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Abstract

It is well known that radiative transfer equation (RTE) provides more accurate tomographic results 

than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes 

have limited applicability in practice due to their high computational cost. In this article, we 

propose a new efficient method for solving the RTE forward problem with multiple light sources 

in an all-at-once manner instead of solving it for each source separately. To this end, we introduce 

here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) 

that makes full use of the shared information between different right hand sides to accelerate 

solution convergence. Two parallelized block BiCGStab methods are proposed for additional 

acceleration under limited threads situation. We evaluate the performance of this algorithm with 

numerical simulation studies involving the Delta-Eddington approximation to the scattering phase 

function. The results show that the single threading block RTE solver proposed here reduces 

computation time by a factor of 1.5~3 as compared to the traditional sequential solution method 

and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential 

method. This block linear solver is, moreover, independent of discretization schemes and 

preconditioners used; thus further acceleration and higher accuracy can be expected when 

combined with other existing discretization schemes or preconditioners.
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1. Introduction

Diffuse optical tomography (DOT) has become a popular area of research that attracts 

significant and increasing attentions [1, 2]. In DOT, low-energy near-infrared (NIR) light is 

used to probe biological tissue. Measurements of transmitted and reflected light intensities 

are used to recover a spatial distribution of various optical properties, for instance, 

absorption and scattering coefficients inside the medium under investigation. Tissues optical 

properties vary depending on the type and location of tissue [3]; thus reconstructed optical 

properties can provide physiologically important information such as oxy-hemoglobin 

(HbO2) and deoxy-hemoglobin (Hb) in tissue. DOT has applied mainly to brain imaging [4, 

5], breast imaging [6–9], vascular imaging [10], small animal imaging [11, 12] and imaging 

of finger joints [13, 14].

The DOT problem can be described in general terms as an inverse problem that is defined to 

find an optimal set of optical properties that minimizes a mismatch between predictions and 

measurements of light intensities. Predictions and measurements are made on the tissue 

surface with a known distribution of light sources. Multiple forward problems need to be 

solved in each inverse iteration to generate an updating direction for the target variables 

from the current estimate of optical properties in tissue. Traditional unconstrained approach 

formulates the DOT problem as [15]:

(1)

where μ is the optical property of the imaging object and Fμ is the forward model of light 

intensity distribution defined as a function of μ, NS is the number of sources used, M(k) is the 

measurement and b(k) represents the right hand side of the discretized forward model given 

by Aψ(k) = b(k) with the kth light source, where A is the linear operator generated by the 

discretization of the forward light propagation model and ψ(k) is the vector that contains 

light intensities of all discretized directions and locations in the medium for the kth light 

source, Q denotes the measurement operator that models the light propagation from the 

object surface to the detectors and R(μ) is the regularization term on the optical property. 

The PDE-constrained approach that doesn’t require an explicit solution of the forward 

model of light intensities can be formulated as follows [16, 17]:

(2)

where ψ(k) denotes the light intensity distribution of the forward model, R(μ) is the 

regularization term.
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The forward light propagation model plays a very important role in DOT since an improper 

light propagation model will lead to inaccurate reconstruction results. One frequent used 

approach to model photon propagation is the Monte Carlo (MC) method [18]. In this 

approach photons are considered as individual particles. Launching millions of them into a 

medium and tracking each one individually, one obtains a statistical approximation of the 

real distribution of photons in the medium. One can show that for an infinite number of 

photons, the so-calculated distribution of photons converges to the correct results. However, 

because of the substantial computational cost this approach is not very practical when used 

in combination with large-scale inverse solvers. Less computationally demanding are 

deterministic light propagation models that are based on the radiative transfer equation 

(RTE) and its diffusion approximation (DA). Of these two the DA model is most commonly 

used in tissue optics, because it is easy to implement and provides solutions very fast. 

However, DA-based results are often not accurate enough when considering small-tissue 

geometries, high-absorbing and low-scattering tissues, and void-like region. In these cases 

the diffusion approximation is not valid and RTE-based codes need to be employed [19].

The RTE is a partial differential-integro equation in which a dependent variable (i.e., 

radiance in units of W/cm2/sr) is defined as a function of two independent variables (i.e., 

spatial position and angular direction). Due to strong coupling in directions, analytic 

solutions of RTE are not available for most cases and numerical solvers need to be 

implemented. Recently, several efficient RTE solvers have been developed (see [20–23] and 

their references). However, to our best knowledge, all existing algorithms are designed to 

solve a single right hand side. Therefore, only one source is considered. On the other hand, 

RTE-based DOT codes are based on multiple right hand sides, which correspond to multiple 

light sources illumination. Traditional methods to solve multiple right hand sides are to 

solve each right hand side separately or solve multiple right hand sides simultaneously in 

parallel [24, 25]. However, the extensive computational power those parallel solvers 

required are not always available; hence we focus here on the numerical method for solving 

multiple right hand sides simultaneously on a single thread or limited threads (thread 

number is less than source number).

In order to solve multiple right hand sides efficiently, we make full use of the fact that the 

same coefficient matrix is shared among multiple right hand sides in the linear system 

resulting from multiple sources illumination:

(3)

where Ψ is the matrix of solution vectors ψ(1), ψ(2),…,ψ(NS) and B of right hand sides b(1), 

b(2),…, b(NS) pertaining to the ith light source illumination. Methods for solving such linear 

systems with multiple right hand sides have been extensively studied in other areas [26–31]. 

The block Krylov subspace methods have been shown to be effective compared to other 

solvers designed for multiple right hand sides [32, 33]. In our work, we introduce the Krylov 

subspace block BiCGStab algorithm [34]. Compared to other methods, it has the advantages 

of low memory requirement, simple structure and stable convergence. Besides these, it can 

be readily combined with other numerical techniques such as high order differencing 
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schemes or acceleration schemes to obtain additional speedup or increased accuracy with 

little effort.

The remainder of the paper is organized as follows. We first review Krylov subspace and 

block Krylov subspace methods and introduce the block BiCGStab algorithm in section 2. A 

second order finite volume scheme combined with discrete ordinates for discretization of 

RTE in frequency-domain is introduced in section 3. Then two parallelization methods of 

the block BiCGStab are proposed in section 4. Numerical results are presented in section 5 

that address the performance evaluation of the block BiCGStab algorithm. Finally our 

conclusions are summarized in Section 6.

2. Preconditioned block linear solver for RTE with multiple sources

2.1. Krylov subspace method and preconditioned BiCGStab algorithm

To understand the block Krylov subspace algorithm, we begin with a brief introduction of 

traditional Krylov subspace algorithms. Krylov subspace methods are the most widely used 

iterative methods so far for large-scale sparse linear systems Ax = b. In Krylov subspace 

methods, we define an affine space Kn(A, r0) that grows with n as follows:

(4)

where r0 ≔ b − Ax0 is the initial residual with an initial guess x0, the nth iterate xn is an 

approximation to the exact solution x* that satisfies xn − x0 ∈ Kn(A, r0).

A large number of Krylov subspace solvers have been developed so far: the generalized 

minimal residual (GMRES) method [35], the biconjugate gradient (BiCG) method [36], the 

biconjugate gradient stabilized method (BiCGStab) method [37], the quasi-minimal residual 

(QMR) method [38], and the transpose-free quasi-minimal residual (TFQMR) method [39], 

to name a few. BiCGStab is one of the most popular solvers since it has three advantages 

over other type of Krylov subspace methods.

1. BiCGStab is a three-term recurrence method; therefore it has relatively low 

memory requirement.

2. BiCGStab doesn’t require a transposed matrix multiplied by a vector; it only 

requires matrix-vector multiplication alone.

3. BiCGStab often exhibits more stable convergence than other solvers.

Thus, BiCGStab method is widely used in solving the linear equation arising from RTE. The 

details of a left preconditioned BiCGStab for the system Ax = b are described in Algorithm 1 

[37].

Algorithm 1

BiCGStab method with left preconditioner

1. Compute residual r0 = P−1(b − Ax0) with the initial guess x0 and the left preconditioner P.

2. Set p0 = r0.
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3. Choose an arbitrary vector r̃ such that ρ0 = r̃Tr0 ≠ 0.

4. Given ε > 0, for i = 0, 1, 2 … until ‖ri‖/‖b‖ < ε:

(1) Si = P−1Api.

(2) γi = r̃TSi.

(3)

.

(4) xi+1 = xi + αipi.

(5) ri+1 = ri − αisi.

(6) ti = P−1Ari+1.

(7) ηi = (ti, ri+1)/(ti, ti).

(8) xi+1 = xi + ηiri+1.

(9) ri+1 = ri+1 − ηiti.

(10) pi+1 = pi − ηisi.

(11) ρi+1 = r̃Tri+1.

(12)

.

2.2. Krylov subspace method and preconditioned BiCGStab algorithm

In DOT, one has to solve the linear system with multiple right hand sides given as:

(5)

where A is an N × N sparse non-Hermitian matrix obtained from the discretization of the 

light propagation model, Ψ and B are N × NS rectangular complex matrices whose column 

vectors are ψ(1), ψ(2),…,ψ(NS) and b(1), b(2),…, b(NS) respectively. In the case of RTE-based 

DOT, N = NCV × NSA, where NCV and NSA represent the number of control volumes and 

solid angles, NS denotes the source number used in the reconstruction.

Under this type of problem setting, it is more efficient to solve the linear system of NS right 

hand sides given by Eq. (5) simultaneously with block Krylov subspace methods than treat 

each right hand side separately. The block Krylov subspace method extends the definition of 

Kn(A, r0) in Eq. (4): a similar affine space  that grows with n is defined as,

(6)

where . In each iteration, the block Krylov subspace methods 

minimize the residual within space . It is obvious that when R0 contains the 

column vector r0, then , therefore faster convergence rate can be 

expected from block Krylov subspace methods since the residual is minimized within the 

larger subspace  instead of Kn(A, r0). It is straightforward to generalize single 

right hand side BiCGStab method (Algorithm 1) into a block version for the linear equation 

with multiple right hand sides, the left preconditioned block BiCGStab algorithm can be 

summarized in Algorithm 2 [34]:
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Algorithm 2

block BiCGStab method with left preconditioner

1. Compute residual R0 = P−1(B − AΨ0) with the initial guess Ψ0 and the left preconditioner P.

2. Set P0 = R0.

3. Choose an arbitrary NS × N matrix R̃ such that ρ0 = R̃ R0 ≠ 0.

4. Given ε > 0, for i = 0, 1, 2 … until ‖Ri(:, j)‖/‖B(:, j)‖ < ε for j = 1,…, NS:

(1) Si = P−1 APi.

(2) γi = R̃Si.

(3)

.

(4) Ψi+1 = Ψi + = Piαi.

(5) Ri+1 = Ri − Siαi.

(6) Ti = P−1ARi+1.

(7) ηi = ‹Ti, Ri+1›F/‹Ti, Ti›F.

(8) Ψi+1 = Ψi + ηiRi+1.

(9) Ri+1 = Ri+1 − ηiTi.

(10) Pi+1 = Pi − ηiSi.

(11) ρi+1 = R̃Ri+1.

(12)

.

(13) Pi+1 = Ri+1 + Pi+1βi.

In the left preconditioned block BiCGStab method, only four N × NS matrices Sk, Rk, Tk, Pk 

and one NS × N matrix R̃ (excluding A, Ψ, B and the preconditioner P) need to be stored in 

memory: therefore the total number of floating numbers to save is ( ), thus 

making the method memory-efficient. The left preconditioned block BiCGStab method 

requires the evaluation of 2NS matrix vector products, 2NS preconditioning procedures and a 

total of  multiplication operations per iteration. For a large-scale 

system where N is not extremely large, the matrix-vector product and preconditioning 

procedure dominate the overall computation time: therefore theoretically floating-point 

operations (FLOPS) for each single right hand side per iteration in Algorithm 2 is almost the 

same as it in Algorithm 1.

3. Finite-volume discrete-ordinates discretization with RTE

The frequency-domain RTE can be written as

(7)

where , ω is the modulation frequency and ν is the light speed in the medium, r is 

the spatial position vector, d is the dimensionality constant of the medium, Ω ∈ Sd−1 is the 

vector that denotes the photon propagation direction and its spherical measure is represented 

by dΩ, μa (r) and μs (r) represent the absorption coefficient and scattering coefficient which 
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are spatial functions with respect to r, ψ(r, Ω) is the radiance in units of [W/ cm2/ sr] (d = 3) 

or [W/ cm/ rad] (d = 2), q (r, Ω) represents the source configuration, p(Ω·Ω') is the phase 

function that represents the proportion of energy that is scattered from direction Ω' into 

direction Ω. The Henyey-Greenstein phase function [40] as commonly used in tissue optics 

is given as:

(8)

where g is the anisotropic factor.

To take into account the mismatch of the refractive index at air-tissue interface, we imposed 

the following partially reflective boundary condition,

(9)

where rb represents the position on the boundary, n is the unit outgoing normal vector at rb, 

Ω' = Ω − 2 (Ω · n)n is the specular reflection of Ω, R (Ω' · n) is the reflectivity obtained by 

Fresnel’s equations.

The frequency-domain RTE is discretized by a node-centered finite volume scheme 

combined with discrete ordinates method [17]. First we discretized the solid angle domain 

with discrete-ordinates method (Sn), thus the integral on the right hand side of Eq. (7) can be 

approximated with a weighted sum of the radiance field in different directions,

(10)

where NSA = n(n + 2) is the total number of solid angles in Sn, pik = p (Ωi·Ωk), wk is the 

spherical measure of solid angle Ωk.

hus based on Eq. (10), Eq. (7) is decomposed into a set of NSA coupled partial differential 

equations which correspond to Nsa discretized photon propagation directions,

(11)

where ψ(r, Ωi) is written in short as ψi (r).

The spatial domain is discretized with a node-centered mesh combined with the upwind 

differencing scheme, which not only can handle complex geometry but also guarantee the 

conservation law of energy. The resulting discretized frequency-domain RTE is given by

(12)
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where μa, j, μs, j, ψi, j and qi, j represent μa (rj), μs (rj), ψi(rj) and qi (rj) in Eq. (11) 

respectively, Vj and Nj denote the volume and the neighbor number of the control volume 

centered at rj,  and  are the area and outgoing unit normal vector of the l th surface of 

the control volume centered at rj. With a slight abuse of notation, we will from now on use 

Vj and  to indicate the control volume centered at rj and its l th surface. The,  in Eq. 

(12) represents the directional flux per area on , it can be approximated by the upwind 

scheme as applied to unstructured meshes: if  is not on the boundary and its neighboring 

volume of Vj is indexed with jj, then,  is given by

(13)

if  is on the boundary, then,  can be obtained by

(14)

where  is given by the discretization of the reflective boundary condition (9) as follows,

(15)

where ψi', j represents ψ(rj, Ωi') and Ωi' denotes the reflective direction of Ωi on  that is 

given by . In practice, the existence of  is not 

guaranteed in SN so we choose Ωi' as the direction in SN which is closest to 

.

Finally, a fully discretized linear equation can be obtained by plugging (13)~(15) into (12). 

The linear equation has the following form:

(16)

where the vector ψ (ψ1,1, ψ1,2 …, ψ1,NSA, ψ2,1, ψ2,2 …,ψ2,NSA,…,ψNCV,1,ψNCV,2 

…,ψNCV,NSA)T. D and S are two matrices corresponding to the linear terms on the left and 

right hand sides respectively in Eq. (12). In practice, since S is block diagonal matrix having 

special pattern as follows:
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where P is a NSA × NSA matrix with Pij = pijwj, it can be very efficiently saved into memory 

by saving P and the vector μs (μs,1,…,μs,NCV).

Thus in DOT, forward problem with multiple sources can be written as

(17)

where A D − S is the discretized linear operator for frequency-domain RTE and k is the 

source index. It is easy to check that the source configuration only contributes on the right 

hand side b(k) but not the matrix A. So we can write an all-at-once equation as given in Eq. 

(5) for all source configurations since they all share the same linear operator.

In practice biological tissue are strongly forward-peaked scattering (g ≥ 0.8) [3]. Thus a 

large NSA in Eq. (11) is required to accurately describe such highly anisotropic scattering 

behavior, which leads to a considerable computational burden and memory requirement. In 

order to overcome this difficulty, Hielscher and Klose introduced the Delta-Eddington 

method [41], which allows using only a small number of discrete ordinates in RTE to 

approximate the original scattering function given by Eq. (8). In our work we employ the 

zeroth-order Delta-Eddington approximation since it has shown promising results as 

reported in literature [1, 14, 42]. The frequency domain RTE is simplified with zeroth-order 

Delta-Eddington approximation as

(18)

where the scattering coefficient μs and the anisotropic factor g is combined into a reduced 

scattering coefficient . In this paper, we focus on solving Eq. (18) along with a 

problem setup of multiple right hand sides.

4. Multi-threading acceleration for block BiCGStab algorithm

In DOT, multi-threading technique is often applied in solving forward problems with 

multiple right hand sides in order to gain extra speedup. Under limited resources case (the 

available threads number NTH < NS), the most commonly used method is as follows: (1) 

distribute NS sources equally (or almost equally) into NTH threads, (2) solve a group of 

forward problems with each thread. This method requires very little effort to separate the 

entire work into multiple tasks and there is no communication between those parallel tasks. 

Therefore, its implementation is straightforward and it is not affected by parallel slowdown 

effects, due to communication/synchronization overhead. However, this method still treats 

every single source independently, so it doesn’t take the advantage of the shared information 

among different sources. Therefore, the efficiency can be improved by replacing the 

sequential solver with the proposed block linear solver. Here we propose two parallel 

methods generalized from the block BiCGStab algorithm.

In our first parallel method (see Algorithm 3) we parallelize Algorithm 2 directly with all the 

sources. In this algorithm, the main procedure remains the same while the linear operations, 

including matrix vector multiplications and preconditioning steps, are divided into multiple 
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tasks. Therefore, this algorithm will converge with the same number of iterations as in 

Algorithm 2. However, due to synchronizations and communications between threads (see 

Step 5, 7(4), 7(10), 7(17)), the algorithm may cause parallel slowdown effects with the 

increase of thread number.

Algorithm 3
parallel block BiCGStab with inter-thread 
communication (parallel block BiCGStab-ITC)

Divide the right hand side B and the initial guess Ψ0 equally (or almost equally) into NTH 

thinner matrices:

.

Compute residual , K = 1,…,NTH.

Set , k = 1,…,NTH.

Setup a NS × N matrix .

1. Threads synchronization.

Compute , k = 1,…,NTH.

Given ε > 0, for i = 0,1, 2… until Ri(:, j) / B(:, j) < ε for j =1,…,NS:

, k = 1,…,NTH.

, k = 1,…,NTH.

Update Pi, Si and 

.

(1) Threads synchronization.

, k = 1,…,NTH.

, k = 1,…,NTH.

, k = 1,…,NTH.

, k = 1,…,NTH.

Compute .
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Threads synchronization and compute .

, k = 1,…,NTH.

, k = 1,…,NTH.

, k = 1,…,NTH.

, k = 1,…,NTH.

, k = 1,…,NTH.

, k = 1,…,NTH.

(2) Threads synchronization.

Return .

The second parallel approach is summarized in Algorithm 4. This method requires no 

synchronization and communication in its main computation step (Step 2), therefore there is 

no parallel slowdown effect due to communication or synchronization. However, since right 

hand sides are split into available threads and each thread handles only part of right hand 

sides, the method may requires more iterations to converge especially when NS / NTH is 

close to 1.

Algorithm 4
parallel block BiCGStab with no inter-thread 
communication (parallel block BiCGStab-NITC)

Divide column vectors of B and the initial guess Ψ0 into NTH subgroups (See (19)):

.

Solve AΨ(k) = B(k), k = 1,…,NTH with Algorithm 2 in parallel.

Return Ψ = [Ψ(1),…,Ψ(NTH)].

In order to achieve higher efficiency in Algorithm 4, we also consider optimization of 

sources distribution across available threads. According to the definition of Kn (A, R0), 

strong colinearity between  may introduce more numerical error in projection 

step (Algorithm 2 Step 4(2)) and therefore lead to more iterations for convergence. In 

practice, grouping more distant sources together in the separation step can reduce this 

colinearity. Therefore Step 1 in Algorithm 4 is implemented by solving an optimization 
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problem, which maximizes the minimum distance of every pair of sources within the same 

group. This optimization problem is given as follows:

(19)

This problem can be solved quickly when NTH and NS are not very large with the mixed 

integer linear programming solver in Matlab.

5. Numerical results

The performance of block linear solver with respect to CPU time may be most affected by 

the following two factors: 1) the structure of the matrix A in linear equation (5) that is 

determined by the anisotropic factor, optical properties, and spatial and angular 

discretization; 2) the total right hand side number and the number of threads used for 

computation. Therefore, we investigate here how these factors influence the performance of 

block BiCGStab methods compared to the traditional sequential BiCGStab method through 

extensive numerical experiments. A 2D circular phantom and a 3D cylinder phantom are 

considered here. For both phantoms, the refractive index is set to 1.4, which is a typical 

value for biological tissue, and source modulation frequency is set to 600 MHz. The optical 

properties considered will be given later in the following subsections according to each 

specific case being examined. As shown in Fig. 1, the 20 light sources for the 2D phantom 

and 32 light sources for the 3D phantom are located on the surface. The angular domain for 

both phantoms is discretized with S8 and for spatial domain the 2D phantom is discretized 

with a finite volume mesh (FVM) with 4117 control volumes (the element size is 0.03cm) 

and the 3D phantom with 17158 control volumes (the element size is 0.1cm). Note that all 

the forward solvers considered here solve the same linear equation that has been obtained 

with the same numerical scheme as used in the literature [17], which ensures fair 
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comparison between different linear solvers. We set the same relative tolerance ε = 10−10 for 

all the aforementioned linear solvers: in fact block solvers use equal or stronger stopping 

criteria than the traditional BiCGStab solver (see the difference between Algorithm 1(4) and 

Algorithm 2(4), Algorithm 3(7) for comparison). An ILUT(0.01, 5) preconditioner [43] was 

applied here for all methods. All numerical experiments were performed with dual Intel 

Xeon CPU X5650 and 32GB physical memory.

5.1. Influence of the anisotropic factor on the performance

The linear operator A in the discretized RTE (17) is affected by the pattern P in S (see (16)), 

which is part of A, is generated by the integral of the Henyey-Greenstein phase function that 

depends on the anisotropic factor g, and therefore we investigate here the influence of the 

anisotropic factor g on the performance of the block BiCGStab algorithm. The tests are 

conducted on both 2D circular and 3D cylinder phantoms. The absorption coefficient for 

both phantoms is fixed to 0.1cm−1 and multiple reduced scattering coefficients 

( ) are examined that lead to various combinations of different 

scattering coefficients and anisotroic factors. For each fixed , we test four different 

anisotropic factors, including the isotropic scattering case (g = 0) and three strong forward-

peaking scattering cases (g = 0.8, 0.9, 0.95), which corresponds to their respective scattering 

coefficient . The full FD-RTE (7) is used as the forward model for every 

combination of (g, μs) on each phantom, and the discretized linear equation with the 

Henyey-Greenstein phase function (8) is solved with both the traditional BiCGStab 

(Algorithm 1) and the block BiCGStab (Algorithm 2). The CPU times of both algorithms 

(CPU1 for BiCGStab, CPU2 for block BiCGStab) and the speedup factors (BiCGStab CPU 

time / block BiCGStab CPU time) are reported in Table 2.

Table 2 shows that with the fixed  the speedup factor of the block BiCGStab is not 

sensitive to the anisotropic factor g, although different anisotropic factors lead to different 

CPU times for both BiCGStab and block BiCGStab. This observation indicates that the 

zeroth-order Delta-Eddington approximation can provide sufficiently accurate information 

about the performance of the block solver, giving good insight into what speedup factors can 

be achieved with the full RTE using the original scattering phase function. Therefore, the 

following sections will be focused on the speedup factors of the block BiCGStab algorithm 

evaluated with solving the RTE (18) based on zeroth-order Delta-Eddington approximation.

5.2. Influence of optical properties on the performance

In this section, we investigate the influence of the optical properties on the performance of 

the block BiCGStab algorithm with both the 2D and 3D phantoms with homogeneous 

optical properties. A total of 100 combinations are generated of absorption and reduced 

scattering coefficients by uniformly sampling 10 each from their respective range [0.01,1]

(cm−1) and [0.1,10](cm−1), which is sufficient enough to characterize the performance of the 

two linear solvers being compared. These absorption and reduced scattering coefficient pairs 

are tested with the 2D and 3D phantoms. We reported the overall CPU time and matrix-

vector multiplication (MV) number per single right hand side for both block and traditional 

BiCGStab algorithms with respect to each pair of (μa, ). Speedup factors based on CPU 
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times and MV ratios (BiCGStab MV number / block BiCGStab MV number) with respect to 

(μa, ) are also reported.

In the 2D numerical experiments, the conventional (or standard) BiCGStab algorithm 

requires 16 to 74.7 MV operations per right hand side and 50 to 228 seconds in total to solve 

the entire linear system with 20 sources, while block BiCGStab only needs 14 to 34 MV 

operations per right hand side and 32 to 74 seconds in total to solve the same system with 20 

sources. CPU times and MV operation numbers of the methods depend on optical properties 

as shown in Fig. 2(a)(b) and (d)(e): it is observed that both algorithms take more MV 

operations and thus more computational time to converge when reduced scattering 

coefficient increases and absorption coefficient decreases, and vice versa. However, the 

speedup factors of 1.3 ~ 3.1 and the ratios of MV number of 1.0 ~ 2.2 (see Fig. 2(c)(f)) show 

that block BiCGStab is less dependent on the optical properties: the speedup factor of 2.5 

and the MV ratio of 1.8 are achieved with absorption coefficients (< 0.3cm−1) and reduced 

scattering coefficients (> 3cm−1) and the speedup factor of 1.8 and the MV ratio of 1.3 are 

always guaranteed when reduced scattering coefficient is greater than 2.0cm−1. Similar 

results are observed for the 3D numerical experiments (see Fig. 3). The BiCGStab algorithm 

requires 22 to 68.75 MV operations per right hand side and a total of 713 to 2205 seconds of 

CPU time to solve the linear system with 32 right hand sides, while block BiCGStab 

algorithm only takes 18 to 38 MV operations per right hand side and a total of 404 to 918 

seconds, which leads to the speedup factors of 1.3 ~ 2.7 and the MV ratios of 1.0 ~ 2.0. With 

reduced scattering coefficients ≥ 2.0cm−1, a speedup factor of at least 1.8 and a MV ratio of 

at least 1.3 can be achieved.

We observe that the profile of speedup factor and the MV ratio are very similar in both 2D 

and 3D cases (See Fig. 2(c)(f) and Fig. 3(c)(f)). This strong correlation shows the higher 

efficiency of block BiCGStab, as compared to single right hand side BiCGStab, mainly 

comes from the less required MV operations since it searches solution in larger subspace in 

every iteration. Besides that, in this experiment, the speedup factor is usually 30% higher 

than the MV ratio, which is robust to the optical property. This extra efficiency can be 

explained by the better memory cache usage of matrix-matrix multiplication in block 

BiCGStab as compared to multiple matrix-vector multiplications for multiple sources in 

sequential BiCGStab [44]. We can observe that the CPU time of the block BiCGStab is less 

dependent on optical property because it treats multiple right hand sides simultaneously and 

therefore the solution search through extended Krylov subspace rather than the matrix nature 

by optical properties is a dominant factor affecting the overall CPU time, whereas the 

sequential solver deals with multiple right-hand sides individually and thus the individual 

CPU time that highly depends on the optical properties determines the total CPU time.

5.3. Influence of spatial and angular discretization on the performance

When optical properties are fixed in (18), the structure of the matrix A in the linear equation 

is determined by both the spatial and angular discretization but in different ways. For 

example, for matrix S in (16) finer spatial discretization leads to more diagonal blocks as 

well as smaller coefficients for pattern P in every block but P itself is kept the same while 

different angular discretization leads to different pattern P but with total diagonal block 
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number and P ’s coefficients unchanged. So the spatial and angular discretization may 

potentially have different impact on the performance of linear solvers. Therefore in this 

subsection, the influence of spatial and angular discretization on the performance of block 

BiCGStab is examined separately. The 3D phantom with homogeneous optical properties is 

re-considered: the absorption and reduced scattering coefficients are set to 0.1cm−1 and 

10.0cm−1. In order to test how discretization affects the speedup factor, we have generated a 

number of spatial meshes varying element sizes in the range 0.08 ~ 0.13cm in the spatial 

domain together with different orders of discrete ordinates (S4 ~ S12) in the angular domain. 

Detailed information can be found in Table 3 and 4. We examine the effects of spatial and 

angular discretization separately: First we investigate spatial discretization effect using 

variable spatial meshes with a fixed angle set of S8, and then we fix the spatial mesh at 

element size of 0.13cm and examine the influence of angular discretization. The CPU times, 

speedup factors and MV ratios are reported in Fig. 4.

As shown in Fig. 4(a), the CPU times of both algorithms increase linearly with the node 

number with the fixed solid angle set, which leads to almost constant speedup factors over 

the node numbers tested (Fig 4(b)). However, the methods exhibit a different behavior in the 

CPU times when the solid angle set is altered with the node number fixed. Fig. 4(c)(d) show 

that with increasing solid angle numbers block BiCGStab has linearly increasing CPU times 

whereas for the traditional BiCGStab algorithm the CPU time increases superlinearly, which 

leads to a linear increase in the speedup. We can also observe in Fig. 4(b)(d) that the MV 

ratio is not sensitive to the spatial discretization and the solid angle set, thus the result 

indicates that the block BiCGStab algorithm can benefit most the RTE solution that deals 

with a large number of solid angles since the extra efficiency of the better cache usage can 

provide will increase with large solid angle set.

5.4. Influence of the number of right hand sides on the performance

In this subsection, we explore the influence of the number of sources on the performance of 

the block BiCGStab algorithm. To this end, the 2D phantom is considered here. The optical 

property is set as μa = 0.1cm−1 and . We test the performance of the block 

BiCGStab algorithm with various numbers of sources (NS = 1 ~ 25), which are uniformly 

located on the medium surface. The average CPU time, speedup factor and MV ratio are 

recorded and reported in Fig. 5.

As shown in Fig. 5(a), the CPU time grows approximately linearly for both solvers with 

respect to the source number when NS ≥ 10 but with different rates. The slope of the block 

BiCGStab CPU time curve is significantly smaller, which means that the block BiCGStab 

treats the increased right hand side due to the increased number of sources computationally 

much more efficiently than the BiCGStab solver. The speedup factor of the block BiCGStab 

and the MV ratio between two solvers are shown in Fig. 5(b). We can find when NS ≤ 15, 

the MV ratio and speedup factor increase sublinearly with respect to source number. When 

NS > 15, the MV ratio has stopped increasing and the speedup factor remains approximately 

constant, thus there being no additional speedup that can be obtained by increasing the 

source number. On the other hand, Fig. 5(b) shows that the speedup factor is always higher 

than the MV ratio one, which clearly indicates that the block solver obtains additional 
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speedup from more efficient memory usage. This also explains why a considerable speedup 

factor (1.5 or higher) can also be achieved even with small source number (~5), which 

makes the block BiCGStab algorithm more attractive in practical applications.

5.5. Test on multi-threading block BiCGStab methods

In order to evaluate the performance under the multi-threading computation environment, 

we test the two proposed parallel block BiCGStab methods (Algorithm 3 and 4) with the 3D 

homogeneous cylinder phantom. We consider two cases with the optical properties: (1) μa = 

0.1cm−1,  for normal tissue; (2) μa = 0.5cm−1,  for high absorbing 

and low scattering case. In both cases, we solved the forward problems with the single 

threading or multi-threading block solver with 1, 2, 4, 8, 16 threads, the performance from 

both algorithms is reported and compared with the traditional sequential solver.

Theoretically, with the increase of the thread number, the speedup factor of both Algorithm 

3 and 4 as compared to the traditional sequential BiCGStab solver will decrease for different 

reasons. For Algorithm 3, this is mainly because more threads lead to more synchronization 

and communication cost, while for Algorithm 4 more threads will result in fewer right hand 

sides on each thread which in turn limits the search space and therefore the block solver will 

take MV operations to convergence. The preference of these two algorithms will also 

depend on the optical properties of the problem being solved.

For the normal tissue case, the performance of two parallel block solvers as compared to the 

parallelized traditional sequential solver and is shown in Fig. 6. The CPU time in seconds 

and the average MV number are shown in Fig. 6(a) and (c), and the speedup factor and MV 

ratio in Fig. 6(b) and (d). As expected, Fig. 6 (c) shows that the average MV number 

remains constant with various thread numbers both for parallel sequential method and 

Algorithm 3 but it increases for Algorithm 4. Fig. 6(a)(b) shows the effect of the number of 

threads on the speedup factor of two parallel codes. As mentioned in the preceding 

paragraph, while the speedup factors of both parallel algorithms generally decrease with 

increasing treads, Algorithm 3 exhibits less deterioration in performance with increasing 

threads (especially with 2, 4, and 8 threads). That is because as the number of threads 

increases additional computational efforts due to increased MVs in Algorithm 4 dominates 

the parallel slowdown effect due to communication in Algorithm 3. With 16 threads, very 

little improvement is obtained for both of the two parallel solvers since the synchronization 

and communication cost in Algorithm 3 become as much dominant as extra MVs in 

Algorithm 4.

For high absorbing and low scattering medium case, the CPU time, speedup factor, average 

MV number and MV ratio with respect to thread number are shown in Fig. 7 for parallel 

sequential method and two parallel block BiCGStab algorithms. In this case, there is an 

insignificant difference in required MV number between traditional sequential solver and 

Algorithm 3 (see Fig. 7(c)). Therefore for Algorithm 3, the parallel slowdown by the 

synchronization and communication cost, become the most important factor. On the other 

hand, Algorithm 4 suffers mush less from this effect; therefore, a considerable speedup 

factor can still be achieved by more efficient memory usage in the block solver. So in this 
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case, Algorithm 4 gives better performance than Algorithm 3, with thread number less than 

or equal to 8, a speedup factor of ~1.5 can be achieved.

6. Conclusion

In this work, we present a novel method for solving the forward problem in RTE-based 

optical tomography with multiple right hand sides simultaneously. By exploiting the 

common optical properties shared among multiple right hand sides, the new method solves 

the forward problems with multiple right hand sides simultaneously within a framework of 

block Krylov subspace. In particular, we have focused on the block BiCGStab algorithm that 

searches an approximate solution in each iteration within the span of Krylov subspace 

generated with all right hand sides and therefore requires much fewer iterations than the 

traditional sequential algorithm. In addition, our results showed that more efficient cache 

memory usage in the block BiCGStab algorithm could lead to additional savings in the total 

computational time. Moreover, two multi-threading block BiCGStab algorithms are also 

proposed here for limited computation resource cases (thread number ≤ sources number). 

The performance of the proposed block solver has been evaluated in terms of MVs numbers 

and CPU times with comparison to the traditional sequential solver.

We found that the block BiCGStab algorithm provides results 1.3 to 3.0 times faster than 

traditional one-hand side approaches depending on the number of right hand sides, the 

number of threads, and on the optical properties. For normal-tissue optical properties (e.g. μa 

= 0.1cm−1, ), the, serial block BiCGStab gave a speedup factor of 2.5 or 

higher and the parallel block BiCGStab solvers showed a speedup factor of up to 2.4 for 

over 20 sources. In this range of optical properties, the efficiency in the parallel block 

BiCGStab-ITC was less deteriorated with increasing threads than it in the parallel block 

BiCGStab-NITC. On the other hand, with high absorbing and low scattering medium (e.g. 

μa = 0.5cm−1, ), we obtained a speedup factor of 1.5 or higher. In this case, 

however, the speedup mainly comes from the more efficient memory usage rather than the 

reduction on the required MV operation. Therefore the parallel block BiCGStab-NITC, 

which has no synchronization and communication cost, leads to a higher speedup factor 

(~1.5) than the parallel block BiCGStab-ITC. Additional tests show that the performance of 

the block BiCGStab solver is not strongly tied to a specific minimum number of sources to 

obtain a significant speedup factor, which means a considerable speedup (1.5 or higher) can 

still be obtained even for the limited source number (~5),

Overall, the forward problems with multiple sources in RTE-based DOT can be solved 

much more efficiently without losing any accuracy with our proposed block BiCGStab 

solver. Moreover, the efficiency of the block solver can be further improved when using 

multiple threads (thread number < source number) by our proposed algorithms, depending 

on the optical properties. Since the forward solver is usually considered as the most time-

consuming component in the inverse solver, we can expect a significant speed on image 

reconstruction by applying the block BiCGStab as the forward solver, which makes RTE-

based DOT more practical in clinical applications.
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• We solve the multiple-right-hand-side problem in DOT with a block BiCGStab 

method.

• We examine the CPU times of the block solver and the traditional sequential 

solver.

• The block solver is faster than the sequential solver by a factor of 1.5~3.0.

• Multi-threading block solvers give additional speedup under limited threads 

situation.
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Fig 1. 
Source distribution for Phantom 1 and 2; (a) 2D phantom: 20 sources are regularly 

distributed along the perimeter of the disk; (b) 3D phantom: 32 sources are distributed on the 

lateral surface of the cylinder with 4 height levels 0.375cm, 1.125cm, 1.875cm and 2.625cm. 

On each level, there are 8 sources distributed with even distance.
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Fig 2. 
Results for 2D disk phantom with homogeneous optical properties; (a) CPU time 

(BiCGStab); (b) CPU time (block BiCGStab) (c)Speedup factor of block BiCGStab; (d) MV 

number (BiCGStab); (e) MV number (block BiCGStab); (f) MV ratio (BiCGStab MV 

number / block BiCGStab MV number).
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Fig 3. 
Results for 3D cylinder phantom with homogeneous optical properties; (a) CPU time 

(BiCGStab); (b) CPU time (block BiCGStab) (c)Speedup factor of block BiCGStab; (d) MV 

number (BiCGStab); (e) MV number (block BiCGStab); (f) MV ratio (BiCGStab MV 

number / block BiCGStab MV number).
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Fig 4. 
CPU times, speedup factors and MV ratios with respect to spatial and directional 

discretization; (a) CPU times comparison between BiCGStab and block BiCGStab on 

different spatial meshes with the fixed solid angle set S8; (b) speedup factor and MV number 

ratio on different spatial meshes with the fixed solid angle set S8; (c) CPU times comparison 

between BiCGStab and block BiCGStab on different orders of discrete ordinates (S4 ~ S12) 

with the fixed spatial mesh; (d) speedup factor and MV number ratio on different orders of 

discrete ordinates (S4 ~ S12) with the fixed spatial mesh.
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Fig 5. 
Performance of the block BiCGstab algorithm with different number of sources: (a) Average 

CPU per source required in the block BiCGstab algorithm with various source numbers. (b) 

The speedup factor and MV ratio of the block BiCGstab algorithm compared with the 

traditional BiCGstab algorithm with various source numbers.
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Fig 6. 
CPU time, speedup factor, MV number and MV ratio comparison respect to thread number 

in normal tissue case (μa = 0.1cm−1, ): (a) CPU time comparison; (b) Speedup 

factor comparison; (c) Average MV number comparison; (d) MV ratio comparison.
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Fig 7. 
CPU time, speedup factor, MV number and MV ratio comparison respect to thread number 

in high absorbing and low scattering medium case (μa = 0.5cm−1, ): (a) CPU 

time comparison; (b) Speedup factor comparison; (c) Average MV number comparison; (d) 

MV ratio comparison.
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Table 1

The phantom settings of the 2D disk and the 3D cylinder

Phantom 1 Phantom 2

Dimension 2D 3D

Shape Disk Cylinder

Radius (cm) 1 1

Height (cm) - 3
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Table 2

Performance comparison between traditional and block BiCGStab algorithms on various combinations of (g, 

)

g μs[cm−1] 2D circular phantom results
(CPU1[s]/CPU2[s]/Speedup)

3D circular phantom results
(CPU1[s]/CPU2[s]/Speedup)

1.0 0 1.0 71.0 / 42.3 / 1.7 1037 / 571 / 1.8

1.0 0.8 5.0 91.9 / 49.7 / 1.8 1475 / 785 / 1.9

1.0 0.9 10.0 95.3 / 52.3 / 1.8 1553 / 877 / 1.8

1.0 0.95 20.0 87.4 / 52.1 / 1.7 1539 / 869 / 1.8

5.0 0 5.0 145.7 / 52.3 / 2.8 1410 / 575 / 2.5

5.0 0.8 25.0 239.9 / 83.2 / 2.9 2000 / 775 / 2.6

5.0 0.9 50.0 183.6 / 66.4 / 2.8 1564 / 623 / 2.5

5.0 0.95 100.0 140.4 / 51.7 / 2.7 1430 / 579 / 2.5

10.0 0 10.0 200.6 / 70.0 / 2.9 1931 / 752 / 2.6

10.0 0.8 50.0 322.6 / 108.7 / 3.0 3073 / 1163 / 2.6

10.0 0.9 100.0 267.9 / 93.3 / 2.9 2132 / 819 / 2.6

10.0 0.95 200.0 187.7 / 68.1 / 2.8 1363 / 555 / 2.5
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