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We introduce here the finite volume formulation of the frequency-domain simplified spherical har-
monics model with n-th order absorption coefficients (FD-SPN) that approximates the frequency-domain
equation of radiative transfer (FD-ERT). We then present the FD-SPN based reconstruction algorithm that
recovers absorption and scattering coefficients in biological tissue. The FD-SPN model with 3rd order
absorption coefficient (i.e., FD-SP3) is used as a forward model to solve the inverse problem. The FD-SP3 is
discretized with a node-centered finite volume scheme and solved with a restarted generalized mini-
mum residual (GMRES) algorithm. The absorption and scattering coefficients are retrieved using a
limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Finally, the forward and inverse
algorithms are evaluated using numerical phantoms with optical properties and size that mimic small-
volume tissue such as finger joints and small animals.

The forward results show that the FD-SP3 model approximates the FD-ERT (S12) solution within high
accuracy; the average errors in the phase (<3.7%) and the amplitude (<7.1%) of the partial current at the
boundary are reported. From the inverse results we find that the absorption and scattering coefficient
maps are more accurately reconstructed with the SP3 model than those with the SP1 model. Therefore,
this work shows that the FD-SP3 is an efficient model for optical tomographic imaging of small-volume
media with non-diffuse properties both in terms of computational time and accuracy as it requires
significantly lower CPU time than the FD-ERT (S12) and also it is more accurate than the FD-SP1.

© 2017 Elsevier Masson SAS. All rights reserved.
1. Introduction

Modeling of light propagation in biological tissue has been
extensively studied in biomedical optics over the past several de-
cades. Various models have so far been developed that make use of
high-performance computing and new numerical methods.
Fundamentally, two different approaches have been pursued: (a)
Monte Carlo (MC) modeling [1e3] and (b) numerical solutions to
the equation of radiative transfer (ERT) and its approximations
[4e15].

The ERT has been shown to be the most accurate deterministic
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model for the propagation of light in tissue. However, widespread
use of the ERT has been limited due to high computational demand
with numerical solution. This poses particular challenges in diffuse
optical tomography (DOT), where the ERT needs to be solved many
times for different source and detector configurations. Thus,
depending on the particular clinical or preclinical application, ERT-
based image reconstructions may take hours or even days. The
main reasons for high computational cost are: 1) the upwind (or
step) scheme method, which is the most popular spatial differ-
encing scheme for solving the ERT but only first order accurate,
requires dense spatial discretization to improve spatial accuracy; 2)
accurate modeling of highly forward scattered light (as is often the
case in biological tissue) requires dense angular discretization to
accurately capture such highly forward scattering of light in tissue;
3) the presence of scattering makes light intensities at different
directions strongly coupled, leading to slow convergence.
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Altogether, the total number of equations that results from both
spatial and angular discretization of the ERT is very large, thus
leading to computation times that are often impractical for clinical
applications.

As a result of these computational considerations, approxima-
tions to the ERT have become increasingly important and common.
The most common approximation is the diffusion equation (DE),
which assumes that light propagates diffusely through tissue. This
assumption is valid only under conditions where light is highly
scattered and infrequently absorbed. Thus, the DE is a poor
approximation to the ERT in tissue of small volume, with high ab-
sorption, or void-like regions [14,16]. This limits the applications for
which the DE can be used. For example, some groups (including our
team) have recently shown that DOT appears to be capable of
accurately diagnosing rheumatoid arthritis (RA) [17e19] and oste-
oarthritis (OA) [20e22] in finger joints. Yet because fingers contain
void-like regions, occupy a relatively small volume, and, in the case
of RA, may contain inflamed regions that are highly absorbing, the
DE is of limited accuracy.

To improve modeling accuracy, Klose and Larsen introduced the
steady-state SPN model for use in DOT in 2006 [23]. They showed
that the SPN approximation to the ERT is superior to the DE in
modeling light propagation in small-volume tissue, with high ab-
sorption values, andwith low scattering values. A thorough analysis
of the model for N¼ 1, 3, 5, and 7 showed that the SPN model is able
to capture the majority of transport behaviors of photons inside
biological tissue. Furthermore, it was extensively shown that the
SP3 model provides sufficient improvements over the DE while still
providing a significant reduction in computational time as
compared to the ERT model.

From a computational point of view, the SPN equation has a
much smaller number of coupled equations than the ERT.
Furthermore, the number of computational grid points can be
significantly fewer when using the SPN model because from its
resulting discretization is second-order accurate, and therefore, the
computation mesh does not need to be as dense as the mesh
required to accurately solve the ERT [24].

Following a strategy similar to that presented by Klose and
Larsen [23], Domínguez and B�erub�e-Lauzi�ere derived the time-
domain parabolic SPN (TD-pSPN) model from the source-
divergence time-dependent ERT [25]. From the TD-pSPN model,
the authors also derived the frequency-domain SPN (FD-SPN) model
for the source-divergence time-dependent ERT. We are, however,
interested in the SPN approximation to the standard frequency
domain ERT for use in clinical studies [17e19],
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The SPN approximation to this ERT model can be obtained by
modifying the source-divergence time-dependent ERT model as
done in the work by Domínguez and B�erub�e-Lauzi�ere. Assuming
that the refractive index in the medium is spatially invariant and

that the discrete ordinates (bU) are independent from spatial posi-

tion (i.e. Vr,bU ¼ 0), then a TD-SPN model can be recovered for the
standard time-dependent ERT model. This standard TD-SPN model
can then be used to derive the FD-SPN approximation to (1) and (2).
The model for N ¼ 3 is presented below,
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where f1 and f2 denote composite moments of the fluence in units
of Wcm�2, such that the Legendre moments of the radiance are
given by j0 ¼ f1 � 2f2 and j1 ¼ 2f2. The n-th order absorption
coefficient is given by ma;n ¼ ma þ ð1� gnÞms, where ma is the ab-
sorption coefficient, ms is the scattering coefficient, and g is the
anisotropy factor (g2½0:8; 1:0� for many biological media [26]). The
modulation frequency of the source laser is denoted by u, y is the
speed of light in the medium, _q denotes an internal source of light,

and D1 ¼ ð3ma;1Þ�1 and D2 ¼ ð7ma;3Þ�1. The corresponding set of
boundary equations is given as follows:

a1f1 þ D1b1ðbn,Vf1Þ ¼ g1f2 þ 7D2d1ðbn,Vf2Þ þ S1; (5)

a2f2 þ D2b2ðbn,Vf2Þ ¼ g2f1 þ 3D1d2ðbn,Vf1Þ þ S2: (6)

Coefficients a1; b1;g1; d1; a2; b2;g2, and d2 are defined in Table 1.
The FD-SPN approximation to (1)e(2) given by (3)e(6) differs from
the model presented by Domínguez and B�erub�e-Lauzi�ere in that
the divergence coefficient vanishes in all terms (i.e. mdðrÞ ¼ 0).

A different version of this FD-SPN model was previously pre-
sented by Chu et al. in Ref. [27]; however, that model differs from
(3)e(6) in a significant manner. Primarily, the ma;n coefficients are
strictly real-valued in (3)e(6), whereas the ma;n terms in the FD-SPN
model by Chu are complex-valued. One of the main implications of
this difference is that the FD-SPN model given by (3)e(6) converges
to the diffusion equation when N ¼ 1, while the model by Chu et al.
does not.

This differencemotivated our efforts to develop a DOTalgorithm
that is based on (3)e(6). We are interested in this model (3)e(6)
because it may prove to be critical in future studies related to im-
aging of finger joints and other clinical applications with a fre-
quency domain DOT imaging system. To the best of our knowledge,
however, this model has not been evaluated for accuracy and per-
formance in frequency-domain DOT. Limited work has been pub-
lished on image reconstructionwith the FD-SPNmodel as presented
by Chu et al.; for example, Lu et al. published thework on frequency



Table 1
Definitions of coefficients in the FD-SP3 model. The definition of variables
Ai; Bi; Ci; Di , and Ji can be obtained in Klose and Larsen in Ref. [23] and are not
reproduced for brevity purposes.
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domain fluorescence molecular imaging where the SPN model
presented by Chu et al. was used [28].

We present a method for solving the forward and inverse
problem for the FD-SPN model in (3)e(6). Altogether, we believe
this work presents an attractive method for reconstructing the
absorption and scattering coefficient of biological media from data
obtained with the frequency modulated system. We focus on the
model when N ¼ 3, as this order (N ¼ 3) has been shown to be
accurate enough to capture transport behavior in tissue [23].

Our approach is based on the finite volume method (FVM) [13],
which is distinct from all previous work that is based on either the
finite difference method (FDM) [14,23] or the finite element
method (FEM) [25,27,28]. The FVM allows for handling of complex
geometry, which is a particularly important feature since DOT ap-
plications often involve complex geometries of arbitrary shape that
can be most accurately modeled by unstructured grids. Further-
more, the FVM guarantees energy conservation, which is also very
important when modeling the propagation of photon energy. The
node-centered FV technique is particularly attractive for DOT
because it provides computational efficiency in the forward prob-
lem, reducing the size of the resulting linear system. To be more
specific, the standard FVM is based on the cell-centered dis-
cretization inwhich a control volume is a tetrahedral element itself.
In contrast, the node-centered method constructs control volumes
around the nodes of the tetrahedral mesh (also known as the “dual-
mesh”). Typically, the node-centered method has much fewer
control volumes than the cell-centered one; for example, the node-
centered discretization of tetrahedral mesh yields one-seventh as
many control volumes as does the cell-centered discretization,
which leads to a great reduction in the size of the resulting linear
system.

Therefore, we employ here a node-centered finite-volume
method for discretization of the computational domain [29]. The
resulting system of linear algebraic equations is solved with the
restarted generalized minimal residual method (GMRES), which is
awell-known Krylov subspace iterative method for solving systems
of sparse linear equations [30]. The algorithm is implemented using
objective-oriented programming in Cþþ for computational effi-
ciency. The inverse problem is solved as a large-scale optimization
problem. We address challenges of computing a Hessian matrix (H)
or an approximate Hessian (B) through the use of a limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm
[31]. Furthermore, with the L-BFGS algorithm we can avoid having
to explicitly compute B; instead, only the product of B�1 and its
associated vectors needs to be stored and updated for the calcula-
tion of the descent direction.

The forward and inverse algorithms are validated through
numerical simulations. The algorithm for solving the forward
problem is tested with numerical simulations on an inhomoge-
neous phantom. The SP3 solutions are compared against the
benchmark solutions based on the ERT model [13] in order to
address computation time and accuracy. The performance of the
proposed reconstruction algorithm is evaluated in terms of recon-
struction accuracy and CPU times by using numerical phantoms.

The derivation of the finite volume approximation to the FD-SP3
model is presented in Section 2. The algorithm for solving the in-
verse problem with the finite volume approximation to the FD-SP3
model is presented in Section 3. Numerical phantoms for testing
the forward and inverse models are presented in Section 4. Results
for the forward and inverse problems are summarized in Section 5.
This paper concludes with a discussion in Section 6.

2. Forward problem: finite-volume model

The FD-SP3 model is defined by (3)e(6). In these equations, the
outward pointing normal at the surface of the medium is denoted
by bn and S1 and S2 are the contributions of the boundary source,

SðbUÞ, which are defined as
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where bU denotes a discrete angular direction. The corresponding
formula for the partial current is
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The coefficients Jn are defined in Appendix A.6 of [23] and not
reproduced in this paper. To illustrate how the finite-volume ver-
sions of these equations are obtained, consider the discretization of
domain O (Fig. 1a) with a triangular mesh (tetrahedral elements in
3D) (Fig. 1b). Control volume elements are defined around each
node of the triangular mesh, resulting in either interior elements
(Fig. 1b, element a) or boundary elements (Fig. 1b, element b). The
outward pointing normal vector (bn) is now defined at each surface
of the control volume elements (Fig. 1b). Consider an individual
finite volume element p2V with SI internal surfaces and SB
boundary surfaces (i.e. elements a or b in Fig. 1b). By definition,
element p shares each of the surfaces SI with a single neighboring
control volume element. Let i denote the i-th neighbor of p, such
that i ¼ 1 : : : SI . Each surface of the control volume element has a
corresponding normal vector bn.

Then, the finite volume version of the FD-SPN model can be
obtained by integrating (3)e(4) over each control volume of the
dual mesh and then applying the Gauss divergence theorem to
convert the volume integral into a surface integral along each
surface of the control volume. The resulting surface integrals are
computed using numerical quadrature rules, exploiting the fact
that each volume element has a finite number of surfaces. The
directional derivative terms that appear after application of the
Gauss divergence theorem to (3)e(4) are simplified by using the
two-node first-order differencing scheme based on two neigh-
boring nodes, and are written in discretized form as follows,



Fig. 1. (a) physical domain O; (b) discretization: triangular mesh (red) and dual mesh (blue). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Vf1,bnz½f1�i � ½f1�p
dri

; (10)

Vf2,bnz½f2�i � ½f2�p
dri

; (11)

where dri denotes the distance from the primary node p to its
neighboring node i. With (10)e(11), the finite volume version of
(3)e(4) (FV-FD-SP3) is given by
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The corresponding discretized boundary equations are given by
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Finally, the discretized partial current operator of equation (9) is
given by
h
Jþ
i
p
¼ n0½f1�p þ n1½f2�p; (16)

where coefficients xij and nn are defined in Table 1. These co-
efficients are functions of boundary coefficients An; Bn; Cn, and Dn,
which are themselves functions of the various angular moments of
the reflectivity R. The definitions of these boundary coefficients are
given in Appendix A.2 of [23].

Equations (12e15) can be rewritten to form a system of linear
equations, Au ¼ b, where A 2C2M � C2M is the discretized SP3
model, u ¼ ½fT

1 fT
2�T2 C2M is the compositemoments of the fluence,

and b2 R2M is the source vector that accounts for boundary or/and
interior light sources. The partial current, JþðrÞ, is formally
computed as

Jþðr;uÞ ¼ Qu; (17)

where Q 2 RN�2M is a projection operator that transforms the
composite moments of the fluence u into the partial currents. Here,
N is the total number of source-detector pairs. This system of
equations is solved using the restarted GMRES algorithm [30,32].

For improved computational performance, it is helpful to
rewrite the final discretized form of the SP3 model defined by
(12)e(15). The absorption and scattering coefficients are inherently
in significantly different scales (ms[ ma), which can lead to slow
convergence during the reconstruction process. This issue can be
overcome by defining scaled absorption coefficient cma ¼ lama þ ca
and scaled scattering coefficient cms ¼ lsms þ cs, where constants
la; ca; ls; and cs are computed so that cma2½�1;1� and cms2½�1;1�
relative to the predefined lower and upper limits for ma and ms, for
example, ma2½0:0; 1:0�cm�1, and ms2½0:0; 200:0�cm�1, assuming
the anisotropic factor g z 0:9. We note that these upper and lower
bounds are for rescaling purposes only and should not be confused
with constraints on the admissible values of the variables.

The diffusion operator (D1; D2) appearing in (12)e(13) are
defined at the surface of the control volume; therefore, it must be
given as a function of nodal values. This is achieved by replacing the
D1 and D2 with their average value between node p and its
neighboring node i, given by D1 ¼ 0:5� ð½D1�p þ ½D1�iÞ,
D2 ¼ 0:5� ð½D2�p þ ½D2�iÞ, respectively. Thus, the final version of the
SP3 model can be obtained by expanding D1 and D2, expanding all
ma;n terms, and then replacing ma and ms with cma andcms throughout.
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3. Inverse problem: reconstruction algorithm

With the SP3 equation used as a forward model, the resulting
inverse problem can be written in general terms as follows:

minf ðx;uÞ ¼ 1
2
ðP �MÞT

�
P �M

�
þ bRðxÞ subject to cðx;uÞ

¼ AðxÞu� b ¼ 0:

(18)

where x denote inverse variables (i.e., x2½ma; ms�Þ, u denotes the
fluence vector, Pð¼ QuÞ andM are predictions andmeasurements of
partial currents Jþ ; f ðx;uÞ is an objective function that quantifies
the least square error between predictions P and measurementsM;
the operator ð , Þ is the complex conjugate of the complex-valued
term; RðxÞ denotes appropriate regularization with a regulariza-
tion parameter b; Au ¼ b (or c ¼ 0Þ denotes a discretized forward
equation. Note that we use in this work Alifanov's iterative regula-
rization methods [34] as an alterative to Tikhonov-type regulariza-
tion methods.
The solution of the inverse problem given by (18) can be found
by iteratively minimizing the objective function f ðx;uÞwith respect
to the inverse variable x. Newton methods solve problem (18) by
minimizing a quadratic approximation of the objective function
f ðx;uÞ as follows:

minDxTVxf þ 1
2
DxTHxxDx (19)

where Dx is the update of inverse variable, and Vxf and Hxx are the
gradient vector and Hessian matrix of the objective function f with
respect to the inverse variable x. Minimization of (19) with respect
to Dx gives the following form of the update Dx of inverse variable
x:

Dx ¼ H�1
xx Vxf : (20)

Here direct computation of the Hessian matrix inversion H�1
xx is

avoided and instead we directly approximate the matrix-vector
product H�1

xx Vxf by using the L-BFGS method reported in DOT
literature [13,33,35]. The gradient calculation Vxf required by the L-
BFGS method is computed by following the adjoint method re-
ported in Ref. [13] as:
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Vxf ¼
�
uT

vAT

vx
l

�
Re
; (21)

where ð , ÞRe denotes the real-valued part of the complex-valued
term ð , Þ and the adjoint variable, l2C2M , can be computed by
solving the following adjoint equation,

ATl ¼ �
h
QT

�
Qu�M

�i
; (22)

where the linear problem (22) is solved using the restarted GMRES
algorithm as described above. Note that we use in practice the
rescaled gradient defined as the gradient (21) divided by each cell
volume, multiplied by the average cell volume, which is to reduce
grid effects due to inhomogeneous cell sizes on unstructured
meshes.

As can be seen in equation (21), the gradient Vxf requires the
calculation of the gradient of the discretized FV-FD-SP3 matrix,
vAT=vx. In this work, we perform exact differentiation of the dis-
cretized FV-FD-SP3 matrix A with respect to ma and ms respectively.
The formulae for computing this term depend on the order of the
SPN model. Algorithms 1 and 2 present the definitions of the partial
derivatives of A with respect to ms and ma for N ¼ 3, respectively.

To ensure global convergence of the L-BFGS method, a cubic
interpolation line search is performed here to find a step length a

that provides a sufficient decrease in the objective function f [35].
As a consequence, the new iterate is given by

xkþ1 ¼ xk þ aDxk: (23)

All terms are now well defined to perform reconstructions with
the FV-FD-SP3 model and the L-BFGS algorithm can be applied
directly. Derivation of the FV-FD-SP1 (and indeed for N¼ 5 or 7) can
be performed by following similar steps to those given in (19)e(23).
4. Numerical phantoms

4.1. Forward problem

The fluence j and partial current Jþ solutions obtained with the
FV-FD-SPN model are compared to those with a benchmark algo-
rithm based on the ERT model using a dense set of discrete ordi-
nates (S12). We use a circular phantom with a diameter of 2.0 cm
whose origin is at the center of the disk (x¼ 0.0 cm, y¼ 0.0 cm). The
performances of the FV-FD-SPN model are analyzed using an
inhomogeneous medium with high-absorbing or/and low-
scattering inclusions. Together, these phantoms provide insight
into the validity of various SPN models in the non-diffuse regime.
Fig. 2. Discretization of a disk (2.0 cm diameter) into (a) triangular elements (i.e. FEM mesh)
dot) and 50 detectors (blue dots) are distributed around the boundary of the phantom. The in
the phantom, represented by the inner circle. (For interpretation of the references to colou
The numerical phantom is discretized with a dense mesh to
ensure that the numerical error from the ERT discretization is
minimal. The mesh consists of 37,247 mesh nodes and 73,236
triangular elements, resulting in an FVM mesh with 37,247 control
volume elements and 220,964 surfaces. The FEM and FVM grids are
not shown here since they are too dense to display. Instead, the
significantly less dense FEM and FVMmeshes of the same phantom
are shown for illustration (Fig. 2a,b). The computation time
required to generate the FVM mesh from the FEM mesh is minimal
(0.05s for this phantom) and generally ignored.

There is a source on the boundary of the disk (at position
x ¼ 0:7071 cm; y ¼ 0:7071 cm) with source power

SðbUÞ ¼ 1:0Wcm�2sr�1 and 50 detectors distributed evenly around
the phantom boundary at points away from the source (Fig. 2c).
Equations (12e15) are solved for f1 and f2 on all 37,247 FVM ele-
ments, which are then used to compute the partial current at each
detector position using (16).

The optical properties of the phantoms are summarized in
Table 2 and the specific location of the inclusions and their optical
properties are shown in Fig. 3. The first phantom is homogeneous
with low absorption (ma ¼ 0:001cm�1) and high scattering
(ms ¼ 400cm�1; g ¼ 0:95). This medium simulates highly diffuse
tissue where the diffusion equation is known to be an accurate
model of light propagation.

The second phantom contains high-absorbing inclusions and
low-scattering inclusions (Fig. 3), where each of the inclusions is a
disk with 0.25 cm diameter. The second phantom is designed to test
the accuracy of the SP3 model in the transport regime, where the
diffusion equation is known to be a poor approximation to the ERT.

The relative error Jþe ðrÞ between the benchmark partial current
JþERT ðrÞ computed with ERT (S12) and the partial current JþSP3ðrÞ
with the FV-FD-SP3 is computed at each node i using the following
formula:

Jþe ðrÞi ¼ 100� JþSP3ðrÞi � JþERT ðrÞi
JþERT ðrÞi

: (24)

The average relative error eJeðrÞ of the partial current is also re-
ported as a measure of overall error. The relative error jeðrÞ be-
tween the benchmark fluence jERT ðrÞ , and the zeroth order
moment jSP3ðrÞ of the SP3 model (i.e., j0 ¼ f1 � 2f2) is computed
at each node i using (24). A second parameter that quantifies the
error between the SP3 and ERT solutions is the volume-averaged

error ~je over the entire computational domain as given by (25).
and (b) into finite-volume elements (i.e. FVM mesh). (c) A single boundary source (red
ternal cross-section of interest consists of mesh points 0.5 ± 0.01 cm from the center of
r in this figure legend, the reader is referred to the web version of this article.)



Table 2
Optical properties of the 2D inhomogeneous phantoms used for the forward simulations. Subscripts ‘b’ and ‘o’ denote the optical properties of the background and the in-
clusion objects, respectively.

# ma;b½cm�1� ms;b½cm�1� ma;o½cm�1� ms;o½cm�1� g nm u ½MHz�

1 0.1 200.0 0.5 100 0.95 1.4 600
2 0.1 100.0 1.0, 2.0 e 0.95 1.4 600
3 0.1 200.0 e 20, 60 0.95 1.4 600

Fig. 3. Definition of two-dimensional inhomogeneous phantoms; (a) Phantom #1; (b) Phantom #2; (c) Phantom #3.

Table 3
Parameters used in different reconstruction cases.

2D phantom 3D phantom

Geometry disk finger
Background absorption [cm�1] 0.1 0.1
Inclusion absorption [cm�1] 0.2 0.25
Background reduced scattering [cm�1] 10.0 12.5
Inclusion reduced scattering [cm�1] 6.0 7.5
Number of sources 8 11
Number of detectors 68 552
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jeðrÞi ¼ 100� jSP3ðrÞi � jERT ðrÞi
jERT ðrÞi

; ~je

¼ 100
V

�
XN
i¼1

�
jSP3ðrÞi � jERT ðrÞi

jERT ðrÞi

�
DVi (25)

where V represents the total computational volume and DV the
control volume of each FVM element. The GMRES algorithm is set
to restart after 30 iterations with no limit on the number of total
iterations. The convergence criterion is set to 1:0 � 10�12. All
computations are performed on a 2.4 GHz Mac Pro.
4.2. Inverse problem

We evaluate the performance of the SP3-based reconstruction
algorithm through numerical simulations on a 2D circular phantom
and a 3D finger phantom as defined in Fig. 4 and Table 3. Absorbing
and scattering inclusions are placed inside each phantom and
simulated measurement data (M) is generated using the ERT on a
dense FVM mesh and corrupted with 1.0% Gaussian noise, whereas
reconstructions are performed on a coarser mesh to mitigate the
risk of committing a so-called ‘inverse crime’ during the recon-
struction process. All simulations on these phantoms are per-
formed with g ¼ 0:95, u ¼ 600 MHz, and nm ¼ 1:4 as typically
encountered in real-world applications, and also started with a
Fig. 4. Geometries and source-detector configuration of test phantoms: (a) sources and (b
anterior surface for the finger-like phantom.
homogeneous initial guess for ma and m
0
s. The 2D phantom is defined

to have 8 boundary sources and 68 detectors distributed along the
perimeter of a circle with a diameter of 2 cm (Fig. 4a and b). The 3D
finger phantom from the 3D scan of actual human finger is selected
here since we are interested in applying FD-DOT to the imaging of
finger joints [17e22]. In total, 11 distinct point sources (Fig. 4c) and
155 detector points (Fig. 4d) are defined on this phantom surface,
and with this trans-illumination setup the finger is illuminated on
the posterior (dorsal) side and escaping photons are measured on
the anterior (palmar) side [17].

The accuracy of each reconstruction is quantified using the
correlation coefficient r2½�1;1� and the deviation factor d2½0;∞Þ
defined as
) detectors for the 2D phantom; (c) sources on the posterior and (d) detectors on the
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r ¼
Pn

i¼1

�
mri � mr

��
mai � ma

�
ðn� 1ÞsðmrÞ,sðmaÞ ; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
mai � mri

�2.
n

r
sðmaÞ

(26)

where ma is the analytic (i.e., exact) solution, mr is the reconstruction
image, ma and mr are the mean values and sðmaÞ and sðmrÞ are the
standard deviations of ma and mr respectively, and n refers to the
total number of distinct mesh nodes. The correlation coefficient r is
between �1 and 1, with r ¼ 1:0 corresponding to an exact match
between the analytical and reconstruction images. The deviation
factor d2½0;∞Þ denotes normalized root mean square error.
Accordingly, the closer r gets to 1 and d to 0, the better is quality of
reconstruction. The reconstruction is terminated when the objec-
tive function value decreases by four orders of magnitude from its
original value and the relative change rate in the objective function
is as small as 1� 10�6.
5. Results

5.1. Forward problem

Results from simulations on an inhomogeneous phantom
defined in Table 2 and Fig. 3, are summarized in this section. Images
of the amplitude and the phase of the fluence are presented in
Figs. 5 and 6, respectively, for the first phantom (Phantom #1). Plots
of the partial current at boundary detectors are presented in Fig. 7.
The individual composite moments of the SP3 model are shown in
Fig. 8.

The amplitude and phase components of the fluence computed
with the FD-SP3 and the FD-ERT (S12) are shown in Fig. 5(a and b)
and 6 (a,b), respectively. The errors of the FD-SP3 relative to the
FD-ERT (S12) at mesh nodes are shown in Figs. 5c and 6c. With SP3
the average relative errors fjeðrÞ ¼ 6.01%, eJþe ðrÞ ¼ 7.1% for the

amplitude, and fjeðrÞ ¼ 3.28% and eJþe ðrÞ ¼ 3.67% for phase,
Fig. 5. Phantom #1: amplitude (log scale) component of the fluence computed with the (a) F
FD-SP3 relative to the FD-ERT (S12) model.

Fig. 6. Phantom #1: phase component of the fluence computed with the (a) SP3 and (b) ERT
ERT (S12) model.
respectively, whereas for SP1 errors fjeðrÞ ¼ 6.40%, eJþe ðrÞ ¼ 8.21% for

amplitude and errors fjeðrÞ ¼ 3.13%, eJþe ðrÞ ¼ 3.80% for phase. These
differences are within the range reported in Ref. [23].

In general, the error within the medium is relatively small and
substantial errors only occur near the location of the source in both
amplitude and phase, which likely corresponds to regions of the
mediumwhere significant transport behavior occurs andwhere the
SP3 model cannot directly account for such behavior. These obser-
vations are also pronounced in the partial current (Fig. 7).

Fig. 8 shows the first and second composite moments of the
fluence, f1 and f2, respectively. Recalling that the zeroth order
Legendre moment of the fluence is defined as j0 ¼ f1 � 2f2, then
we can think of the first compositemoment, f1, as equivalent to the
solution obtained with the diffusion equation (i.e. when N¼ 1). The
second composite moment, f2, is then a term that effectively cor-
rects the diffusion solution f1, taking into account the ‘transport’
behavior of photons over the entire domain. Fig. 8a,b clearly shows
this: there is a strong “correction” near the source and within the
three disks where photons exhibit more ‘transport-like’ behaviors.
Note that photons do not experience much scattering near the
source and also the scattering coefficients of the three disks are
lower than the background. Likewise, the phase component of f2
also corrects the phase component f1 near the source. In regards to
computational requirements, the benefit of using the FD-SP3 model
over the ERT (S12) model is clear. The FD-SP3 model took 113 s and
313Mbytes and the FD-SP1 model 70 s and 176Mbytes whereas the
benchmark ERT (S12) model took 6715 s and over 6.1 Gbytes to
converge. The difference in speed is approximately 60� and the
reduction in RAM is over 19�.

The second phantom is considered here that contains extremely
high absorbing inclusions (ma ¼ 1:0 � 2:0 cm�1). Fig. 9 shows the
results of the SP3 model for the second phantom (Phantom #2) in
terms of f1 and f2 of amplitude and phase. For the average relative

errors, the SP3 gives fjeðrÞ ¼ 5.47%, eJþe ðrÞ ¼11.82% for the amplitude,

andfjeðrÞ ¼ 2.54% and eJþe ðrÞ ¼ 1.52% for phase, respectively whereas

the SP1 yields fjeðrÞ ¼ 8.51%, eJþe ðrÞ ¼ 15.21% for amplitude and
D-SP3 and (b) FD-ERT (S12) models; (c) percent error in the amplitude component of the

(S12) models; (c) percent error in the phase component of the FD-SP3 relative to the FD-



Fig. 7. Phantom #1: (a,b) amplitude and phase of the partial current, Jþ and (c,d) Error in the amplitude and the phase of the partial current, Jþe . Detectors are numbered
sequentially: 1 and 50 (nearest to source) and 25 (most distant from source).

Fig. 8. Phantom #1: (a, b) Amplitude component (log scale) and (c, d) phase component of f1 and f2, computed with the FD-SP3 model.

Fig. 9. Phantom #2: (a, b) Amplitude component (log scale) and (c, d) phase component of f1 and f2, computed with the FD-SP3 model.
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fjeðrÞ ¼ 5.44%, eJþe ðrÞ ¼ 8.68% for phase. Overall, the errors are larger
in both amplitude and phase and the differences between the SP1
and SP3 solutions are also more pronounced here, i.e., the error
values here indicate that the SP3 solutions are almost 100% more
accurate than the SP1 solutions in this case where very high
absorbing inclusions are considered. Computational times are
almost half of those with the first phantom as the SP3 took 63 s and
the SP1 30 s, and the ERT (S12) 4819 s. This reduction is expected
since the larger absorption coefficient makes the diagonal terms
larger in the linear system Au ¼ b and as a consequence leads to
faster convergence.

Lastly, we present the results of the third phantom with highly
lower scattering inclusions relative to the background. Fig. 10
shows the distributions of f1 and f2 for amplitude and phase.
The scattering inclusions are identifiable in the f2 image of
amplitude (Fig. 10b) but not in the f2 image of phase (Fig. 10d).
Also the contrast at the site of the scattering inclusions is lower
than the contrast at the site of the absorbing inclusions considered
in the second phantom, particularly in the amplitude images
(Fig. 9b vs. Fig. 10b). The relative errors for the fluence distribution
and the partial currents are calculated as the SP3 givesfjeðrÞ ¼ 4.69%, eJþe ðrÞ ¼ 12.88% for the amplitude, and fjeðrÞ ¼ 3.94%

and eJþe ðrÞ ¼ 3.04% for phase, respectively whereas the SP1 yieldsfjeðrÞ ¼ 4.99%, eJþe ðrÞ ¼ 13.79% for amplitude and fjeðrÞ ¼ 3.56%,eJþe ðrÞ ¼ 5.00% for phase. Overall the SP3 model performs better than
the SP1 model in the calculations of both fuence and phase. The
computation times required to obtain the solutions with the
models are 205 s (SP3), 99 s (SP1), and 7816 s (S12), which are larger
than when only highly absorbing inclusions are considered.

5.2. Inverse problem

The optical properties of the 2D circular phantom used to



Fig. 10. Phantom #3: (a, b) Amplitude component (log scale) and (c, d) phase component of f1 and f2, computed with the FD-SP3 model.
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evaluate the performance of the SP3-based reconstruction algo-
rithm are chosen to be outside the diffuse regime, with two in-
clusions of higher absorption and two additional inclusions of
lower scattering in a moderately diffuse background as shown in
Fig. 11a,c. Overall, both SP1 and SP3 reconstructions identify the
inclusions well (based on separation). In terms of quantified accu-
racy, however, the SP3 model gives more accurate reconstructions
(i.e., higher correlation and less deviation) than the SP1 model: the
correlation coefficient and the deviation factor of the SP3 model are
rðmaÞ ¼ 0:82, dðmaÞ ¼ 0:58 and rðm0

sÞ ¼ 0:86, dðm0
sÞ ¼ 0:53 whereas

for the SP1 model rðmaÞ ¼ 0:76, dðmaÞ ¼ 0:68 and rðm0
sÞ ¼ 0:73,
Fig. 11. Reconstruction images of ma (top) and m
0
s (bottom) of the 2D circular

Fig. 12. Convergence of the reconstruction algorithms
dðm0
sÞ ¼ 0:84. Computationally, the SP3 model exhibits faster decay

rate in the inverse error compared to the SP1 model as clearly
shown in Fig. 12a. The faster decay rate by the SP3 can be under-
stood from the fact that the SP3 model provides more accurate
predictions of partial currents than the SP1 model and as a result
the SP3 model decreases the inverse error at a faster rate than the
SP1. In terms of CPU times, the SP3 reconstruction takes approxi-
mately 73.0% more time than the SP1 reconstruction for the
objective function value to decrease to 1� 10�3 (Fig. 12b). This is
expected as the SP3 model has twice as many forward variables as
the SP1 model while the number of inverse variables remains the
same for both models. It should be however noted that the SP1
phantom: (a,d) exact; (b,e) SP1 reconstructions; (c,f) SP3 reconstructions.

with respect to (a) time and (b) iteration number.
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reconstruction model slows down quickly as it attempts to further
minimize the inverse error below 1� 10�3. This type of degrada-
tion in convergence is due to the fact that the SP1 model is less
accurate than the SP3 model in predicting partial currents in non-
diffuse regime as described earlier.

We also investigate effects of using the different numbers of
sources and detectors on reconstruction quality. For this study, the
same 2D circular phantom as before is considered here. But this
time we change the numbers of sources and detectors in two
different pairs: one pair of 4 source and 68 detectors and another
pair of 8 sources and 34 detectors. The reconstructions are per-
formed with these two source-detector pairs and the correlation
coefficient and the deviation factor are calculated to evaluate image
quality for each case. The results are given in Figs. 13 and 14 and in
Table 4, respectively. As shown in Fig. 13, the reconstructions with 8
sources and 34 detectors do not resolve the absorption inclusions
well, only leading to one big continuous blob, whereas the re-
constructions with 4 sources and 68 detectors produce spatially
well-resolved results of both absorption and scattering coefficients.
Fig. 13. Reconstruction images of ma (top) and m
0
s (bottom) obtained using the different num

sources and 34 detectors with SP1 and SP3 reconstructions.

Fig. 14. Correlation coefficients of ma (left) and m
0
s (right) obtained with the two reconstru

reconstruction process.

Table 4
Correlation coefficients and deviation factors between reconstructed and exact optical m

Sources and detectors used Methods Cor. rðmaÞ
(4 sources, 68 detectors) SP1 0.67

SP3 0.72

(8 sources, 34 detectors) SP1 0.49
SP3 0.51
In terms of quantitative image quality, it is remarkable that the data
of 4 sources and 68 detectors achieves similar accuracy to the full
set of 8 sources and 68 detectors as clearly seen in Table 4 and
Fig. 14. It appears from these results that the number of detectors
has more significant impact on the reconstruction quality than the
number of sources does. In other words, these results imply that
increasing the number of detectors can have more advantage over
increasing the number of sources, which also means that the use of
fewer sources andmore detectors is computationally more efficient
than the use of more sources and fewer detectors when the same
amount of measurement data is required. Computationally, the SP1
and SP3 algorithms show similar behaviors as shown in Fig. 12 for
these two cases both with respect to CPU times and convergence,
although not presented here.

Finally we present here the reconstruction results of the 3D
finger phantom as shown in Fig. 4 (c,d). The dimension of the finger
under consideration is approximately 4.0 cm in length (y-axis) and
has width and height of approximately 2.0 cm. As shown in Fig. 15,
the phantom has one inclusion of elevated absorbing and one
bers of sources and detectors: (a,f) exact; (b,c,g,h) 4 sources and 68 detectors; (d,e,i,j) 8

ction methods using different numbers of sources and detectors during the iterative

ap as shown in Fig. 13.

Dev. dðmaÞ Cor. rðm0
sÞ Dev. dðm0

sÞ
0.77 0.82 0.62
0.71 0.86 0.51

0.88 0.50 0.98
0.87 0.52 0.91



Fig. 15. Sagittal views of the finger phantomwith one elevated absorbing (a) and one lower scattering (b) inclusion in a homogeneous background, and their optical properties are
given in Table 3.
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inclusion of lower scattering as compared to the background. The
inclusions are spheres with a 0.8 cm diameter. The optical prop-
erties of this finger phantom are chosen to closely resemble those
typically found in and around the proximal interphalangeal (PIP)
joint of the human hand (Table 3), resembling clinical applications
for the diagnosis of rheumatoid arthritis [17].

The cross-sectional maps of the reconstructed absorption and
scattering coefficients are presented in Fig. 16. As shown in Fig. 16,
the SP3 algorithm performs better than the SP1 algorithm in both
locating the inclusions and reconstructing the actual values of ab-
sorption and scattering there in the region of inclusions. In terms of
image quality, the correlation coefficient r of the SP3 model is 0.66
for ma reconstruction and 0.64 for m

0
s reconstruction. This is almost

20%e40% better thanwhen the SP1 model is used (rðmaÞ ¼ 0:46 and
rðm0

sÞ ¼ 0:20, respectively). Also the SP3 method shows 80%e250%
smaller deviation factors (dðmaÞ ¼ 0:77 and dðm0

sÞ ¼ 0:82) as
compared to the SP1 method (dðmaÞ ¼ 1:60 and dðm0

sÞ ¼ 3:40).
Overall, the SP1 reconstructions give highly overestimated results,
Fig. 16. Sagittal cross-sectional views of the 3D finger phantom, showing the absorption ma
SP3.

Fig. 17. Convergence of the reconstruction algorithms
causing greater artifacts in the region where the sources are
located, whereas the SP3 estimates the optical properties more
accurately with much less artifact in the same region. The main
reason that the SP3 outperform the SP1 reconstruction for this case
is because the SP3 forward model gives better predictions of light
intensities near the source locations than the SP3 as described in
sec. 4.1. Convergence characteristics for this case are shown in
Fig. 17 for the two algorithms. The SP1 method reveals much larger
initial error and converges at larger value, not making further
progress toward the minimumwhereas the SP3 method converges
at smaller value by two orders of magnitude. In terms of CPU times,
the SP3 method takes about 60% more time than the SP1 method
when the algorithms are terminated after 22 inverse iterations.

6. Conclusions

We introduce here the finite volume approximation to the FD-
SP3 model with strictly real-valued nth order absorption co-
efficients and then present the FD-SP3 based reconstruction
(top) and scattering m
0
s (bottom) obtained with SP1 and SP3: (a,d) exact; (b,e) SP1; (c,f)

with respect to (a) iteration number and (b) time.
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algorithm for recovering absorption and scattering coefficients in
biological media. The FD-SP3 model is discretized with a node-
centered finite volume scheme. The resulting system of linear
algebraic equations is solved with restarted generalized GMRES
algorithm. The absorption and scattering coefficients are recovered
using the quasi-Newton limited-memory BFGS algorithm, in which
the gradient of the objective function is computed using exact
differentiation with respect to ma and ms. Finally, the forward and
inverse algorithms are validated using numerical phantoms with
optical properties that mimic biological tissue. The forward solu-
tions are compared to the solutions obtained from the ERT (S12)
model.

The results with the forward models show that the FD-SP3 ap-
proximates the FD-ERT model to within reasonable accuracy. We
find that the second composite moment of the fluence, f2, corrects
the first moment of the fluence, f1, near the location of the source
and in the areas where the inclusions exist. This is in accordance
with our expectations, as it is well known that incoming photons do
not become diffuse until they travel a short distance within media
with high absorbing and scattering properties. Thus, the SP3 solu-
tion is able to better approximate the “transport” behavior of
photons at short distances from the source.

From the reconstruction results presented here we find that the
absorption and scattering coefficient maps are more accurately
reconstructed with the SP3 model than with the SP1 model while
the SP3 model takes fewer iterations to converge. These conver-
gence properties result in reducing the overall difference in
reconstruction time between the SP1 and SP3 models.

Overall, this work shows that the FV-FD-SP3 is a computation-
ally efficient model for DOT imaging of media with non-diffuse
properties, such as finger joints, because it performs better than
the SP1 (i.e., diffusion model) with respect to accuracy and takes
significantly lower computation time than the FD-ERT (S12) model
without sacrificing accuracy significantly. Our future effort will
focus on deploying this algorithm for use in clinical data with the
aim of diagnosis of rheumatoid arthritis from FD-DOT imaging of
finger joints.
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