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Abstract: We introduce a transport-theory-based PDE-constrained 

multispectral model for direct imaging of the spatial distributions of 

chromophores concentrations in biological tissue. The method solves the 

forward problem (boundary radiance at each wavelength) and the inverse 

problem (spatial distribution of chromophores concentrations), in an all-at-

once manner in the framework of a reduced Hessian sequential quadratic 

programming method. To illustrate the code’s performance, we present 

numerical and experimental studies involving tumor bearing mice. It is 

shown that the PDE-constrained multispectral method accelerates the 

reconstruction process by up to 15 times compared to unconstrained 

reconstruction algorithms and provides more accurate results as compared 

to the so-called two-step approach to multi-wavelength imaging. 

©2010 Optical Society of America 

OCIS codes: (110.4234) Multispectral and hyperspectral imaging; (170.5280) Photon 

migration; (110.6955) Tomographic imaging. 
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1. Introduction 

Over the past decade near-infrared optical tomography (NIROT) has emerged as a viable 

imaging modality to monitor physiologically important parameters such as concentrations of 

oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] in tissues [1–8]. This technique extracts 

tissue chromophore concentrations by exploiting the absorption data at multiple wavelengths, 

based on the fact that absorbers in tissue such as hemoglobin, water and lipid are linearly 

correlated with the tissue absorption. Initially researchers employed the so-called two-step 

method to obtain the concentrations of these absorbers and other chromophores. In this 

approach, the absorption coefficients are retrieved sequentially for each wavelength and then 

combined to obtain the concentrations through a direct matrix inversion or a least-squared 

method. However, it is well known [4,6,7] that this two-step approach sometimes produces 

unreasonable results (e.g. negative chromophore concentrations), and can show strong cross-

talk between chromophores. To overcome this problem, researchers introduced a multispectral 

method in which chromophore concentrations are directly reconstructed by utilizing spectral 

constraints between chromophores into the reconstruction process. It has been shown that 

these direct methods provide improved accuracy and mitigate cross-talk. Li et al [6] proposed 

a multispectral method based on the perturbation theory and demonstrated that it improved the 

concentration images of various chromophores. Corlu et al [4,7] explored wavelength 

optimization for the continuous-wave multispectral optical tomography and validated their 

results through numerical simulations and with experimental data. 

Both Li et al and Corlu et al, however, based their work on the diffusion approximation 

(DA) to the more generally applicable equation of radiative transfer (ERT). It is well known 

that the diffusion approximation becomes less accurate when applied to imaging of small-

tissue volumes and is further compromised if highly absorbing objects or fluid-filled regions, 

which contain, for example, cerebrospinal or synovial fluids, are considered [9]. The use of 

the full ERT alleviates these problems and provides accurate prediction of intensity 

measurements for imaging of small-tissue geometries. However, employing the ERT with the 

conventional two-step approach leads to prohibitively long computation times compared to 

the DA version, since the two-step model requires a large number of repeated forward 

simulations (based on ERT) that should be done for each wavelength during optimization. 

Thus it remains a challenging task to develop computationally efficient, accurate transport-

theory-based multispectral chromophore reconstruction codes. This motivates our 
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implementation of a fast ERT-based multispectral model for direct accurate imaging of 

chromophores concentrations in small-tissue volumes. 

In this work we present a novel approach called a PDE-constrained multispectral imaging 

method that enables us to achieve two goals: first this approach accelerates the ERT-based 

image reconstruction process, and second it improves the chromophore reconstruction 

accuracy. To evaluate the new method, we provide numerical simulations and experimental 

results involving tumor bearing mice. Throughout these studies our new method is compared 

to the performance of the conventional unconstrained two-step method. 

2. Equation of radiative transfer as a light propagation model 

The frequency domain forward model for light propagation in tissue can be accurately 

modeled by the radiative transfer equation [10,11] as 

 
4

[ ( ) ( ) ] ( , , ) ( , , ) ( , ) ( , , )
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λ λ λ
π

µω
µ λ µ λ ω ω ω

π
+ + +Ω⋅∇+ + + Ω = Ω Φ Ω Ω Ω + Ω∫r r r

� � �
 (1) 

where uλ is the spectral radiation intensity in unit [W/cm
2
/sr./nm], Qλ is the interior spectral 

radiation source in unit [W/cm
3
/sr./nm], and µa(λ) and µs(λ) are the wavelength-dependent 

absorption and scattering coefficient in unit [1/cm], and Φ is the phase function describing 

scattering from direction Ω
+
 into direction Ω. We use here the Henyey-Greenstein phase 

function that is commonly used in tissue optics. The above equation can be solved with 

appropriate boundary conditions. In this work, we implemented a partially-reflective 

boundary condition [12] that allows us to consider the refractive index mismatch between the 

tissue and air. 

We use an unstructured node-centered finite-volume approach [11] for the angular domain 

and a discrete ordinates formulation for the spatial domain, in order to obtain the discretized 

form of Au = b where the sparse matrix A contains all coefficients resulting from 

discretization and the vector b represents the discretized boundary conditions, respectively. 

The algebraic equation Au = b, is solved with a complex version of the GMRES (m) linear 

solver [13] where m denotes the iteration number after which GMRES is restarted. Thus, the 

spectral intensity and phase shift are obtained by solving the forward problem [Eq. (1)] with a 

distribution of known optical properties at wavelength λ. 

The tissue chromophore reconstruction is based on the linear correlation between the 

absorption coefficient and the chromophore concentration. The known mapping function of 

the i-th chromophore concentration Ci to the absorption coefficient µa(λ) is given with the i-th 

absorption extinction coefficient εi(λ) as 

 
1

( ) ( )
cN

a i i

i

Cµ λ ε λ
=

=∑   (2) 

where Nc is the number of total chromophores that contribute to the absorption at wavelength 

λ. In the matrix form, Eq. (2) is given as [M] = [E][C] where the coefficient matrix [E] 

denotes the molar extinction coefficients of chromophores whose values are available in the 

literature [14], and the concentration vector [C] denotes the concentration of chromphores. 

3. Two-step and multi-spectral PDE-constrained models 

Reconstruction of tissue chromophore concentrations can be performed in two different ways: 

a two-step method or a one-step multispectral method. Both methods will be described in 

some detail next. 

#130092 - $15.00 USD Received 14 Jun 2010; revised 25 Aug 2010; accepted 7 Sep 2010; published 8 Sep 2010
(C) 2010 OSA 1 October 2010 / Vol. 1,  No. 3 / BIOMEDICAL OPTICS EXPRESS  814



3.1 Two step Method 

The traditional two-step method deals with reconstructing the absorption data µa(λ) for each 

wavelength λ which corresponds to minimizing the objective function defined at wavelength λ 

given as 
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where Q  is the measurement operator that projects the angular intensity distribution 
d

uλ  

onto the measurable quantity (i.e., radiation flux at the surface), 
d

zλ  is the spectral 

measurement made at surfaces and ND is the total number of measurements. Then these 

images are converted into the chromophore concentration images. For example, consider four 

main absorbers (HbO2, Hb, Water and Lipid) with four wavelengths measurements. In this 

case, we can decompose four absorption coefficient maps into into the chromophore images 

by using Eq. (2) as 
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If more than four wavelengths are used to obtain four chromophores, i.e., Nc < Nλ, the 

chromophore concentrations may be the least-squared solutions to Eq. (2). 

The one-step multispectral method retrieves the spatial distributions of chromphore 

concentrations directly by employing the multispectral measurements simultaneously into 

reconstruction. This can be achieved by minimizing the sum of the objective functions defined 

at each wavelength λ as: 
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where Nλ is the number of measurement wavelengths and Ci is the i-th chromophore 

concentration that can be either [HbO2] or [Hb] or [Water] or [Lipid] concentrations. Note that 

the reconstruction variables in Eq. (5) are the chromophore concentrations themselves, not the 

absorption coefficients. Equation (5) also shows that the chromophore concentrations are 

updated by checking variations in all spectral data through the minimization process. Since 

the multispectral method can make use of as many wavelength data as available for the same 

number of unknowns, it improves the nature of the problem, thus making a highly ill-posed 

problem less ill-posed. This cannot be achieved by the two-step method, which just increases 

the number of unknowns as the number of measurement wavelengths is increased. 

3.2 PDE-constrained multispectral method 

We introduce here the PDE-constrained multispectral model. In order to understand the 

difference between the PDE-constrained multispectral and standard PDE-constrained models, 

we begin with a brief review of the standard PDE-constrained optimization. 

Consider the standard optical tomographic problem defined at each wavelength as: 

 
21

min  ( ; )   subject to ( ; ) 0
2

obs
f u Qu z R c u Au bλ λ λ λ λ λ λµ β µ= − + = − =   (6) 
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where u and z
obs

 denote the vectors of spectral intensity predictions and measurements, 

respectively, R denotes appropriate regularization with a regularization parameter β, and µλ 

denotes a vector of unknown wavelength-dependent absorption coefficients. The equation Au 

= b is a discretized version of the forward transport equation. The problem given by Eq. (6) is 

often referred to as “PDE-constrained” since the optimal solution at minimum of f has to 

satisfy the partial differential equations (i.e., ERT) represented by Au = b. 

The most common approach for solving Eq. (6) is to treat the forward variable u as a 

dependent variable of the inverse variable µλ, which makes it possible to replace the prediction 

vector u in f of Eq. (6) by its forward solution vector A
−−−−1

b. As a result, the problem Eq. (6) is 

reformulated as 

 
2

11
minimize    ( )

2

obs
f QA b z Rλ λµ β∗ −= − +   (7) 

which is often referred to as “unconstrained” because equality Au = b no longer appears in Eq. 

(7), i.e., f* is now a function of µλ only. Thus the accurate forward solution A
−−−−1

b has to be 

obtained for each wavelength λ for evaluation of the objective function Eq. (7), which makes 

the unconstrained code computationally very expensive both with respect to time and 

memory. Nonetheless, this approach has been widely used in optical tomography because of 

the ease of implementation. The existing DA-based multispectral or two-step schemes [2–7] 

belong to this category. 

Another approach to solve Eq. (6), is to treat the forward variable u and the inverse 

variable µλ independently. This enables solving the equality-constrained problem [Eq. (6)] 

directly by updating the forward and inverse variables simultaneously at each of optimization 

iterations. Typically the PDE-constrained inverse problem [Eq. (6)] can be reformulated into 

the framework of the following extended objective function called “Lagrangian” as: 

 
21

( , ; ) ( )
2

obs T
L u Qu z Au bλ λ λ λ λ λ λµ η η− + −≜   (8) 

Here η is called the vector of Lagrange multipliers. The simultaneous solutions of forward 

and inverse problems can be achieved at points satisfying the so-called first order Karush-

Khun-Tucker (KKT) conditions [11,15] where the gradient of L in Eq. (8) vanishes with 

respect to η, u and µλ, respectively. One major advantage of this PDE-constrained approach is 

that the solution of the forward problem does not have to be accurate until optimization 

reaches convergence. So the inexact solution obtained with a loose criterion can be used into 

optimization, which leads to a significant saving in the total reconstruction time. Recently, our 

group has for the first time used this PDE-constrained optimization into imaging of absorption 

and scattering maps in tissue: the augmented Lagrangian (AL) method [15] and the reduced 

Hessian sequential quadratic programming (rSQP) method [11]. 

However, the PDE-constrained approach of this kind [Eq. (8)] cannot be used directly with 

the one-step multispectral model. The reason is that the standard PDE-constrained 

optimization method [Eq. (8)] works only for a single wavelength-dependent constrained 

problem [Eq. (6)]. Thus it cannot treat all wavelengths data simultaneously within a PDE-

constrained optimization framework. Therefore the standard PDE-constrained optimization 

approach has to be reformulated into a one-step multispectral model so that all multispectral 

data can be utilized simultaneously into reconstruction, which is the focus of this study. 

In the following we provide a description of the formulation of PDE-constrained 

multispectral optimization. The basic idea behind this new method is to combine the 

multispectral model [Eq. (5)] and the PDE-constrained approach [Eq. (8)]. In other words, to 

be able to use data from all wavelengths we minimize the sum of the objective function 

defined at each wavelength λ [Eq. (5)] within the framework of PDE-constrained optimization 

[Eq. (8)]. This is achieved with the following formulations for PDE-constrained multispectral 

optimization: 
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Here the inverse variable becomes a vector x of all unknown chromophore concentrations, 

i.e., x = (Cj). We employ here the rSQP method to solve the PDE-constrained multispectral 

problem [Eq. (9)] by minimizing the multispectral Lagrangian function L [Eq. (10)] with 

respect to η, u and x. A multispectral version of the rSQP algorithm is described in the 

following section. 

3.3 Reduced Sequential Quadratic Programming (rSQP) 

In the PDE-constrained multispectral model, the reduced Hessian SQP scheme solves the 

optimization problem [Eq. (9)] by minimizing the quadratic approximation of the Lagrangian 

function given by Eq. (10) subject to the linearization of the forward equation as follows: 
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2
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T
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k
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k
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r
g is the reduced gradient and k

r
H  is the reduced Hessian 

of the Lagrangian function. Here k
C denotes the Jacobian matrix of the constraint with 

respect to p = (x, uλ), given by ( )
k kT

p
C Au bλ= − . After differentiation of Eq. (11) with respect 

to ∆x, we finally can obtain the following forms for the updates of forward and inverse 

variables as: 
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where the matrix-vector product 1( )k k

r r
H g−  is directly approximated by using the limited-

memory BFGS updating formula [16]. Here the reduced gradient k

r
g  is given for the j-th 

chromophore concentration as: 

 ( ), j j

k kT T k k

r j j x x
g u A fλ

λ λ
λ

ε η= +∇∑   (13) 

The Lagrangian multiplier k

λη  at each wavelength λ can be obtained by solving the 

corresponding adjoint equation, given as: 

 *( )kT k T k obsA Q Qu zλ λ λη = − −   (14) 

where the operator (.)* denotes the complex conjugate of the complex vector. The global 

convergence of the PDE-constrained multispectral algorithm is ensured by a line search on the 

following 
1
l  merit function that somehow balances the aims of reducing the objective 

function and satisfying the constraints, given as: 

Table 1. Chromophore concentrations and optical properties of the background medium 

and the objects 

Object HbO2 [µM] Hb [µM] Water [%] 

Background 40 20 18 

1 80 20 18 

2 40 40 18 

 
1

( ) ( )
k

u ,x f u ,x Au bη λ λ λ λ
λ

ϕ η= + −∑   (15) 
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which is chosen here for its simplicity and low computational cost. The merit function [Eq. 

(15)] is successively monitored to ensure the global progress towards the optimal forward and 

inverse solutions, while a line search is performed to find a step length kα  that can provide a 

sufficient decrease in the merit function. As a consequence, the new iterate is given as: 

 

1

1

∆

.

k k k

k k k k

x x x

u u uλ λ λ

α

α

+

+

= +

= + ∆
  (16) 

The algorithm as described in Eqs. (11)–(16) is used for our numerical and experimental 

studies that will be presented next. 

4. Results 

In this section, we apply the newly developed PDE-constrained multispectral method to 

directly recover the chromphore concentrations inside the medium. The performance of the 

algorithm is evaluated in terms of CPU times and accuracy. Without loss of generality, the 

scattering coefficient was assumed to be constant over the medium, given by µs
′
(λ) = Aλ

-b
 (A 

= 45000, b = 1.3). In both the numerical and the experimental studies, we focus on the 

reconstruction of the oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) concentrations 

since these are two major absorbers in tissue closely related to disease progression and 

physiological process. Water concentration was assumed constant over the medium. 

4.1 Numerical study 

First, we consider two-dimensional circular enclosure, as shown in Fig. 1, filled with an 

inhomogeneous medium. Two objects with a diameter of 0.2cm are embedded in the 

background: one differs only in [HbO2] and the one only in [Hb]. The corresponding 

chromophore concentrations are given in Table 1 for the background medium and the objects. 

The background medium has [HbO2] of 40[µM] and [Hb] of 20[µM]. The object 1 has [HbO2] 

of 80 while the object 2 has [Hb] of 40[µM]. These values are chosen here to mimic 

absorption coefficients of 0.1~0.2 (cm
−1

), which correspond to the typical transport regime. 

 

Fig. 1. Circular enclosure (left) and absorption spectra of HbO2 (right): the test medium has two 

objects of perturbation: one in [HbO2] and one in [Hb]. 

Eight sources are located around the enclosure surface at regular intervals. The sources are 

isotropic-emitting into the medium and intensity-modulated with a frequency of 600 MHz. 

The 64 detectors are equally spaced around the boundary surface. This yields a total of 512 

source-detector pairs for reconstruction. For noise-free simulated data zd in Eq. (5), we used a 

mesh of 11538 triangle elements with a S10 quadrature. The prediction Qud in Eq. (5) is 

obtained on a coarser mesh of 2854 triangular elements with a S6 quadrature. Measurements 

containing noise are simulated by adding an error term to zd in the form obs

d d
z z ϖσ= + , 

where σ  is the standard deviation of measurement errors and ϖ  is the random variable 
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with normal distribution. Here we chose a noise level of 15dB which represents the typical 

noise level encountered in optical tomography [17]. 

Since we look at the reconstruction of [HbO2] and [Hb], we only need two wavelengths to 

distinguish between these two chromophores. However, different sets of two wavelengths 

may affect the reconstruction accuracy. To illustrate the influence of the wavelengths set 

chosen, we consider two different sets of measurement wavelengths which are selected here 

from commonly available diode lasers: one set with (650nm, 830nm), the other set with 

(760nm, 830nm). Another reason for this set comes from the fact that, as shown in Fig. 1, the 

molar extinction coefficients of HbO2 and Hb are different from each other for chosen 

wavelengths, which is thus believed to be favorable to reconstructing HbO2 and Hb 

concentrations. 

We use two metrics for the reconstruction quality: a correlation coefficient ρc and a 

deviations factor ρd, as defined in [17]. Accordingly, the larger correlation coefficient, close to 

1, and smaller deviation factor, close to zero, represents the higher accuracy. Also the 

correlation coefficient may be used to indicate the degree of cross-talk that can be measured 

as the HbO2 (Hb) concentration divided by the Hb (HbO2) concentration in Hb (HbO2) 

position of the known object. Besides the effects of different wavelength sets, we also 

investigate the CPU times in both PDE-constrained and conventional multispectral methods, 

which is another important metric for evaluation of the performance of the proposed 

algorithm. All reconstructions are performed using two methods: the PDE-constrained one-

step multispectral method and the unconstrained two-step method. Note that the unconstrained 

two-step method is based on the quasi-Newton (BFGS) updating scheme [16,17]. Hereafter 

this unconstrained two-step method will be denoted by simply the conventional method. The 

results are given in Table 2 and in Figs. 2 and 3. 

Table 2. Image quality of reconstructed [HbO2] and [Hb] obtained with the PDE-

constrained multispectral and unconstrained two-step methods 

λ set Method 
CPU times 

(min.) 
[HbO2] [Hb] 

Cor. ρc Dev. ρd Cor. ρc Dev. ρd 

650-830 
PDE-constrained 14.5(12*) 0.62 0.91 0.71 0.93 

unconstrained 168 0.54 0.89 0.56 0.90 

760-830 
PDE-constrained 9.4(9*) 0.63 1.01 0.62 0.95 

unconstrained 84 0.62 1.17 0.61 1.07 
*Numbers in the parenthesis in the 3rd column indicate the speedup factors by the PDE-constrained 

method compared to the unconstrained two-step method. 

As shown in Table 2, the PDE-constrained method leads to a significant saving in the CPU 

time in all cases. For the (650nm, 830nm) set, the PDE-constrained multispectral method 

reaches convergence in 14.5 min while the unconstrained two-step method takes about 168 

min to converge at the same convergence criterion used in the PDE-constrained multispectral 

method. Therefore, the PDE-constrained multispectral method reduces the computation time 

by a factor of about 12. We observe a similar time saving in the other cases of a different 

wavelength set (see Table 2). The (760nm, 830nm) set data converges in 9.4 min using the 

PDE-constrained method and in 84 min using the unconstrained two-step method, 

respectively. Therefore, in this case, the PDE-constrained multispectral method accelerates the 

reconstruction process by a factor of about 10. 

The main reason for this significant reduction in the CPU time can be explained by the 

fact that the PDE-constrained multispectral method does not require the exact solution of the 

forward problem at each iteration of optimization until it converges to the optimal solution, as 

mentioned earlier. Indeed we do not solve the forward problem for each wavelength, and 

instead we solve the linearized forward problem Eq. (12) which is much inexpensive to solve) 

for each wavelength. In other words, even a loose tolerance of 10
−2

 can be used to solve for 

the linearized forward problem. Since we use a GMRES iterative solver, the usage of a loose 
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tolerance (of 10
−2

) takes a much smaller number of iterations to a stopping criterion than the 

tight tolerance (of 10
−10

) used in the unconstrained two-step method. As a consequence, this 

leads to a significant time savings through the overall optimization process. 

 

Fig. 2. Convergence history of the PDE-constrained multispectral method with iteration: (a) 

forward error; (b) inverse error. 

Figure 2(a) and 2(b) show the convergence history of the PDE-constrained multispectral 

method with the number of iterations. As expected, it is observed that the PDE-constrained 

multispectral scheme solves the forward and inverse problems simultaneously through 

decreasing all forward [Fig. 2(a)] and inverse [Fig. 2(b)] errors at once in each of optimization 

iterations. 

Figure 3 shows the reconstructed concentration images of two chromophores HbO2 and 

Hb obtained with two wavelength sets. Each row corresponds to the reconstructed images of 

HbO2 and Hb concentrations, respectively, and the columns display the reconstructed images 

for wavelength sets 1 and 2, for the PDE-constrained and unconstrained two-step methods, 

respectively. In terms of image quality, the two methods with sets 1 and 2 give different 

results. For set 1, it can be seen from Table 2 and Fig. 3 that the PDE-constrained method 

gives more accurate results than the conventional method. The correlation factor of the PDE-

constrained method is 0.62 and 0.71 for [HbO2] and [Hb], respectively. This is almost 20% 

and 40% better than when the two-step method is used (ρc = 0.54 and 0.56, respectively). For 

set 2, both methods give similar results for both [HbO2] and [Hb]. When both wavelength sets 

are compared against the method, the two-step method works better with the 760-830 set 

rather than the 650-830 set. On the other hand, the PDE-constrained method outperforms the 

unconstrained two-step method for both wavelength sets. In particular, it gives best results for 

the 650-830 set. 
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Fig. 3. Images of reconstructed [HbO2](top row) and [Hb](bottom row), obtained with the 

PDE-constrained multispectral and unconstrained two-step methods for two different 

wavelength sets. 

Also, we found that the two-step unconstrained method produces larger deviation factors 

due to overestimation or underestimation in either HbO2 or Hb or both of the two (see Fig. 3). 

More evidences supporting this statement can be found from results obtained with the 

(760nm, 830nm) set. As compared to the results with the (650nm, 830nm) set, the two 

methods give lower accuracy both with respect to the correlation coefficient and the deviation 

factor as given in Table 2. Especially some cross-talk between two hemoglobin concentrations 

is observed in both of the two methods: the false Hb (HbO2) perturbation is retrieved in the 

position of object 2 Eq. (1) where the medium has only inhomogeneity in HbO2 (Hb). In 

addition to cross-talk, the conventional method reveals larger artifacts and overestimation or 

underestimation in both [HbO2] and [Hb]. This nature of the (760nm, 830nm) set may be 

explained by the concept of a condition number κ(E) of the molar extinction coefficient matrix 

E of HbO2 and Hb that represents a measure of how ‘well-posed’ a problem is: the larger κ(E) 

is, the more ‘ill-posed’ is the system. In other words, if the condition number is large, even a 

small error in the estimated absorption coefficient may cause a large error in the reconstructed 

hemoglobin concentration, and vice versa. In our cases, the condition numbers for the 

(650nm, 830nm) and (760nm, 830nm) sets are 1.76 and 3.17 respectively. Therefore it is 

evident that the (760nm, 830nm) set exhibits the nature of more ill-posed noise-sensitive 

problem, consequently making it more difficult to distinguish between the two unknowns, as 

compared to the (650nm, 830nm) set. 

4.2 Experimental study 

In addition to numerical studies, we have started to explore the code’s performance using 

experimental data obtained from tumor bearing mice. For this experiment 10
6
 cultured human 

Ewing sarcoma cells engineered to express luciferase (SK-NEP1-luc) were implanted intra-

renally in NCR nude mice and allowed to grow until the tumor size reached about 1g as 

determined by weekly bioluminescence measurements. The experimental data was acquired 

with a continuous-wave digital optical tomography system that illuminates the target 

simultaneously with two wavelengths (λ = 760 nm and 830nm) modulated at 5 kHz and 7 kHz 

respectively. The system’s 16 sources and 32 detectors are configured in two rings, separated 

by 1.25cm, around a 3.175cm Delrin cylinder. Each ring contains 8 sources and 16 detectors 

arranged in a source-detector-detector-source configuration. The animal, anesthetized using 

isofluorane gas, was placed in the cylinder with the kidney and tumor located between the two 

rings of sources and detectors [see Fig. 4(a)]. Then 1% Intralipid fluid was used to fill the 
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remaining space in the cylinder to help reduce edge effects. The system uses silicon 

photodiodes to detect the transmitted and reflected photons passing through the cylinder. A 

digital-signal-processor (DSP) chip provides fast demodulation and control of the system 

giving an imaging frame rate of over 5 frames per second. More detailed information about 

the measurement system can be found elsewhere [18]. 

 

Fig. 4. Optical imaging probe with mouse positioned in the cylinder (a) and signal changes 

observed over a 5 day period for the sum of all measurements (b). 

To monitor the hemodynamic effects in the growing tumor, four sets of optical 

tomographic images (1000 frames of data - approximately three minutes of imaging) were 

obtained at days 0, 1, 3, and 5 after the tumor size was determined to have reached 1g. A 300-

point subsection of the 1000 frames data with minimal motion was selected and averaged to 

remove any respiratory and other noise. After the data was acquired with the mouse in the 

cylinder a reference set of data was acquired for a homogeneous medium of 1% Intralipid. 

Since the instrument used for this study does not provide absolute measurements due to 

the unknown calibration errors such as photon loss in fibers, we defined the following 

objective function [19]: 

 

2
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s d s d
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where the subscripts s and d denote the numbers of sources and detectors. 
tar, ,s d

M
λ

 and 

ref, ,s d
M

λ
 denote the spectral measurements at wavelength λ for the target medium of unknown 

optical properties and the reference medium of known optical properties, respectively. 
ref , ,s d

P
λ

 

and 
ref , ,s d

P
λ

 are the corresponding forward predictions for the reference medium of known 

optical properties and the target medium of unknown optical properties, respectively. Here 1% 

Intralipid matching fluid is used as the reference medium. 

Figure 4(b) shows the changes in measured signal intensity as it develops over the 5-day 

period when the experiments were performed. The value plotted as a function of time is the 

sum of measured optical signal for all source-detectors pairs, normalized by the sum of the 

day 0 signal. In general, we always saw a decline in signal intensity in almost all source 

detector pairs over time, which is caused by the continuous growth of the tumor, which is 

accompanied by a well-understood increased in vascularization (and hence blood volume) in 

the field of view [20,21]. 

Using data from all source-detector pairs we furthermore retrieved the three-dimensional 

spatial distributions of oxy- and deoxy-hemoglobin, (HbO2) and (Hb) as well as their sum the 

total hemoglobin (THb). As with the numerical studies, we compare the performance of the 

two methods (PDE-constrained multispectral and conventional two-step methods) on the 

experimental data. We measure the CPU times of the two methods, and since the exact 
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distributions of chromophores are not known for the mouse, we just provide a qualitative 

assessment of the results based on the expected biological change. 

The reconstructed images of [THb], [HbO2] and [Hb] are shown in Figs. 5 and 6. Note that 

Figs. 5 and 6 show the results for the 2cmx3cmx3cm volume in the cylinder of height 8cm 

and diameter 3.175cm. We present here a drawing of the 3D volume contour of the 

reconstructed values above the given threshold, which can provide a better way for visual 

inspection of the time-trace results than the 2D cross-section maps. In terms of the CPU times, 

the PDE-constrained multispectral method took approximately 2 hrs to converge, while the 

conventional two-step method reached convergence in about 24 hours on a Dual Core Intel 

Xeon 3.33GHz processor: this constitutes acceleration factor of about 10. Furthermore, the 

two methods gave different trends of reconstructed chromophores over time. As can be seen 

in Fig. 5, the images generated by the PDE-constrained multispectral method clearly show 

that [HbO2], [Hb], and [THb] increase in volume and value over time. This is expected as the 

tumor volume and vascular density increase over time as well [20,21]. This is also in 

agreement with the observed changes in optical signal shown in Fig. 4. On the other hand, this 

trend is not seen in the results obtained with the two-step method (Fig. 6). The [HbO2] and 

[Hb] values decrease at 72 hrs and 5 days, respectively. We believe that this is an artifact 

introduced by the two-step method. Since the two-step method does not take any spectral 

constraints into account, it has been observed to produce less reliable results before [4,6,7] 

(e.g., artifacts, cross-talk and negative values). 

 

Fig. 5. Reconstructed distributions of [THb] (1st row), [HbO2](2nd row) and [Hb] (3rd row) as 

observed over the 5 day period, using the proposed PDE-constrained multispectral method, 

with a wavelength set of 760nm and 830 nm. Shown is the 2cmx3cmx3cm volume that 

includes a growing tumor in vivo. 
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Fig. 6. Reconstructed distributions of [THb](1st row), [HbO2](2nd row) and [Hb](3rd row) over 

a 5-day period, using the conventional two-step method, with a wavelength set of 760nm and 

830 nm. Shown is the 2cmx3cmx3cm volume that includes a growing tumor in vivo. 

5. Conclusions 

In this study, we present the first ERT-based PDE-constrained multispectral inverse method 

for direct imaging of chromophore concentrations in biological tissue. The proposed method 

is based on the reduced Hessian sequential quadratic programming method and solves the 

forward problem for each wavelength and the inverse problem for obtaining chromophore 

concentrations, in an all-at-once manner, which leads to a significant saving in the total image 

reconstruction time. We have evaluated the performance of the proposed algorithm through 

numerical studies and with experimental data obtained from tumor bearing mice. 

We found that the PDE-constrained method not only reduces the image reconstruction 

time by a factor of up to 15 but also gives more accurate results as compared to the 

conventional two-step method. We also observed that the wavelengths pair (650 nm, 830 nm) 

produces more accurate results with less cross-talk than the wavelength pair (760 nm, 830 

nm). The experimental results demonstrate that the PDE-constrained method gives reasonable 

results consistent with expected signal trends. 
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