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Abstract: The purpose of this study is to evaluate whether a diffuse optical tomography 
breast imaging system (DOTBIS) can provide a comparable optical-based image index of 
mammographic breast density, an established biomarker of breast cancer risk. 
Oxyhemoglobin concentration (ctO2Hb) measured by DOTBIS was collected from 40 
patients with stage II-III breast cancer. The tumor-free contralateral breast was used for this 
evaluation. We observed a moderate positive correlation between the patient’s mammogram 
density classification and ctO2Hb, rs = 0.486 (p = 0.001). In addition, significant reduction in 
ctO2Hb levels were noted during neoadjuvant chemotherapy treatment (p = 0.017). This 
observation indicates that ctO2Hb levels measured by DOTBIS could be a novel modifiable 
imaging biomarker of breast cancer risk and warrants further investigation. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

According to the American Cancer Society, breast cancer accounts for one third of all new 
cancer diagnoses in women. In the United States, one in eight women will develop breast 
cancer during their lifetimes and about 40,000 women are expected to die in 2019 from breast 
cancer [1]. Therefore, providing risk prediction tools are of great clinical need to better 
address personalized screening of high-risk women, and even for recommendation of 
chemoprevention treatments based on a patient’s risk of developing breast cancer. 

One of the most well established imaging biomarker of breast cancer risk is 
mammographic density [2–4]. Women with mammographically dense breasts have a higher 
risk of breast cancer than women with less dense breasts [5,6].The mammographic breast 
density equivalent in breast magnetic resonance imaging (MRI) is fibroglandular tissue (FGT) 
and has also been shown to correlated with breast cancer risk [7–9]. 

However, both X-ray mammography and MRI have several drawbacks. Mammography 
generates 2-dimensional (2D) images and the amount of breast density can vary due to 
changes in positioning [10]. Given this limitation, mammogram has limited ability to quantify 
longitudinal density variations accurately. In addition, its use of ionizing radiation restricts a 
long scale screening. Breast MRI overcomes the limitations of mammogram providing 3-
dimensional (3D) evaluation of the fibroglandular tissue. However, high cost, intravenous 
injection, and long duration of exam limits its routine use. 
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In recent years, several groups [11–14] have shown evidence that optical based imaging 
modalities may play an important role in assessing breast tissue composition by measuring 
optical property contrast from endogenous chromophores. The advantages of optical 
techniques are the use of non-ionizing radiation, ease of use, and relatively low cost. We 
developed a diffuse optical tomography breast imaging system (DOTBIS) which does not 
require the use of contrast agents or compression, and enables imaging of the whole volume 
for both breasts simultaneously using low intensity near infrared light capable to measure 
tissue concentration of total hemoglobin (ctTHb), oxy-hemoglobin (ctO2Hb), deoxy-
hemoglobin (ctHHb), oxygen saturation (StO2) and water percentage. 

We hypothesize that diffuse optical tomography imaging provides quantitative 
measurements of tissue functional components, such as ctO2Hb, which is directly related to 
tissue metabolism and vascular characteristics, and could be correlated to mammographic 
breast density, a known imaging biomarker of breast cancer risk [15]. In addition, we evaluate 
whether DOTBIS-measured oxyhemoglobin concentration is modifiable after neoadjuvant 
chemotherapy (NAC). 

2. Materials and methods

This retrospective cohort study analyzed 40 patients with stage II-III breast cancer in a 
Columbia University Institutional Review Board (IRB) clinical protocol. The patient 
inclusion criteria for this subset were defined by availability of DOTBIS measurements at 
baseline, after two cycles of taxol drug infusion or at the end of NAC, and available 
mammographic breast density assessment before starting NAC. Each patient received a 
taxane-based regimen. Out of 40 patients, 32 subjects (80%) received 12 cycles of weekly 
paclitaxel followed by 4 cycles of doxorubicin and cyclophosphamide given every 2 weeks 
with growth-factor support (T x 12/AC x 4). Two patients received the same treatment but 
with an addition of carboplatin to paclitaxel (T/C x 12/AC x 4). Three patients received six 
cycles of docetaxel, carboplatin, and trastuzumab plus pertuzumab (TCHP). Lastly, another 
three patients received six cycles cytoxan plus taxotere (T/C x 6). Subject demographics 
according to DOTBIS imaging availability at baseline, after two cycles of chemotherapy, and 
at the end of therapy prior to surgery, are shown in Table 1. 

Table 1. Subject demographics according to NAC regimen and its DOTBIS imaging 
availability. 

NAC Regimen Agea BMI 
No. of patients 
Baseline Before 3rd cycle Pre-surgery 

T x 12/AC x 4 48.00 ± 10.85 29.65 ± 6.40 32 30 19 
T/C x 12/AC x 4 35.00 ± 2.00 30.11 ± 2.71 2 0 2 
T/C x 6 67.33 ± 2.49 28.61 ± 3.91 3 2 0 
TCHP 51.67 ± 3.86 27.35 ± 5.54 3 3 3 
aAverage and standard deviation (range) of continuous variable. Abbreviations and Acronyms: NAC, 
neoadjuvant chemotherapy; T x 12/AC x 4, 12 cycles of weekly paclitaxel followed by 4 cycles of doxorubicin 
and cyclophosphamide given every 2 weeks with growth-factor support; T/C x 12/AC x 4, 12 cycles of weekly 
paclitaxel followed by 4 cycles of doxorubicin and cyclophosphamide given every 2 weeks with growth-factor 
support with an addition of carboplatin to paclitaxel T/C x 6, six cycles cytoxan plus taxotere; TCHP, six cycles 
of docetaxel, carboplatin, and trastuzumab plus pertuzumab; BMI, Body Mass Index. 

2.1 Mammographic breast density measurement 

Mammograms at our institution were performed on dedicated mammography units 
(Senographe Essential, GE Healthcare). The views obtained consisted of the standard 
mediolateral oblique and craniocaudal views. Additional views were obtained if clinically 
indicated or requested by the reading radiologist. A breast fellowship trained radiologist with 
7 years of experience, blinded to the DOT measures, classified mammographic breast density 
(BD) in accordance with BI-RADS categories: BD I = almost all fatty tissue, BD II = 
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density. After running multivariate correlative analysis, ctO2Hb combined to water percentage 
level was also associated with breast density categories, rs = 0.497, p = 0.001. 

Table 2. Baseline ctTHb, ctO2Hb, ctHHb, StO2 and water percentage (mean ± standard 
deviation) for all the different BI-RADS classification and their specific Spearman’s 

correlation coefficient with breast density. Bold values indicate statistical significance at 
p < 0.05 level. 

DOTBIS 
features 

BD I 
(n = 1) 

BD II 
(n = 17) 

BD III 
(n = 21) 

BD IV 
(n = 1) 

Spearman’s 
correlation 
coefficient 

p-value

ctTHb (μM) 20.66 26.91 ± 9.58 35.76 ± 12.64 48.67 .426 .006
ctO2Hb (μM) 12.63 15.41 ± 5.84 21.88 ± 8.10 29.04 .486 .001
ctHHb (μM) 8.00 11.50 ± 4.57 13.87 ± 6.02 19.63 0.277 0.084 
Water (%) 52.74 45.72 ± 9.15 51.14 ± 5.38 55.10 .327 .040
StO2 (%) 61.20 58.47 ± 6.01 61.60 ± 6.03 60.97 0.205 0.205 

A Kruskal-Wallis H test was conducted to determine if there were differences in baseline 
of ctTHb, ctO2Hb, ctHHb, StO2 and water percentage levels between the breast density 
groups, Table 3. Median ctO2Hb levels were the only parameter statistically significant 
different between BD groups, χ2(2) = 9.374, p = 0.025, and increased from BD I (12.00 μM), 
to BD II (14.65 μM), to BD III (24.95 μM) to BD IV (35.00 μM), Fig. 3 (mean ± standard 
deviation are shown in Table 3). Subsequently, pairwise comparisons were performed using 
Dunn's procedure. A Bonferroni correction for multiple comparisons was made with 
statistical significance accepted at the p < 0.008 level. This post hoc analysis revealed 
statistically significant differences in ctO2Hb levels between BD II and BD III, p = 0.007. No 
significant results were available for the comparison with BD I or BD IV which is likely due 
to the small sample size for both groups (n = 1 for BD IV and BD I). 

Table 3. Baseline ctTHb, ctO2Hb, ctHHb, StO2 and water percentage (median) for all the 
different BI-RADS classification. Bold values indicate statistical significance at p < 0.05 

level after running a Kruskal-Wallis H test to determine if there were differences in 
baseline DOTBIS-measured parameters between the four breast density groups. 

DOTBIS 
features 

BD I 
(n = 1) 

BD II 
(n = 17) 

BD III 
(n = 21) 

BD IV 
(n = 1) 

p-value

ctTHb (μM) 10.00 15.76 24.05 37.00 0.57 
ctO2Hb (μM) 12.00 14.65 24.95 35.00 .025 
ctHHb (μM) 8.00 18.12 22.24 37.00 0.230 
Water (%) 24.00 15.76 23.71 30.00 0.163 
StO2 (%) 23.00 17.35 22.86 22.00 0.542 

Fig. 3. Simple box plot of ctO2Hb (μM) in the contralateral breast at baseline for different 
mammogram (MMG) breast density groups (I = almost all fatty tissue, II = scattered areas of 
dense glandular and fibrous tissue, III = heterogeneously dense and IV = extremely dense). 
Group I and IV had only one patient each. There was a moderate positive correlation between 
ctO2Hb at baseline and breast density (rs = 0.486, p = 0.001). 
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Thirty-five patients were also imaged after their second cycle of NAC. The first two NAC 
cycles elicited an overall decrease in ctO2Hb levels in 60% (21/35) of the patients, whereas 
40% (14/35) participants had their ctO2Hb levels slightly increased. Table 4 summarizes the 
mean values for of ctTHb, ctO2Hb, ctHHb, StO2 and water percentage at three different time 
points: baseline, after two cycles of taxol drug infusion and at the end of NAC. In Fig. 4, 
using a grouped scatter plot and drawing a line of equality, we can interpret the overall 
ctO2Hb reduction after two NAC cycles (left), and after NAC completion (right). The patients 
lying on the line correspond to contralateral breast tissue which experience no change to 
ctO2Hb levels. Those above the line were higher after two NAC cycles than before at 
baseline, i.e. display an increase in ctO2Hb, and those below the line have experienced a 
reduction in ctO2Hb. One can notice that majority of the patients are below the line. A paired-
samples t-test was used to determined that there was a statistically significant mean decrease 
in ctO2Hb levels of 2.39 (95% CI, 0.67 to 4.11) μM after two NAC cycles completion (17.04 
± 7.22 μM) in comparison with ctO2Hb levels at baseline (19.43 ± 8.17 μM), p = 0.008. The 
mean reduction of 3.22 (95% CI, 0.55 to 6.85) μM after NAC completion (n = 24) was also 
statistically significant, p = 0.024. Statically significant mean reduction was also observed 
for ctTHb after 2 weeks of therapy, p = 0.011, as shown in Table 4. Data are mean ± 
standard deviation. For better visualization of the longitudinal hemoglobin reduction 
trend across NAC, Fig. 5 display the mean values of ctO2Hb levels for eighteen patients 
imaged at all the 3 time points. 

Table 4. ctTHb, ctO2Hb, ctHHb, StO2 and water percentage (mean ± standard deviation) 
at three different time points: baseline, after 2 cycles of taxol and at the end of NAC. Bold 
values indicate statistical significance at p < 0.05 level after running a paired-samples t-
test to determine if there was a statistically significant mean decrease in the DOTBIS-

measured features after 2 cycles of NAC and at the end of therapy. 

DOTBIS 
features 

Baseline 
(n = 40) 

After 2 weeks of 
NAC 

(n = 35) 

at the end of 
NAC 

(n = 20) 

Mean difference 
after 2 week of 

NAC 
(n = 35) 

Mean difference 
at the end of 

NAC 
(n = 20) 

ctTHb (μM) 31.94 ± 12.20 28.73 ± 11.20 30.82 ± 11.10 3.88 ± 1.44 
(p = 0.011) 

5.13 ± 2.52 
(p = 0.056) 

ctO2Hb (μM) 19.08 ± 7.83 17.04 ± 7.22 17.33 ± 6.53 2.39 ± 0.84 
(p = 0.008) 

3.22 ± 1.5 
(p = 0.024) 

ctHHb (μM) 12.86 ± 5.50 11.71 ± 4.92 13.48 ± 5.29 
1.47 ± 0.74 
(p = 0.056) 

1.43 ± 1.28 
(p = 0.276) 

Water (%) 48.98 ± 7.60 46.99 ± 11.36 48.83 ± 7.12 
2.31 ± 1.53 
(p = 0.141) 

0.3 ± 0.1 
(p = 0.765) 

StO2 (%) 60.24 ± 5.99 58.51 ± 10.82 57.68 ± 5.16 
1.76 ± 1.54 
(p = 0.262) 

1.71 ± 1.12 
(p = 0.143) 

Fig. 4. Left: Grouped scatter plot for reduction comparison between ctO2Hb (μM) at baseline 
versus ctO2Hb before third NAC cycle (n = 35). Right: Grouped scatter plot for reduction 
comparison between ctO2Hb (μM) at baseline versus after NAC completion (n = 24). 
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Fig. 5. Mean values of ctO2Hb levels across NAC therapy for the patients imaged at all the 3 
time points (n = 18). 

Out of these 35 subjects who were imaged at time point baseline and two weeks after 
NAC, 26 had their residual cancer burden (RCB) scores available after NAC. To explore any 
correlation between changes in DOTBIS-measured parameters after 2 cycles of chemotherapy 
and tumor response, we run an independent-samples t-test to evaluate whether there was a 
difference between responders (RCB0) and non-responders (RCBI, II and III). The reduction 
levels of ctO2Hb, ctTHb, ctHHb, StO2 and water percentage were not statistically different 
between responders and non-responder tumors. For instance, the results show a mean 
difference of 1.80 ± 2.44 μM in ctO2Hb levels after 2 weeks of NAC between responders and 
non-responders, but it is not statistically significant (p = 0.468). 

The association with age was analyzed by considering ctO2Hb levels at baseline for all the 
40 patients. A linear regression fitting indicates a moderate negative correlation between 
baseline ctO2Hb and age (r = −0.439, p = 0.005). From the coefficient of determination, r2 = 
0.20, we can determine that 20% of the variability in baseline ctO2Hb is explained by patient 
age at enrollment, Fig. 6. 

Fig. 6. A linear regression fitting indicates a moderate negative correlation between baseline 
ctO2Hb and age (r = −0.439, p = 0.005). The scatterplot shows line of the best fit and its 
confidence and prediction interval. 
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4. Discussion 

In our study, there was a moderate positive correlation between ctO2Hb and patient’s 
mammographic density classification. Baseline ctTHb and water percentage level were also 
statistically significant correlated with breast density. High levels of ctO2Hb can be associated 
with the increased rate of metabolism in dense breasts due to the greater volume fraction of 
fibroglandular tissue compared to almost entirely fat, and the increased vascular demand 
required by dense tissues. Additionally, the moderate correlation with water can be related to 
higher water fraction in fibroglandular tissue compared to adipose tissue [18]. This 
observation indicates that the ctO2Hb levels measured by DOTBIS may be a novel biomarker 
of breast cancer risk. 

Previous publications, summarized by Grosenick et al in their review of optical breast 
imaging and spectroscopy [19], have shown the feasibility of optically derived data to 
quantify breast density. Simick et al. categorized density measurements into two groups and 
presented a PCA model that predicts lower from high-density tissues with 80% of accuracy 
[20]. In addition, Blackmore et al. correlated breast tissue optical content (water, lipid and 
StO2) with percent density in pre- and post-menopausal women [21]. In a simulation study, 
Ruiz et al. found that estimated percent breast density predicted from lipid and water maps 
was highly correlated to the true values from MRI [22]. Moreover, Fang et al. found linear 
correlation between ctTHb and the fibroglandular volume fraction derived from the 3D digital 
breast tomosynthesis imaging scans [23]. However, none of these references specifically 
correlates the optical data with the four breast density groups from BI-RADS classification, or 
investigates the changes across NAC treatment. 

Similar to our study, O’Sullivan et al. demonstrated a moderate correlation between 
ctTHb level and FGT assessed by MR imaging, r = 0.597, p = 0.040 [14]. However, they did 
not find significant correlation with BIRADS classification of mammographic breast density, 
possibly due to lower number of patients in their study (n = 12). They observed significant 
difference between mean hemoglobin levels in BD II and BD IV, and water percentage levels 
in BD III and BD IV. With the larger sample size in our study (n = 40), we were able to detect 
a significant difference in mean ctO2Hb levels between BD II and BD III, a result not 
observed previously. In addition, unlike our study, the diffuse optical spectroscopy imaging 
system used in their study did not sample the entire breast volume, and it is unclear if the 
nipple region was excluded, which can impact accurate assessment due to varied levels of 
ctO2Hb involving the nipple. Taroni et al. also published a work showing direct correlation 
between mammographic breast density BI-RADS classification and water, lipid and collagen 
content. However, for a sample size of 49 patients, the correlation between breast density and 
ctTHb or StO2 were not statistically significant [24]. It is important to highlight that the 
lacking of strong correlation with BI-RADS classification could also be justified by the 
qualitative measurement approach associated to this type of breast density assessment. High 
variability between radiologists are expected [25] and quantitative measurements of breast 
density could reveal stronger association with the optical features. 

Because optical imaging provides quantitative metrics capable to measure and track 
changes in breast tissue composition, we reconstructed the 3D full volume of ctTHb, ctO2Hb, 
ctHHb, StO2 and water percentage maps of 40 patients undergoing NAC treatment to 
determine whether this metric is modifiable. Our results indicate significant reduction in 
ctO2Hb levels after NAC completion. Several studies have reported a consistent reduction of 
breast density after NAC [26–29]. By using MRI or mammographic imaging, all these groups 
were able to detect change in percent breast density across NAC. For example, Chen et al., 
using 3D MR imaging, demonstrated that patients who underwent AC and taxane had a mean 
percentage reduction of 12.7% at the end of NAC [27]. Besides, Sandberg et al. and Knight et 
al. took a step further and showed that women who experienced a decrease of at least 10% in 
breast density after chemotherapy or tamoxifen, had decreased their risk in half of 
contralateral breast cancer. According to the literature, chemotherapy, including taxane based 
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regimens, has been linked with amenorrhea and ovarian function suppression. The rapid 
reduction in estrogen from chemotherapy induced menopause contributes to secondary 
change in breast tissue composition, and consequently, an impact in mammographic breast 
density [30,31]. In similar fashion, our results showed that ctO2Hb measured by DOTBIS is 
also modifiable with NAC and it had a significant mean reduction of 12% after the first 2 
cycles of NAC and approximately 17% at the end of NAC. However, no statically significant 
reduction was noticed in ctHHb levels. Similar finding was published by O’Sullivan et al. in 
the same work discussed before. The reduction of ctO2Hb levels and no significant changes in 
ctHHb might suggest that NAC induces reduction of blood perfusion by vascular damage, and 
consequently, breast density reduction. It is possible that ctO2Hb, which is more 
representative of arterial blood supply carrying oxygen to the breast tissue, could be more 
variable to meet the demands of the amount of fibroglandular tissue, resulting in a positive 
moderate correlation. While ctHHb, which is predominantly venous blood that carries away 
metabolic byproducts including deoxygenated blood after tissue consumption, may be less 
variable and resulting in non-correlation with the amount of fibroglandular tissue in our small 
sample size. While O’Sullivan et al. found statically reduction in ctO2Hb levels about 90 days 
after start of NAC, we found a significant reduction already after 15 days. Since all patients in 
our study were administered taxane based regimen for the first weeks of treatment, we believe 
that same treatment type was responsible to minimize any variability from drug-induced 
changes in the breast tissue, and improved the intra and inter-patient analyses. 

Regarding correlations between changes in the hemoglobin levels and tumor response to 
NAC, our results showed that the reduction levels of ctO2Hb, ctTHb, ctHHb, StO2 and water 
percentage were not statistically different between responders and non-responder tumors. 
However, after running a statistical power analyses using G*Power 3.1, a sample size of at 
least 40 patients would be necessary to see a statistically significant difference in the changes 
of ctO2Hb levels between these two subgroups with an 80% power. Given that our study was 
limited by a small sample size with RCB scores available (n = 26), the statistical power to 
detect such a difference in ctO2Hb between the two groups was only 47%. Therefore, further 
studies are needed to demonstrate how DOTBIS-measured parameters change within the 
context of response to NAC. 

We also examined the relationship between baseline ctO2Hb and age. Breast density is 
known to decrease with increasing patient age due to postmenopausal alteration of glandular 
breast tissue [32,33]. Our results presented similar association. There was a significant 
inverse relationship between age and ctO2Hb measured at baseline (p < 0.005). As already 
discussed, breast tissue becomes less dense with age, therefore the correlation between the 
lower levels of ctO2Hb might be related to the reduced vascular supply and perfusion 
occasioned by less fibroglandular tissue present in the breast of the older women. 

Major limitation of our study was its dependence on the patient’s mammogram 
availability for her inclusion in the study. The protocol at our institution does not include a 
post-NAC mammogram, and we were not able to have an end-point correlation between 
ctO2Hb and mammographic breast density. Patient’s menstrual cycles at baseline was not 
uniformly reported, and therefore were not accounted for analyses, which could cause 
variation in breast tissue composition and density assessment. In addition, we were not able to 
expand our analyses to correlations between MR based quantitative breast density 
measurement with ctO2Hb since the majority of the women in our cohort did not had access 
to MR screening at pre-NAC time point. Furthermore, our study population was already 
diagnosed with breast cancer. Further studies in BRCA mutation carriers, a high-risk group, 
are needed to correlate DOTBIS-measured ctO2Hb with breast density and how is related to 
cancer risk. If such a relationship can be established, it may be possible to use DOTBIS 
measurements to predict breast cancer risk. 
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5. Conclusion 

Optical-based image index by DOTBIS may be a novel modifiable marker of breast cancer 
risk that is 3D quantifiable and without exposure to ionizing radiation. Potential for its use as 
a predictor of breast cancer risk as well as an assessment tool to longitudinally evaluate 
efficacy of various chemoprevention strategies is warranted. 
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