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a b s t r a c t 

We introduce a novel image reconstruction method for time-resolved diffuse optical tomography (DOT) 

that yields submillimeter resolution in less than a second. This opens the door to high-resolution real- 

time DOT in imaging of the brain activity. We call this approach the sensitivity equation based nonit- 

erative sparse optical reconstruction (SENSOR) method. The high spatial resolution is achieved by im- 

plementing an asymptotic l 0 -norm operator that guarantees to obtain sparsest representation of recon- 

structed targets. The high computational speed is achieved by employing the nontruncated sensitivity 

equation based noniterative inverse formulation combined with reduced sensing matrix and parallel com- 

puting. We tested the new method with numerical and experimental data. The results demonstrate that 

the SENSOR algorithm can achieve 1 mm 

3 spatial-resolution optical tomographic imaging at depth of ∼60 

mean free paths (MFPs) in 20 ∼30 milliseconds on an Intel Core i9 processor. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the last decades, functional brain imaging has become 

 viable tool for exploring and understanding of brain function 

 1 , 2 ], diagnosing of neurological diseases such as Alzheimer [3] or

troke [4] , and assessing effects of rehabilitation therapeutics [5] . 

raditional brain imaging modalities include electro/magneto en- 

ephalography (EEG/MEG), positron emission tomography (PET), 

nd functional magnetic resonance imaging (fMRI). In recent years, 

ptical neuroimaging methods have gained increasing prominence 

n this area due to their unique advantages over traditional meth- 

ds. Optical techniques provide safe (non-ionizing), portable, low- 

ost, fast and high-sensitive quantitative imaging of physiological 

hanges induced by brain activities and diseases. 

Functional near infrared spectroscopy (fNIRS) [6-8] retrieves 

hanges in the concentrations of oxyhemoglobin (HbO 2 ) and 

eoxyhemoglobin (Hb), and total hemoglobin (tHb = HbO 2 + Hb) 

t various depths, with a multitude of different source-detector 

istances. Due to its simple setup and high portability, fNIRS 

as been widely used for bedside imaging. This technology is 

articularly useful in clinical settings, where traditional imaging 
∗ Corresponding author. 
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odalities such as fMRI are deemed unsafe or impractical, for 

xample, imaging of vulnerable patients (e.g., infants). In addition 

o fNIRS, diffuse optical tomographic (DOT) techniques [9-11] have 

lso been employed to improve spatial resolution. Using mea- 

urements available from all source-detector pairs, DOT provides 

hree dimensional tomographic images of oxygenation and blood 

olume changes in the brain. One of the latest developments of 

OT brain imaging is high-density diffuse optical tomography 

HD-DOT) [12-15] , which employs a high-density array of sources 

nd detectors. With a maximum distance of 15 mm between 

earest neighboring sources and detectors, HD-DOT systems have 

rovided rich data sets of measurements that can further improve 

patial resolution. The HD-DOT systems have been applied for the 

D mapping of various brain functions in response to tasks or at 

esting state [ 7 , 12 ], and extensively validated on their performance 

gainst fMRI [16-17] . 

All optical methods rely upon appropriate models of light prop- 

gation and image reconstruction. Light propagation in the human 

ead can be accurately modeled by the equation of radiative trans- 

er (ERT) [18-22] or Monte-Carlo (MC) method [23] . These meth- 

ds, while highly accurate, require considerable computational re- 

ources, e.g., CPU times and memory. The diffusion equation (DE) 

24-26] is much faster and allows for an excellent approximation 

o the RTE in scattering dominant region. But it becomes inac- 

https://doi.org/10.1016/j.jqsrt.2021.107939
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2021.107939&domain=pdf
mailto:hkk2107@cumc.columbia.edu
mailto:hk3363@nyu.edu
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urate in void-like regions, i.e., cerebrospinal fluid (CSF) between 

he head and the brain [27-31] . The SP N method is a high-order 

pproximation to RTE, and produces higher accuracy than the DE 

hile maintaining computational efficiency comparable to DE [32- 

4] . Image reconstruction in brain DOT has been focused on ab- 

orption changes in response to neural activities, assuming that 

ariations in blood volume and oxygenation are small between two 

ifferent states (baseline vs target). Based on this assumption, the 

inear perturbation approach [23-26] given by y meas = J �μ has 

een used to find absorption variation �μ, in which y meas is the 

ector of difference measurements between two states and J is the 

acobian (sensitivity) matrix. 

While DOT techniques have demonstrated promising results, 

here still remain challenges in achieving higher temporal and 

patial resolution. Especially, in recent years, cellular resolution 

 ∼1 mm 

3 ) deep-tissue imaging through non-invasive optical meth- 

ds has attracted increasing attention. This approach allows direct 

maging of neuronal electric activities via absorption activation 

ithin a volume of ∼1 mm 

3 . However, ultrahigh spatial and 

emporal resolution is currently out of reach for existing DOT 

echniques. Spatial resolution is negatively affected mainly by 

uperficial, extracerebral tissues such as the skull and scalp. Tem- 

oral resolution is mostly affected by the long computation times 

or solving the complex inverse problem. Yet, subsecond temporal 

esolution is needed to monitor various neural activities that occur 

n milliseconds [ 11 , 35-36 ]. 

Motivated by this problem, we present here a novel image re- 

onstruction algorithm called Sensitivity Equation based Noniter- 

tive Sparse Optical Reconstruction (SENSOR). The new method 

akes use of a nontruncated sensitivity function combined with 

 novel asymptotic l 0 -norm operator and a dimensional reduction 

cheme. In this paper we demonstrate that spatial resolution of 

1 mm 

3 can be achieved by enforcing sparsest representation of 

bsorption activation to conform sparse expression of actual neu- 

al activities. Furthermore, we show that temporal resolution of 

0 ∼ 30 milliseconds can be reached by the software and hardware 

dvances. The software acceleration is made possible by employ- 

ng the nontruncated sensitivity-based noniterative inverse formu- 

ation combined with the dimensional reduction scheme. Further 

cceleration is accomplished by using a multicore processor with 

penMP for parallel computing of the solutions. 

Time-domain data is chosen here because it allows to exploit 

seful temporal features that are sensitive to absorption changes 

ccurring within a ∼ 1 mm 

3 voxel. Furthermore, time-domain data 

an effectively filter out signal interference by other tissues sur- 

ounding the brain. In particular we use the parameterized tem- 

oral data – zero moment E , 1st moment M 

1 and exponential fea- 

ure L ( s ) – available from Mellin and Laplace transforms of tem- 

oral point spread function (TPSF), as demonstrated in [37-42] for 

heir computational efficiency, accuracy and robustness to noise. 

e evaluate the performance of the proposed algorithm through 

umerical simulations and experimental data, focusing on spatial 

esolution and computational speed. 

The remainder of the paper is organized as follows. We first 

escribe a general framework of the noniterative inverse formu- 

ation based on nontruncated sensitivity equation and asymptotic 

 0 -norm function in Section 2 . Numerical and experimental results 

re given in Section 3 , addressing the performance evaluation of 

he SENSOR algorithm. Finally, we draw conclusions and summa- 

ize our work in Section 4 . 

. Methods 

In general, an optical tomographic problem is to find a set of 

ptical properties that leads to a close match between measure- 

ents and predictions of light intensities on the tissue surface 
2 
26-27] . The search process starts with making an initial predic- 

ion P 0 of measured light intensities z from an initial guess x 0 
f unknown optical properties. Due to strong nonlinearity between 

ptical properties x and light intensities u , this search process is 

arried out with an iterative updating of optical properties, i.e., 

 = x 0 + �x and P = P 0 + �P , until the difference between predic-

ions P and measurements z is minimized. i.e., z − P ≈ 0. This re- 

uires repeated solving of the forward model for a new prediction 

 with updated optical properties x , which leads to large compu- 

ation time. To mitigate this iterative process with nonlinearity, we 

eformulate in this paper the original nonlinear inverse problem 

nto the linear inverse problem based on the nontruncated sensi- 

ivity equation and the adjoint theorem. 

.1. Nontruncated sensitivity equation and noniterative inverse 

ormulation 

In this section, we derive a generalized sensitivity formulation 

or estimating the exact variation in the measurement that results 

rom an arbitrary change in the properties of the system, by fol- 

owing a generalized perturbation and adjoint theory [20,43–46] . 

o evaluate the exact variational formulation, the derivation takes 

nto accounts not only the direct (first-order) effect by the change 

n the optical properties of the medium but also the indirect 

second-order) effect by the change in the light intensity, both due 

o the system variation. 

Consider the time dependent equation of radiative transfer (TD- 

RT) that describes transient light propagation in tissue: 

1 

c 

∂ψ ( t, r , �) 

∂t 
= −( ∇ · �) ψ ( t, r , �) − ( μa + μs ) ψ ( t, r , �) 

+ μs 

∫ 
4 π

p 
(
�′ , �

)
ψ 

′ (t, r , �′ )d�′ +S ( t, r , �) (1a) 

ith the reflective boundary condition: 

 ( t, r b , �) | → 

n b ·�< 0 
= R 

(
�i → �

)
ψ 

(
t, r , �i 

)| → 

n b ·�i > 0 
. (1b) 

here ψ( t , r, �) is the radiance in units of Wcm 

−2 sr −1 ; μa and

s are the absorption coefficient and the scattering coefficient, re- 

pectively, both in units of cm 

−1 ; p ( �′ , �) is the scattering phase

unction that describes scattering from direction �′ into �; S ( t , 

, �) is the source term inside the medium, and c = c 0 / n is the

peed of light in the medium where c 0 is the speed of light in

acuum and n is the refractive index of the medium ( n = 1.4 

s used in this work). We employ here the Henyey-Greenstein 

hase function [47] commonly used in tissue optics, given by p ( �′ , 
) = 1/4 π (1 − g 2 )/(1 − g 2 − 2 gcos ( θ )) 3/2 with an anisotropic fac-

or g and scattering cosine cos ( θ ). Also, we use here the reflec- 

ive boundary condition given by Eq. (1b) where R ( �i , �) is the re-

ectivity at Fresnel interface (i.e., air-tissue) from direction �i into 

irection �, and the subscript b denotes the boundary surface of 

he medium and 

�
 n b is the unit normal vector pointing outward the 

oundary surface. 

Together with the boundary conditions Eq. (1b) , the Mellin or 

aplace transform of Eq. (1a) [37,38] , can be obtained in the fol- 

owing discretized form as: 

ψ = b (2) 

here A is the matrix of coefficients that depend on optical prop- 

rties μ = ( μa , μs ) and the geometry of the medium, and b is the

ight-hand side vector that incorporates boundary conditions and 

nternal light sources (e.g., bioluminescent or fluorescent emis- 

ion) inside the medium. For discretization, the node-centered 

nite-volume method is used for the spatial domain and the 

iscrete ordinates method for the angular domain, respectively 

21,22,32] ,. With proper boundary conditions and optical proper- 

ies of the medium, the forward operator A of light propagation 
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s well-defined (i.e., square and non-singular), and thus invertible. 

herefore, Eq. (2) always has a unique and exact solution given by 

 = A 

−1 b , which provides a spatial distribution of light intensities 

t all points inside the medium and on the medium surface. In 

his work, Eq. (2) is solved with a Krylov subspace based block 

iconjugate gradient stabilized (BiCGSTAB) method [19] . With the 

ntensity vector ψ available, a physical quantity of interest such as 

urface measurement z at a certain location can then be expressed 

s a linear functional of the intensity vector ψ: 

 = Qψ (3) 

here Q is the measurement operator that maps ψ onto z and 

epends on imaging systems, i.e., contact and non-contact systems 

ake different forms of Q . 

Noting that ψ in Eq (3) is subject to the forward solution of 

q. (2) , we can write Eqs. (2) and (3) together into the constrained

orm by using a functional called Lagrangian as: 

 

(
ψ;λ

)
= Qψ + λT 

(
Aψ − b 

)
(4) 

here the vector λ is an adjoint variable called a Lagrange mul- 

iplier that constrains the measurement Q ψ to the forward model 

 ψ − b = 0. Following a variational principle [44] , this functional 

 ( ψ; λ) is stationary about functions ψ and λ for which the gra-

ient ∇L is therefore required to be zero with respect to ψ and λ
s: 

 λL 
(
ψ;λ

)
= Aψ − b = 0 → Aψ = b (5a) 

 ψ 

L 
(
ψ;λ

)
= Q 

T + A 

T λ = 0 → A 

T λ = −Q 

T (5b) 

here Eq. (5a) is equal to the forward model and Eq. (5b) is the

djoint model that will be used later for the inverse formulation. 

ubstituting Eqs. (5a) and ( 5b ) into Eq. (4) also gives the following

xpression for measurement z as 

 

(
ψ;λ

)
= Qψ = −λT b = z. (6) 

q. (6) indicates that measurement z can be described in terms of 

wo equivalent mathematical forms: one in terms of forward solu- 

ion ψ and another in terms of adjoint solution λ. This, therefore, 

an suggest that two different approaches are possible for eval- 

ation of the variation in the measurement with respect to the 

ariation in the system parameters, i.e., one approach based on 

 = Q ψ and another approach on z = −λT b . However, it should

e noted that the two approaches lead to the same sensitivity for- 

ulation, although the different procedures are followed, as shown 

n Appendix A . Therefore, we present here the procedure based on 

 = Q ψ. 

To find the variational relationship between measurement z and 

ystem properties A, ψ and b , we consider two systems at differ- 

nt states in terms of system properties: one with the reference 

or base) state and another with the target (or altered) state. The 

eference state can be defined as a state that is already known or 

an be reasonably assumed based on a priori knowledge or data. 

n practice, the reference state can refer to an initial guess of un- 

nown optical properties in static imaging or baseline assumption 

n dynamic imaging. The target state can be defined as a state that 

eviates from the reference state by an unknown amount. There- 

ore, the target state can imply an unknown distribution of optical 

roperties for static imaging, or an unknown next time point for 

ynamic imaging. Hence, the deviation between the reference state 

nd the target state can be formally expressed as the differences in 

he properties of the system A ψ = b as: 

A = A − A , �ψ = ψ − ψ , and �b = b − b (7) 

nd, for the measurement z , 

z = z − z = Qψ − Q ψ = Q�ψ (8) 
3 
here the properties Ā , ψ , b̄ and z̄ represent the reference state 

nd the properties A , ψ, b and z indicate the unknown target state. 

Therefore, with Eq. (7) into A ψ = b , the target state system 

an be rewritten in terms of the reference state and the deviation 

mount as: 

A + �A 

)(
ψ + �ψ 

)
= b + �b (9) 

hich, using the reference state A ψ = b , also reduces to: 

 �ψ = �b − �A ψ − �A �ψ. (10) 

q. (10) is often referred to as the exact perturbed system, which 

epresents the exact variational relationship between the reference 

tate and the target state when optical properties are varied from 

to μ + �μ, the intensity from ψ to ψ + �ψ and the right-hand 

ide from b̄ to b + �b. Here the variation �μ can be a spectral 

bsorption change �μa , scattering change �μs or wavelength- 

ndependent chromophore concentration change �c based on the 

elation �μa = εT 
M 

�c where ε M 

denotes spectral molecular extinc- 

ion coefficients. 

The intensity variation �ψ given by Eq. (10) can now be related 

o the measurement variation �z given by Eq. (8) through the 

djoint model ( Eq. (5b) ). Using the reference state adjoint model 

 

T 
λ = −Q 

T , Eq. (8) can be rewritten as: 

z = Q�ψ = −λ
T 
A �ψ. (11) 

aking the inner product of Eq. (10) with λ and subtracting 

q. (11) gives the generalized exact sensitivity relationship be- 

ween the measurement difference and the variations in the 

ystem properties as: 

z = −λ
T 
(
�b − �A ψ 

)
+ λ

T 
�A �ψ. (12) 

epending on the inverse problems to be solved, Eq. (12) can be 

ecast into two different sensitivity formulations as: 

z = λ
T 
(
�A ψ + �A�ψ 

)
= λ

T 
�A 

(
ψ + �ψ 

)
(13a) 

nd 

z = −λ
T 
( �b ) . (13b) 

he first formulation given by Eq. (13a) is obtained, assuming 

hat the right-hand side b is not varied between the reference 

tate and the new state, i.e., �b = 0. Therefore Eq. (13a) describes 

he sensitivity of intensity variation �ψ onto optical parameter 

ariation �μ alone, and thus can be used for standard DOT 

roblems of reconstructing �μ. On the other hand, the second 

ormulation given by Eq. (13b) is obtained under the assumption 

hat A + �A ≈ A with �A ≈ 0 between the two states. This as- 

umption is often widely made in inverse source problems such as 

ioluminescence and fluorescence tomographic problems, i.e., the 

ackground optical properties can be assumed to be the same both 

or excitation and emission states. As a result, Eq. (13b) reveals the 

inear relationship between source-term variation �b and inten- 

ity variation �ψ. Thus, because Eq. (13b) is already formulated 

nto the linear inverse system, we focus here on Eq. (13a) to derive 

he linear inverse formulation of standard DOT problems. It should 

lso be noted that the whole expression Eq. (12) should be used 

hen source term also changes with absorption and scattering 

oefficients in the medium. 

Since the coefficient matrix A is linear with respect to op- 

ical properties μ, the difference matrix �A can be written as 

A = ( ∂ A / ∂ μ) �μ. For the diffusion equation (DE), this linearity

s not valid in general, but can be used for the cases where the 
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iffusion coefficient D = 1 / 3( μa + μ′ 
s ) can be reasonably approxi- 

ated as D ≈ 1 / 3 μ′ 
s . Then, Eq. (13a) can be expressed as 

z = 

(
λ

T ∂A 

∂μ
ψ 

)
�μ + 

(
λ

T ∂A 

∂μ
�ψ 

)
�μ

= λ
T ∂A 

∂μ

(
ψ + �ψ 

)
�μ = S nt �μ (14a) 

r, equivalently, 

n z − ln z = 

1 

z 

(
λ

T ∂A 

∂μ
ψ 

)
�μ + 

1 

z 

(
λ

T ∂A 

∂μ
�ψ 

)
�μ

= 

1 

z 
λ

T ∂A 

∂μ

(
ψ + �ψ 

)
�μ = 

1 

z 
S nt �μ (14b) 

hen the measurement variation is expressed in the exponential 

orm as z = z̄ e �z/ ̄z instead of z = z̄ + �z. Here S nt is the nontrun-

ated sensing matrix that comprises both the first-order sensitivity 

atrix (first term) and the correction matrix (second term). When 

he variation �μ of optical properties is sufficiently small, i.e., 

 differential change, then the intensity variation �ψ can also 

e assumed to be sufficiently small. In this case, by neglecting 

he second order term �A �ψ ( � �A and �ψ) in Eq. (10) and

lso �μ�ψ ( � �μ and �ψ) in Eq. (14), we can obtain the 

ollowing first-order sensitivity (i.e., linearized perturbation) form 

f Eq. (10) as: 

 �ψ + �A ψ = 0 (15) 

nd Eq. (14) also reduces to 

z = 

(
λ

T ∂A 

∂μ
ψ 

)
�μ = 

[
∂z 

∂μ

]
�μ (16) 

hich forms a basis for the linearized perturbation inverse 

odel based on the first-order sensitivity (Jacobian) coefficient 

iven by ∂ z / ∂ μ [20,24–26] ,. However, in this work we retain the

ross-product correction term �A �ψ in Eqs. (10) and (14) to 

ot compromise accuracy. It should be noted from Eq. (14) that 

he nontruncated sensing matrix S nt can be obtained once the 

ux difference �ψ is determined. In the following, we present 

he method to estimate this flux difference �ψ by deriving the 

rojection matrix that maps the measurement change �z onto the 

ux change �ψ. 

Using the relation ψ + �ψ = ψ, Eq. (13a) can be written as the

ollowing general form: 

z = λ
T 
�Aψ, (17a) 

nd, given M measurements at locations r i ( i = 1, …, M ),

q. (17a) gives the following linear system as: 

 

 

�z 1 
. . . 

�z M 

⎤ 

⎦ = 

⎡ 

⎢ ⎣ 

λ̄1 , 1 . . . λ̄1 ,N 

. . . 
. . . 

. . . 

λ̄M, 1 . . . λ̄M,N 

⎤ 

⎥ ⎦ 

⎡ 

⎣ 

( �Aψ ) 1 
. . . 

( �Aψ ) N 

⎤ 

⎦ . (17b) 

or N s source illuminations at locations r j ( j = 1, …, N s ) partic-

larly with the fixed number of detectors, Eq. (17b) can be ex- 

anded into the matrix-matrix linear system with multiple right- 

and sides as: 

X = �Z (18a) 

ith 

� = 

⎡ 

⎢ ⎣ 

λ1 , 1 . . . λ1 ,N 

. . . 
. . . 

. . . 

λM, 1 . . . λM,N 

⎤ 

⎥ ⎦ 

, 
4 
X = 

⎡ 

⎢ ⎣ 

( �Aψ ) 
1 
1 . . . ( �Aψ ) 

N s 
1 

. . . 
. . . 

. . . 

( �Aψ ) 
1 
N . . . ( �Aψ ) 

N s 
N 

⎤ 

⎥ ⎦ 

, 

Z = 

⎡ 

⎢ ⎣ 

�z 1 1 . . . �z N s 
1 

. . . 
. . . 

. . . 

�z 1 M 

. . . �z N s 
M 

⎤ 

⎥ ⎦ 

. (18b) 

here � ∈ R M × N is the adjoint sensing matrix, X ∈ R N×N s is the 

ystem variation matrix, and �Z ∈ R M×N s is the measurement vari- 

tion matrix. Here the measurement Z is known for the target state 

nd the reference prediction Z , and the adjoint matrix � can also 

e precalculated for the reference state, so Eq. (18a) can be solved 

or X . But note that the adjoint matrix � typically has full row 

ank ( Rank ( �) < N , i.e., rank deficient) as shown in Fig. 1 for its

on-zero singular value spectrum. Therefore, we solve the linear 

ystem given by Eq. (17b) or Eq. (18) by using the rank deficient 

oore-Penrose least squares method, which leads to the solution 

 = �T ( ��T ) −1 �Z with sparsity constraints. 

Once the system variation matrix X = 

 �Aψ 1 , �Aψ 2 . . . , �Aψ N s 
] is obtained for all N s sources, the 

ntensity variation vector �ψ can be easily calculated for all N s 

ources by using Eq. (10) as: 

	 = −
(
A 

)−1 
X = −

(
A 

)−1 
�T 

(
��T 

)−1 
�Z = H�Z (19) 

here the matrix �	 = [ �ψ 1 , �ψ 2 , . . . , �ψ N s 
] ∈ R N×N s and H ∈ 

 

N × M is the projection operator that transforms measurement 

ariation �Z back into flux variation �	. Eq. (19) is now used into 

q. (14) to evaluate the nontruncated sensing matrix S nt . Since A 

nd � are defined at the reference state, S nt can also be precalcu- 

ated before reconstruction is started. Therefore, the unknown op- 

ical property change �μ can be found by solving the following 

inear least squares problem of Eq. (14) as 

ˆ μ = argmin 

�μ
‖ �Z − S nt �μ‖ 

2 
2 (20) 

here �Z ∈ R (N s M× 1) , S nt ∈ R (N s M×N) and �μ ∈ R ( N × 1) . 

Thus, given the target measurement z , the reference predic- 

ion z̄ and the reference system matrix Ā ( ̄μ) , the unknown opti- 

al property variation �μ can be found in a noniterative manner 

hrough Eqs. (15) - (20) . The term ‘noniterative’ is used here to em- 

hasize that the SENSOR algorithm does not require repeated solv- 

ng of the forward model while iteratively updating �μ. This fea- 

ure of the SENSOR method is distinct from traditional nonlinear 
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Fig. 2. The sparse function values r σs 
(x ) with different sparsity parameter σ s . 
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inimization algorithms that solve the forward problem repeat- 

dly with an iterative update of �μ, which often leads to large 

PU time in the total reconstruction time. Also, it should be noted 

hat the approach has no restriction, in principle, placed on the 

ariation amount �A for its validity, while the linear perturbation 

pproximation requires the variation �μ to be sufficiently small. 

lso it should be noted that the formulations presented here can 

e directly applied to a multispectral tomographic model [22] as 

iven in Appendix B . 

.2. Asymptotic l 0 norm minimization and sparsity enhancement 

The sparsest representation of the solution �μ to Eq. (20) can 

e achieved with the following l 0 -norm minimization as: 

rg min 

�μ
‖ �μ‖ 0 subject to ‖ �Z − S nt �μ‖ 

2 
2 (21) 

here ‖ �μ‖ 0 is the l 0 norm that represents the number of non- 

ero elements in �μ. Mathematically, the optimization problem 

21) subject to the l 0 norm is a non-convex problem, which means 

t is very difficult to find a l 0 constrained global minimum and thus 

he solution can easily fall into one of local minima. Another dif- 

culty with l 0 norm comes from its non-differentiability. Current 

ethods for solving such non-convex problems as Eq. (21) have 

een focused mainly on so-called greedy algorithms of matching 

ursuit (MP) type [47-51] and convex relaxation algorithms [52- 

6] based on a l 1 norm and linear programming. These two kinds 

re useful for finding sparse solution but have disadvantages of re- 

uiring a priori information about the sparsity, relatively high sen- 

itivity to measurement noise, or limited performance in the asym- 

etric measurement systems with non-fixed source-detector con- 

guration (i.e., varying numbers of sources and detectors) [57] . 

To address this problem, we propose here a new approach that 

chieves a l 0 norm asymptotically from a smooth l 2 norm, similarly 

o the work [58-59] as done for a sparse signal recovery in the 

eld of signal processing. Therefore, the approach is started with a 

lobally convergent convex method ( l 2 ) and gradually converted to 

 non-convex method that achieves the sparsest solution. To this 

nd, the asymptotic sparse function is designed here that has the 

ollowing form: 

 σs ( x i ) = 

x 2 
i 

x 2 
i 

+ σs 

(22) 

here x i is the i -th element of the sparse solution vector �μ and 

is the tuning parameter that adjusts a level of sparsity in the 

olution. Fig. 2 shows the values of the sparse function r σ (x i ) as a

unction of x . We observe that as the value of σ goes close to zero,
i 

5 
 σs ( x i ) ≈ 1 when x 2 
i 

>> σ and r σs ( x i ) ≈ 0 when x 2 
i 

� σ , whereas

s σ increases r σs ( x i ) resembles a smooth l 2 -norm function. There- 

ore, with the asymptotic function r σs ( x i ) , the l 0 -norm of �μ can 

e approximated as 

 �μ‖ 0 ≈ R = 

∑ 

i 

r σ ( x i ) = 

∑ 

i 

(
x 2 

i 

x 2 
i 

+ σs 

)
. (23) 

.3. Minimization with SENSOR algorithm 

With the asymptotic l 0 -norm function given by Eq. (22) , the 

riginal optimization problem Eq. (21) is now rewritten into the 

ollowing constrained form: 

ˆ μ = arg min 

�μ

{ 

f ( �μ) = ‖ �Z − S nt �μ‖ 

2 
2 + β

∑ 

i 

r σ ( �μi ) 

} 

(24) 

here the first term is the data fit error and the second term is 

he l 0 norm constrained to enforce the sparsest solution and β is 

he regularization parameter that balances the effort s of minimiz- 

ng the data fit error and the l 0 term at once. Therefore, the sparest

olution to Eq. (24) can be found at the point that minimizes the 

ismatch ‖ �Z −S �μ‖ 2 2 and the l 0 norm simultaneously. 

The minimization of Eq. (24) starts with a large value of σ s , 

nd gradually decreases it to a smaller value to approximate the 

 0 norm asymptotically. The large value of σ s is required in the 

eginning of this minimization process because it ensures that an 

nitial search �μ0 is already in the vicinity (i.e., local convex) of 

lobal minimum and thus the risk of falling into a local minimum 

an be avoided. The inverse solution to Eq. (24) with a very large 

alue of σ s → ∞ is given by �μ0 = S T ( SS T ) −1 �Z , which is often

eferred to as the pseudo inverse solution and can be efficiently 

valuated using the truncated singular value decomposition (SVD) 

ethod. From this initial smooth solution �μ0 , we then find a 

onzero maximum value | �μ0 | and set it to the initial value σ 0 
s 

or the sparsity tuning parameter. This initial value σ 0 is then ad- 

usted to decrease monotonically by a predefined factor as σ k 
s = t σs 

ith 0.5 ≤ t < 1 at k -th iteration. 

Starting with �μ0 , we solve the minimization problem 

q. (24) with the projected gradient descent method [60] . The 

radient calculation of f ( �μ) is straightforward and given as 

 = ∇f ( �μ) = −S T ( �Z − S�μ) + β ∇R ( �μ) (25) 

here ∇R ( X ) is the gradient vector of the l 0 norm Eq. (23) given

s 

R ( �μ) = 

[ 
2 σs x 1 x 

2 
1 

( x 2 1 
+ σs ) 

2 . . . 
2 σs x m x 

2 
m 

( x 2 m + σs ) 
2 

] T 
. (26) 

ith the gradient g available, the iterate is generated as 

μk ← �μk − ρk g 

k , (27) 

nd �μ in Eq. (27) is further updated into the feasible solution 

et through orthogonal projection as 

μk +1 ← �μk + ̂

 S 

(
�Z − S�μk 

)
(28) 

here ˆ S is the orthogonal projection matrix defined as 

ˆ 
 = S T 

(
SS T 

)−1 
or ˆ S = 

(
S T S 

)−1 
S T (29) 

epending on the rank of the matrix S . The regularization parame- 

er β is started with β0 ‖ S T �Z ‖ and adjusted iteratively according 

o the data fit error ‖ S T ( �Z − S �μ) ‖ as β = β0 ‖ S T ( �Z − S �μ) ‖ .
ased on all the descriptions so far, the detailed steps of the 

ENSOR algorithm are given in the following table (see Table 1 ). 
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Table 1 

Sensitivity Equation based Noniterative Sparse Optical Reconstruction (SENSOR) algorithm. 

Initialize �Z, H , S , σ T 
s , α, β0 , t, KMAX , IMAX , err , ε, tol 

Find initial support region supp = { j | Cov = �Z t S i,j > tol } 

Obtain reduced S ≡ S supp = { S j | j ∈ supp ( j )} where S j is the j -th column vector of S 

Set �μ0 = S T (SS T ) 
−1 

�Z, σ 1 
s = max (| �μ0 | ) , β = β0 ‖ S T �Z‖ ∞ 

Compute sparsity-level sequence { σ 1 
s , tσ

1 
s , . . . , t 

KMAX−1 σ 1 
s } with σ k 

s = max ( t k −1 σ 1 
s , σ

T 
s ) 

FOR k = 1, KMAX 

Set σs = σ k 
s and i = 1 

WHILE ( err > ε AND i < IMAX ) 

Update �μ ← �μ + ρk d k with d = - g in Eqs. (23) - (27) 

Update �μ ← �μ + ̂

 S (�Z −S�μk 
) with ̂  S in Eqs. (28) - (29) 

Compute residual err = ‖ ρk d k ‖ 
Set i = i + 1 

END 

Update support region supp = { j | Cov = ( �Z − S �μ) T S i,j > tol } 

Update reduced S k supp = { S j | j ∈ supp( j) } where S j is the j -th column vector of S 

Set �μk = �μi and k = k + 1 

END 

Output �μoptimal = �μk 

Fig. 3. Properties of the sensing matrix S with and without preconditioning with 

25 × 25 source-detector measurements: (a) singular value spectrum; (b) correlation 

distribution between column vectors. 
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.4. Preconditioning and correlation-based dimensional reduction 

In the linear inverse formulation �Z = S �μ as described ear- 

ier, the sensing matrix S is ill-conditioned because, in a typ- 

cal setting of optical imaging, the system is under-determined 

 M � N ) and the singular values of S cluster around zero, i.e., 

he columns of the sensing matrix are highly correlated. There- 

ore, we precondition the sensing matrix S towards making the 

orrelations between the columns smaller (i.e., making the col- 

mn vectors linearly more independent). To this end, we com- 

ute in this work the preconditioner by minimizing the Frobe- 

ius norm as P = arg min ‖ PS − I ‖ F , which leads to the solution 

hat makes the PS close to an identity matrix. For full row rank 

e.g., under-determined) system, the preconditioner P is given as 

 = S T ( SS T ) −1 , also known as the Moore-Penrose least squares so-

ution matrix, while for full column rank (e.g., over-determined) 

ystem, P is given as P = ( S T S ) −1 S T . In practice, this pseudo-inverse

reconditioner matrix P can be easily evaluated by using the single 

alue decomposition (SVD) method. By multiplying the precondi- 

ioner P = S T ( SS T ) −1 on both sides of �Z = S �μ, we then obtain

he preconditioned sensing matrix S ∗ and the preconditioned mea- 

urement matrix Z 

∗ as 

 

∗ = PS , and �Z 

∗ = P�Z . (30) 

Fig. 3 shows the singular value spectrum and the distribu- 

ion of correlation values between column vectors of the original 

ensing matrix S and the preconditioned sensing matrix S ∗ with 

he 25 × 25 source-detector measurements. The results clearly 

emonstrate that the preconditioned system has uniform singu- 

ar value distribution at 1 and clustered correlations around zero 

i.e., highly independent column vectors in S ∗, while for the origi- 

al non-preconditioned matrix S the correlation values are higher 
6 
nd spread over the larger range and also many singular values are 

lose to zero (i.e. highly correlated column vectors in S ). Thus, the 

reconditioner P = S T ( SS T ) −1 can stabilize the inversion process by 

aking the sensing matrix better conditioned. 

Furthermore, we employ here an efficient dimensional reduc- 

ion scheme that reduces the sensing matrix iteratively by mak- 

ng use of the correlation information between measurements and 

olumns of the sensing matrix. The j -th column S j of the sensing 

atrix can be viewed as a vector of weights that projects the op- 

ical property change �μj of the j -th element (or voxel) onto the 

easurement space �Z, as 

Z = 

∑ 

j 

S j �μj (31) 

Z = S 1 �μ1 + S 2 �μ2 + . . . S j �μ j + · · · + S N �μN . (32) 

Therefore, the correlation Cor ( �Z, S ) between �Z and columns 

 , which is given by Cor ( �Z, S ) = �Z 

T S , can be used to deter-

ine which elements of �μ have high correlation with �Z and 

hus should be included into reconstruction and which elements 

f �μ have low correlation with �Z and can be excluded from re- 

onstruction. To maximize computational efficiency, this reduction 

an be applied recursively throughout the optimization process, at 

ach step of iterations, in order to keep adjusting the sensing ma- 

rix into the reduced one that consists of high-correlation columns 

lone. As a result, this can lead to a great reduction in the sens- 

ng matrix and make sparse reconstruction computationally very 

fficient. 

.5. Parallel implementation 

Solving large linear systems is a performance bottleneck both 

n the forward and inverse computations in terms of computation 

ime because it comprises a large number of matrix-matrix and 

atrix-vector products and operations. Therefore, parallel solving 

f these linear systems is the most effective way to improve com- 

utational efficiency. In this work, we focus on parallel solving 

f the linear systems resulting from multiple source illuminations 

iven by �Z = S �μ (Eqs. (17)-(18)). Parallel implementation of 

olving �Z = S �μ is done on a framework of OpenMP [61] with 

ulticore CPUs. To reduce communication overhead between K 

rocessors taking part in parallel computing, we use static schedul- 

ng so that K tasks are optimimally distributed over K available 

rocessors. In addition, synchronization is further optimized so 

hat threads do not wait until other threads are finished, leaving 

one of K processors waiting or idling during computation. 
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Fig. 4. Comparison in accuracy between the linearized approximation and the nontruncated sensitivity formulation: (a) problem setup; (b)-(d) calculated E , M 

1 , and L ( s ), 

respectively. Note that s = 0.0 0 01 is used in L ( s ). 
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Fig. 5. 3D numerical model and source-detector configuration. 
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. Results and Discussions 

In this section, we first show the validity and accuracy of the 

ontruncated sensitivity equation Eq. (10) , which is crucial to the 

oniterative inverse formulation of our SENSOR algorithm. Then 

e discuss in details the performance of the SENSOR algorithm 

sing both numerical and experimental data. In both cases, we fo- 

us on the reconstruction of absorption coefficients in the medium. 

owever, it should be noted that the method presented here can 

e used without loss of generality across all domains of DOT appli- 

ations, including the simultaneous reconstruction of both absorp- 

ion and scattering. The code performance is evaluated in terms of 

PU time and accuracy with an emphasis on spatial and temporal 

esolution. To illustrate the performance metrics, we compare the 

ew algorithm with our existing PDE-constrained reduced-Hessian 

equential quadratic programming (rSQP) method [21-22] . This ap- 

roach has been known to be the fastest iterative method of its 

ind to date since it solves the forward and inverse problems si- 

ultaneously within a framework of PDE-constrained optimization 

21-22] . 

.1. Validity and accuracy of nontruncated sensitivity formulation 

To validate the accuracy of nontruncated sensitivity formula- 

ion, we provide here a comparison between the linearized sensi- 

ivity formulation ( Eq. (15) ) and the nontruncated sensitivity equa- 

ion ( Eq. (10) ) on their computed values of three parameterized 

ime data E , M 

1 , L ( s ), with different variations �μa in absorp-

ion coefficient. For this comparison, the 4 cm × 4 cm × 2 cm 

lock phantom is used with the background absorption and re- 

uced scattering coefficients given by of μb 
a = 0 . 15 c m 

−1 and 

′ 
s = 9 c m 

−1 , and with a 0.4 cm × 0.4 cm × 2 cm cylindric in-

lusion of absorption inhomogeneity μa = μb 
a + �μa embedded 

ithin the medium ( Fig. 4 a). The amount �μa is varied from 

μa = 0.075 cm 

−1 to 1.05 cm 

−1 , corresponding to 50% to 700% of 
b 
a respectively. 

The computations of three parameterized time data are done 

ith varying single-detector distance Fig. 4 a). The accuracy of the 

wo formulations Eqs. (10) and (15) is compared against the exact 

olution obtained with solving the original equation ( Eq. (2) ) with 

iven optical properties. Fig. 4 shows the results with source- 

etector separation d = 3 cm, in which the parameterized data are 

omputed using the two formulations as a function of absorption 

ariation �μa . As shown in Fig. 4 b- 4 d, the nontruncated formula- 

ion gives a perfect agreement with the exact solution Eq. (2) for 

ll variations, while the linearized formulation deteriorates rapidly 

ith increasing variation, with error up to 100%. Based on ex- 

ensive comparisons on accuracy for other cases, although not 

resented here, we found that the nontruncated sensitivity for- 

ulation provides accurate predictions regardless of absorption 

ariations and thus can be used for quantitative imaging in all 
7 
ange of absorption variations, whereas the linearized formulation 

an only be used within the limit of linearization. 

.2. Numerical experiments 

To simulate the situation of neural activity in the cortex be- 

ow the skull, we consider a 5 cm × 5 cm × 0.7 cm numerical 

odel as shown in Fig. 5 . The background optical properties of 

he numerical phantom are given as absorption coefficient of μb 
a = 

 . 15 c m 

−1 , scattering coefficient of μb 
s = 90 c m 

−1 , anisotropy fac- 

or of g = 0.9 and refractive index of n = 1.4. The 7 mm thickness

nd μb 
s = 90 c m 

−1 scattering coefficient of the domain, which cor- 

esponds to ∼ 60 mean free paths (MFPs), are set to mimic the hu- 

an skull within acceptable range [ 62 , 63 ]. All targets are located 

n the bottom (below the “skull”) at depth of 7 mm with absorp- 

ion inhomogeneity of μt 
a = 0 . 65 c m 

−1 that is ∼4 times larger than

he background absorption: absorption contrast is set high in order 

o show that the SENSNOR algorithm performs well beyond typi- 

al absorption contrast (20 ∼40%) in brain activities. The medium is 

lso discretized with a mesh of N = 51 × 51 × 8 = 20808 voxels. 

s shown in Fig. 5 , 9 sources and 9 detectors are placed at regu-

ar intervals of 1 cm on the top surface of the medium. This yields 

 total of 81 source-detector pairs that can be used for simulated 

easurement and reconstruction. 

For numerical experiments, we generate noise-free data z̄ (t) by 

olving the time-dependent equation of radiative transfer (TD-ERT) 

ith a known distribution of optical properties for test cases, with 

he same source-detector configuration as shown in Fig. 5 . Syn- 

hetic measurements containing noise are simulated by adding a 

oise term to z̄ in the form z (t) obs = z̄ (t) + ω σnoise , where σ noise 

s the standard deviation of measurement noises and ω is the ran- 

om variable with normal distribution. This simulated noisy time- 

f-flight (ToF) measurement z ( t ) obs are then processed with Mellin 

nd Laplace transforms to give new parameterized data sets given 

y E , M 

1 , L ( s ). For these three parameterized data E, M 

1 and L , the

orresponding sensitivity and adjoint equations are expressed in 

he explicit forms as follows: 

z E = λ
T 

E �A 

(
ψ E + �ψ E 

)
, and A 

T 
λE = −Q 

T (33a) 
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Fig. 6. Normalized correlation distribution between measurement and columns of 

the sensing matrix: (a) �Z and S without preconditioning; (b) with preconditioned 

Z ∗ and S ∗ . 
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z M 

= λ
T 

M 

1 

{ 

�A 

(
ψ M 

1 + �ψ M 

1 

)
− B �ψ E 

} 

, and A 

T 
λM 

1 = −Q 

T (33b) 

z L = λ
T 

L �A 

(
ψ L + �ψ L 

)
, and A 

T 
λL = −Q 

T (33c) 

hich gives �ψ E , �M 

1 and �ψ L with Eqs. (17)- (19) , and leads to

he inverse formulation for the normalized data 〈 t 〉 = M 

1 / E and
ˆ 
 (s ) = L (s ) /E as 

〈 t 〉 = 

1 

z E 
λ

T 

M 

1 

{
�A 

(
ψ M 

1 + �ψ M 

1 

)
−δV 

c 
�ψ E 

}

−〈t 〉 
z M 

λ
T 

E �A 

(
ψ E + �ψ E 

)
= S 〈t 〉 

nt �μ (34a) 

ˆ L ( s ) = 

1 

z E 
λ̄T 

L �A 

(
ψ L + �ψ L 

)
−

ˆ L ( s ) 

z̄ L 
λ̄T 

E �A 

(
ψ̄ E + �ψ E 

)
= S 

ˆ L 
nt �μ (34b) 

he above two normalized quantities 〈 t 〉 and 

ˆ L (s ) are used as input

o the reconstruction code as described in Table 1 . Also, by def- 

nition L (s ) = 

∫ 
e −st ψdt , the Laplace parameter s in L ( s ) describes

n exponential change rate in the temporal point spread function 

TPSF) curve. Therefore, the small s involves late arriving photons 

i.e., photons that travelled deeper and longer inside the medium), 

hereas the larger s corresponds to early arriving photons (i.e., 

hotons that travelled near the line of sight between the source 

nd the detector). Thus, the parameter s brings region specific data 

o reconstruction and affects spatial resolution. For our reconstruc- 

ions, we use L ( s = 0.0 0 01) since it brings high sensitivity to ab-

orption changes in the target region ( ∼at depth of 7 mm). 

As we described earlier, we also present here how the corre- 

ation between measurement �Z and sensing matrix � can be 

sed to reduce the sensing matrix for computational efficiency. The 

orrelation distribution �Z 

T S is computed both with and with- 

ut the preconditioner given by Eq. (31) for the problem setup 

ith 9 sources and 9 detectors ( Fig. 5 ). Fig. 6 shows a histogram

f normalized correlation coefficients between measurements and 

olumns of the sensing matrix (corresponding to voxel contribu- 

ion). It can be clearly seen that most of voxels have zeros or 

lose-to-zero correlation and only a fraction ( ∼1600 voxels) has 

on-zero correlation with measurement and thus needs to be used 

or reconstruction. Fig. 6 also demonstrates that the precondition- 

ng makes the correlation distribution more favorable towards the 

ensing matrix reduction. That is, almost 18500 voxels have near- 

ero correlation for the preconditioned system while, without the 

reconditioning, fewer elements ( ∼10 0 0 0 elements) exhibit near- 

ero correlation. As a result, with the preconditioning the origi- 

al sensing matrix can be reduced to 10 % of its original size in

he first reduction step alone, and further reduced close to the tar- 

et sparsity level ( � N ) during optimization, which can lead to a 

reat saving in the reconstruction time. Based on this observation, 

e apply our correlation-based reduction scheme to all reconstruc- 

ions presented in this work. 
8 
.2.1. Impact of noise 

We examine here the effects of noise on the code performance 

sing various absorption inclusions: one to three targets at the 

ame depth and five targets at different depths. The noise im- 

act is tested with noise free and 15 dB noise level based on 

NR = 10log ( z ( t )/ σ ) where z ( t ) is the temporal point spread func-

ion (TPSF) of light. As mentioned earlier, we use parameterized 

ata (e.g., E , M , L ), not TPSF data, for reconstruction, and these pa-

ameterized data are analytically obtained with Mellin or Laplace 

ransform of the original TPSF data. So to correctly simulate param- 

terized data containing noise, we first generate noise-free TPSF 

 ̄z (t) ) by solving the TD-RTE, and then add a random noise ε( t )

f 15 dB to z̄ (t) in order to obtain noise-added TPSF as z(t) = 

¯ (t) + ε(t) . Then we perform Mellin and Laplace transforms of z ( t )

o compute noise-added parameterized data for E , M and L , re- 

pectively, which are used as input to the reconstruction code. As 

 result, the noise level of parameterized data differs from the 

oise level of the original TPSF data. For the TPSF data with 15 dB 

oise, the resulting noise level of parameterized data, after Mellin 

r Laplace transformation, is reduced to approximately 50 dB. So it 

hould be noted that our reconstruction is done on these ∼50 dB 

arameterized data that is extracted from the 15 dB TPSF data z ( t ).

ll targets are of the same size of 1 mm 

3 . The two-target cases are

urther divided into two different cases having the targets sepa- 

ated by 1 mm and 2 mm, respectively. Fig. 7 shows the target ori- 

ntations for all cases considered here. With 〈 t 〉 and 

ˆ L ( s = 0 . 0 0 01 ) 

ollected for all 81 source-detector pairs, the reconstructions are 

erformed using the SENSOR method and the rSQP method. The 

arameters used for the SENSOR reconstruction are as follows: the 

egularization adjusting factor β0 = 0 . 1 ∼ 0 . 01 , the target spar-

ity level parameter σ T 
s = 1 . 0 × 10 −6 , the sparsity decreasing fac- 

or t = 0.5 and the number of maximum iterations KMAX = 20. 

he rSQP reconstruction is done with l 2 norm regularization and 

erminated when either the objective function value or its relative 

hange becomes as small as 1.0 × 10 −6 . Note that numerical re- 

ults reported here are with the 〈 t 〉 data as we found that 〈 t 〉 and
ˆ 
 (s ) give almost identical results both in terms of CPU time and 

ccuracy. 

Fig. 8 shows the cross-sectional maps at depth of 7 mm from 

he 3D reconstruction results obtained with the SENSOR and the 

DE-constrained method using noise free data ( ∞ dB). Note that 

he targets are not seen elsewhere except at depth of 7 mm. It can 

learly be seen that the SENSOR algorithm accurately retrieves the 

argets in all cases, achieving maximum sparsity through l 0 -norm 

inimization, whereas the rSQP method only leads to underesti- 

ated and blurry results as commonly observed for l 2 -norm based 

mage reconstruction. The line profiles passing across the targets 

re presented in Fig. 9 to provide a close look at the target area.

s shown in the figures, the targets are resolved very well in all 

ases, even in the 1mm-separation two-target case. 

Fig. 10 shows that the results obtained with 50 dB parameter- 

zed data ( ∼15 dB TPSF data) are almost identical to those with 

oise-free data (also see Table 2 ), which is true both for the SEN- 

OR method and the rSQP method. This observation demonstrates 

he robustness of parameterized data to noise. This robustness 

s attributed mainly to an integral operator of Mellin or Laplace 

ransform used to obtain E, M , and L . In other words, fundamen- 

ally, the integral operator serves as low-pass filters, because time 

arying random noises distributed around true values are can- 

elled out when integrated over time ( Appendix B ). As a result, 

his makes parameterized data E, M , and L essentially far less af- 

ected by random noises than the original temporal point spread 

unction (TPSF) that is easily compromised by such noises. 

In addition, we also examine the depth resolution with the 

ENSOR algorithm. To this end, we consider the case with five ab- 

orption targets located at different depths: one target at depth of 
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Fig. 7. Exact target orientations and their absorption coefficients for all test cases: (a) single target; (b) two targets 2 mm apart from center to center (1 mm from side to 

side); (c) two targets 3 mm apart from center to center(2 mm from side to side); (d) three targets. The target size is 1 mm 

3 , the same for all cases. 

Fig. 8. Reconstructions with noise free data obtained using the SENSOR method (top row) and the rSQP method (bottom row): (a) single target; (b) two targets 2 mm apart 

from center to center (1 mm from side to side); (c) two targets 3 mm apart from center to center (2 mm from side to side); (d) three targets. The target size is 1 mm 

3 , the 

same for all cases. 

Fig. 9. Line profiles extracted from the images presented in Fig. 8 , obtained with the SENSOR method; (a) single target; (b) two targets 2 mm apart from center to center 

(1 mm from side to side); (c) two targets 3 mm apart from center to center (2 mm from side to side). The target size is 1 mm 

3 , the same for all cases. 

Fig. 10. Cross-sectional maps from the 3D reconstruction with parameterized temporal data with 50 dB noise level (corresponding to the TPSF data z ( t ) with approximately 

15dB noise level) by using the SENSOR method (top row) and the rSQP method (bottom row): (a) single target; (b) two targets 2 mm apart from center to center (1 mm 

from side to side); (c) two targets 3 mm apart from center to center (2 mm from side to side); (d) three targets. The target size is 1 mm 

3 , the same for all cases. 

9 
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Table 2 

The reconstruction CPU times and accuracy obtained with the SENSOR and rSQP methods using noise-free data and 

noise-added data, respectively. The numbers in parenthesis indicate the speedup factors by SENSOR over rSQP. Note that 

the 50 dB noise in E , M , L corresponds to approximately 15 dB noise in TPSF z ( t ). 

Schemes Cases CPU time (speedup factor) Correlation ρ Deviation δ

Noise free SENSOR Single target 0.021 s (17619) 1.0 0.01 

Two-target 0.021 s (17667) 0.95/0.99 0.32/0.11 

Three-target 0.023 s (16043) 0.99 0.02 

rSQP Single target 370 s 0.22 0.98 

Two-target 371 s 0.27 0.96 

Three-target 369 s 0.18 0.98 

50 dB ( ∼15 dB in z ( t )) SENSOR Single target 0.021 s (17619) 0.99 0.01 

Two-target 0.023 s (16130) 0.91/0.99 0.43/0.14 

Three-target 0.022 s (16727) 0.99 0.02 

rSQP Single target 370 s 0.22 0.97 

Two-target 371 s 0.25 0.98 

Three-target 368 s 0.18 0.98 

Fig. 11. True and reconstructed distributions of the 5 targets located at different depths: 3D true distribution of the 5 targets (top row); 2D cross-sectional maps at different 

depths extracted from the 3D reconstruction (second and third rows). 
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 mm, one target at depth of 5 mm, and three targets at depth of

 mm, respectively ( Fig. 11 ). The background optical properties are 

ept the same as before with μb 
a = 0 . 15 c m 

−1 and μb,t 
s = 90 c m 

−1 ,

ut this time the targets are set to have much lower absorption 

t μt 
a = 0 . 25 c m 

−1 to mimic absorption change (20 ∼40% increase) 

ue to neural activities and metabolism in the human brain. To 

xamine depth resolution, the cross-sectional images are obtained 

t different depths from the 3D reconstruction. Fig. 11 shows the 

ross-sectional images at all depths from z = 0 cm to 0.7 cm be-

ow the top surface for the case with the five targets. The results 

learly show that the SENSOR method performs excellent in depth 

esolution as well as spatial resolution between the targets – all 

he targets are reconstructed exactly where they are located, not 

isible elsewhere. 

.2.2. CPU times and accuracy quantification 

The accuracy of each reconstruction is quantified using the cor- 

elation coefficient ρ ∈ [ − 1, 1] and the deviation factor δ ∈ [0, 

 ) defined as 

= 

∑ n 
i =1 

(
μr 

i 
− μr 

)
(μt 

i 
− μt ) 

( n − 1 ) σ ( μr ) · σ ( μt ) 
, δ = 

√ ∑ n 
i =1 

(
μt 

i 
− μr 

i 

)2 
/n 

σ ( μt ) 
(35) 

here μt is the true image, μr is the reconstruction image, μt and 

r are the mean values and σ ( μt ) and σ ( μr ) are the standard de-
10 
iations of μt and μr respectively, and n refers to the total number 

f distinct mesh nodes. By definition, the correlation coefficient ρ
an take any value between -1 and 1, with ρ = 1.0 correspond- 

ng to an exact match between the true and reconstruction images, 

ut it typically takes the positive value between 0 and 1 unless in- 

ut data to reconstruction is extremely noisy. The deviation factor 

∈ [0, ∞ ) denotes normalized root mean square error (RMSE). Ac- 

ordingly, the closer ρ gets to 1 and δ to 0, the better is quality of 

econstruction. 

Table 2 provides the CPU times and accuracy in terms of cor- 

elation ρ and deviation δ factors as given in Eq. (35) . As shown 

n Table 2 , the SENSOR method gives a significant speedup in the 

econstruction process in all cases considered here. For the case 

f the noise-free data, the SENSOR method achieves sparsest solu- 

ion in ∼20 milliseconds, while the rSQP method takes about ∼370 

econds to convergence. Therefore, the SENSOR method is about 

70 0 0 times faster than the rSQP method. Similar CPU times are 

bserved for the noise case: 20-23 milliseconds with the SENSOR 

hat corresponds to a speedup factor of ∼170 0 0 (see Table 2 ). Note

hat both of the two methods are implemented with OpenMP for 

arallel computing and executed on the same machine (Intel Core 

9 process). Therefore, it is clear that the speedup of the SENSOR 

ethod is achieved by the algorithm advances made with the non- 

terative nature of the inverse formulation and the sensing matrix 

eduction, which is not exploited by the iterative rSQP method. 
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Fig. 12. Impacts of inner iterations and sensing matrix reduction: (a) RMSE with 

increasing inner iterations; (b) reduced sensing matrix with the number of outer 

iterations. 
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CPU times can also be affected by inner iterations that are per- 

ormed for each σ s in the sequence { σ 1 
s , σ

2 
s , . . . , σ

IMAX 
s } as de- 

cribed in the algorithm ( Table 1 ). Fig. 12 a shows how the num-

er of inner iterations affects convergence for the case with three 

argets. In this case, inner iterations improve the data fit only for 

he first two iterations, which suggests that the number of inner 

terations can be reduced to a small number to avoid unnecessary 

nner iterations. Based on this observation, the number of inner it- 

rations is fixed at 2 in all simulation cases presented here. The 

ensing matrix reduction is one of the major algorithmic features 

eading to fast convergence. Fig. 12 b demonstrates how efficiently 

he sensing matrix can be truncated at each step of the outer iter- 

tions based on the correlation threshold: starting from the 20808 

olumns (corresponding to the 20808 voxels of the medium), the 

atrix is reduced to only 7 columns at convergence, which leads 

o a significant time saving in the total reconstruction time. 

In addition to the CPU time, the accuracy of reconstruction 

s measured and reported here to address spatial resolution. The 

orrelation factor ρ( μe , μr ) ∈ [ − 1, 1] and the deviation factor 

( μe , μr ) ∈ [0, ∞ ) as defined in Eq. (35) are computed for the

ottom area where the absorption targets are located. The val- 

es of ρ( μe , μr ) and δ( μe , μr ) are given in Table 2 . In all cases,

he SENSOR method provides very high correlation factors of ρ
1, which means highest correlation (i.e., highest spatial resolu- 

ion) is achieved. The deviation factors δ, which indicates RMSE, is 

uch lower with the SENSOR method in all cases than the rSQP 

ethod. In both methods, as expected, the 1mm-separation case 

ives larger deviation from true image than the 2mm-separation 

ase, i.e., δ1mm = 0.32 and δ2mm = 0.11 with the SENSOR method, 

hile δ1mm = 0.43 and δ2mm = 0.14. Also, there is no noticeable 

ifference in both ρ( μe , μr ) and δ( μe , μr ) between noise-free and 

5 dB cases for both methods. Again, as discussed earlier, this is 

ue to the robustness of parameterized data used here on noise. 

.3. Experimental results 

We present here absorption reconstruction results using exper- 

mental data. Fig. 13 shows the time-domain (TD) system for mea- 

urements of time-of-flight (ToF) light intensities on the medium 

urface. The system consists of three main parts: illumination, de- 

ection, and target medium. For illumination, we use an ultrashort 

ulsed laser (NKT Photonics SuperK EXTREME) that emits 100 fem- 

oseconds pulses at wavelength of 680 nm as a light source, with 

uration of 100 femtoseconds. The detection of temporal light in- 

ensities traveling back to the medium surface is performed by a 

ime-correlated single photon counting (TCSPC) system from Pi- 

oQuant that employs a fast-gated single-photon avalanche diode 

SPAD) from MPD with a temporal resolution of 50 picoseconds. 

s shown in Fig. 13 , the galvo mirrors are used to allow precise

ight delivery onto and from the skull tissue phantom. 

Similar to the numerical phantom, the 5 cm × 5 cm × 0.7 cm 

cattering medium is employed as the background medium. 
11 
he optical properties of this background medium are given by 

a = 0.0 cm 

−1 , μs = 90 cm 

−1 , g = 0.9 and n = 1.4. Locations and

bsorption strengths of targets are generated by using an E-Ink dis- 

lay that is placed behind the scattering phantom block ( Fig. 13 ). 

he display panel has an array of pixels that can be programmed 

o generate various patterns and structures at different gray levels 

i.e., different absorption levels) on a white background. Note that 

he white background of the display panel is considered as perfect 

catterer. With this experimental setup, we perform spatial reso- 

ution tests: one single target, two targets at different separations 

nd more complex pattern target. 

.3.1. Single-target and two-target cases 

We looked at the single and two-target cases. As in numerical 

xperiments, the targets are of the same size of 1 mm 

3 and all 

ocated on the bottom at depth of 7 mm. The two-target case has 

he targets separated by 1mm distance from side to side (2mm 

enter to center). For computational efficiency, we use a dense 

ource-detector configuration, in which the 5 × 5 sources and 

 × 5 detectors are located at intervals of 2mm approximately 

n the 0.5 cm × 0.5 cm top surface area over the targets located 

n the middle of the bottom surface. As the sources and detectors 

re clustered on smaller region than in numerical simulations, 

he computational domain for reconstruction is also reduced to 

he dimension of 2 cm × 2 cm × 0.7 cm accordingly ( Fig. 14 ).

his source-detector configuration leads to a total of 25 × 25 

ime-of-flight (ToF) measurements. Two separate measurements 

re made for calibration purpose: one without a target (so-called 

reference state”) and one with a target (so-called “target state”). 

Fig. 15 shows an example of ToF light intensity measurement 

or the reference state (blue) and the target state (red) obtained 

ith source number 7. ToF data is treated with a 50-point Gaussian 

t for noise removal and transformed with parameterized data to 

ive integrated signal E , Mellin 1 st moment M 1 , Laplace transform 

 ( s ). The new data E, M 1 and L ( s ) are then normalized to the ref-

rence predictions to give the calibrated mean time < t > calib and 

ormalized Laplace transform 

ˆ L calib ( Fig. 12 b) as: 

E calib = 

E m,tar 

E m,re f 

· E p,re f , M calib = 

M m,tar 

M m,re f 

· M pred,re f , 

 ( s ) calib = 

L m,tar 

L m,re f 

· L p,re f (35a) 

 t > calib = 

M calib 

E calib 

, ˆ L ( s ) calib = 

L calib 

E calib 

. (35b) 

he differences < t > calib,tar − < t > calib,ref and 

ˆ L (s ) calib,tar −
ˆ 
 (s ) calib,re f are computed for each source and detector pair and are 

sed as input to the image reconstruction algorithm in the form of 

atrix Z as described in Sec. 2.1 and 2.2 . 

The data 〈 t 〉 and 

ˆ L ( s = 0 . 0 0 01 ) , as mentioned earlier, are used 

or the reconstructions. Fig. 16 shows the cross-sectional maps of 

he reconstructed targets for the single and two-target cases. The 

ine profiles across the targets are also extracted from the same 

mages to provide clear visualization of spatial resolution achieved 

or the cases. As shown in Fig. 16 , both single and two targets are

ccurately recovered with the targets. The code took about 6 mil- 

iseconds for the single target case, and 7 milliseconds for the two 

argets case, both on an Intel Core i9 processor. 

.3.2. Three-target and arbitrary pattern cases 

We also test additional experimental data using 3 randomly dis- 

ributed targets and arbitrary pattern cases. For the three-target 

ase, the targets have the same size of 4 mm in side length and 

re separated approximately by 1 cm distance between the targets. 

he three randomly distributed targets case has 4mm-square size, 
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Fig. 13. Experimental setup for time-of-flight light measurement. 

Fig. 14. A 0.2 cm × 0.2 cm × 0.1cm voxel target case: (a) a 2cm × 2cm × 0.7cm 

experimental phantom with a single square target at the bottom; (b) source- 

detector configuration. 
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Fig. 16. Image reconstruction results and line profiles for the 1 mm-square target 

(first column) and the two 1 mm-square targets in 1mm separation from side to 

side (second column). 

Fig. 17. Image reconstruction results of (a) three random targets; (b) arbitrary pat- 

tern. The white dot lines in (a) indicate the target boundaries. 

t

t

l

a

F

s

nd the arbitrary line pattern absorption case is also tested with 

ine thickness of 0.2 cm. The absorption coefficients of the targets 

re set to be μt 
a = 1 . 3 c m 

−1 . To achieve desired spatial resolution

n these cases, all reconstructions presented here are carried out 

sing the 10 × 10 sources and 10 × 10 detectors distributed at reg- 

lar intervals over the 4cm x 4cm x 0.7cm computational domain. 

he cross-sections from reconstruction are presented in Fig. 17 for 

ach case, showing that the targets are accurately resolved from 

ide to side in all test cases. The reconstruction time is around 30 

illiseconds for all cases considered here. 

.3.3. Different target-background contrast cases 

The reconstruction accuracy is also affected by the background 

bsorption: for example, the reconstruction of a small absorption 

bject embedded in the high absorbing background can often pose 

 challenge to achieving quality reconstruction of high resolution. 

o address the effects of absorption varying background on ac- 

uracy, we have further tested the algorithm on non-white back- 

round cases, in which the background medium is varied to dif- 

erent gray levels leading to different absorption contrasts to the 
ig. 15. Examples of ToF measurement and parameterized temporal responses: (a) ToF m

 = 0.0 0 01. 

12 
arget. To this end, we consider here the two-target case with the 

argets in size of 1 mm 

3 separated by 1 mm from side to side, 

ocated at the depth of 7 mm as before. Four different contrasts 

re tested with varying background absorption as μb = 0 . 26 c m 

−1 , 
a 

easurement with source 7 and detector 19; (b) parameterized data, E , 〈 t 〉 , ˆ L (s ) with 
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Fig. 18. Image reconstruction results with different target-background contrasts. The top row indicates the cross-sectional map of each case, while the bottom row shows 

the line profiles extracted from the cross-section maps of the 3D reconstructions. 
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.37 cm 

−1 , 0.79 cm 

−1 and 1.06 cm 

−1 . Absorption targets (black dots) 

n this experiment are almost perfect absorbers of light. Measure- 

ents are taken with 5 × 5 sources and 5 × 5 detectors equidis- 

antly spaced within the 2 cm × 2 cm surface area. Fig. 18 shows 

he line profiles extracted from the reconstructions (bottom row), 

long with the true distribution of the two targets (top row). It 

an be seen that in all cases the separation between the two tar- 

ets are clearly visible, even in the case of the highly absorbing 

ackground given by μb 
a = 1 . 06 c m 

−1 . These results demonstrate 

hat the SENSOR algorithm, together with the use of parameterized 

ata, can effectively differentiate between the background and the 

argets to a great variety of contrast. 

. Summary and Conclusions 

In this work, we have developed a novel image reconstruc- 

ion algorithm called sensitivity-equation-based noniterative sparse 

ptical reconstruction (SENSOR). This algorithm can be used to 

rovide ultrahigh spatial and temporal resolution optical tomo- 

raphic neuroimaging. The new method makes use of a nontrun- 

ated sensitivity equation, which allows to reformulate a non- 

inear iterative inverse problem into a noniterative inverse prob- 

em for fast one-shot image reconstruction. Further acceleration 

as been achieved by implementing the sensing matrix reduction 

cheme that exploits the correlation information between mea- 

urements and columns of the sensing matrix. In addition, the new 

ethod also adopts an asymptotic l 0 -norm function into the in- 

erse model, which promotes sparsest representation of absorption 

hanges scarcely distributed in the brain. The method has achieved 

dditional speedup with parallel computing through OpenMP on a 

ulticore processor. 

The method has been tested using both numerical and exper- 

mental data. The numerical simulations are used to evaluate the 

erformance of the SENSOR method with respect to CPU times 

nd accuracy, with comparison to the fastest iterative image recon- 

truction method (rSQP). The spatial resolution and speed of the 

ethod is further tested on various experimental data sets: sin- 

le target cases with different target sizes, multiple targets cases 

n different separations, and also arbitrary line pattern case. The 

econstruction results demonstrate that the SENSOR method is ca- 

able of producing high-resolution image of absorption changes 

n approximately 1 mm 

3 volumes at depth of 7 mm ( ∼60 MFPs) 

ithin the medium in 20 ∼30 milliseconds. This opens the door, 

or example, to non-invasive cellular-resolution real-time monitor- 

ng of neuronal electrical activities, which we will pursue in the 

uture. 
13 
While the algorithm presented in this paper is based on time- 

omain data, the approach presented here can be easily adapted, 

ithout loss of generality, to continuous wave (CW) and frequency 

omain (FD) systems. It is therefore expected that the SENSOR 

ethod can greatly aid to provide further applications beyond neu- 

al imaging. 
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ppendix 

ppendix A 

The exact sensitivity equation can also be derived from using 

he relationship z = −λT b . To this end, we write the target state 
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Fig. C.1. Example of noise free data (blue) and noise added data (red) of temporal 

point spread function (TPSF) of light. 

A

c

t

z

S

(

M

=

≈

w

b

t

r

t

t

f

f

R

 

 

 

 

 

 

 

 

 

 

ystem in terms of the reference state and the variation (or pertur- 

ation) with a fixed source b as: 

ψ = b → 

(
A + �A 

)(
ψ + �ψ 

)
= b . (A.1) 

aking the inner product of Eq. (A1) with λ̄ gives 

T 
A 

(
ψ + �ψ 

)
+ λ

T 
�A 

(
ψ + �ψ 

)
= λ

T 
b (A.2) 

ith the adjoint model λ
T 
A = −Q and the identity 

 = Q ψ = −λT b , Eq. (A2) can be rewritten as 

 

(
ψ + �ψ 

)
+ λ

T 
�A 

(
ψ + �ψ 

)
= λ

T 
b (A.3) 

 + λ
T 
�A 

(
ψ + �ψ 

)
= P (A.4) 

z = z − z = −λ
T 
�A 

(
ψ + �ψ 

)
(A.5) 

hus, the above formulation given by Eq. (A5) is equivalent to the 

nverse formulation given by Eq. (13a) based on z = Q ψ. 

ppendix B 

In a multispectral tomographic model that exploits 

he linear relationship given by �μa = εT 
M 

�c where εM 

= 

 εw 

HbO 2 
, εw 

Hb 
, . . . , εw 

other 
) denotes molecular extinction coefficients 

etween tissue chromophores and absorption coefficient, the 

ENSOR method can be applied with the following similar for- 

ulations for a tomographic image of chromophore concentration 

hanges �c such as �HbO 2 and �Hb. Given the multispectral 

ata �z w 

1 
, �z w 

2 
, . . . , �z w 

m 
from multiple wavelengths ( w 

1 , w 

2 , 

, w 

m ), Eq. (14) can be reformulated to allow for a multispectral 

pproach as: 

z w 

1 = λ
T ,w 

1 ∑ 

i 

(
∂ A 

w 

1 

∂μw 

1 

a 

× ∂μw 

1 

a 

∂c i 
× �c i 

)(
ψ 

w 

1 

+ �ψ 

w 

1 
)

(B.1) 

z w 

2 = λ
T ,w 

2 ∑ 

i 

(
∂ A 

w 

2 

∂μw 

2 

a 

× ∂μw 

2 

a 

∂c i 
× �c i 

)(
ψ 

w 

2 

+ �ψ 

w 

2 
)

(B.2) 

z w 

m = λ
T ,w 

m ∑ 

i 

(
∂ A 

w 

m 

∂μw 

m 

a 

× ∂μw 

m 

a 

∂c i 
× �c i 

)(
ψ 

w 

m 

+ �ψ 

w 

m 
)

(B.3) 

here the superscripts w 

1 , w 

2 ,…, w 

m denote the wavelengths, the 

ariables λ̄, A, ψ̄ and �ψ are evaluated as a function of wave- 

ength and �c = ( �HbO 2 , �Hb, �H 2 O,…) T . As a result, Eqs. (B.1)-

B.3) can be put together to form a following matrix-vector system 

s: 

 

 

 

 

�z w 
1 

�z w 
2 

. 

. 

. 

�z w 
m 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

λ
T ,w 1 

(
∂ A w 1 

∂μw 1 
a 

× ∂μw 1 
a 

∂c 

)(
ψ 

w 1 + �ψ 

w 1 
)

λ
T ,w 2 

(
∂ A w 2 

∂μw 2 
a 

× ∂μw 2 
a 

∂c 

)(
ψ 

w 2 + �ψ 

w 2 
)

λ
T ,w m 

(
∂ A w m 

∂μw m 
a 

× ∂μw m 
a 

∂c 

)(
ψ 

w m + �ψ 

w m 
)
⎤ 

⎥ ⎥ ⎥ ⎦ 

[ �c ] ⇔ �Z 

w 

= S w 

nt �c (B.4) 

hich can be solved following the same procedure given in 

ections 2.2 - 2.4 for the chromophore change �c . 
14 
ppendix C 

As shown in Fig. B, temporal data z ( t ) containing random noise 

an be written as a sum of true (noise-free) signal z̄ (t) and noise 

erm ε( t ) as 

 ( t ) = z̄ ( t ) + ε( t ) (C.1) 

ince Mellin transform is defined as M 

n = 

∞ ∫ 
0 

t n �(t ) dt , plugging 

B1) into M 

n gives the following: 

 

n = 

∞ ∫ 
0 

t n 
(
�̄( t ) + ε( t ) 

)
dt (C.2a) 

 

∞ ∫ 
0 

t n �̄( t ) d t + 

∞ ∫ 
0 

t n ε( t ) d t (C.2b) 

∞ ∫ 
0 

t n �̄( t ) dt + 0 (C.2c) 

hen ε( t ) is assumed to follow normal distribution. The same can 

e true for Laplace transformed data L ( s ). Thus an integral opera- 

or of parameterized data serves as a low pass filter that effectively 

emoves noise by cancelling out random noise distributed around 

rue values when integrated over time (see Fig. C.1 ). As a result, 

his makes parameterized data E, M , and L essentially far less af- 

ected by random noises than the original temporal point spread 

unction (TPSF) easily compromised by such noises. 
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