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Abstract: We present the first algorithm for solving the equation of 

radiative transfer (ERT) in the frequency domain (FD) on three-dimensional 

block-structured Cartesian grids (BSG). This algorithm allows for accurate 

modeling of light propagation in media of arbitrary shape with air-tissue 

refractive index mismatch at the boundary at increased speed compared to 

currently available structured grid algorithms. To accurately model 

arbitrarily shaped geometries the algorithm generates BSGs that are finely 

discretized only near physical boundaries and therefore less dense than fine 

grids. We discretize the FD-ERT using a combination of the upwind-step 

method and the discrete ordinates (SN) approximation. The source iteration 

technique is used to obtain the solution. We implement a first order 

interpolation scheme when traversing between coarse and fine grid regions. 

Effects of geometry and optical parameters on algorithm performance are 

evaluated using numerical phantoms (circular, cylindrical, and arbitrary 

shape) and varying the absorption and scattering coefficients, modulation 

frequency, and refractive index. The solution on a 3-level BSG is obtained 

up to 4.2 times faster than the solution on a single fine grid, with minimal 

increase in numerical error (less than 5%). 

©2010 Optical Society of America 

OCIS codes: (170.3660) Light propagation in tissues; (000.4430) Numerical approximation and 

analysis. 
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1. Introduction 

There has long been an interest in modeling how light propagates in biological tissues [1]. The 

emergence of novel diagnostic and therapeutic methods that rely on lasers in the 1980’s and 

1990’s has led to a need for accurately modeling light-tissue interaction. Various models have 

been developed that make use of ever-increasing computational power and new numerical 

methods. Fundamentally two different approaches have been pursued: (a) Monte Carlo (MC) 

modeling [2,3] and (b) numerical solutions to the equation of radiative transfer (ERT) [4–11] 

or its approximation, the diffusion equation (DE) [4,12–15]. MC methods employ statistical 

techniques to propagate a large number of photons through tissue. While highly accurate 

results can be achieved, MC methods are computationally very intensive. Finite-differences, 

finite-element, and finite–volume methods in which the ERT or DE is discretized and the 

resulting system of equations is solved numerically are, in general, less computationally 

expensive. However, the complexity of these codes can still lead to various computational 

challenges. Furthermore, it has been established that the ERT is more accurate and preferred 

over the DE when modeling light propagation through highly absorbing media and media with 

void like regions [7]. 

A major consideration when implementing non-MC methods is the form of the grid used 

in these calculations. The ERT is typically solved on either a structured or an unstructured 

grid. Structured and unstructured grids differ from one another by the method in which 

Euclidean space is discretized. Structured grids discretize Euclidean space into a set of 

hexahedron elements (quadrilaterals in two-dimensions), while typical unstructured grids 

discretize Euclidean space into a collection of tetrahedral elements (or triangles, 

quadrilaterals, etc., in two-dimensions). The connectivity between nodes in a structured grid is 

implicitly known; nodes always connect to form a cuboid of constant size and orientation. 

This a priori information is central to the finite differences method, where any given grid 

point is assumed to have neighboring grid points that also connect to form cuboids. 

Conversely, the connectivity of unstructured grid elements must be explicitly provided 

because unstructured grid nodes connect to form elements that vary in size, shape, and 

orientation [16]. Thus, algorithms that solve the ERT on unstructured grids are more complex 

than algorithms on structured grids because node connectivity information must be explicitly 

provided and processed. Generating unstructured grids can in its-self be an arduous task, often 

requiring third party applications, while generating structured grids is a relatively simple task 

[16]. Numerical algorithms on both unstructured and structured grids have been developed for 

solving the ERT. For example, the unstructured finite-element method has been used by 

Arridge et al. [13], Salah et al. [11], and Rasmussen et al. [17]. Unstructured finite-volume 

methods have been employed by Kim and Hielscher [9], Ren et al. [8], and Gu et al. [18]. 

Finite-differences ERT codes on structured grids have been mainly pursued by Klose et al  

[4–6,19–21]. In general, solving the ERT on structured grids is attractive because algorithm 

complexity is minimized as a result of the well-ordered nature of Cartesian grids. 

Unstructured grids are generally seen to be superior to structured grids because they 

appear to be better at modeling arbitrarily shaped geometries. Structured grids, however, can 

also model geometries of arbitrary shape. Structured grids can resolve curved boundaries 

using the blocked-off region method and it has already been applied to light propagation 

problem using the simplified spherical harmonics approximation to the ERT by Klose et al. 

[21]. Modeling curved boundaries with structured grids often requires finely discretized grids 

(i.e. dense grids). Unfortunately, the computational cost of solving the ERT on dense grids 

can be prohibitively expensive. Performing calculations on a coarse grid can save 

computational time, but it can also lead to significant numerical error. The use of coarse grids 

can also result in increased modeling error. This occurs because coarse grids are often unable 

to accurately resolve the physical boundary, leading to inaccurate contributions from the 

boundary conditions. Additionally, grids that are too coarse at the boundary might not be able 
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to accurately locate boundary sources and detectors. Fiber bundles are typically used to direct 

photons from a laser source to the medium. Similar sets of fibers are used to direct the 

escaping photons to a detector [22,23]. Thus, these sources and detectors are highly localized 

and a finely discretized grid is necessary to accurately describe their position on the surface. 

Furthermore, in the area of small animal fluorescence and bioluminescence imaging it is 

possible to have internal sources close to the tissue boundary and it is well known that these 

types of sources can lead to severe modeling errors 20]. Using a dense grid that can accurately 

capture boundary effects can reduce this source of error; however, this solution also leads to 

an increase in computation time. 

The aim of this work is to reduce the computational effort required to solve the ERT on 

structured grids. Implementing an algorithm that solves the ERT on a grid that is refined only 

near boundaries can reduce computational cost. The resulting grid is a single grid with various 

levels of refinement - the grid is coarsely discretized in the interior and finely discretized near 

the boundary. These types of grids are called block-structured grids (BSGs) and are a subset 

of the more general adaptive mesh refinement techniques [16]. A single dense Cartesian grid 

is transformed into a relatively sparse grid. Solving the ERT on a BSG requires less 

computational effort than solving it on a single dense grid, as there are less grid nodes inside 

the computational domain. The area of Cartesian grids with local refinements has itself been a 

topic of research [16,24]. In particular, BSGs have been used in the field of computational 

fluid dynamics, especially in the study of shock-hydrodynamics [25] and general fluid flows 

[26]. Previous work has mainly focused on implementing finite volume methods on BSGs 

[27] that were adaptively refined on the interior of the medium. In our work we focus on 

refining the grid only near the tissue boundary, 

In connection with the ERT only one group has used BSGs to date. In 1998, Jesse et al. 

[28] presented a method to solve the time-independent ERT on BSGs using a finite-volume 

method. Their code is limited to two-dimensional rectangular media with isotropic scattering 

and does not consider partially reflective boundary conditions. While useful for applications 

in nuclear physics and heat transfer, this algorithm is not suited for problems concerning light 

propagation in arbitrarily shaped media with highly anisotropic scattering and partially 

reflective boundary conditions. In the area of tissue optics, BSGs have been employed for 

solving the diffusion equation for fluorescent light propagation [29]. Their work is limited to 

treating rectangular geometries and has been developed as a finite-element method algorithm. 

In this paper we go beyond the approaches previously presented and implement the first 

frequency-domain (FD) ERT with reflective boundary conditions on BSGs of arbitrary shape. 

The FD-ERT is particularly important in small animal imaging, where the diffusion 

approximation has limited validity, as light travels only a few mean-free path and non-

diffusive boundary conditions dominate the solutions [7,18,30]. It is highly desirable to have a 

fast and accurate numerical solver for this and other similar applications (e.g. imaging of 

arthritic human finger joints [31]) that require solutions to the problem of light propagation in 

small domains. 

The remainder of this paper is organized as follows. In Section 2 we present our BSG 

generating algorithm, review the multiple forms of the frequency domain ERT, discuss its 

finite difference discretization, and present our modification to these established methods for 

treating BSGs. We also present numerical phantoms used for simulations in this work. In 

section 3 we present our results, and we conclude with a discussion in Section 4. 

 

Fig. 1. General sequence in which major subroutines are executed in our algorithm. 
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2. Methods 

The overall structure of our algorithms is shown in Fig. 1. First, the boundary information is 

provided by giving the coordinates and normal vectors of the surface that encloses the 

medium under consideration. The code then determines the computational domain by filling 

the volume defined in the first step with structured grid points separated by user-defined 

spacings. This grid is transformed into a BSG using our grid generator, and the code then 

solves the light propagation problem using the discretized FD-ERT on this BSG. In the 

following sections we will describe each aspect of our code in more detail. 

2.1. Grid Generation 

To generate the appropriate BSG we must first determine the active computational domain 

using information about the physical boundary provided as input (surface coordinates and 

normal vectors). This process, known as the blocked-off region (BOR) method, starts by 

defining a nominal domain in the form of a rectangular cuboid that completely encloses the 

arbitrarily shaped object defined by the boundary information [21]. The domain is then 

discretized on a Cartesian grid with a user specified spatial resolution along each axis (∆x, ∆y, 

and ∆z). It is necessary that the resolution be small enough to capture all physical effects. In 

our work a grid spacing of 1/10 µs is generally sufficient. Next, the code finds all grid points 

within the discretized domain that lie within the volume enclosed by the boundary. 

 

Fig. 2. Examples of the discretization of Euclidean space with structured grids. (a) The 

geometry the grids approximate is the cross-section of a mouse obtained from an MRI data set. 

(b) Discretization of mouse cross-section; “inactive” and “active” domains are represented by 

the light and dark gray voxels, respectively. The dark gray area represents a single structured 

grid. (c) A 3-level BSG fitted to the active domain. (d) A coarse grid fitted to the mouse cross-

section. Decrease in grid density achieved with a BSG is evident from (b-c). 

After discretizing Euclidean space with a fine grid, the BOR method defines objects of 

arbitrary shape by segmenting the grid into an “active” and an “inactive” region. The method 

proceeds as follows. First, grid points inside the nominal domain corresponding to the user 

provided surface coordinates are identified (called “boundary points”). These points are 

assigned to the active region. Next, the algorithm checks one grid point at a time and 

determines if it is a boundary point. When a boundary point is encountered, the algorithm uses 

the normal vector of the surface at that grid point to determine in which direction the “inside” 

and “outside” regions of the medium are, relative to the current grid point. All future non-

boundary points in the “inside” region are labeled as “interior points” and are assigned to be 

part of the active domain [dark gray area, Fig. 2(b)]. Points in the “outside” region of the 

medium are labeled “exterior points,” are inactive, and are not used in future calculations 

[light gray area, Fig. 2(b)]. We illustrate this process with the following example. Let the 

normal vector at boundary point (i,j,k) be n = nxê1 + nyê2 + nzê3 with nx<0. Then, nodes (i-

1,j,k) and (i + 1,j,k) are classified as “exterior” and “interior” points, respectively. 

Furthermore, all grid points to the right of (i + 1,j,k) are also “interior” points (i.e. (i + 2,j,k), (i 

+ 3,j,k), etc.). This labeling scheme continues until a new boundary point is encountered, at 

which point the process is restarted. The result of this subroutine is a Cartesian grid where all 

nodes are classified as exterior, boundary, or interior points. The resulting grid is used as input 
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to the BSG generating subroutine. An overview of the major aspects of the BOR method is 

presented in Fig. 3. 

 

Fig. 3. Visualization of algorithm for determining computational domains. 

The BSG generator adjusts the grid inside the computationally active domain. As input for 

this step, the level of refinement needs to be specified by the user. The grid generating 

subroutine discretizes the computational domain with the finest expected spacing (∆xf) as 

provided by the user. A subroutine then superimposes the next coarsest grid (∆x = 2∆xf) over 

the fine grid. Next, the algorithm removes coarse grid points on the boundary of the 

computational domain. In the final step, all fine grid points within the coarse grid are removed 

from the computational domain. This process is repeated to generate higher-order BSGs. The 

output of the BSG generator contains the following information for each grid point: 1) 

location: exterior, main boundary, or interior, 2) grid level, and 3) type of fine/coarse 

boundary. The term “fine/coarse boundary” refers to points in the “active” domain at the 

union of coarse and fine grid segments [Fig. 4(a)]. The C +  + pseudo code for the algorithm 

generating a two-dimensional n-level grid is as follows (finest grid = level 0, coarsest grid = 

level n): 

 

Fig. 4. (a) Possible grid points on interior boundaries. The first four cases are labeled i-iv and 

the fifth case is specified by a black dot. (b) An interior point that is not in the active domain 

(black diamond). 

1. Generate grid hierarchy: (for m = 0; m < = n; m +  + ) 

a. Determine all level m grid points in exterior, main boundary, or interior. 

b. If m > 0, for all interior grid points level m 

i. Delete all points level m on the main numerical boundary. 

ii. Delete all points level m-1 interior to a cell of 4 level m points. 

iii. Delete all points level m-1 interior to a cell of 6 level m points. 

2. Classify active grid points into four categories 

a. On main boundary 

b. On fine/coarse boundary [Fig. 4(a)] 

i. Missing west neighbor 
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ii. Missing south neighbor 

iii. Missing east neighbor 

iv. Missing north neighbor 

v. Coarse point (black dot) 

c. Interior point, in active domain, and not on fine/coarse boundary. 

d. Interior point not in active domain [black diamond, Fig. 4(b)]. 

The algorithm for generating three-dimensional BSGs is conceptually the same, however, 

the number of possible configurations of fine/coarse boundary points increases from 5 to 19 in 

step 2b of the pseudo code for the algorithm generating two-dimensional BSGs. To 

summarize, consider the example presented in Fig. 2. A cross-section through a mouse 

obtained from a magnetic resonance imaging (MRI) scan is shown in Fig. 2(a). Discretization 

of this image by a dense grid, a 3-level BSG, and a coarse grid are shown in Fig. 2(b)–2(d), 

respectively. The fine grid and BSG approximate the physical boundary with the same 

accuracy; however, the fine grid is clearly denser. The coarse grid is less dense than the fine 

grid but it is a poor approximation of the true geometry. After comparing all three grids it is 

clear that BSGs can resolve physical boundaries as accurately as dense grids using but with 

significantly fewer points. These properties make BSGs attractive for solving the ERT at 

reduced computation cost with minimal loss in accuracy. 

2.2 Light Propagation Model 

As a particular implementation of a light transport model on BSGs, this work focuses on 

solutions of the frequency-domain ERT. In this case, a boundary light source is intensity 

modulated, leading to propagation of so-called photon density waves in tissue. Photon density 

waves have been used in many applications to characterize optical properties of various 

scattering media including biomedical tissues [1,32]. We have previously developed a general 

mathematical framework for modeling these photon density waves [4]. 

Table 1. List of related variables [4] 

Var. Definition Units Var. Definition Units 

ψ  Radiance W 

cm−2 
φ  Fluence W cm−2 

Ω Angular 

direction 
 λex Excitation 

wavelength 

nm 

dΩ Solid angle sr λem Emission 

wavelength 

nm 

ωm Modulation 

frequency 
s−1 R Reflectivity 

coefficient 
 

µa Absorption 

coefficient 
cm−1 v  Speed of 

light in 
cm s−1 

µs Scattering 

coefficient 
cm−1 r Spatial 

position 
 

µt Attenuation 

coefficient 
cm−1 S Boundary 

source 
W cm−2 sr−1 

η  Quantum 

yield 
 Q Source 

power 
W cm−3 

τ  Fluorescence 

lifetime 

ns J+ Partial 

current 
W cm−2 

To review, the general form of the FD-ERT and related boundary conditions are given by, 

 ( ) ( ) ( ) ( ) ( ) ( )
4

,
ˆ ˆ, , ' , ', '

4

mm

t m s m

Qi
d

v
p

π

ωω
µ ψ ω µ ψ ω

π
 

⋅∇+ + = ⋅ Ω + 
 

∫
r

r r r rΩ Ω Ω Ω ΩΩ Ω Ω Ω ΩΩ Ω Ω Ω ΩΩ Ω Ω Ω Ω   (1) 

 ( ) ( ) ( ) ( )ˆˆ ˆ, , , , ' , ', 0
m m m

S Rψ ω ω ψ ω= + ⋅ ⋅ <r r n r nΩ Ω Ω Ω ΩΩ Ω Ω Ω ΩΩ Ω Ω Ω ΩΩ Ω Ω Ω Ω .  (2) 

A list of the associated variables and their meanings is given in Table 1. While the 

radiance is an important quantity, it is the photon fluence rate given by 

 ( ) ( )
4

ˆ ˆ, , , ,
m m

d
π

φ ω ψ ω= Ω∫r r ΩΩΩΩ   (3) 
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that is often the most important quantity in clinical medicine, as it describes the amount of 

energy per unit area at a given location (watt/area or photons s
−1

 cm
−2

) [1,4]. A second 

important quantity in clinical applications is the partial current 

 ( ) ( ) ( ) ( )
0

, 1 , , .
m m

J R dω ψ ω
⋅ >

+ = − ⋅ ⋅ Ω  ∫ n
r n n r

ΩΩΩΩ
Ω Ω ΩΩ Ω ΩΩ Ω ΩΩ Ω Ω   (4) 

This is the quantity that can be directly measured at a given boundary point [4,22,23,33]. 

The general form of the FD-ERT, Eqs. (1) and (2), can be adapted to account for 

fluorescence and bioluminescence effects which have become increasingly important in recent 

years [30,34–37]. In the case of fluorescence, one equation (ERT 1) is used to model the 

excitation field inside the medium due to a modulated boundary source. The fluorophore 

inside the medium is modeled as an internal source (Q). Fluorophore emission is a function, 

among other things, of the excitation field. Thus, a second ERT is used to model the 

fluorophore emission field (ERT 2). ERT 1 is obtained from Eqs. (1) and (2) by defining the 

boundary source as 

 ( ) ( )0
ˆ , , ,, m

m

i t
S S e

ωω =r rΩ ΩΩ ΩΩ ΩΩ Ω   (5) 

setting the internal source (Q) to zero, and defining the total attenuation coefficient as 

 .ex ex ex em

t a s a
µ µ µ µ →= + +   (6) 

ERT 2 is obtained by setting the boundary source (S) to zero and defining the fluorescent 

source as a function of the excitation field. This relationship is given by 

 ( ) ( ) ( )ˆ ,
, .

1

ex em ex

a m

m

m

Q
i

ηµ φ ω
ω

ω τ

→

=
+

r r
r   (7) 

During emission, the total attenuation coefficient is only a function of the absorption and 

scattering parameters of the medium at the emission wavelength, and is given by 

 .em em

t a s
µ µ µ= +   (8) 

Bioluminescence can be modeled by a single ERT. Bioluminescence cannot be modulated; 

all information with regards to modulation frequency must be discarded. In this case, only 

internal sources exist and the governing equation is obtained from Eqs. (1) and (2) by setting 

boundary sources (S) to zero and defining the source of bioluminescence (Q). The total 

attenuation coefficient is given by Eq. (8). 

2.3 Discretization of Frequency Domain ERT 

To discretize the FD-ERT, we implement a finite-differences upwind step-method for the 

spatial variable and a discrete-ordinates method (SN) for the angular variable [4,20,38–41]. 

Here, we will first review how this is implemented on a single Cartesian grid. Subsequently, 

we will describe how this method is adapted to BSGs. 

2.3.1. Discretization on single grid 

The first step in discretizing the ERT is to use the discrete-ordinates method to replace the 

integral term with the extended trapezoidal rule [5]. This approximation is given by 

 ( ) ( )
4

1

, ,
K

k k

k

d
π
ψ ω ψ

=

Ω = ∑∫ r rΩΩΩΩ   (9) 

where k is the ordinate number, ψk is the radiance in the k
th

 ordinate (where k denotes the k
th

 

discrete angle), and ωk is a predetermined ordinate weight with full level symmetry [40,41]. 

The integral term does not require special treatment for implementation on BSGs. 
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The partial derivative terms are discretized using the upwind-step method. The directional 

cosines of a given ordinate determine the upwind-direction for that particular ordinate. There 

are eight possible numerical schemes, one for each octant in the three dimensional Cartesian 

coordinate system. For example, when all directional cosines are positive, the upwind-step 

method requires an Euler step in the negative x-, y-, and z-axis. For this example, the 

discretization of Eqs. (1) and (2) is given by 

 

[ ] [ ] ( ) [ ] [ ] ( ) [ ] [ ] ( )

[ ] [ ] [ ] [ ] [ ]

1 1 1

1

,
4

ijlk i jlk ijlk i j lk ijlk ij l k

x y z

K
ijlm

t s k kkijl ijlk ijlk ijl ijlk
k

x y z

Qi
p

ψ ψ ψ ψ ψ ψ

ω
µ ψ ψ µ ω ψ

ν π

− − −

′ ′ ′
′=

− − −
Ω + Ω + Ω

∆ ∆ ∆

+ + = +∑
  (10) 

 [ ] ( )[ ] 0.
k k ijl k ijlijlk ijlk

S R n nψ ψ′ ⋅ ⋅= + <Ω ΩΩ ΩΩ ΩΩ Ω   (11) 

The term pkk’ in Eq. (10) is the Henyey-Greenstein phase function and is given by 

 

( )

2

3/2
2

1
,

4 1 2
kk

k k

g
p

g gπ
′

′⋅

−
=

+ − Ω ΩΩ ΩΩ ΩΩ Ω
  (12) 

where g is the anisotropy factor. The radiance, ψ, can be solved from Eqs. (10) and (11) with 

any number of established algorithms. In this work we implement the source iteration 

technique (i.e. the matrix-free point-wise Gauss-Seidel Method). The fluence is given by 

 
1

,
K

ijl k ijlk

k

φ ω ψ
=

= ∑   (13) 

obtained by applying Eq. (9), the extended trapezoidal rule, to Eq. (3) [20,38,40–42]. 

2.3.2. Discretization on block-structured grid 

To solve the FD-ERT on BSGs, the Euler step used in the step-method, Eq. (10), must be 

changed to a step of variable size and become dependent on the local grid. For example, ∆x 

becomes ∆xijl where ijl denotes the current grid point and its value is determined by the size of 

the local grid. Implementing a finite differences numerical scheme with a variable Euler step 

in a matrix-free formulation on BSGs is a complicated endeavor and requires great care. The 

main difficulty arises when solving for the FD-ERT on mesh points on a fine/coarse grid 

boundary (i.e. points that straddle both a coarse grid and a fine grid region). 

In general, the numerical stencil requires each interior grid point (i,j,l) to have four 

neighbors in two-dimensions and six neighbors in three-dimensions. However, mesh points on 

a fine/coarse boundary do not always have a full set of neighbors. This problem can be 

overcome by adjusting the numerical scheme for each individual fine/coarse boundary point, 

or by creating the missing point so that the normal scheme is applicable. In this work we 

consider the latter option. The missing point (virtual point) is constructed through 

interpolation using neighboring points. For illustration consider the two-dimensional example 

in Fig. 5(a). Here, five cases must be considered independently for a given octant. For 

example, it is clear from Eq. (10) that when all directional cosines are positive, points ii and iii 

will require creating a virtual point interior to the coarse grid. However, points i and iv have 

all neighbors necessary to complete the stencil. The fifth case [black dots in Fig. 5(a)] can be 

treated as points on the fine grid or on the coarse grid. By treating these boundary points as 

coarse grid points we assure that they will always have a complete set of neighbors and no 

further special treatment is necessary. The set of points used to create the virtual point varies 

according to the type of boundary point. The different types of boundary points can be 

reduced to five in two dimensions [Fig. 5(a)] and nineteen in three dimensions. 
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Fig. 5. (a) Depiction of grid points on the fine/coarse grid boundary. The first four cases are 

labeled i-iv while the fifth case is specified by the black dot. (b) The point denoted by the black 

triangle is a point on a fine/coarse boundary; the fine and coarse grids are to its right and left, 

respectively. The black dot is the virtual point that must be created when the differencing 

scheme in the x-direction requires a backward Euler-step. Solutions at the four white dots 

surrounding the black dot are averaged to create the virtual point. 

There are many ways to interpolate values for the virtual points needed to complete the 

differencing schemes. Possible interpolation methods include averaging of the nearest four 

neighbors, as well as bilinear, biquadratic, and bicubic interpolation [42]. Higher order 

interpolation schemes are typically preferred because they are able to better resolve the 

curvature of the solution field. Higher order methods, however, are computationally more 

expensive. As a result, the type of interpolation scheme to be used must be chosen based on 

accuracy and computational cost. In this work we implement the four-neighbor averaging 

scheme because it yields sufficiently accurate results. As an example, consider Fig. 5(b). 

Consider solving the FD-ERT when all directional cosines are positive on the interior grid 

point (i,j,l), represented by the black triangle. It is clear from Eq. (10) that the solution at grid 

point (i-1,j,l), represented by a black dot, is necessary to solve the equation. However, that 

grid point does not exist and must be created by averaging the solution at the four neighboring 

grid points denoted by white dots. 

2.4. Numerical Phantoms 

We compare the accuracy and computation speed of our BSG algorithm to a previously 

published single grid algorithm that also uses a combination of discrete ordinates and the 

finite differences upwind-step method to solve the FD-ERT [4]. We test the performance of 

the BSG algorithm on four distinct numerical phantoms (Fig. 6): (a) a 2-cm-diameter disk, (b) 

an anatomically accurate cross section through a mouse obtained from a MRI data set, (c) a 

cylinder that is 2cm in height and diameter, and (d) a homogenous three-dimensional mouse 

phantom obtained from an MRI data set. We solve the FD-ERT on these phantoms on single 

Cartesian grids, on both coarse and fine grids, and on BSGs. We evaluate the performance of 

the BSG algorithm by comparing these solutions. 

The disk phantom is of interest because it represents an instance where a coarse grid 

cannot place a single grid point on the true phantom surface, whereas a finer grid can always 

better approximate the true boundary. This is a worst-case scenario for the coarse grid. The 

anatomically correct phantom is of interest because it is representative of the arbitrarily 

shaped geometries encountered in practice where boundaries can have convex and concave 

regions. Generating a mesh for the anatomically correct phantom and solving the light 

propagation problem is a good test for both the mesh-generating routine and the FD-ERT 

numerical solver. 
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Fig. 6. Numerical phantoms with homogeneous backgrounds and embedded fluorophores: (a) 

disk, (b) two-dimensional mouse cross section, (c) cylinder, and (d) three-dimensional mouse 

model. The positions of boundary sources are shown for (a-b) as black dots, while detectors are 

assigned to every boundary point. The position of the boundary source and detectors are shown 

for the cylinder (c) as an arrow and black dots, respectively. (d) Sources for the mouse are 

located within the interval defined by x = [16,18], y = [43,46], and z = 0. Similarly, detectors 

are defined within x = [16,18], y = [43,46], and z = 15. 

As can be seen from Fig. 6(a), the disk phantom has two embedded fluorescent probes. 

The properties of the fluorescent probes are listed in Table 2. The frequency modulated 

boundary sources are defined on the top-left quadrant of the disk (represented by black dots). 

Thus, instead of defining a single boundary source we define a constant source area. This is 

important because the number of boundary points on a given model increases with decreasing 

∆x. With this setup we ensure the number of photons injected into the phantom is independent 

of the number of boundary points. The source density is 8 × 10
9
 photons cm

−2
 sr

−1
. The optical 

properties of the disk phantom are varied and they are summarized in Tables 2 and 3. 

Table 2. Properties of embedded fluorescent probes 

Property Value 

Quantum Yield 0.93% 
Life Time 5.0 ns 
Absorption 0.4 cm−1 
Dimensions 0.125 × 0.125 cm2 

Table 3. Summary of parameter values used for simulations 

Case ω [MHz] µa [cm−1] µs [cm−1] n 

1 100.0 0.1 10.0 1.00 
2 100.0 0.2 10.0 1.00 
3 100.0 0.1 5.0 1.00 
4 100.0 0.1 10.0 1.37 
5 200.0 0.1 10.0 1.00 

Figure 6(b) shows the two-dimensional mouse-like phantom. As in the disk-shaped 

phantom, this phantom has two embedded fluorescent probes. The boundary sources for 

excitation are on the top-left quadrant and are defined as external boundary sources for 

reasons similar to those presented for the disk phantom. Source density is 8x10
9
 photons cm

−2
 

sr
−1

. The specific optical properties used are summarized in Tables 2 and 3. 

The grid spacings used for simulations in two dimensions are ∆x = 2/256, 2/128, 2/64, 

2/32 cm (where ∆x = ∆y). For each grid refinement, we determine the solution to the ERT on 

1-, 2-, and 3-level BSGs and compare them to the benchmark solution. The benchmark 
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solution for these simulations is the solution on the finest single grid (∆x = 2/256 cm). In 

addition, we vary the optical parameters (µa, µs), modulation frequency (ω), and refractive 

index (n) of each phantom and analyze the performance of the algorithm for each case. 

Simulations on three-dimensional phantoms [Fig. 6(c) and 6(d)] are carried out using 

parameters from case 4 in Table 3. The benchmark solutions for the cylinder and mouse 

phantoms are defined on grids with ∆x = 2/128 cm and ∆x = 0.1 cm, respectively (∆x = ∆y = 

∆z). 

2.5. Quantification of computation time and solution accuracy 

Computation cost and accuracy of a solution is defined relative to its corresponding 

benchmark. Computation time is reported in seconds. Benchmark solutions for determining 

accuracy are obtained on grids with ∆x = 2/256 cm for all phantoms introduced in Section 2.4. 

The relative speed up (RSU) achieved with the BSG algorithm is used to compare the 

computational cost of a solution obtained on a BSG (TBSG) and on a single fine grid (TF), 

where the solutions we compare are partial current measurements at the boundary as defined 

by Eq. (4). All simulations were performed on a computer with a 2.93 GHz Intel Core 2 Duo 

processor. 

 RSU F BSG

BSG

T T

T

−
=    (14) 

The accuracy of the partial current is of particular interest because optical tomographic 

reconstruction (absorption, fluorescence, as well as bioluminescence) is an optimization 

process requiring accurate boundary data as input to the reconstruction algorithm [4,5,9]. 

Accuracy is quantified by the mean percent error (MPE) relative to the benchmark solution 

and is given by 
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1
MPE 100,

a b
n

i i
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i i

f f

n f=

 −
 = ×
 
 

∑   (15) 

where fi
a
 and fi

b
 are the approximate and benchmark solutions, respectively. Only partial 

currents are compared and the MPE is reported. This is done because cross-sectional fluence 

solutions on coarse grids cannot, in general, be directly compared to solutions computed on 

fine grids since the numerical boundary of each grid is unique. This point is perhaps best 

illustrated by referring to Fig. 2(b)–2(d). 

3. Results 

In this section we summarize the computation time required for each forward problem and the 

accuracy of the solution at the boundary using the MPE measure. As previously mentioned in 

Section 2.4, we focus on the five specific combinations of parameters presented in Tables 2 

and 3. We note that throughout this section, the cited grid spacing (∆x) always refers to the 

spacing of the finest grid (i.e. the grid near the boundaries). As an example, a 2-level BSG 

with grid spacing ∆x has an embedded section of coarse grid points whose spacing is 2∆x. The 

terms 1L, 2L, and 3L in all results tables refer to the number of grid levels in the BSGs. 

3.1 Block Structured Grids 

We begin our analysis by showing representative examples of BSGs generated by our 

algorithm. We present 1- and 2-level grids fitted to the two- and three-dimensional phantoms 

(Fig. 7). These results demonstrate that the BSG generating section of our algorithm works 

properly with arbitrarily shaped geometries. We have also verified that the algorithm works 

with less complicated geometries. 
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Fig. 7. (a)-(c) Examples of single structured grids fitted to the disk, cylinder, and mouse 

phantom, respectively. (d)-(f) 2-level BSGs fitted to same three phantoms. Three-dimensional 

BSGs and their interior structure are visualized by showing only a section of the full three-

dimensional shape (e),(f). 

In addition, we present representative examples of fluence computed on both a single grid 

and a 2-level BSG (Fig. 8). The sample solutions were computed using the anatomically 

correct mouse cross-section phantom with two embedded fluorophores and optical properties 

corresponding to case 1 in Table 3. Note that the solutions are qualitatively similar. The grids 

on which the sample solutions were computed are shown in Fig. 7(a) and 7(d). 

 

Fig. 8. (a),(b) Fluorescence excitation and emission from the two-dimensional mouse phantom 

on a single grid. (c),(d) Fluorescence excitation and emission computed on a 2-level BSG fitted 

to the same phantom. 

During implementation of the BSG algorithm it became evident that the thickness of every 

layer of the BSG with distinct spacing should be at least 2 grid points in every direction. 

Figure 7(d) is an example of a 2-level BSG where the outer fine grid is at least 3 grid points 

thick in each direction. We found that without this restriction the algorithm for solving the 

FD-ERT becomes more complex because the grid becomes less structured and it is then 

necessary to introduce more elaborate interpolation schemes. The algorithm we have 

developed allows control of the thickness of the outermost fine grid. All results presented in 

the subsequent section were obtained on grids with an outermost fine grid thickness of at least 

2 elements. The computation time required for generating a BSG was always less than 0.5% 

percent of the time required for solving the FD-ERT. 
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Fig. 9. Partial current measurements at the boundary of the disk phantom during fluorescence 

excitation (a)-(b) and emission (c)-(d). (a),(c) Partial current on single grids with increasing ∆x. 

The benchmark solution is computed with ∆x = 2/256 cm. (b),(d) Partial current with 1-, 2-, 

and 3-level BSGs with ∆x = 2/256 cm. 

3.2 Disk Phantom 

To perform a quantitative error analysis we first studied the circular disk. In Fig. 9 we present 

examples of typical partial current measurements on the boundary of the medium, for 

excitation and fluorescence emission computed on singled grids [Fig. 9(a) and 9(b)] and on 

BSGs [Fig. 9(c) and 9(d)]. Solutions computed on single grids were computed on grids with 

∆x = 2/256, 2/128, and 2/64 cm. Solutions were computed on 1-, 2-, and 3- level BSGs with 

∆x = 2/256 cm. It is clear that, compared to solutions on single coarse grids, the solution 

computed on BSGs better approximates the true solution to fluorescence excitation and 

emission. The solution to fluorescence emission is less accurate than the solution to the 

excitation problem. This occurs because the numerical error from the excitation solution 

propagates into the emission solution. Thus, the solution to emission computed on BSGs is 

more accurate than the solution to emission computed on single coarse grids because the error 

in the solution to excitation on BSGs is lower. 

Table 4. Computation time, MPE, and RSU on a disk 

  Time [s] MPE [%] RSU 

Case ∆x [cm] 1L 2L 3L 1L 2L 3L 1L 2L 3L 

1 

2/32 11.7 5.2 – 18.9 53.7 – – 1.2 – 
2/64 64.9 20.7 14.7 3.3 7.4 20.7 – 2.1 3.4 
2/128 341.8 107.7 65.9 0.7 1.6 4.1 – 2.2 4.2 
2/256 1580.5 536.8 373.1 0.0 0.3 1.0 – 1.9 3.2 

2 

2/32 9.7 4.4 – 75.3 330.1 – – 1.2 – 
2/64 52.2 17.2 12.5 7.0 23.6 105.7 – 2.0 3.2 
2/128 271.2 86.3 54.2 1.1 3.6 13.4 – 2.1 4.0 
2/256 1246.5 425.5 294.9 0.0 0.6 2.4 – 1.9 3.2 

3 

2/32 5.1 2.4 – 3.6 6.2 – – 1.1 – 
2/64 27.2 9.1 6.9 0.9 1.3 2.5 – 2.0 2.9 
2/128 137.0 44.3 28.2 0.3 0.4 0.7 – 2.1 3.9 
2/256 622.1 217.5 151.9 0.0 0.2 0.2 – 1.9 3.1 

4 

2/32 12.9 5.9 – 17.1 51.6 – – 1.2 – 
2/64 71.4 22.9 16.7 2.7 7.1 22.0 – 2.1 3.3 
2/128 378.4 121.2 74.7 0.8 2.0 6.2 – 2.1 4.1 
2/256 1690.5 587.2 411.4 0.0 0.6 1.5 – 1.9 3.1 

5 

2/32 11.1 5.1 – 19.9 57.2 – – 1.2 – 
2/64 61.0 20.0 14.4 3.3 7.8 22.3 – 2.1 3.2 
2/128 312.7 102.6 63.7 0.7 1.7 4.3 – 2.0 3.9 
2/256 1465.1 506.7 345.8 0.0 0.3 1.1 – 1.9 3.2 

#129755 - $15.00 USD Received 8 Jun 2010; revised 12 Sep 2010; accepted 13 Sep 2010; published 14 Sep 2010
(C) 2010 OSA 1 October 2010 / Vol. 1,  No. 3 / BIOMEDICAL OPTICS EXPRESS  874



The results for computation time, mean percent error, and relative speed up achieved with 

the BSG algorithm are summarized in Table 4. Relative to a single fine grid, the solution 

computed on a 2-level BSG is obtained 1.9 to 2.2 times faster, while a solution on a 3-level 

BSG is obtained 3.1 to 4.2 times faster. 

As expected, the solutions computed on 2- and 3-levels BSGs are less accurate than the 

solutions computed on a single fine grid. The increase in error is relatively small. For 

example, in case 1, with ∆x = 2/64 cm, the MPE of the solution obtained from a single grid is 

3.3%. The solution on a 2-level BSG has MPE of 7.4% and is obtained 2.1 times faster than 

the solution computed on a single grid. As was explained before, the interior of the 2-level 

BSG has ∆x = 2/32 cm. The MPE of the solution on a single grid with ∆x = 2/32 cm is 18.9%. 

Therefore, the solution computed on a 2-level BSG is twice as accurate. Results from the 

other cases are similar. 

We note that the errors in the solutions computed on the coarse grid (∆x = 2/32 cm) in 

cases 1 and 4 are similar, i.e. the refractive index mismatch at the boundary of the circular 

phantom does not have a significant impact on the error in the solution. This is unexpected. 

3.3 Small Animal Phantom 

The results of our quantitative error and performance analysis using the mouse cross-section 

phantom are summarized in Table 5. In general, the solutions to the excitation problem using 

a 2-level BSG are obtained about 2 times faster than the solution computed on a single fine 

grid with a relatively small increase in error. The notable exceptions to these observations are 

the results from 2-level BSGs with ∆x = 2/32 cm. In these cases the solution on 2-level BSGs 

is obtained only 1 time faster than the single grid solution and the increase in error is very 

large. This occurs because the interior of the BSG is very coarse (∆x = 2/16 cm) causing the 

numerical error to be large. 

Table 5. Computation time, MPE, and RSU on a mouse cross-section 

  Time [s] MPE [%] RSU 

Case ∆x [cm] 1L 2L 3L 1L 2L 3L 1L 2L 3L 

1 

2/32 10.7 4.9 – 25.3 60.3 – – 1.2 – 
2/64 58.5 19.4 13.8 3.6 7.1 20.3 – 2.0 3.2 

2/128 305.3 98.1 59.1 1.2 2.1 4.5 – 2.1 4.2 
2/256 1453.8 523.0 380.3 0.0 0.2 0.8 – 1.8 2.8 

2 

2/32 8.9 4.3 – 108.9 444.4 – – 1.1 – 
2/64 47.9 16.3 11.8 6.9 24.6 127.7 – 1.9 3.0 

2/128 235.5 77.8 51.1 2.0 5.6 18.3 – 2.0 3.6 
2/256 1134.3 405.6 294.2 0.0 0.9 2.3 – 1.8 2.9 

3 

2/32 4.7 2.3 – 4.4 6.5 – – 1.0 – 
2/64 24.4 8.5 6.5 1.2 1.6 2.9 – 1.9 2.7 

2/128 119.3 40.4 26.8 0.5 0.6 0.8 – 2.0 3.5 
2/256 559.1 201.8 149.1 0.0 0.3 0.2 – 1.8 2.8 

4 

2/32 11.8 5.6 – 43.9 102.1 – – 1.1 – 
2/64 62.4 21.2 15.6 6.2 14.7 46.8 – 2.0 3.0 

2/128 308.9 101.0 65.5 1.5 3.2 7.1 – 2.1 3.7 
2/256 1558.3 566.9 405.4 0.0 0.3 1.2 – 1.7 2.8 

5 

2/32 10.1 4.8 – 27.3 62.7 – – 1.1 – 
2/64 53.8 18.5 13.3 3.6 7.4 21.1 – 1.9 3.0 

2/128 266.5 88.4 57.5 1.2 2.1 4.6 – 2.0 3.6 
2/256 1275.9 458.9 331.8 0.0 0.2 0.8 – 1.8 2.8 

Comparing case 1 and case 4 is particularly interesting because the results are significantly 

different while the only difference in the simulations is the use of refractive index mismatch in 

case 4. In case 1, when there is no refractive index mismatch at the phantom surface, the error 

in the solution computed on the coarsest grid is 25.3%. However, in case 4, this same error 

increases to 43.9% when the phantom is assigned a refractive index of 1.37 (thus creating a 

mismatch at the air/tissue boundary). This is evidence that a finer mesh is required when 

taking into account the refractive index mismatch at the tissue boundary. 
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As expected, the performance of the algorithm with the given set of grid discretization is 

heavily dependent on scattering and absorption parameters. For example, the error in the 

solution computed on coarse grids is particularly large when the absorption coefficient is large 

(case 2). However, the error is relatively small even on the coarse grid when the scattering 

coefficient is very small (case 3). We note that the performance of the algorithm is not 

dependent on modulation frequency (case 5). 

 

Fig. 10. Three-dimensional representations of excitation (a) and emission (b) fluence on the 

cylindrical phantom. (d) Sample excitation on the three-dimension mouse phantom. 

3.4 Three dimensional phantoms 

Representative examples of solutions to the FD-ERT on the cylindrical and three-dimensional 

mouse phantoms are shown in Fig. 10. Results from simulations on the cylindrical phantom 

are summarized in Table 6. The error in the solution computed on a 2-level grid (∆x = 2/128 

cm) is only 0.28%, while the solution computed on a single coarse grid (∆x = 2/64 cm) 2.94%. 

Thus, solving the FD-ERT on a 2-level grid instead of a coarse grid reduced the error by 

2.66%. Similarly, the solution computed on a 3-level grid (∆x = 2/128 cm) is 30.21%, while 

the error in the solution computed on the coarsest grid (∆x = 2/32 cm) is 78.25%. The error in 

the solution is reduced by 48.29%. In addition, using BSGs reduces computation time. 

Solutions on 2- and 3- level grids are obtained 1.5 and 3.0 times faster than the solution on the 

fine grid, respectively. 

Table 6. Computation time, MPE, and RSU on a cylindrical phantom 

  Time [s] MPE [%] RSU 

Case ∆x [cm] 1L 2L 3L 1L 2L 3L 1L 2L 3L 

4 
2/32 394.5 201.2 – 78.25 104.31 – – 0.96 – 
2/64 5464.15 2068.4 1054.2 2.94 5.06 80.25 – 1.64 4.18 
2/128 68489.96 27892.7 17233.3 0 0.28 30.21 – 1.46 3.0 

Results from simulations on the three-dimensional mouse phantom are summarized in 

Table 7. In this example the error in the solution computed on a 2-level BSG is 28.42%. The 

solution on the 2-level BSG was obtained 1.09 times faster than the single grid solution. 

Table 7. Computation time, MPE, and RSU on a three-dimensional mouse phantom 

  Time [s] MPE [%] RSU 

Case ∆x [cm] 1L 2L 1L 2L 1L 2L 

4 0.1 151.98 72.68 0.0 28.42 – 1.09 
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4. Discussions and conclusion 

The motivation for solving the FD-ERT on BSGs arises from the need to reduce computation 

time without sacrificing accuracy of numerical solutions to the FD-ERT on structured grids. 

The errors in the solutions to the light propagation problem obtained on structured grids come 

from (1) inherent truncation errors from approximating a continuous equation with a discrete 

numerical scheme and (2) a mismatch between the numerical and physical boundary. Finely 

discretized grids can accurately model complex boundaries but solving the ERT on these grids 

is computationally expensive. Solving the ERT on coarse grids requires less computational 

effort; however, the accuracy of the solution can be very poor. A compromise between fine 

grids and coarse grids is the use of BSGs as presented in this paper. The interior of a BSG is 

primarily a coarse grid, while the outer layers of the grid, which are closer to the physical 

boundary, are more finely discretized. 

In this work we presented the first algorithm for solving the FD-ERT on BSGs. This is 

also the first algorithm that incorporates reflective boundary conditions and a subroutine for 

generating BSGs directly into the algorithm for solving the FD-ERT. The BSG generator uses 

boundary information to determine the computational domain, discretizes it with a fine grid, 

then it adaptively coarsens the grid up to a user defined level. The final computation grid is a 

union of fine and coarse grids, where the coarse grid is restricted to the interior and the grid 

spacing becomes smaller near the boundary. The ERT is solved on this grid with a 

combination of the upwind step method and the discrete ordinates approximation. We use the 

blocked-off region method to treat curved boundaries. 

Solutions to the ERT computed on single structured grids are corrupted by inherent error 

of the numerical approximation to the continuous equation and error due to poorly resolved 

boundaries. The inherent numerical error arises from the first order upwind step method 

approximation to the derivative terms and is proportional to spatial discretization (∆x). In 

addition, there is numerical error due to the SN approximation to the integral terms (it 

decreases with increasing order of the SN method). Error due to poorly resolved boundaries 

arises when the single Cartesian grid does not accurately approximate the physical boundary. 

This error is particularly large when a coarse grid is used to approximate curved geometries. 

The total error associated with solutions to the ERT on BSGs is similar to the errors 

associated with solutions on a single coarse grid; however, there are two fundamental 

differences: (1) boundary errors are reduced because refining the grid near the boundary more 

accurately captures boundary effects and (2) a new source of error is introduced by 

interpolating at boundaries between coarse and fine grid sections inside the computational 

domain. The inherent numerical error associated with using the upwind step method on BSGs 

is similar to the numerical error expected from using this scheme on a single coarse grid 

because the majority of the BSG is composed of coarse grid points. 

The need for BSGs becomes apparent when geometries are arbitrarily shaped. Results 

from 2D and 3D mouse phantoms confirm that the error due to a poorly resolved boundary is 

significant, especially when the refractive index mismatch at the air/tissue interface is taken 

into account. In this case, we found that the error in the solution computed on a single coarse 

grid was 25.3% when the refractive index mismatch was not taken into account. However, the 

error increased to 43.9% when there was refractive index mismatch at the boundary. 

Simulations on a disk and mouse phantom show that solutions on BSGs are always 

obtained faster than the corresponding fine grid solutions. Solutions on 2- and 3-level BSGs 

were obtained in about 1/3 and 1/4 the time it took to obtain the same solution on a single fine 

grid, respectively. In general, the speed up achieved by the algorithm was not affected by 

changes in optical properties, refractive index, or modulation frequency. 

Through analysis of simulations on the phantoms we show that solutions on BSGs are 

significantly more accurate than solutions on single coarse grids. Increasing the refinement of 

the grid near the boundary decreased the overall error in the solution for all cases studied. The 

#129755 - $15.00 USD Received 8 Jun 2010; revised 12 Sep 2010; accepted 13 Sep 2010; published 14 Sep 2010
(C) 2010 OSA 1 October 2010 / Vol. 1,  No. 3 / BIOMEDICAL OPTICS EXPRESS  877



general trend can be summarized as follows: the MPE of partial current measurements from 

solutions computed on 2- and 3-level BSGs are reduced to about 1/3 and 1/6, respectively, 

from the MPE of a solution obtained on a single coarse grid. 

Overall we find that solving the FD-ERT on BSGs yields an attractive algorithm for 

modeling the light propagation problem on geometries with arbitrary shape without using 

dense and finely discretized Cartesian grids. The algorithm provides a method to substantially 

reduce the error due to poorly resolved boundaries. Furthermore, solutions to the FD-ERT on 

BSG are obtained at a much lower computation cost compared to solutions computed on a 

single fine grid. 
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