constrained SQP method.
Next we discuss the inverse model, which is used to obtain the
spatial distribution of a fluorescent source inside the medium
that best fits the measured emission data.

B. PDE-Constrained Optimization for Fluorescence
Tomography

To understand the PDE-constrained approach to fluorescence
tomography, we first summarize the most important aspects, pre-
viously described in [42]. The optical fluorescence tomographic
problem can be formulated in more general terms as

min f(x, u)

s.t. C(x, u) = 0 (9)

where x ∈ Rn is the vector of inverse variables, u ∈ Zm is the
vector of forward variables, f(x;u) is an objective function that
quantifies the difference between measured and predicted in-
tensities and c(x;u) = 0 is a discretized version of combined
excitation and emission equations. The problem given by (9)
is often referred to as “PDE-constrained” optimization since
the optimal solution at minimum of f is constrained by equal-
ity condition c(x;u) = 0 represented by two partial differential
equations (PDEs).

Traditional methods for solving (9) is to treat the forward
variable u as a dependent variable of the inverse variable x,
i.e., u = c̃(x), which makes it possible to replace the prediction
vector u in f of (9) by its forward solution vector. As a result,
the problem (9) can be reformulated as

minf̃(x) = f(x, c̃(x)) (10)

which is often referred to as “unconstrained” because the equal-
ity constraint c(x;u) = 0 is eliminated in (10), i.e., f̃ is now a
function of x only. Thus, the forward solution u = c̃(x) has to
be obtained for evaluation of f̃ , i.e., the complete solutions of
the two ERTs are required for the excitation and emission radi-
ances at each of optimization iterations. As a consequence, the
associated optimization procedure becomes a computationally
very demanding process, both with respect to time and memory.
Nonetheless, this approach has been widely used for the solution
of optical fluorescence tomographic problems mainly because
of easiness of implementation. The existing fluorescence tomo-
graphic codes [11]–[19] belong to this approach: the conjugate
gradient (CG) approach [12], the quasi-Newton (QN) approach
[14], [25], [26], the Jacobian approach [11], [13]–[19], etc. [15].

Another approach to solve (9) is to treat the forward vari-
able u and the inverse variable x independently, which enables
solving the PDE-constrained problem (9) directly by updating
the forward and inverse variables simultaneously at each of op-
timization iterations. Typically, an extended objective function
called "Lagrangian" is introduced as follows:

L(x, u; λ) = f + λT c. (11)
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Here, λ ∈ Zm is called the vector of Lagrange multipliers.
The simultaneous solutions of forward and inverse problems can
be achieved at points satisfying first-order necessary conditions
[41], [42] where the gradient of L in (11) vanishes with respect
λ, u, and x, respectively.

One major advantage of this PDE-constrained approach is
that the complete solution of the forward problem is not required
until convergence is reached. In other words, PDE-constrained
methods allow for using the inexact solution of the forward
problem into solving the inverse problem, which leads to a sig-
nificant reduction in the total reconstruction time. The solution
accuracy of the forward problem is iteratively controlled as the
inverse solution goes toward the optimum. Optimization tech-
niques of this kind have seen rapid developments mainly in
applications with airfoil design, flow variable optimization, and
electromagnetic inverse problems [27]–[40].

As discussed in Section II, the fluorescence tomographic
problem is to find a vector of unknowns x = (µx→m

a , τ, η), as-
suming that all other intrinsic properties inside the medium,
µx

a , µx
s and µm

a , µm
s , are already known at the excitation and

emission wavelengths, such that

min f(ψm ) =
1
2

∑
s,d

|Qdψ
m
s − zs,d |2

subject to

Cx
s = Axψx

s − bx
s = 0, s = 1, . . . , Ns

Cm
s = Am ψm

s − bm
s = 0, s = 1, . . . , Ns (12)

where f(ψm
s ) is the objective function that quantifies the dif-

ference between predictions and measurements of emitted light
made on the tissue surface; Cx and Cm are the discretized ver-
sions of the two coupled radiative transfer equations. In this
study we focus our attention to the inverse problem of recon-
structing the spatial distribution of the fluorophore absorption
µx→m

a assuming a spatially homogenous τ and η distribution
inside the medium, which means that no quenching occurs.
Therefore, we hereafter denote µx→m

a by µ omitting its super-
script and subscript.

By introducing a Lagrangian function, the previous PDE-
constrained optimization problem can be restated as

L(µ;ψx, ψm ; λx , λm ) =
1
2
|Qψm − z|2 + λxT (Axψx − bx)

+ λmT (Am ψm − bm ) . (13)

The simultaneous solutions of the forward and inverse prob-
lems can then be obtained at points in which the following five
PDEs, i.e., the first derivatives of the Lagrangian function with
respect to each of variables, become zero

Lµ ≡ ∂L

∂µ
= (ψxT AxT )µλx − (bmT )µλm = 0 (14a)

Lψx ≡ ∂L

∂ψx
= AxT λx − (bmT )ψx λm = 0 (14b)

Lψm ≡ ∂L

∂ψm
= QT (Qψm − z) + AmT λm = 0 (14c)

Lλ
x ≡ ∂L

∂λx = Axψx − bx = 0 (14d)

Lλ
m ≡ ∂L

∂λm = Am ψm − bm = 0 (14e)

where the first equation represents the sensitivity equation with
respect to the inverse variable µ, and the second and third equa-
tions can be viewed as the adjoint equations for λx and λm , and
the last two equations represent the two forward equations given
by (7).

The so-called Karush–Khun–Tucker (KKT) system given by
(14) can be solved with Newton’s method as[

W AT

A 0

] [
∆p
∆λ

]
= −

[
Lp

Lλ

]
(15)

where the block matrix W denotes the Hessian matrix of the
Lagrangian function L with respect to each of unknowns p =
(µ, ψx, ψm ) and the block matrix A denotes the Jacobian matrix
of constraints Cx and Cm with respect to each of unknowns
p = (µ, ψx, ψm ). Also ∆p and ∆λ denote [∆µ,∆ψx,∆ψm ]T

and [∆λx ,∆λm ]T , respectively. The algebraic system given by
(15) can then be solved efficiently through the reduced Hessian
SQP scheme as will be shown shortly.

C. Reduced Hessian SQP

The reduced Hessian SQP method is an established method
that solves nonlinear optimization problems with relatively low
cost and fast convergence [27]. Employing this rSQP method for
solving the previous KKT system (15) is equivalent to finding
the minimum to a quadratic approximation of the Lagrangian
function L subject to the linearized constraints Cx and Cm ,
which gives the following quadratic programming problem so
that

min ∆pT gp +
1
2
∆pT W∆p

subject to

A∆p + C = 0 (16)

where g = ∇f = [gµ , gψx , gψm ] denotes the gradients of the ob-
jective function f with respect to each of unknowns (µ, ψx, ψm )
and Wk is the full Hessian (or approximations) of the Lagrangian
function. Since the quadratic problem (16) is equivalent to the
system (15), the linearized constraints in (16) correspond to the
last block of the KKT system (15) as

Lµλ
x ∆µ + Lψx λ

x ∆ψx + Lψm λ
x ∆ψm = −Lλ

x (17a)

Lµλ
m ∆µ + Lψx λ

m ∆ψx + Lψm λ
m ∆ψm = −Lλ

m (17b)

where

Lµλ
x = (Axψx)µ , Lψx λ

x = Ax,Lψm λ
x = 0 (18a)

Lµλ
m = (−bm )µ , Lψx λ

m = (−bm )ψx , Lψm λ
m = Am . (18b)

Again (17) can be explicitly written into the following form:

Ax∆ψx = −{Cx + (Axψx)µ∆µ} (19a)

Am ∆ψm = −{Cm − (bm )µ∆µ − (bm )ψx ∆ψx} . (19b)
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The full Hessian of the Lagrangian function is often diffi-
cult to obtain and its approximation by the updating schemes
tends to create large dense matrix (n + m) × (n + m). These
difficulties can be overcome by dropping certain noncritical
second-order terms of the full Hessian matrix. In what follows,
we describe the standard reduced Hessian SQP method based
on separation of variables.

Since Ax and Am are invertible, the vector ∆p can be de-
composed into two parts as follows:

∆p = Z + Y ∆µ (20)

where

Z =


 0

−(Ax)−1Cx

−(Am )−1{Cm + (bm )ψx (Ax)−1Cx}


 (21)

and

Y =


 I

−(Ax)−1(Axψx)µ

(Am )−1
{
(bm )µ − (bm )ψx (Ax)−1(Axψx)µ

}

 . (22)

The choices of Zk and Y k is one challenging problem arising
in practical implementation of the reduced SQP scheme. In this
study, we have followed the popular choices for Zk and Y k as
used by many authors [27], [31], [36], [37], [40].

By substituting (20) into (16) and differentiating the resulting
expression with respect to ∆µ, and using the identity Y T AT =
0, we can obtain the reduced Hessian of the form:

Hr∆µ = −(gr + d) (23)

where Hr = Y T WY denotes the reduced Hessian, gr = Y T g
denotes the reduced gradient, and d = Y T WZ is called the
cross-term. Thus, the reduced SQP method requires much less
memory than the full SQP one, i.e., only a small (n × n) matrix
needs to be maintained and updated at each of optimization
iterations. From (23), the inverse solution ∆µ and the forward
solutions ∆ψx and ∆ψx can be obtained, respectively, as

∆µ = −(Hr )−1(gr + dr ) (24)

∆ψ =
[

∆ψx

∆ψm

]
= Z − Y (Hr )−1(gr + dr ). (25)

At the new iterate, the Lagrangian multiplier vectors are up-
dated from

λm =
[
AmT

]−1
QT (Qψm − z) (26a)

λx =
[
AxT

]−1
(bmT )ψx λm . (26b)

Using (22), we can rewrite the reduced gradient as

gr = Y T g

= (bmT )µλm − (ψxT AxT )µλx . (27)

For large-scale applications, it is desirable to avoid the direct
computation of the reduced Hessian Hk

r and its matrix inversion

(Hk
r )−1 . Accordingly, we approximate the matrix-vector prod-

uct of (Hk
r )−1gk

r directly by using the limited-memory BFGS
updating formula [42], [45], which is another important fea-
ture of our study that enables the proposed rSQP scheme to
be applied to large-scale optimization problems. Also note that
we ignore the cross-term vector dk

r = Y kT WkZk as in other
works [27], [36], [37].

The global convergence of the rSQP scheme is ensured by line
search on the following real-valued l1 merit function defined as:

ϕη (µ, ψx, ψm ) = f(ψm ) + η ‖C‖1 (28)

which is chosen here for its simplicity and low computational
cost. The directional derivative of ϕη (µ, ψx, ψm ) along the de-
scent direction ∆p is given by

Dϕη = gkT ∆p − η ‖C‖1 . (29)

Thus, the descent property Dϕη (µ, ψx, ψm ) < 0 can be
maintained by choosing [50]

η >
gT ∆p

‖C‖1
. (30)

At the new iterate given by pk+1 = pk + αk∆p, the merit
function (28) is successively monitored to ensure the global
progress toward the solution while line search is performed to
find a step length that can provide the sufficient decrease in the
merit function as [40]

ϕηk
(pk + αk∆pk ) ≤ ϕηk

(pk ) + βαkDηk
(pk ;∆pk ) (31)

where β is a small value that determines the line search accuracy,
typically set to 0.01 (or smaller).

D. Computational Algorithm of the rSQP Scheme

The algorithm that makes use of the reduced Hessian SQP
method, as described in Section II-B and II-C has the following
structure:

1) Set k = 0 and initialize µ0 , ψx,0 , ψm,0 , and H0
r = I .

2) Solve AmT λm,0 = −QT (Qψm,0 − z) for λm0 , and solve
AxT λx,0 = (−bmT )ψx 0 λ

m,0 for λx0 .

3) Compute g0
r = (bmT )µλm,0 − (ψxT AxT )µλx,0 .

4) Check the stopping criteria: if satisfied, stop.
5) Solve Hk

r ∆µk = −gk
r for ∆µ via a damped BFGS updat-

ing formula.
6) Solve the two QP problems for ∆ψxk and ∆ψmk .

Ax∆ψx,k = −
{
Cx + (Axψx)µ∆µk

}
Am ∆ψm,k = −

{
Cm − (bm )µ∆µk − (bm )ψx ∆ψx

}
.

7) Set αk = 1 and check if it ensures the sufficient decrease
in the merit function

ϕηk
(pk + αk∆pk ) ≤ ϕηk

(pk ) + βαkDηk
(pk ;∆pk )

where ϕη (µ, ψx, ψm ) = f(ψm ) + η ‖C‖1
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8) If the sufficient decreasing condition is satisfied by the
searched step length, then set

µk+1 = µk + αk∆µk

ψx,k+1 = ψx,k + αk∆ψx,k

ψm,k+1 = ψm,k + αk∆ψm,k

otherwise the following restricted quadratic interpolation
is performed:

αk = max
{

−0.5Dϕηk
(αk )2

ϕηk
(pk + αk∆pk ) − ϕηk

(pk ) − αkDϕηk

, αmin
}

with a minimum step size αmin .
9) Evaluate Ck+1 , gk+1 and Ak+1 , and compute Y k+1 and

Zk+1 .
10) Solve for λx,k+1 and λm,k+1 with a GMRES solver

λm,k+1 =
[
AmT

]−1
QT (Qψm − z)

λx,k+1 =
[
AxT

]−1
(bmT )ψx λm,k+1

and update the merit function parameter ηk by

ηk+1 = 1.001 + ‖λk+1‖∞ .

11) Evaluate gk+1
r = (bmT )µλm,k+1 − (ψxT AxT )µλx,k+1 .

12) Get yk = Y T ,k+gk+ − Y T ,k gk and sk = µk+1 − µk .
13) Set k = k + 1 and return to Step 4 to check the

convergence.
Note that our algorithm stated previously is similar to the

reduced Hessian SQP algorithm applied to solving nonfluores-
cence optical tomographic problems [42].

As mentioned earlier, the rSQP algorithm does not require the
exact solutions of the two radiative transfer equations involving
the excitation and emission radiances during the reconstruction
process. Instead, the rSQP scheme solves the two linearized
forward equations as described in step 6), which allows us to
utilize the incomplete solution obtained with the loose tolerance
(10−2–10−3). Accordingly, we stop the GMRES iteration for
the linearized forward solution of the rSQP scheme when its
relative residual becomes smaller than 10−2–10−3 , whereas for
the forward solution of the lm-BFGS method, the tolerance of
10−10–10−14 is used [41], [42].

III. RESULTS AND DISCUSSION

A. Numerical Experiments

In this section, we show numerical results for reconstruc-
tions of the fluorescence absorption distribution µx→m

a inside the
medium by using the rSQP method and the lm-BFGS method.
To illustrate the code performance, we compare the results of
both schemes on two types of problems, with an emphasis on
computational efficiency.

1) Setup of the Test Problems: We consider two different
problems, which both involve a cylinder with an outer diameter
of 2 cm. The chosen dimensions mimic fluorescence tomo-
graphic problems typical for small animal imaging. In the first
case a fluorescent heterogeneity with a diameter of 0.15 cm
is embedded inside the cylinder at Γ = {(x, y)|(x − 0.35)2 +

Fig. 1. Schematic of the test problems 1 and 2: circle with diameter of 2 cm.
(a) Source–detector configuration: four sources (•) and 66 detectors around the
surface; (b) computation domain with 4886 triangular elements.

TABLE I
PARAMETERS USED IN THE TWO EXAMPLES

(y − 0.35)2 = 0.22} (see Fig. 1). The background medium has
optical parameters of µx

a = 0.4 cm−1 and µx
s = 15 cm−1 at the

excitation wavelength and µx
a = 0.4 cm−1 and µx

s = 15 cm−1

at the emission wavelength. The fluorescence heterogeneity has
the absorbing coefficient of µx→m

a = 0.05 cm−1 . In the second
example, a stronger absorbing medium is considered: the optical
parameters of the background medium are µx

a = 1.0 cm−1 and
µx

s = 15 cm−1 at the excitation wavelength and µx
a = 1.0 cm−1

and µx
s = 15 cm−1 at the emission wavelength, and the absorp-

tion coefficient of the fluorescence heterogeneity is µx→m
a =

0.5 cm−1 . In both examples, the quantum yield and fluorescence
lifetime are assumed spatially constant at the values of τ = 4 ns
and η = 0.95, which is taken to match the corresponding prop-
erties of fluorophore (Fluorescein) used later in the experimental
study. As shown in Fig. 1, four external sources are located on
the tissue boundary close to the target fluorescent source and 66
detectors are equally distributed around the circular circumfer-
ence of the medium defined by Γ = {(x, y)|x2 + y2 = 1}. The
corresponding values of optical parameters for the two cases are
given in Table I.

For numerical experiments, we obtain synthetic data at de-
tector locations for the emission wavelength by solving the two
frequency-domain ERTs given by (1) and (2) with an original
distribution of fluorescent sources and intrinsic absorption and
scattering coefficients inside the medium. All synthetic data are
generated on the mesh that is two times finer than that used
for the reconstructions. The solution of the forward problem at
detector locations provides the exact measurements zex . Since
measurements always contain some noise, we add an error term
to zex in the form zobs = zex + �σ, where σ is the estimated
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standard deviation of measurement errors and � is the random
variable with normal distribution, zero mean and unitary stan-
dard deviation. With the use of such noisy data as the input to the
reconstruction code, we examine the stability of the algorithms
with respect to noises.

We stop the optimization process of the schemes when the
following stopping criteria are satisfied:∣∣J k+1(u;x) − J k (u;x)

∣∣ /J k (u;x) ≤ ε1 (32a)

J k (u;x) ≤ ε2 (32b)

rx = ‖Axψx
s − bx

s ‖ < ε3 (32c)

rm = ‖Am ψm
s − bm

s ‖ < ε4 (32d)

where ε1 and ε2 are the small tolerances and ε1 is set to 10−5

throughout this study, and ε2 is chosen to have the same order
of magnitude of measurement errors, which leads to sufficiently
stable results in the principle of discrepancy [54]. Also the
stopping criteria [see (33c) and (33d)] indicate the accuracy of
the forward solutions: therefore ε3 and ε4 are set to the initial
residual multiplied by a small value 10−2–10−3 for the PDE-
constrained method and 10−10 for the unconstrained method,
i.e., ε3(4) = r

x(m )
0 · (10−2–10−10). When the noise-free data

is considered, the tolerance ε3 is assigned a sufficiently small
number (typically 10−6). The four stopping criteria given by
(32) are applied to both of the PDE-constrained (rSQP) and
unconstrained (lm-BFGS) methods.

To measure the quality of reconstruction, we introduce the
correlation factor ρ(µe, µr ) and the deviation factor δ(µe, µr )
as used in [42], to give

ρ=
∑Nt

i=1 (µe
i − µ̄e

i )(µ
r
i − µ̄r

i )
(Nt − 1)σ(µe)σ(µr )

, δ =

√∑Nt

i=1 (µe
i − µr

i )2Nt

σ(µe)
(33)

where µ̄ and σ(µ) are the mean value and the standard de-
viation for the spatial function of the fluorescence absorption
coefficient. Similarly, µe and µr are the exact and reconstructed
distributions of fluorescent sources, respectively. In terms of
quality of the reconstruction results, the correlation coefficient
indicates the degree of correlation between exact and estimated
quantities while the deviation factor describes the discrepancy in
absolute values of exact and estimated quantities. Accordingly,
the closer ρ(µe, µr ) gets to unity, and the closer δ(µe, µr ) gets
to zero, the better is quality of reconstruction.

In the following sections, the PDE-constrained rSQP method
and the unconstrained lm-BFGS method [32], [33] are applied
to functional estimations of unknown fluorescence absorption
coefficients for the two test problems, as given in Table I. All
the simulations are carried out on a Pentium IV 3.0 GHz CPU
processor.

2) Case 1 (CPU Times and Influence of Noise): With the first
example, we compare the CPU time and the influence of noise
in rSQP-based and lm-BFGS-based algorithms. To examine the
effects of noise on the algorithm we use different SNR values
varying from infinity (no noise) to 15 dB and 10 dB, with the later
two representing typical noise levels encountered in [41]. Fig. 2
shows the maps of the reconstructed fluorescence absorption

Fig. 2. Reconstructed fluorescence absorption coefficients µx→m
a obtained

for the first example using the 15 and 10 dB noise data by the PDE-constrained
rSQP method. (a) 15 dB. (b) 10 dB.

TABLE II
RECONSTRUCTION QUALITY AND COMPUTATION TIMES WITH DIFFERENT

NOISE LEVELS

coefficients obtained for the 15 dB case. As shown in figures,
the circular fluorescence perturbation, as shown in Fig. 1(a), is
well identified by the two methods.

First, the CPU times are measured for the two methods.
Table II shows that the PDE-constrained rSQP method leads
to a significant reduction in the computation time in all cases
considered here. For the case of the noise-free data, the PDE-
constrained method takes only 0.31 h to converge, while the
unconstrained lm-BFGS method takes about 3.98 h to meet
the same convergence criterion. Therefore, the PDE-constrained
method reduces the reconstruction time by a factor of about 13.
A similar reduction is observed in the two other cases of differ-
ent noise levels (see Table II). The 15 dB data take 0.33 h using
the PDE-constrained method, while the unconstrained methods
require 4.28 h. With the 10 dB data, the PDE-constrained code
requires 0.35 h, while the unconstrained codes take 5.89 h to
converge, which is approximately 17 times slower.

The main reason for this significant reduction in the CPU
time can be explained by the fact that the PDE-constrained
rSQP method does not require the exact solution of the forward
problem at each iteration of optimization until it converges to
the optimal solution, as mentioned earlier. Indeed, the PDE-
constrained method utilizes the incomplete solution of the two
linearized forward equations, obtained with the loose tolerance
of 10−2 to 10−3 empirically chosen from our extensive study.
We found that even a tolerance of 10−2 can generate a sequence
of intermediate solutions satisfying the first order necessary
conditions, while making reasonable progress toward the true
solution through the optimization process. Fig. 3 illustrates this
convergence behavior of the PDE-constrained method. It can
be seen that the forward and inverse solutions converge simul-
taneously toward their optimal solutions, even when a loose
tolerance is used. We usually terminate the GMRES iteration
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Fig. 3. Convergence history of the PDE-constrained method in the forward
and inverse solutions when a loose tolerance of 0.01 is used for solving the QP
problems.

process when the relative error in the solution becomes smaller
than 10−10 , which is necessary for accurate evaluation of the ob-
jective function in the unconstrained method. Thus, the GMRES
iteration process essentially has to perform a sufficient number
of matrix-vector multiplications to reach the desired accuracy,
which is the case using the unconstrained lm-BFGS method. On
the other hand, the PDE-constrained rSQP scheme uses a less
strict tolerance and stops the GMRES iteration at a much earlier
stage of the iterations process. As a consequence, this scheme re-
quires a smaller number of matrix-vector multiplications, which
leads to significant time savings [42].

In addition to the CPU time, we measured the accuracy of
reconstruction as a function of the SNR. The correlation factor
ρ(µe, µr ) and the deviation factor δ(µe, µr ), as defined in (33),
are computed and the corresponding values are given in Table II.
At noise levels of 10 to 15dB, the constrained and unconstrained
methods make no significant difference in the accuracy; both
schemes show a decrease in the correlation factor and an increase
in the deviation factor as compared to the corresponding values
of the noise-free data (∞ dB; see Table II). Therefore, it can
be stated that the constrained and unconstrained methods are
similar to each other in terms of response to noise in the data.

3) Case 2 (Effect of Initial Guess): In fluorescence tomogra-
phy, the optimization scheme starts with a homogeneous initial
guess of unknown fluorescence absorption coefficients, which
is typically zero. However, it is well known that different initial
guesses affect the reconstruction accuracy. For this reason, we
discuss the robustness of the PDE-constrained rSQP code to
initial guess.

For this study, we consider problem 2 (see Table I). The initial
guesses of µx→m,0

a = 0.1 and 0.2 are made for the entire medium
that correspond to 20% and 40%, respectively, of the absorption
coefficient of the fluorescence target. We performed the recon-
struction simulations with 20 dB noisy data and measured the
image quality with the correlation factor ρ(µe, µr ) and the devi-
ation factor δ(µe, µr ). The reconstruction results and measures
of ρ(µe, µr ) and δ(µe, µr ) are given in Fig. 4 and Table III, re-
spectively. It can be seen from Table III that the PDE-constrained
rSQP and unconstrained lm-BFGS method lead to similar re-
construction results when the initial guesses of the fluorescence

Fig. 4. Reconstructed fluorescence absorption coefficients µx→m
a obtained

for the second example using the initial guess of µx→m ,0
a = 0.1. (a) PDE

constrained. (b) Unconstrained.

TABLE III
RECONSTRUCTION QUALITY AND COMPUTATION TIMES WITH DIFFERENT

INITIAL GUESSES

absorption in the background medium are 20% and 40% of that
of the target. For the 20% case, we observe ρ(µe, µr ) = 0.77
and δ(µe, µr ) = 0.81 using the PDE-constrained method and
ρ(µe, µr ) = 0.76 and δ(µe, µr ) = 0.83 using the constrained lm-
BFGS method. In the 40% case, ρ(µe, µr ) = 0.75 and δ(µe, µr )
= 0.79, and ρ(µe, µr ) = 0.78 and δ(µe, µr ) = 0.81 employing
the constrained and unconstrained approach, respectively. How-
ever, the PDE-constrained code yields these results about 10 to
12 times faster than the unconstrained code. In the 20% case, the
times to convergence are 0.47hrs and 5.2 h, respectively, and in
the 40% case 0.45 h versus 4.9 h, respectively. We made similar
observations for cases where the background optical properties
differ as much as 50% or 100% from the target value.

B. Applications to the Experimental Data

In addition to numerical results, we studied the reconstruction
of fluorescence absorption coefficients inside the medium using
experimental data.

The lab phantom with a square base has a size of 2.2 cm ×
2.2 cm × 10.3 cm (X × Y × Z). A fluorescent cylinder rod
of d = 2 mm is filled with Fluorescein and embedded inside
the medium. The optical properties of Fluorescein are µx→m

a =
0.4 cm−1 , τ = 4.0 ns, and η = 0.93 (see Table IV). With this
phantom, we consider two setups. In both cases, a single fluo-
rescent source (a cylindrical rod) is used, but it is placed in a dif-
ferent location inside the medium. Furthermore, the background
optical properties are different. All other experimental condi-
tions are kept the same. In the first case, a cylindrical rod that
contains the fluorophore is placed in the center of the phantom.
The background optical properties (a mixture of Intralipid and
India ink) are µx

a = 1.04 cm−1 , µ′x
s = 5.83 cm−1 at excitation



KIM et al.: PDE-CONSTRAINED FLUORESCENCE TOMOGRAPHY WITH THE FREQUENCY-DOMAIN ERT 9

TABLE IV
OPTICAL PARAMETERS USED FOR THE PHANTOM EXPERIMENT

Fig. 5. Experimental setup for the phantom experiment.

wavelength of 475 nm and µx
a = 0.97 cm−1 , µ′x

s = 5.36 cm−1

at emission wavelength of 515 nm. In the second example, the
fluorescent rod is positioned about 6 mm off-center and the
background medium is filled only with a 2% Intralipid solution.

Fig. 5 shows a schematic of the experimental setup. A
frequency-domain system is used for fast 2-D imaging of mod-
ulated light transmitted through small-tissue volume. The main
components of the system are the illumination module, the
light detection module, and the modulation sources for the light
source and detector. The master signal generator provides a si-
nusoidal ac input to the laser diode driver that supplies the laser
diode (wavelength λ = 475 nm) with a bias and ac current.
The modulated light that is transmitted through the phantom is
imaged by a lens to an intensified CCD (ICCD) camera.

The system operates in homodyne mode, i.e., the gain of the
ICCD is modulated by a slave signal generator at the same fre-
quency as the laser [55]. As a result, a steady-state image at
the intensifier output is imaged to the CCD. The signal in every
pixel depends on the phase between source and detector modula-
tion. Master and slave signal generators are linked together and
the phase delay is adjustable. To detect the complete oscillation
of the modulation, multiple images are taken at phase delays
covering the range of 2π and are transferred to a computer.

Each side of the phantom was illuminated by a focused light
source (λ1 = 475 nm) and measurements of transmitted light in-
tensities were made on the opposite side of the illumination side
at λ2 = 515 nm, for which Fluorescein emission is largest. The
position of the laser spot (∼1 mm in diameter) is at the center
of each side of the phantom. We used one transmission side for
the measurement: each side is illuminated and its opposite side
only is measured with the CCD camera. The absolute phase de-

Fig. 6. Reconstructed maps of fluorophore absorption coefficients µx→m
a

(in centimeters inverse) inside the phantom using the dc and 150 MHz data.
(a) 150 MHz. (b) DC.

Fig. 7. Reconstructed maps of fluorophore absorption coefficients µx→m
a

(in centimeters inverse) inside the phantom using the dc and 150 MHz data.
(a) 150 MHz. (b) DC.

lay can be accurately calibrated; however, the amplitude signal
can only be determined relative to its absolute value. Therefore,
for the image reconstruction, we chose to use the rescaled data
that can eliminate this ambiguity: the measured data zf due
to fluorophores at the emission wavelength were rescaled to the
reference data. In other words, we use the measured data zf mul-
tiplied by the rescaling factor r = pr/zr , where zr denotes the
measurement of the background medium without a fluorescent
probe at excitation wavelength and pr denotes the prediction
data obtained from the forward model for the same excitation
wavelength [26]. For the second example, we measured the
emission data only (i.e., we did not take the measurement of the
background medium) and calibration procedure was different.
In this case, we use the normalized data for reconstruction. We
obtained the measurement data for dc and 150 MHz frequency.

We performed the reconstruction for a 2-D plane where the
laser illumination and detection is performed. The spatial do-
main is discretized into a grid of 47 × 47 points and the angular
domain into 24 discrete ordinates (S4) to solve the radiative
transfer equation. We started the reconstruction from an initial
guess µx→m,0

a = 0 for both of the two cases. Figs. 6 and 7 show
the reconstruction results for the first and second cases. Note
that the reconstruction results of the constrained SQP method
only are presented here because the unconstrained lm-BFGS
method yielded almost same results with respect to the size and
location of a fluorescent probe, as in the numerical study. Also
the different metrics, i.e., the location and size of a reconstructed
fluorescent probe, are used to assess the reconstruction results
(see Table V) since, for the second case, there are some unknown
effects caused by the unknown strength of a source.

For the first case, the difference between the dc and 150 MHz
data is not significant: both methods yielded almost same
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TABLE V
MEASURES OF ACCURACY IN THE RECONSTRUCTED IMAGES WITH THE

EXPERIMENTAL DATA (UNIT: cm−1 )

results with respect to the location and size of a fluorescent
probe: µx→m

a,dc = 0.40 cm−1 and µx→m
a,150 MHz = 0.34 cm−1 (see

Table V). However, in the second case, with the 150 MHz data
we obtained the more accurate reconstruction in the location of
the fluorescent probe as compared to the dc data, which shows
that the frequency data give better results than the dc data, espe-
cially in the identification of the target location. Note that since
the source strength is not known, the reconstructed image is
shown in a normalized scale [0, 1]. Again, CPU times are com-
pared between the two methods. Here, we observed a similar
speedup factor as previously determined in the numerical stud-
ies. The PDE-constrained rSQP method took about 6 min, while
the unconstrained lm-BFGS method required 58 min to reach
the same accuracy; hence a∼10-fold acceleration was achieved.

IV. CONCLUSION

To accelerate the image reconstruction process for optical
fluorescence tomography, we present here a PDE-constrained
reduced Hessian SQP (rSQP) method. The proposed algorithm
solves the two forward problems and one inverse problem, en-
countered in fluorescence tomography, at once by updating the
excitation and emission radiances and the fluorescence absorp-
tion coefficient simultaneously in one iteration process. The
frequency-domain ERT was employed as a light transport model
for both excitation and emission radiances. To evaluate the per-
formance of the proposed PDE-constrained scheme, we per-
formed numerical experiments varying the optical parameters
of the test problem and compared the results of the constrained
approach with an unconstrained lm-BFGS method (the fastest
unconstrained scheme in OT) in terms of computation time, ac-
curacy, and robustness. Furthermore, we applied our code to the
experimental data obtained for the lab phantom with a fluores-
cent probe inside.

In general, we found that the PDE-constrained method leads
to a significant reduction in the computation time. We typically
observe acceleration factors between 10 and 15 as compared to
the unconstrained lm-BFGS method. We also studied the im-
pact of noise on the image quality in the reconstruction process.
While the image quality depends on the signal-to-noise level of
the data, there appear to be little difference between the con-
strained and unconstrained methods. Furthermore, we found that
the two approaches respond similarly to the choice of the ini-
tial guess. Therefore, the image quality deteriorates in a similar
fashion as the initial guess is chosen further and further away
from the actual background optical properties. However, the
PDE-constrained codes yields results approximately ten times
faster than the unconstrained code.
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