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Abstract: A novel multi-view non-contact dynamic diffuse optical tomographic imaging 
system for the clinical evaluation of vasculature in the lower extremities is presented. The 
system design and implementation are described in detail, including methods for 
simultaneously obtaining and reconstructing diffusely reflected and transmitted light using a 
system of mirrors and a single CCD camera. The system and its performance using numeric 
simulations and optical phantoms. Measurements of a healthy foot in vivo demonstrates the 
potential of the system in assessing perfusion within the foot. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
Over the last decade, diffuse optical imaging (DOI) systems have been developed for clinical 
applications such as breast cancer [1–5], arthritis [6–8], brain function [9, 10], and vascular 
diseases [11–13]. This can be attributed to DOI’s ability to non-invasively measure 
functionally relevant parameters. Diffuse optical measurements are mostly based on the 
wavelength dependent intrinsic absorption contrast of oxyhemoglobin (HbO2) and 
deoxyhemoglobin (Hb). This makes dynamic diffuse optical tomography (DDOT) well suited 
for imaging peripheral arterial disease (PAD), a disease in which narrowed or blocked arteries 
results in reduced blood flow to the lower extremities. Untreated or unsuccessful treatment of 
the disease eventually leads to foot ulcers, open wounds, gangrene, and amputation. Patients 
require frequent evaluation to monitor the disease progression [14], but current methods of 
evaluating PAD do not directly measure the perfusion in the foot where tissue death 
commonly begins. Current methods are also often inconclusive or contraindicated in patients 
with diabetes and renal insufficiencies [15–17], who account for up to 41% of PAD patients 
[18]. Evaluation of PAD in this population is hampered by the lack of a non-ionizing and 
contrast-free method to assess the blood perfusion in the distal portions of the lower 
extremities. 

We have previously shown that DDOT has great potential for detecting PAD by 
extracting time-dependent features of the total hemoglobin concentrations in the foot during a 
venous occlusion at the thigh [11, 12]. The venous occlusion blocks blood from returning to 
the heart while the blood continues to flow through the arteries to the lower leg. The 
hemodynamics during the occlusion reveals information about the arterial vasculature and 
perfusion. Furthermore, the angiosome concept has found increasing attention in the vascular 
surgery community. It is thought that different volumes of tissue in the foot, or angiosomes, 
each has its blood supplied by a specific more proximal artery [19]. Recent studies have 
shown that direct revascularizations of the arteries tied to specific angiosomes affected by 
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PAD leads to a higher rate of healing and limb salvage [20–22]. The ability to evaluate the 
areas of the foot with low perfusion would be useful. Here, the tomographic capabilities of 
DDOT could play an important role. 

Like many other traditional DDOT imaging systems, our previous system employed 
optical fibers in direct contact with the tissue surface to deliver and collect light [11, 12]. We 
found that this limits its clinical utility, especially in patients with open wounds and ulcers, 
which is a common occurrence in PAD patients. In these patients, fibers need to be placed 
outside the wound, further complicating an already cumbersome and time-consuming process. 
In general, establishing proper fiber-skin contact is difficult, but important for obtaining 
quality data. Furthermore, the number of the fibers that can be used is limited by the size of 
the fibers themselves. This in turn limits the number of data points that can be collected. In 
addition, the bulk of the fibers around the imaged object makes it difficult to recover the 
object geometries and the fiber positions, which is important for an accurate image 
reconstruction process. For all these reasons, it is highly desirable to have a non-contact 
DDOT system for the assessment of PAD in the feet of affected patients. 

Recently, fiber-less non-contact systems have emerged in the field of small animal 
imaging [23, 24]. In these system, wide-field CCD or CMOS sensors are utilized which 
allows for higher spatial resolution of detection points from the tissue surface and avoids the 
placement issues of fibers. Furthermore, the geometry of the object can be more easily 
extracted. Continuous-wave (CW) DOT systems allow for fast frame-rates, making it ideal 
for dynamic imaging. Adapting these small-animal imaging systems for human clinical use is 
non-trivial. Systems geared for clinical use largely employ a single view mode. These 
systems use reflectance only to measure oxygen saturation in the skin and muscle. 
Transmission only noncontact systems have been developed for hand and finger imaging [7]. 

Here, we have developed a multi-view non-contact dynamic diffuse optical tomography 
system for imaging the blood flow in the foot using a mirror-based scheme. The system’s 
ability to resolve inhomogeneity was characterized using numeric simulations and tissue 
mimicking phantoms with high absorbing inclusions. The system was also tested on a healthy 
foot during a venous occlusion and was able to provide spatial maps of hemodynamic 
changes. From these time-varying maps, we can extract functional information about the 
lower extremity vasculature, which may be very useful in evaluating diseases such as PAD. 

2. System design
We designed a novel non-contact multi-view CW DDOT system to image the hemodynamics 
of the mid-metatarsal level of the foot. PAD patients often develop ulcers in this area of the 
foot and DDOT measurements there can differentiate between healthy and PAD patients [11, 
12]. The overall schematic of the system is depicted in Fig. 1. A seated patient places his or 
her foot inside the imager on an angled platform with an open rectangular window. The foot 
is illuminated from above while a camera, also above the foot, directly captures diffusely 
reflected light. Transmitted light is simultaneously reflected to the same camera by a system 
of mirrors. The foot is held in place laterally from both sides by padded blocks. These padded 
blocks slide in from each the side of the foot and lock into place. In this way, the foot is able 
to rest on the platform to remain stable and limit motion artifacts during imaging. 

With this overall design, the DDOT system can be broken down into five units: the (1) 
input unit, (2) imaging head, (3) detection unit, (4) control unit, and (5) surface scanner. The 
input unit delivers CW source point illuminations to the top of the foot. The imaging head 
projects light re-emitted from the foot to the detection unit. The detection unit captures the re-
emitted light from the top and bottom of the foot. The control unit manages the imaging 
sequences. Finally, the surface scanner obtains the dorsal foot geometry. Each unit is 
described in detail below. 
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Fig. 1. (a) Photograph and (b) block diagram of the imaging system. 

2.1 Input unit 

The main components of the input unit are two 350mW laser diodes with built-in 
thermoelectric control (660nm and 860nm, Intense Inc., USA). These diodes are driven by 
two laser drivers (ITC102, Thorlabs Inc., USA) in constant-current mode to provide constant 
CW light. The two wavelengths are time-series multiplexed onto a single graded-index 
multimode fiber patch cable (62.5µm core, 1m length, FC/APC connectors, Thorlabs Inc., 
USA) using an optical MEMS switch (Leoni AG, Germany). 

The light from the patch cable is collimated (F240APC-780, Thorlabs Inc., USA) to a spot 
size with a diameter of ~2mm. The collimated light is coupled with a 2D galvanometer 
scanner (12.5° x 12.5° scanning angle, GVSM002-Silver, Thorlabs Inc., USA) placed 
approximately 25cm above the platform. The galvanometer deflects the collimated light to the 
top of the foot to provide multiple source point illuminations with a resolution of 0.0008°. 
The laser intensity is tuned to deliver approximately 30mW and 40mW to the foot for the 
860nm and 660nm wavelengths, respectively. 

The source illumination point coordinates are needed to reconstruct the optical properties 
within the foot. In this system, the 2D galvanometer scanner deflects the laser beam via the 
rotation of two perpendicular mirrors. The rotations of the mirrors control the horizontal X-
axis and vertical Y-axis beam deflection to any position within the two dimensions, 
sometimes referred to as the marking field. However, the use of a two-mirror deflection 
system leads to geometric distortions in the marking field. For example, scanning the laser in 
a square-shaped pattern on a planar surface will produce a pin-cushion pattern [25, 26]. 
Additional geometric distortions are caused by misalignments of the incoming laser beam 
[27]. To characterize these geometric distortions, we map the marking field in 3D using 
calibration measurements from the galvanometer scanner. 
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We acquire images of a 12x12 grid pattern of (X, Y) laser beam deflection from the 
galvanometer scanner onto a planar platform using the built-in camera at 8 known vertical 
heights within the system, resulting in 1152 images. Each of these images captures the laser 
point and a calibration pattern printed on the platform. The images are scaled and co-
registered to a physical dimension coordinate system based on known dimensions in the 
camera calibration pattern and the vertical positions of the platform within the system. 

Once the images are in a 3D coordinate system, the coordinate of the laser point in each 
image is extracted. A line through all of the coordinates obtained for one (X, Y) rotation pair 
represents the light beam path from the galvanometer scanner. A combination of these lines 
for different (X, Y) rotation pairs forms a 3D marking field that characterizes the geometric 
distortions. This 3D marking field is co-registered with the mesh using the coordinates of the 
four corners of the rectangular transmission window. This co-registered 3D marking field is 
shown in yellow in Fig. 2(a). 

Fig. 2. (a) Co-registered galvanometer scanner marking field (yellow) and interpolated laser 
paths (red) for ten source positions. (b) Extracted source positions (red) on the foot mesh. 

The location of the source illumination point on the foot is extracted by first interpolating 
the laser path for the (X, Y) mirror rotations, shown in red in Fig. 2(a). Then, the point of 
intersection of the laser path and the mesh is the source illumination point. The resulting 
source points on the mesh are displayed as red dots in Fig. 2(b). The marking field only needs 
to be generated once, assuming the components remain fixed relative to each other. This 
method was verified by comparing extracted source positions to 20 known locations on a 
block phantom. The maximum error between the actual position and the extracted position 
was <0.5mm. 

2.2 Imaging head 

The imaging head simultaneously projects back-reflected light from the top of the foot and 
transmitted light from the bottom of the foot to the detection unit. The back-reflected light is 
directly captured by the camera sensor, while transmitted light from the bottom of the foot is 
captured through a system of two protected silver coated mirrors (Nu-Tek Precision Optical 
Corp., USA), as depicted in Fig. 1. The foot platform has a transmission window 2in ( DE ) by 
6in in size. Figure 3(a) and Table 1 show the parameters for positioning the components in 
the imaging head. This configuration results in an optical path length difference between the 
reflection and transmission light of ~8in and has a SNR of ~16dB through the system of 
mirrors. The resulting raw camera image simultaneously captures the top and bottom of the 
foot in Fig. 3(b). 
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Fig. 3. (a) Schematic of parameters defining the imaging head. (b) Raw camera image of a 
foot. The top portion of the image shows the top of the foot, while the bottom portion of the 
image shows a portion of the bottom of the foot through the transmission window. 

Table 1. System Parameters for Fig. 3(a) 

     
  ߛ ߝ ߚ ߙ

 4.5 in. 2 in. 4 in. 7 in. 68º 27º 18º 81.9º  

2.3 Detection unit 

A back-illuminated electron multiplying charge coupled device (EMCCD) camera (ProEM 
512B-EX, Princeton Instruments, USA) captures the diffusely reflected and transmitted light 
from the foot. The camera sensor has an 8.2x8.2mm imaging area (16μm x 16μm pixel size, 
512x512 pixel resolution) that coupled with a lens (14mm f/2.8, Canon, USA) results in a 
32.6° angle of view. The lens is operated at its maximum aperture of f/2.8 to maximize the 
light collected from the transmission signal. This aperture results in a narrow focal depth, 
which is manually focused to the focal plane between the top and bottom of the foot. The 
EMCCD acts as a fiber-free wide field detector with a spatial resolution of approximately 
2.5px/mm in the reflection geometry and 1.5px/mm in the transmission geometry. For 
imaging the foot, we utilize a 312x512 pixel portion of the CCD without binning. A narrower 
region of the sensor is used since the foot is generally not wider than the 6in width of the 
transmission window. These settings result in a readout time of approximately 60ms. 

The EMCCD is air cooled to −70°C for low light sensitivity, with approximately 95% 
quantum efficiency at 860nm. The camera has a dynamic range of 16-bits (96dB). However, 
to capture both low transmission signals and high reflection signals simultaneously with a 
single CCD sensor, the reflected light must be attenuated. Photons emitted from the top of the 
foot pass through a fixed position neutral density filter before entering the camera-lens 
system. This ensures the reflected signals do not saturate the CCD. The neutral density filters 
have an optical density of 1.8 for the 860nm wavelength and 1.95 for the 660nm wavelength. 
Additional black out filters are used to prevent detection and saturation from source 
illumination reflections, allowing for better use of the camera’s dynamic range. Strips of high 
absorbing blackout tape (<1e-5% transmittance @ 850nm, T205-2.0, Thorlabs Inc., USA) are 
secured in front of the portion of the lens capturing the reflected light. These strips are placed 
such that they block strips of view of the top of the foot. The source positions can then be 
positioned on the top of the foot such that they align with the camera’s blocked view of the 
foot. Thus, any specular reflections are blocked from being detected by the camera sensor by 
the blackout tape. 
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2.4 Control unit and data acquisition 

A Matlab graphical user interface (GUI) on a desktop computer provides an interface to 
control the imaging procedure. First, the user selects the source positions for an imaging 
acquisition. The source illumination points must be selected for each acquisition since the 
geometry of each foot is different and the source points should align with the fixed position 
filters. The list of source positions and length of the acquisition indicated in the GUI are sent 
to the control board via serial communication. The camera’s WinX software (Princeton 
Instruments, USA) is used to initialize the camera settings and collect the CCD images in 
external triggering mode. Once data acquisition is started, the control board manages and 
synchronizes the switch, galvanometer, and camera triggering. The switch is controlled by 4 
TTL signals. The galvanometer scanner is controlled by two differential analog signals (−10V 
to 10V). The camera is triggered by the rising edge of a short TTL pulse. 

 

Fig. 4. Control board timing diagram for a data acquisition sequence. 

The timing diagram for an imaging sequence is shown in Fig. 4. When the camera is 
ready, the control board signals the switch to change wavelength, sets the source position via 
the galvanometer, and then triggers the camera to collect an exposure. The control board 
waits for the camera to finish the exposure and readout, and then repeats the process until the 
indicated number of frames is captured. 

2.5 Surface scanner 

The surface geometry of the foot is necessary for image reconstruction of the hemodynamic 
properties within the foot. The surface information is captured with an integrated structured 
light surface scanner (SLS-2, David Vision Systems, Germany), comprised of a white light 
projector and two cameras. These components are placed above the foot outside the 
EMCCD’s field of view (FOV). The galvanometer is above the foot for data acquisition, but 
it can be slid out of the FOV of the surface scanner to obtain the foot geometry. The surface 
scanner projects sinusoidal light patterns onto the foot while the cameras capture the 
reflection of the disrupted patterns. These disruptions are used to create 3D point clouds and a 
surface mesh. The two cameras capture two different views of the imaged object, ensuring 
that the entire dorsal surface of the foot is captured. The scanning process takes less than one 
minute (26 seconds per camera scan using 58 patterns and texture). 

The two scans are fused in the David software with a flat bottom to create a closed surface 
mesh. The surface mesh is converted to a volume mesh using MeshLab and Gmsh. The local 
coordinates of the volume mesh are translated into the global coordinates of the system based 
on the coordinates of the four corners of the transmission window, which are also captured 
during the surface scan. The scanned foot platform is shown in blue with a grey foot mesh in 
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Fig. 5(b). This setup allows the surface geometry to be obtained within the system, enabling 
better co-registration. 

 

Fig. 5. (a) CAD drawing of the surface scanner and fields of views of the cameras and the 
projector. (b) Resulting scan of the foot mesh and the transmission window. 

3. Image reconstruction 

3.1 Measurement operator 

In non-contact camera-based systems, only a portion of the photons emitted from the tissue 
surface is captured by the camera sensor, as illustrated in Fig. 6(a). The amount of light that 
reaches the camera sensor depends upon the surface radiation from the tissue and the specific 
setup of the camera system. Therefore, an accurate ray transfer model from the object space 
to the camera sensor plane is crucial for quality image reconstruction. The measurement 
operator provides a mapping of the spatial distribution of emitted light from the tissue surface 
onto the detectors of the camera and can be defined as: 

 

 

(Ԧݎ)ݖ = ,Ԧைݎ)߰ܳ  Ԧ)  (1)ݏ

where ݖ(ݎԦ) is the amount of light measured at detector (sensor) location ݎԦ, ߰(ݎԦை,  Ԧ) is theݏ
light intensity emitted at object surface ݎԦை in direction ݏԦ, and ܳ is the measurement operator 
that projects the object radiation ߰(ݎԦை,  A .(Ԧݎ)ݖ Ԧ) onto the sensor plane to create an image ofݏ
raw camera image of a foot phantom is shown in Fig. 6(b) with the corresponding binary 
image of mapped pixels from the measurement operator. 

If the imaging plane is in focus, the sensor plane is the same as the imaging plane. 
However, the sensor plane is offset from the imaging plane in this system, causing a slight 
blurring of both surfaces (see Fig. 6(b)). Knowing the camera parameters (e.g. the object 
distance, image distance, and sensor distance), the ray tracing can account for the mismatch 
between the image plane and the sensor plane. Thus, each pixel of the sensor plane image is a 
weighted sum of the emitted rays from different points on the surface of the foot, effectively 
providing a weighted average. The measurement operator is the inverse of this mapping such 
that when applied to the detection values at each pixel, we solve for the radiance at each point 
on the surface. Then, these radiance values are used to reconstruct the hemoglobin 
concentrations within the foot. More details on the procedure for constructing the 
measurement operator ܳ can be found elsewhere [24, 28]. 
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Fig. 6. (a) Measurement operator mapping from the foot surface to the sensor plane. (b) Raw 
camera image and binary image of mapped pixels by the measurement operator. 

3.2 Reconstruction 

The camera detector readings ݖௗ calculated from the measurement operator as given in Eq. 
(1) are directly reconstructed into 3D maps of chromophore concentrations ܿ(ݔ, ,ݕ  using a (ݖ
diffusion approximation based multispectral reconstruction algorithm [29-31]. This algorithm 
makes use of a discrete cosine transformation (DCT) based neural network approach within a 
framework of PDE-constrained optimization. The algorithm reconstructs the relative changes 
from difference data between the target and reference by minimizing an objective function ݂(ܿ) that describes a mismatch between predictions ܳ߰ௗ,ఒ and measurements ݖௗ,ఒ  of light 
intensities on the camera sensors, given by: 
 
 ݂൫ܿ(ݔ, ,ݕ ൯(ݖ = ∑ ൫ܳ߰ௗ,ఒ − ௗ,ఒ൯ଶௗ,ఒݖ .   (2)  

 
In vascular imaging, we are mainly interested in recovering image contrast based on 

absorption. Thus, the scattering is assumed to be homogenous throughout the imaged object. 
We also assume homogenous concentrations of HbO2 and Hb to generate the forward 
prediction for the baseline reference state. The ratio of the target data to the reference data 
scales the reference state forward prediction model. The reconstructed values from this 
normalized data represent the difference in percent change relative to the reference state. 

To quantify the quality of the reconstructions, we use the correlation factor (ߩ) and deviation 
factor (ߜ). The correlation factor indicates the degree of structural similarity between the 
exact and reconstructed images and ranges from -1 to 1. The deviation factor describes the 
discrepancy in the absolute values of exact and reconstructed quantities. The closer the 
correlation factor gets to 1, and the closer the deviation factor gets to 0, the more accurate the 
reconstruction. Where ܿ̅ and ߪ(ܿ) are the mean and standard deviations of the absorption 
coefficient observed spatially, the correlation and deviation factors are defined as: 
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  (3) 

 

  (4)

 

4. System characterization and performance 
4.1 Dark noise and dynamic range 

The 16-bit EMCCD has a maximum count level of 65,536. The dark noise count for a 75ms 
integration time is approximately 654rms for EM gain factors up to 1000x, resulting in an 
effective dynamic range of 40dB. This increases to 791rms for 300ms integration times 
(38dB). The background count, which includes the dark noise and ambient light leakage into 
the system, is 656rms and 792rms for 75ms and 300ms integration times, respectively. This 
indicates that the ambient light leakage into the system is minimal. 

4.2 Detection linearity 

To determine the system detection linearity, the EMCCD signal was measured as a function 
of the laser intensity (within the range between dark noise and saturation) through a solid 
phantom. This was completed for both wavelengths at an EM gain factor of 50. The system 
showed good linearity with a R2 value of 0.999 for both 860nm and 660nm over the dynamic 
range of the camera (Fig. 7(a) and (b), respectively). Similar results were found for an EM 
gain factor of 5. 

 

Fig. 7. Detection linearity for (a) 860nm and (b) 660nm at a gain factor of 50. 

4.3 Detection stability 

Repeated measurements of a solid block phantom with 10 source positions were taken over a 
1-hour time interval with the same experimental settings. A 3-minute recording was acquired 
after the EMCCD reached the cooled temperature, and again at 5 minutes, 10 minutes, 20 
minutes, 40 minutes, and 1 hour after the initial recording. The coefficient of variation (CV) 
was calculated for various detector pixels over the 1-hour time interval. The mean CV was 
0.63% for 860nm and 0.88% for 660nm. 

4.4 Frame-rate 

The system is designed for dynamic imaging of the blood perfusion and the speed of 
acquisition is important. Since each source position and wavelength is sequentially imaged, 
the frame-rate is limited by the acquisition time of each exposure and the number of source 
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positions. The frame-rate decreases with increasing source positions and integration times. 
The acquisition time for each wavelength at a source position is approximately the integration 
time plus a 60ms readout time. For 10 source positions, 2 wavelengths, and a 75ms 
integration time, the frame-rate is approximately 0.33Hz. This is sufficient to capture 
hemodynamics during a one-minute long venous occlusion. 

4.5 Block phantom experiments 

A solid block phantom (Fig. 8) was used to determine the system’s ability to localize 
absorbers and to recover varying absorption contrasts. A silicone-based rectangular phantom 
(16.5cm x 6.4cm x 4.5cm) was fabricated using Sylgard 184 PDMS, titanium dioxide, and 
India ink to have an absorption coefficient (µa) of 0.15cm−1 and a reduced scattering 
coefficient (µs’) of 10cm−1 at 650nm, according to [32]. The phantom contains several 5mm 
diameter hollow channels that pass through the block at various locations. Solid cylindrical 
inclusions of the same material, but with higher absorption (µa = 0.75cm−1, µs’ = 10cm−1 at 
650nm), were placed in the hollow channels in different configurations. The remaining 
channels were filled with solid rods of the same optical properties as the block. 

 

Fig. 8. Block phantom setup. 

The phantom was imaged with and without the 5x higher absorbing inclusions using 18 
source illumination positions (as depicted as red dots in Fig. 8), a 55ms integration time, and 
an EM gain setting of 5. A total of 32,154 pixel detectors were used to reconstruct a µa-map 
of the block phantom on a 126,048 tetrahedron volume mesh. 

The system performance was evaluated using two different configurations shown in Fig. 
9(a). Experimental results (Fig. 9(c)) were also compared against numerical simulations (Fig. 
9(b)) of the digital phantom that uses the same geometry and optical properties as the block 
phantom. The reconstruction accuracy in terms of correlation (ߩ) and deviation (ߜ) factors for 
each configuration are given in Table 2.  
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Fig. 9. Block phantom results with solid 5x absorbing inclusions in two configurations: (a) 
target, (b) numerical simulations, (c) experimental results. 

Table 2. Quality of Block Phantom Reconstructions. 

  ߛ ߝ ߚ ߙ     

 4.5 in. 2 in. 4 in. 7 in. 68º 27º 18º 81.9º  
 
As given in Table 2, the experimental results agree well with the numerical simulations in 

the differentiation between inclusions at different locations, while the reconstructed contrasts 
of the inclusions are lower than those of the numerical simulations. To further evaluate 
performance, we also investigated the sensitivity of the system to resolve different target-to-
background absorption contrasts. In the previous study, the hollow channels in the phantom 
were fitted with inclusions made of the same silicone material as the block and with the same 
reduced scattering coefficient. Here, in order to fabricate different absorption contrasts, the 
hollow channels were fitted with clear nylon tubing with 1/16in thick walls. The tubing was 
filled with 4 different ink contrasts (2x: µa = 0.3cm−1, 3x: µa = 0.45cm−1, 4x: µa = 0.6cm−1, 
and 5x: µa = 0.75cm−1) in the same configurations as Fig. 9(a). The results are shown in Fig. 
10. The recovered contrast was calculated from the max µa and the mean background µa for 
the top and bottom inclusions separately and plotted versus the target contrast. 

In all four cases with varying absorption contrasts, the system performs well at localizing 
the target inclusions. Overall, the quantitative recovery of the absorption coefficient was 
underestimated as similarly observed in Fig. 9. This is a well-known phenomenon in DOT. 
Furthermore, the inclusions at the top of the phantom were consistently reconstructed with 
higher values than the inclusions at the bottom of the phantom. This is expected since the 
sensitivity at the top surface is higher than at the bottom. This is due to the source positions 
only being applied to the top surface, while detectors are utilized both from the top and 
bottom surfaces. This was already confirmed in the numerical simulations in Fig. 9(b). 
Despite the underestimation of the absorption coefficient, the recovered contrast increases 
with increasing target contrast. This demonstrates the system’s ability to detect relative 
changes in absorption. 

CD DE AO BO

                                                                      Vol. 9, No. 11 | 1 Nov 2018 | BIOMEDICAL OPTICS EXPRESS 5607 



 

Fig. 10. Block phantom results with inclusions at 2x-5x contrast in (a) Configuration 1 and (b) 
Configuration 2 with the max recovered contrast plotted against the actual target contrast. 

4.6 Foot phantom experiments 

A silicone-based foot phantom, shown Fig. 11(a), was fabricated in a similar manner as the 
block phantom above. This foot phantom was used to test the system’s ability to resolve more 
complex and realistic vascular systems such as those found at the mid-metatarsal level of the 
foot. Three different water-soluble channel systems were 3D printed and inserted into a foot 
mold. These channel systems mimic the vasculature in the three angiosomes in the distal 
portion of the foot: dorsalis pedis artery (DPA), medial plantar artery (MPA), and lateral 
plantar artery (LPA) angiosomes. They start as three main arteries and branch into eight 
vessels at the mid-metatarsal level, as detailed in Fig. 11(b, c). After the PDMS cured around 
the vascular network, the network was dissolved leaving open channels. The channels can be 
filled independently with liquid solutions of varying optical properties. 

Three combinations of the angiosome channels were filled with dilutions of India Ink 
while the remaining angiosome channels were filled with water. These cases were imaged 
with 20 source positions (as shown in Fig. 12(d)), a 50ms integration time, and an EM gain 
setting of 5. A total of 19,633 pixel detectors were used to reconstruct a µa-map on a 39,167 
tetrahedron volume mesh. The results of the reconstructions are shown in Fig. 12(a-c). 
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Fig. 11. Foot phantom setup: (a) Image of the foot phantom with 20 source positions. (b) 
Model of the foot phantom vessel. (c) Detailed depictions of each vessel structure representing 
the three angiosomes. 

 

Fig. 12. (a-c) Foot phantom results for three inclusion combinations, where black dotted circles 
represent the expected area of the inclusion. (d) The source positions used and approximate 
cross–section depicted in (a-c). 

Although the exact locations of the channels are not known, the black dashed circles 
represent the general expected location of the vessels within the foot phantom, which show a 
reasonable agreement with the reconstruction result in most cases. For example, in the cases 
where the bottom channels have higher absorption (Fig. 12 (b, c)), the reconstructions show 
good agreement with the expected locations at the bottom of the foot. However, the 
absorption for the MPA channels on the bottom left is not as high as the LPA channels on the 
bottom right in Fig. 12(c). This is due to a leak that developed in the MPA channels prior to 
imaging for the configuration in Fig. 12(c). 

In the cases where the DPA channels have higher absorption (Fig. 12(a, c)), there is a 
relatively higher absorption close to the expected areas. The lateral channel on the right is not 
resolved separately from the LPA channel on the bottom. This reveals a limitation of the 
system in resolving depth in the thinner area of the foot. 

Furthermore, the two center channels also have lower reconstructed absorption compared 
to the outer channels. This may be due to the size by the differences in the channel diameters 
and the uncertainty in the channel positions. The inflow and outflow channels of the DPA 
angiosome (represented by the upper left and upper right circles, respectively) have larger 
diameters than the 4 vessels branching off from the arch. In addition, a single line of source 
positions was used in this experiment, which may have been positioned right above or behind 
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the major arch of DPA channel arch. The single line of sources decreased the resolution along 
the length of the foot. Depending on this line of sources exact position relative to the vessel 
structure, the detection sensitivity to the DPA vessel structure changes. We suspect that in this 
specific setup, we had the highest sensitivity just behind the arch. At this cross section, the 
larger inflow and outflow vessels are detected with a high sensitivity while the smaller 
branched vessels are detected with a lower sensitivity. Despite these limitations, the results 
demonstrate a reasonable ability to localize the inclusions at the general expected areas. 
Future studies with an improved foot phantom will involve dynamic studies involving varying 
concentrations of ink and increased source resolution along the length of the foot. 

4.7 In vivo healthy foot experiment 

We have previously shown that DDOT can distinguish between healthy and affected 
vasculature by measuring the hemodynamics in the foot during a venous occlusion [11, 12]. 
As an initial test and proof-of-concept of this system, we imaged a healthy foot during a 
venous occlusion and qualitatively evaluated the results. The venous occlusion is achieved by 
inflating a pressure cuff at the thigh to ≥60mmHg. During the occlusion, venous outflow from 
the extremity is blocked while arterial inflow is left intact such that there is an accumulation 
of blood in the foot during the occlusion. Time-dependent features of this accumulation reveal 
information regarding the arterial vasculature in the lower extremity and the perfusion of 
blood in the foot. 

The left foot of a healthy volunteer was imaged for approximately 40 seconds of baseline, 
90 seconds of venous occlusion at 80mmHg, and 50 seconds of recovery. The images were 
acquired at approximately 0.33Hz using 10 source illumination positions in a single line 
across the foot, a 75ms integration time, and an EM gain factor of 50. A total of 22,554 pixel 
detectors were used to reconstruct the relative change in [Hb] and [HbO2] on a 59,883 
tetrahedron foot volume mesh. The reference concentrations of [Hb] and [HbO2] were 
assumed to be 14.69µM and 23.43µM, respectively. The final reconstruction of the previous 
frame was used as the initial guess for the reconstruction of the next frame. Figure 13(a) 
shows 2D cross sectional maps of the change in total hemoglobin ∆[HbT] at relevant time 
points before, during, and after the occlusion. The spatial maps show areas of high ∆[HbT] at 
the top and bottom of the foot during the venous occlusion. These regions can be attributed to 
areas in the foot with vasculature and correlate with expected areas of perfusion. 

To track the time course of the ∆[HbT] in these areas, we used a correlation coefficient 
method to define the vascular region of interest (ROI) in the foot (as in our previous study 
[11]). Specifically, the mean ∆[HbT] over the entire volume of the foot is calculated for each 
time point to produce a time trace of the volume average ∆[HbT] within the foot. Similar time 
traces for each individual volume element are compared to the volume average ∆[HbT] by 
calculating the correlation coefficient. ROIs that represent the vascular areas of the foot were 
defined as volume elements with a correlation coefficient >0.65. The ROIs were further 
segmented into the three angiosome regions. The mean ∆[HbT] within the ROIs of each 
angiosome is plotted over time in Fig. 13(b), with the DPA shown in blue, the MPA shown in 
orange, and the LPA shown in green. 
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Fig. 13. Reconstruction results of an in vivo healthy foot during a venous occlusion. (a) 2D 
spatial maps of total hemoglobin concentration [HbT]. (b) Time traces of the average [HbT] 
change in regions of interest within the three angiosomes. 

This experiment was repeated on the same foot on a second day and compared to the 
initial experiment to test the in vivo repeatability of the system. The resulting spatial maps 
and time traces matched the initial experiment well. The 2D spatial maps of ∆[HbT] at the 
end of the venous occlusion had a high correlation factor ߩ of 0.9967, and a low deviation 
factor ߜ  of 0.1117 for the two days (Fig. 14). The extracted time traces also had a high 
correlation factor ߩ  >0.997 for each angiosome, indicating that the perfusion values are 
similar for different days. However, slight differences between days could be attributed to 
physiological differences arising from natural day-to-day differences. This will be the subject 
of future studies. 

 

Fig. 14. 2D spatial maps of ∆[HbT] at the end of the venous occlusion on (a) day 1 and (b) day 
2, showing very similar regions of blood perfusion. 

Overall, the 2D maps of the ∆[HbT] reveal regions of interest at the top and bottom of the 
foot that match the vascular areas at the mid-metatarsal level of the foot. The extracted time 
traces of ∆[HbT] from those regions of interest also match the expected trends from previous 
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work. These measurements are an initial demonstration of the system’s ability to reliably 
make in vivo measurements of hemodynamic changes within the foot during a venous 
occlusion. 

5. Summary
In this work, we developed a novel multi-view contact-free DDOT system to image 
hemodynamics in the foot, which may be useful in evaluating PAD in the future. The 
measurement operator allows reconstruction of non-contact data from multiple surfaces 
simultaneously. This enables the upright design of the system, a form factor that is small 
enough to be easily moved and stored in the clinical setting. In addition, the fiber-less tissue 
interface reduces the setup time and avoids issues common with fiber-based DDOT systems. 
The resulting system is suitable for the clinical setting and for patients with open wounds and 
ulcers. 

We presented the design and implementation of our DDOT system for imaging tissue 
perfusion in the foot. We characterized and experimentally validated the system on tissue-
mimicking phantoms and demonstrated its ability to localize and quantify relative changes in 
absorption. This is important in dynamic studies where time-dependent changes are used 
instead of absolute concentrations. Finally, repeated in vivo tests in a healthy foot 
demonstrate the potential of the system to evaluate the vasculature in the lower extremities by 
measuring the perfusion in the foot during a venous occlusion at 0.33Hz. The frame-rate can 
be increased by utilizing less sources, or shorter integration times and additional EM gain. 

The main advantages of this system are its non-contact and multi-view capabilities. By 
designing and implementing this system, we have facilitated further investigation of PAD, 
especially in patients with open wounds, which are difficult to evaluate with fiber-based 
contact systems. This new system provides a functional measure of the perfusion in the foot, 
which fills a gap in the current clinical evaluation tools for PAD. For example, this system 
may prove useful in revealing under-perfused angiosomes within the foot and informing 
revascularization procedures. In addition, we may gain a better understanding of the link 
between blood perfusion and wound healing with future studies. This system can also be 
generalized to imaging other tissues, the hand and fingers in rheumatoid arthritis, for 
example. 
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