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Abstract

Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain

cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming,

computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-

sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we

have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as

well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are

introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees,

substantially reducing the computation times for clinically relevant problems.

# 2003 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

Optical tomography (OT) is a fast developing

new medical imaging modality that uses near-

infrared (NIR) light (650B/lB/900 nm) to probe

various parts of the body. In general, laser diodes

deliver light through optical fibers to several

locations around the body part under investigation

and transmitted light intensities are recorded. The

technology for making sensitive light-transmission

measurement through the human body is now-a-

days readily available [1�/10]. Using this instru-

mentation, several pilot studies have proven the

applicability of OT in medicine and its potential in

functional tissue diagnostics is widely recognized.

The most promising applications are monitoring

of blood oxygenation [11�/13], hemorrhage detec-

tion [14,15], functional imaging of brain activities

[16�/23], Alzheimer diagnosis [24,25], early diag-

nosis of rheumatic disease in joints [26�/28], and

breast cancer detection [29�/33]. All these applica-

tions employ the fact that various disease pro-
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cesses and other physiological changes affect the
optical properties (mainly absorption coefficient

ma and scattering coefficient ms) in biological tissue.

Therefore, different optical properties of different

tissues supply the contrast of this new imaging

technology.

A major challenge in OT is the development of

efficient numerical schemes that transform these

measurements into useful cross-sectional images of
the interior. Unlike X-rays, NIR photons do not

cross the medium on a straight line from the

source to the detector. In addition to being

absorbed, light is strongly scattered throughout

the body. The propagation of light through tissue

can be approximated as a diffusion process in

which any directional information of incident

photons is lost within several millimeters. There-
fore, standard backprojection techniques [34] as

applied in X-ray tomography have been of limited

success [35,36]. Most of the currently employed

algorithms are so called model-based iterative

image reconstruction (MOBIIR) schemes [37�/

49]. These schemes use a forward model to

simulate the light propagation in the sample and

provide a theoretical predication for the detector
readings. Based on an initial guess of optical

properties inside the medium, the predicted detec-

tor readings are compared with experimental data

using an appropriately defined objective function.

The true distribution of optical properties inside

the medium is determined by iteratively updating

the initial guess of this distribution, and by

performing new forward calculation until the
predicted data agrees within a given error with

the detector readings. The final distribution of

optical properties is displayed as an image. This

iterative process generally requires substantial

computational resources. Depending on the spe-

cific forward model, the number of light sources

used, the updating scheme, and the desired numer-

ical accuracy, computation times can easily reach
several hours or even days on a single processor.

This makes OT currently impractical for many

clinical applications.

To overcome this problem first studies have

emerged that suggested the use of parallel pro-

gramming technique for the image reconstruction

algorithms [50,51]. However, a systematic analysis

of the problem has not yet been presented. In this
work we analyze and modify a previously devel-

oped MOBIIR algorithm to allow for parallel

execution in a cluster of heterogeneous work-

stations. We first review the structure this gradient

MOBIIR scheme for the analysis of optical tomo-

graphic data. The various parts of the existing

algorithms are subsequently analyzed regarding

their time consumption. Based on this analysis, we
develop several parallel algorithms suited for

execution on an arbitrary number of UNIX-type

machines in a local area network. These networks

are widely available in academic and medical

environments and a variety of standardized pro-

tocols for distributed and parallel computing are

available, which we adapted for the particular

problem of OT. The results are tested for efficiency
and stability in a 10/100 MB Ethernet using the

TCP/IP protocol under various conditions.

2. Methods

2.1. Gradient-based iterative image reconstruction

In this work we concentrate on the paralleliza-
tion of so-called gradient-based iterative image

reconstructions (GIIR) schemes, which form a

subclass MOBIIR algorithms. In recent years,

several groups have embraced the concept of

GIIR schemes and it has become the method of

choice among many groups in the field of OT [37�/

39,52�/56]. Gradient-based schemes employ infor-

mation about the gradient of the objective func-
tion with respect to the optical properties of the

sample to find updates of the initial guess. In this

way the reconstruction problem is viewed as an

optimization problem. For example, steepest-gra-

dient-descent and conjugated-gradient schemes are

well-established techniques in optimization theory

[57]. These schemes have the advantage over also

widely used Newton-type algorithms that a full
Jacobian matrix J neither needs to be explicitly

created nor repeatedly inverted. For a more

detailed comparison of different schemes in OT

see for example [37,38].

As in all algorithms for OT, the goal of the

GIIR scheme is to reconstruct the distribution of
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the optical properties inside a medium, from a
given set M of measurements on the circumfer-

ence, @V, of the medium. We can divide the GIIR

scheme in three different major components (see

Fig. 1): (1) Forward Model: this model is a theory

or algorithm that predicts a set of measured

signals, MP, based on the position of the light

source and the spatial distribution of optical

properties z�/[ma(r), ms(r)]. In this study we use a
finite-difference scheme (FD) that is based on the

time-dependent diffusion equation [37]. (2) Analy-

sis Scheme: here an objective function, F, is

defined, which describes the difference between

the measured, M, and predicted data, P. In this

work we define the objective function as least-

square error norm, which is given by

F(z)�x2(z)�
X

s

X
d

(Ms;d � Ps;d(z))2

2h2
s;d

(1)

The indices s and d identify different sources and

detector positions. The parameter hs,d is a normal-

ization constant, which for example can be set to

Ms,d (z ). In this case the error norm minimizes the
sum of the squared percentage difference between

measured and theoretical data. (3) Updating

Scheme: once the objective function is defined,

the task becomes to minimize F, starting from an

initial guess z0(r). This is accomplished in two

substeps: (3a) First, the gradient of the objective

function df(z0)/dz is calculated by means of the

so-called adjoint-differentiation method. (3b) Sec-
ond, given the gradient an iterative line minimiza-

tion in the direction of the gradient is performed.

This step is labeled inner iteration in Fig. 1 and

consists of several forward calculations in which

the optical parameters z are varied. Once the

minimum along the line is found, a new gradient

is calculated at this minimum (outer iteration) and

another line-minimization is performed, now
along a different direction in the z-space. These

steps are repeated until a distribution z is found for

which F(z) is smallest. A more detailed description

of the gradient MOBIIR scheme used in this work

can be found in [37].

2.2. Parallelization

The appropriate decomposition of the original
problem into smaller subtasks is most crucial to

every parallel implementation of a given algo-

rithm. We identified the finite differences (FD)

algorithm that is used to calculated the predicted

detector readings P as the most time-consuming

portion of our GIIR scheme. Here, the objective

function F(z) is determined for the current guess of

optical properties z of the medium. The gradient
calculation @F(z)/@zi is also performed in this part

of the code by adjoint differentiation, which

consumes about the same time as one forward

calculation. Approximately 95% of the computa-

tional time are spent in the finite-differences and

adjoint-differentiation schemes. The exact fraction

depends on the number of sources employed in the

experimental setup, since both, the objective func-
tion F(z) and the gradient @F(z)/@zi are given as

sums over all source-detector combinations. The

experimental data consists of several sets of

simultaneous detector readings corresponding to

different source positions. One could activate all

sources simultaneously, however, it proofs to be

advantageous to switch through all source posi-

tions sequentially to increase the amount of
information gained. To match these experimental

readings with the simulation and evaluate the

objective function, each source present in the

experiment requires a separate forward calcula-

tion. Hence, the problem of calculating Eq. (1) for

N sources quite naturally breaks up into N

Fig. 1. Parallelization outline; the forward model is split up

into single-source forward calculations (FC) and adjoint

differentations (AD). It is called repeatedly in the inner

iteration and once in the outer iteration.
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mutually independent single source forward-calcu-
lations (SSFCs). We can rewrite the objective

function (1) as

F(z)�
X

s

X
d

(Ms;d(z) � Ps;d(z))2

2hs;d2

�
X

s

Fs(z) (2)

Thus, instead of handling N sources sequentially
as in the experiment, we may, therefore, share the

total load amongst up to N processors, by assign-

ing each a disjunct set of sources to evaluate. The

objective function is then obtained by summing

over the partial results (Fig. 1).

One SSFC typically requires on the order of

0.01�/1 s depending on the size of the FD grid.

This makes them appropriate candidates for sub-
tasks to be distributed over the network. Shorter

tasks would increasingly sense the latency times of

the network, because TCP/IP protocol yields

latency times of several milliseconds.

Another consideration is the network band-

width, which in our case is ideally 100 Mb/s but

may decrease to several 10 Kb/s in times of high

traffic. If we assume a minimum transfer rate of 50
Kb/s, the amount of data transferred per SSFC

should, therefore, not exceed 500 Bits to avoid

unnecessary waiting time. This does, however, not

pose a problem: All processors possess their

private copy of all data structures involved in the

reconstruction and are principally able to perform

any SSFC autonomously. When the parallel code

forks into different branches no data, other than
the distribution scheme has to be communicated

across the network.

Upon completion of the sub-tasks, when a

global sum over all processors is formed, two

data structures are to be transferred over the

network to be available to all participating pro-

cessors. First, the addends Fs of the objective

function (Eq. (2)), i.e. single floating point values,
are transferred. Secondly, the gradient matrix,

represents the largest chunk of data to be moved

across the network*/it consists of n �/m values,

where n and m fix the size of the FD grid.

Typically, the grid size ranges between 20�/20

and 50�/50 pixels, so that a maximum of 80 Kb

have to be moved across the cluster. However, the
gradient calculation only occurs once per outer

iteration, in about 1/15 of the invocations of the

forward model.

Although the SSFC is an appropriate partition-

ing unit for parallelization, this choice leads to

certain limitations. First of all, no more processors

than sources may effectively be used. Moreover,

certain configurations will lead to unfavorable
load balancing. For instance, consider four SSFCs

to be shared by three identical processors. Ob-

viously, the 4th forward calculation will leave two

processors idle. These limitations are unavoidable

in the current splitting scheme and have to be

considered when testing or using the algorithm.

3. Implementation

Parallel execution of a program on multiple

processors requires a physical network and a

communication interface between the nodes. All

processors have to be aware of one another and be

able to exchange data securely. The Message

Passing Interface (MPI) is a platform independent

standard, which was introduced by the Message
Passing Interface Forum, in 1994 [58,59]. This

interface defines a set of functions for inter-

processor communication and data manipulation.

MPI hides details of the underlying hardware and

network protocol from the developer and provides

a transparent interface between all participating

nodes (it operates on top of protocols such as

TCP/IP, e.g. above layer 4 in the OSI 7 Layer
Network Model). Several implementations of the

MPI for different architectures are freely available.

We used the MPICH-package suitable for LINUX,

IRIX, and SOLARIS, which includes C-libraries and

several scripts for compiling and executing binaries

in a parallel environment.

MPI is designed to support the distributed

memory model, so all processors execute identical
copies of the binary in their own memory space

and have no direct access to data on other nodes.

It is actually more appropriate to speak of

different processes rather than of processors, since

MPICH does not distinguish between physically

different processors and multiple instances of a
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program on the same processor. If several pro-

cesses are launched on one node, communication

still uses the machine’s TCP/IP interface but is

routed directly through the internal loop-back. In

the remainder of this paper we will use the termini

processor and process synonymous for instances

of a program, independent of their location.

When executing the parallel version of a binary,

MPI assigns a unique identification number to

each process through which it can be addressed by

others. Communication can take place between

two processors or groups of processors, within so-

called communicators.

To take advantage of a parallel execution the

code must of course be adapted to behave

differently on each processor and handle disjunct

portions of the total computational expense. The

MPI provides functions to retrieve a processor’s

identification at run-time, so that the code can

take different branches depending on which node

it is executing. In the remainder of this section we

will refer to respective processors IDs by nmy_pe

and denote the total number of processors with

npe .

Following the arguments given above, the total

number of sources nS is to be divided into npe

subsets. Both, the objective function F(j) and the

gradient @F(j)/@ji are sums over all source con-

tributions as indicated by Eq. (2). Within the

actual implementation, these contributions are

added up in a loop:

for (i�0; iBns; i��)

f
F��Fi;

grad F��grad Fi;
g

(3)

Therefore, our task is to break down this loop

and to assign only part of the total interval i � /

[0. . .nS [�/[0. . .n1[, [n1. . .n2[, . . ., [nS �1. . .nS [ to each

processor. Let nmy_pe � /[0. . .npe] be the index of

the executing processor, then the following code

fragment causes all processors to evaluate the

commands {. . .} for disjunct sub-intervals only:

if (nmype
��0)

for (i�0; iBn1; i��)

f. . .g
else if (nmype

��1)

for (i�n1; iBn2; i��)

f. . .g
n
else if (nmype

��npe)

for (i�ns1; iBns; i��)
f. . .g

(4)

This code example merely illustrates the concept of

assigning disjunct intervals to different processors.

The actual implementation may, however, look

somewhat different from the example above. In
the following subsections we will introduce three

approaches for choosing the npe subsets appro-

priately and depict their implementation.

3.1. Static load distribution

In our first approach, the total number of

sources [0. . .nS[ is broken into npe equal parts
(if possible). Hence, if npe is not an integer

denominator of nS , the size of respective intervals

will differ by 1. The corresponding implementation

can be cast in a very compact form if we rewrite

the loop (3) such that

for (i�nmype
; iBns; i��npe)

f
F��FSource(JobId);

grad F��grad FSource(JobId);

g

(5)

where FSource(JobId) and grad FSource(JobId) re-

present function calls to a single source forward/

gradient calculation (SSFC). Hence, processor 0

evaluates the sources 0, npe , 2npe , . . ., processor 1

evaluates sources 1, npe�/1, 2npe�/1,. . . and so

forth. Fig. 2 depicts the splitting mechanism in a

graphical form. Obviously, the respective subsets

are always disjunct and completely fill the interval
[0. . .nS[ .

The major advantage of this approach, is that it

produces virtually no overhead and requires no

additional variables to define the boundaries of the

respective intervals. In a homogeneous cluster of

processors with npe being a denominator of nS the
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loop (Eq. (5)) will execute exactly npe times as fast

as on a single processor.

If the sources cannot be split up evenly across

the cluster, some processors will be idle for the

time necessary for a single forward calculation,

leading to a decay in performance. The worst-case

scenario occurs if the reconstruction is based on a

single source only. In this case, all but processor 0

will be idle and no increase in performance will be

observed. However, this is not a disadvantage of

any particular distribution scheme but inherent to

our approach to parallelization. Since one source

calculation constitutes the smallest possible sub-

task that can be assigned to a processor it is

obviously useless to employ more than nS proces-

sors in the reconstruction. While finer levels of

subdivision can be envisioned, we will defer the

discussion of corresponding schemes to Section 4.

The major disadvantage of the static load

distribution becomes apparent in inhomogeneous

clusters. Since the total number of sources is

spread evenly across all participating processors,

independent of their performance, slower proces-

sors will require more time to complete their share,

forcing the rest of the cluster to wait. Conse-

quently, the overall speed in a cluster of processors

of performance Pi is determined by the slowest

processor in the ensemble. The maximum perfor-
mance PS of the cluster is given by

PS�npe � minfPig (6)

3.2. Dynamic job assignment

To use the available processor performance in
heterogeneous clusters more effectively we devel-

oped a flexible scheme to assign subtasks to

individual processors. The scheme employs one

dedicated processor, referred to as PE0, to manage

the distribution of SSFC to the cluster. This PE0

keeps track of the total number of sources and

what fraction of them has been processed by any

of the other processors. It does, however, not take
part in the actual forward calculation.

Fig. 2. Static distribution scheme. The total number of sources

nS is shared evenly across n PE’s.

Fig. 3. Job-request/assignment. Processor PE0 manages the

distribution of SSFCs and assigns source IDs upon request by

other PE’s.
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All other processors, upon entering the forward

model, post a job request to the dedicated

processor and wait for an available source to

evaluate. PE0 responds to a request by sending

out the next source index and marking this index

as processed. Whenever a processor has finished a

forward calculation, it sends another request to

PE0 to obtain the next, unprocessed source.

If no more sources are pending, the dedicated

processor broadcasts a termination signal to the

cluster and stops listening to requests. The notifi-

cation to terminate the reconstruction loop passes

through the same messaging channel as regular job

assignments. But instead of a valid source index, a

predefined negative constant is broadcast to all

processors and interpreted there accordingly. Fig.

3 illustrates the algorithm in detail. The essential

code fragment has the following form:

The concept of this job-request scheme is readily

understood: Initially, each processor picks up a

source index and performs the corresponding

forward- or gradient calculation. Faster processors

will complete their task in a shorter period of time

than their slower counterparts and consequently

be able to post another job request earlier. On

average, if we consider many sources (ns �/npe),

each processor will request a fraction n(i)/ns of all

sources, that is proportional to its speed. Here,

n(i) is the number of sources handled by processor

i .

Obviously this second scheme is much less

susceptible to dawdling candidates than the static

load distribution. Extremely slow processors will

receive only a single job and have no more

opportunity to request a second one. Furthermore,

the request/assignment scheme adapts to changing

processor performances during the image recon-

struction automatically. Each participant will

obtain as many sources to evaluate as it can

handle at the time.

This advantage only becomes apparent, how-

ever, if more sources than processors are available,

since even the slowest processor will handle at least

one SSFC. The following considerations yield an

if (nmype
!�0) == on all but PE0; request source ID

f == and perform SSFC

RequestJob (&JobId);
while (JobId!�NOJOB) == unless termination signal is sent . . .

f
F��Fsource(JobId); == do SSFC &

grad F��grad Fsource(JobId); == gradient calculation

RequestJob (&JobId); == request next source ID

g
g
else == on PE0 assign source ID upon request

== on PE0 listen to requests and

f == assign jobs to processors . . .

SrcCount�0;

while (SrcCountB�ns) == while we have unprocessed SSFCs f
WaitRequest(&PeNo); == wait for requests from any PE

AssignJob(PeNo; SrcCount) == assign next SSFC to calling PE

g
BeastTermination() == . . . broadcast termination of all PE0s
g

(7)
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estimate of the minimal number of SSFC, ns,
necessary to observe an improvement during

parallel execution.

Consider a single processor PEj with only a

fraction 1/q of the performance p of all other

members of the cluster. Let nj be the number of

sources handled by the slower candidate, com-

pared with n sources handled by each of the other

processors. Then the following relations hold:

nj #
1

q
n; nj ]1 (8)

nS �n � (npe�1)�nj (9)

From this we get:

nj �
nS

q(npe � 1) � 1
]

!

1 (10)

Solving for nS , the minimum number of SSFCs

is given by

nS ]q(npe�1)�1 (11)

Thus, approximately npeq sources must be

present to prevent processor j from slowing

down the reconstruction unduly.

We note further, that some other pathological
cases may be constructed, e.g. if all but one source

position have been evaluated and the slowest

processor manages to snatch the final source

shortly before a faster colleague posts a request.

In this unfortunate case, the cluster is forced to

wait disproportionately long, while a faster pro-

cessor could have completed the task earlier.

Again, as for the first scheme, the difficulties
mentioned do not pose much of a problem, if we

have ns �/npe . They originate from the relatively

coarse partitioning of the reconstruction process.

However, two drawbacks are specific to this

particular job distribution scheme. First, one

processor, PE0 is lost for the actual reconstruction

process, since it is employed to manage the job

assignment. The second and most important draw-
back, as will be shown later, is the communica-

tional overhead involved with the request/

assignment mechanism. A total of 2ns�/npe mes-

sages have to passed across the network during

each forward calculation. Although a single mes-

sage is only some 10 bytes in size, the high latency

time of TCP/IP networks causes significant idle
times at each job request.

3.3. Dynamic load distribution

The third algorithm developed for the parallel

image reconstruction combines the flexibility of

the dynamic scheme introduced above with the

modest communicational overhead of the static,

first scheme. The key point of this concept is to

determine individual processor speeds in terms of

reconstructions per unit time at run-time. This
information is then used to redistribute the total

load across the cluster.

To keep track of the current partitioning of the

complete set of sources [1...ns[ a static source list is

maintained on all processors. It is defined as

static int SourceList[NumberOfSources]; (12)

where SourceList[i] contains the ID of the proces-

sor handling source position i . Initially, before any
forward calculations are done, all processors are

consider to be equal and the SourceList is popu-

lated evenly, similar to Eq. (3).

In the following, each processor scans the

SourceList for elements with its own ID and

performs the corresponding single-source forward

calculations. The time ti , required for these

calculations is recorded, along with the number
of sources ni assigned to this processor, so that we

can determine the effective speed, defined as:

vi�
ni

ti

(13)

Once all processors have finished their share of

sources, they broadcast their current speed to all

members of the cluster. The final step is to update
the SourceList in view of the different vi of

individual processors, so that faster candidates

will handle a bigger fraction of all sources in

future. If we denote the number of sources to be

processed on PEi with ni , and the time necessary

with ti , we are faced with the constrained mini-

mization problem in T :

T(n0; n1; . . . ; nnpe�1)�maxft0; t1; . . . ; tnpe�1g
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�max

�
n0

v0

;
n1

v1

; . . . ;
nnpe�1

vnpe�1

�
; with nS �

Xnpe�1

i�0

ni

(14)

We employ the following algorithm to populate

SourceList.

First, the processor speeds are normalized so

that a vi �/ns . If we now set

ni�vi � i � [0 . . . npe[; nj � R (15)

both, the minimization and the constraint are

satisfied, since

(i)
n0

v0

�
n1

v1

� . . .�
nnpe�1

vnpe�1

(ii)
Xnpe�1

i�0

ni�
Xnpe�1

i�0

vi �nS (16)

Note, that the ni thus obtained are real, whereas
we can only assign an integer number of sources to

individual processors. To overcome this difficulty,

we use a fast and simple method to generate

integer values close to the optimal solution: The

ni are iteratively increased by a common factor q ,

such that ni 0/(1�/q )ni , until their round-down

values add up to the total number of sources.

Typically, the increment q is set to 0.05,

which usually yields correct ni within only five

iterations.
Finally, the ni are used to populate and update

SourceList. Note, that the calculations above are

performed on all processors simultaneously, so

there is no need for further communication. Once

the information about processor speeds is shared

across the cluster, the minimum solution of Eq.

(14) is fully determined and requires no more

interaction. Fig. 4 and the code below (Eq. (17))

summarize the essentials of the dynamic load

distribution scheme.

Two minor modifications, not shown in the

coding example, were included to improve the

stability of this algorithm: the current speed is

biased by the average speed of all past forward

calculations to dampen oscillations that tend to

occur on multi-processor machines (we found that

on these machines, single tasks are not tied to a

processor but shifted around by the operating

system. This resulted in a competition between

different processes and oscillations in their perfor-

mance. So-called processors (PE’s) in the MPI-

schemes are not necessarily identical to physical

processors). Secondly, if a processor was not

PunchTime(); == mark current time
MyCount�0; == reset source counter

for (i�0; iBns; i��) == scan SourceList for Jobs to do

f == on this processor

if (SourceList[i]��nmype
)

f
F��Fsource(i); == do SSFC &

grad F��grad Fsource(i); == gradient calculation

MyCount��;

g
g
MyTime�PunchTime(); == record time required and
MySpeed�(double)MyCount=MyTime; == determine processor speed

UpdateSourceList(MySpeed; SourceList); == redistribute the sources

== according to processors speed

(17)
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assigned at least on source, the last recorded speed

is adopted rather than zero speed. This prevents

individual processors from dropping out of the

competition completely. Hence, the speed is de-

termined as:

This last scheme proofs to be the most efficient

distribution algorithm. It adapts to large discre-

pancies between different processors and may even

exclude slow performers completely. However, it
requires no more than one joint data exchange

between all processors, after each forward calcula-

tion. The additional calculations do not consume

significant computational time.

4. Results and performance

To test the performance of our distribution

schemes quantitatively, we used an example from

our resent research concerning optical tomo-

graphic joint imaging (Fig. 5). Based on cross-

sectional images obtained from magnetic reso-

nance imaging (MRI) of a human proximal-

interphalangial (PIP) finger joint we designed a

numerical model that was used to generate syn-
thetic data. We assigned optical properties to

different tissues visible in the MRI cross-section

images of the joint (see Fig. 5a and b). Since not all

tissue types are clearly distinguishable by MRI

data alone, standard anatomical information [60]

was additionally used to uniquely identify the

various positions of different tissues. Segmenting

the MRI images in this way we obtained a two-
dimensional slice of the optical properties in a

finger joint. These images had a size of 44�/44

pixels, with each pixel having dimensions of 0.4�/

0.4 mm. In order to simulate measurements of the

finger joint, we placed 60 detectors and 60 sources

around the joint and performed forward calcula-

tions that yielded detector readings for different

source positions. This synthetic data was input to
our gradient MOBIIR algorithm, which was

started with a spatially homogeneous initial guess

of the optical properties. The result of the recon-

struction can be seen in Fig. 5c. For more details

concerning this example see [27].

Fig. 4. Dynamic scheme: all processors determine their indivi-

dual speed after completion of their share of forward calcula-

tions. After each iteration, the speeds are communicated to the

cluster to re-evaluate the partitioning of all sources.

if (MyCount)

MySpeed�(double)MyCount=MyTime�0:5�MyAverageSpeed;
else

MySpeed�MyLastSpeed;

(18)
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The results of a parallel implementation of the

image reconstruction code do, in no way, differ

from the serial execution. This is an obvious

necessity of any parallel scheme and was testes

thoroughly during the developing process. There-

fore, the quality of our gradient-based image

reconstruction is not subject to discussion at this

point, and the reader with interest in quality of
optical tomographic imaging is referred to the

previously cited publication [37�/56] that address

this problem.

In this study we are interested in the perfor-

mance of the various parallel algorithm in terms of

computational speed. In a first test, we determined

the gain in reconstruction speed with increasing

number of identical processors. Ideally, one would
expect the total speed vt (npe ) to grow linearly with

the number of processors, according to

vt(n)�g � npe � vpe (19)

where, vpe is the single processor speed and g�/

0. . .1 the degree of parallelization. The latter

quantifies the fraction of computational expense

that is actually shared across the cluster. It

becomes 1, if 100% of the code have been

parallelized and no more sequential execution is

Fig. 5. Example used for testing the different parallel computing schemes. (a) Magnetic resonance image of a human PIP finger joint;

(b) segmented image of the joint that shows the different tissue types (bone, muscle, tendon and ligament) and there different optical

properties. This map was used to generate synthetic input data for the model-based iterative image reconstruction MOBIIR code; (c)

result of the reconstruction of diffusion coefficients after 200 iterations.

Fig. 6. Performance increase with increasing number of iden-

tical processors. The solid line indicates the performance of an

idealized parallel scheme. Note that the job-request scheme

requires at least two pe’s since the first processor manages the

distribution of forward calculations to the cluster.
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done. In our case, given the large number of
sources involved, we found that more than 99% of

the time is spent within the forward model. Under

the assumption that an optimal splitting of the

total work is theoretically possible, i.e.

nS

npe

�n � N (20)

we can estimate g:/1. Any deviation from Eq. (19)

is, therefore, caused by overhead or idle time

introduces by the parallelization scheme.

Fig. 6 shows the dependency of vt(npe) on the
number of processors for all three schemes as well

as the idealized case of g�/1. As expected, the

static assignment of sources performs best, since it

involves virtually no overhead and requires only

minimal inter-processor communication. Almost

equally good results are observed for the dynamic

distribution scheme. The job-request scheme, how-

ever, performs poorly and yields only 50% of the
maximum possible speed. Moreover, a gain due to

parallelization only sets in for more than two

processors, since one processor is necessary to

handle the administrative tasks.

The second test was designed to study the

algorithms’ ability to perform in heterogeneous

clusters, i.e. to adapt to different processor speeds.

Ideally, in generalization of Eq. (16), the max-
imum speed of a parallel scheme is given by

vt(v0; v1; . . . ; vnpe�1)�g �
Xnpe�1

i�0

vi (21)

In other words, the number of forward calcula-

tions per unit time performed on individual

processors simply adds up to the total number of

forward calculations of the cluster. Hence, slow

processors should only affect the overall recon-

struction speed insofar as they contribute to a

lesser degree to the total work.

To quantify the performance of all three

approaches, we employed 5 processors of identical

speed but slowed down one processor (pe 1)

artificially, by inserting waiting intervals of length

Twait into the SSFC. In Fig. 7, the abscissa

indicates the length of these intervals, relative to

the actual computing time TSSFC. Hence, a decay

of 100% corresponds to Twait�/TSSFC, rendering

the processor half as fast as the normal. In the

limit of Twait0/�, only four processors participate

in the reconstruction and the optimal speed

approaches 0.8.

The results clearly state the superiority of the

dynamic scheme over the other approaches. Over

the whole range it yields more than 90% of the

maximum possible optimal performance. Ob-

viously, the algorithm is able to find an optimal

distribution scheme according to each processor’s

capabilities. The speed of the static scheme, on the

other hand quickly drops as pe 1 slows down. In

fact, the overall speed is governed by the slowest

processor and depends on its decay d like

vi�vpe 1	
1

1 � d=100
(22)

It is interesting to note that the job-request/

assignment algorithm behaves quite stable, as it

does not decay to more than 40% relative to the

optimal case (graph with solid line). We conclude

that in spite of the overhead, the scheme adapts to

the heterogeneous environment properly. In lower

latency networks it might, therefore, provide a

reasonable alternative to dynamic schemes.

Fig. 7. Effect of a single slower processor (PE0) in a cluster of

five PE’s. The ideally achievable speed of an optimal parallel

scheme is given by the solid graph.
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5. Discussion

Given the results, the dynamic load distribution

appears most suitable for parallel computation of

problems involving optical tomographic image

reconstruction in a heterogeneous network. The

dynamic scheme adapts to varying processors

speeds and requires only little communicational

overhead during the reconstruction process. This
outcome is not surprising since the dynamic

algorithm combines the positive aspects of the

static-assignment and job-request approaches. Un-

der realistic conditions, in a busy network the

dynamic scheme is able to utilize more than 90% of

each processor’s time for the reconstruction pro-

cess. Under the premise that an optimal distribu-

tion of all sources across the cluster is theoretically
possible, the overall parallelization g is, therefore,

greater than 0.9. Single slower participants will

contribute to a lesser degree but never affect the

overall speed negatively.

There are no exceptional requirements on the

execution environment to achieve this perfor-

mance. The algorithm is, therefore, suitable for

most of nowadays network architectures. In this
study we executed the parallel reconstruction in a

cluster of three Pentium-based dual-processor

machines (450 and 750 MHz), running LINUX

and three SGI-workstations across at least two

passive hubs. Active switches would most likely

raise the overall speed by several percent but are

no necessity as our results show.

The algorithm yielded reconstructed images on
a 44�/44 grid with up to 12 sources�/positions in

approximately 30 s. This benchmark makes in situ

image reconstruction in a medical environment

feasible and will expand the range of clinical

applications for NIR diagnostics.

As already noted in previous sections, the

number of source-positions currently presents a

limit for the parallelization. In typical experiments
as pursued by our group, the setup includes 12�/32

sources, which may be increased up to the total

number of available processors, without loss in

performance. In spite of this inherent limitation,

the possibility to employ more sources in the

reconstruction process poses a significant advan-

tage. By raising the number of sources and/or

detectors in a OT setup, the amount of informa-
tion gained from the medium can be significantly

increased. Due to the high costs of sensitive and

highly dynamic detectors it is principally easier to

use more sources rather than detectors [8]. How-

ever, on the reconstruction side, this choice

amounts to additional computations of the light

distribution originating from these sources. Pre-

viously, the time necessary to generate images
from the experimental data rose accordingly. With

parallel schemes as presented in this work the

overall reconstruction time may be kept constant

by utilizing additional processors in the recon-

struction process.

6. Summary

OT is a novel emerging medical imaging mod-

ality that has shown great promise in a variety of

clinical pilot studies. This new modality is based

on measurements of transmitted intensities of non-

ionizing, NIR light. Unlike X-rays, which traverses

human tissue on a straight line, NIR light is

strongly scattered in tissue and the image recon-
struction problem involves computationally inten-

sive, iterative, model-based algorithms. Long

computation times have so far limited the practical

clinical application of powerful model-based itera-

tive image reconstruction (MOBIIR) scheme. In

this paper we addressed this problem by analyzing,

implementing, and testing various parallel execu-

tion schemes, which can be executed on an
arbitrary number of UNIX-type machines in a local

area network.

We found that in commonly employed MOBIIR

schemes over 90% of the computational time is

spent in forward solvers, which make prediction of

the light intensities on the surface of the medium,

given a guess of the optical properties inside the

medium. Since typically many light sources are
used in OT, and for each light source a forward

problem has to be solved, the algorithm can be

divided into n sub-tasks, where n is the number of

light sources used in the experimental setup. These

sub-tasks are then executed in parallel on distrib-

uted processors to accelerate the image reconstruc-
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tion process, in the optimal case, by a factor close
to n .

Three different parallel schemes (static load

distribution, dynamic job assignment, dynamic

load distribution) were tested in a heterogeneous

cluster of networked PCs and workstations. The

static load sharing makes almost optimal use of

the available resources if used in a homogeneous

cluster and the number of sources being a multiple
of the number of processors. In heterogeneous

networks, the dynamic scheme performs best, since

it takes different processor speeds into account

and avoids unnecessary waiting for slower partici-

pants to complete their share. This parallel algo-

rithm is also insensitive to varying network loads.

Moreover, it is suitable for arbitrary network

architectures, as it based on the protocol-indepen-
dent MPI standard. However, the associated

communication overhead can be justified only in

reconstruction problems that are sufficiently large

so that the time necessary to complete a task is

much larger than the latency for communicating

the result. Current and future demands on image

reconstruction certainly meet this condition and

make the dynamic allocation scheme the prefer-
able alternative.
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