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We introduce a novel image reconstruction method for time-resolved diffuse optical tomography (DOT)
that yields submillimeter resolution in less than a second. This opens the door to high-resolution real-
time DOT in imaging of the brain activity. We call this approach the sensitivity equation based nonit-
erative sparse optical reconstruction (SENSOR) method. The high spatial resolution is achieved by im-
plementing an asymptotic lp-norm operator that guarantees to obtain sparsest representation of recon-
structed targets. The high computational speed is achieved by employing the nontruncated sensitivity
equation based noniterative inverse formulation combined with reduced sensing matrix and parallel com-
puting. We tested the new method with numerical and experimental data. The results demonstrate that
the SENSOR algorithm can achieve 1 mm? spatial-resolution optical tomographic imaging at depth of ~60
mean free paths (MFPs) in 20~30 milliseconds on an Intel Core i9 processor.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last decades, functional brain imaging has become
a viable tool for exploring and understanding of brain function
[1,2], diagnosing of neurological diseases such as Alzheimer [3] or
stroke [4], and assessing effects of rehabilitation therapeutics [5].
Traditional brain imaging modalities include electro/magneto en-
cephalography (EEG/MEG), positron emission tomography (PET),
and functional magnetic resonance imaging (fMRI). In recent years,
optical neuroimaging methods have gained increasing prominence
in this area due to their unique advantages over traditional meth-
ods. Optical techniques provide safe (non-ionizing), portable, low-
cost, fast and high-sensitive quantitative imaging of physiological
changes induced by brain activities and diseases.

Functional near infrared spectroscopy (fNIRS) [6-8] retrieves
changes in the concentrations of oxyhemoglobin (HbO,) and
deoxyhemoglobin (Hb), and total hemoglobin (tHb = HbO, + Hb)
at various depths, with a multitude of different source-detector
distances. Due to its simple setup and high portability, fNIRS
has been widely used for bedside imaging. This technology is
particularly useful in clinical settings, where traditional imaging
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modalities such as fMRI are deemed unsafe or impractical, for
example, imaging of vulnerable patients (e.g., infants). In addition
to fNIRS, diffuse optical tomographic (DOT) techniques [9-11] have
also been employed to improve spatial resolution. Using mea-
surements available from all source-detector pairs, DOT provides
three dimensional tomographic images of oxygenation and blood
volume changes in the brain. One of the latest developments of
DOT brain imaging is high-density diffuse optical tomography
(HD-DOT) [12-15], which employs a high-density array of sources
and detectors. With a maximum distance of 15 mm between
nearest neighboring sources and detectors, HD-DOT systems have
provided rich data sets of measurements that can further improve
spatial resolution. The HD-DOT systems have been applied for the
3D mapping of various brain functions in response to tasks or at
resting state [7,12], and extensively validated on their performance
against fMRI [16-17].

All optical methods rely upon appropriate models of light prop-
agation and image reconstruction. Light propagation in the human
head can be accurately modeled by the equation of radiative trans-
fer (ERT) [18-22] or Monte-Carlo (MC) method [23]. These meth-
ods, while highly accurate, require considerable computational re-
sources, e.g., CPU times and memory. The diffusion equation (DE)
[24-26] is much faster and allows for an excellent approximation
to the RTE in scattering dominant region. But it becomes inac-
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curate in void-like regions, i.e., cerebrospinal fluid (CSF) between
the head and the brain [27-31]. The SPy method is a high-order
approximation to RTE, and produces higher accuracy than the DE
while maintaining computational efficiency comparable to DE [32-
34]. Image reconstruction in brain DOT has been focused on ab-
sorption changes in response to neural activities, assuming that
variations in blood volume and oxygenation are small between two
different states (baseline vs target). Based on this assumption, the
linear perturbation approach [23-26] given by Ymeas = JAu has
been used to find absorption variation Ay, in which ymeas is the
vector of difference measurements between two states and J is the
Jacobian (sensitivity) matrix.

While DOT techniques have demonstrated promising results,
there still remain challenges in achieving higher temporal and
spatial resolution. Especially, in recent years, cellular resolution
(~1 mm3) deep-tissue imaging through non-invasive optical meth-
ods has attracted increasing attention. This approach allows direct
imaging of neuronal electric activities via absorption activation
within a volume of ~1mm3. However, ultrahigh spatial and
temporal resolution is currently out of reach for existing DOT
techniques. Spatial resolution is negatively affected mainly by
superficial, extracerebral tissues such as the skull and scalp. Tem-
poral resolution is mostly affected by the long computation times
for solving the complex inverse problem. Yet, subsecond temporal
resolution is needed to monitor various neural activities that occur
in milliseconds [11,35-36].

Motivated by this problem, we present here a novel image re-
construction algorithm called Sensitivity Equation based Noniter-
ative Sparse Optical Reconstruction (SENSOR). The new method
makes use of a nontruncated sensitivity function combined with
a novel asymptotic lp-norm operator and a dimensional reduction
scheme. In this paper we demonstrate that spatial resolution of
~ 1mm?3 can be achieved by enforcing sparsest representation of
absorption activation to conform sparse expression of actual neu-
ral activities. Furthermore, we show that temporal resolution of
20 ~ 30 milliseconds can be reached by the software and hardware
advances. The software acceleration is made possible by employ-
ing the nontruncated sensitivity-based noniterative inverse formu-
lation combined with the dimensional reduction scheme. Further
acceleration is accomplished by using a multicore processor with
OpenMP for parallel computing of the solutions.

Time-domain data is chosen here because it allows to exploit
useful temporal features that are sensitive to absorption changes
occurring within a ~ 1 mm?3 voxel. Furthermore, time-domain data
can effectively filter out signal interference by other tissues sur-
rounding the brain. In particular we use the parameterized tem-
poral data — zero moment E, 1st moment M! and exponential fea-
ture L(s) - available from Mellin and Laplace transforms of tem-
poral point spread function (TPSF), as demonstrated in [37-42] for
their computational efficiency, accuracy and robustness to noise.
We evaluate the performance of the proposed algorithm through
numerical simulations and experimental data, focusing on spatial
resolution and computational speed.

The remainder of the paper is organized as follows. We first
describe a general framework of the noniterative inverse formu-
lation based on nontruncated sensitivity equation and asymptotic
lop-norm function in Section 2. Numerical and experimental results
are given in Section 3, addressing the performance evaluation of
the SENSOR algorithm. Finally, we draw conclusions and summa-
rize our work in Section 4.

2. Methods
In general, an optical tomographic problem is to find a set of

optical properties that leads to a close match between measure-
ments and predictions of light intensities on the tissue surface
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[26-27]. The search process starts with making an initial predic-
tion Py of measured light intensities z from an initial guess xg
of unknown optical properties. Due to strong nonlinearity between
optical properties x and light intensities u, this search process is
carried out with an iterative updating of optical properties, i.e.,
X = Xg + Ax and P = Py + AP, until the difference between predic-
tions P and measurements z is minimized. i.e.,, z — P ~ 0. This re-
quires repeated solving of the forward model for a new prediction
P with updated optical properties x, which leads to large compu-
tation time. To mitigate this iterative process with nonlinearity, we
reformulate in this paper the original nonlinear inverse problem
into the linear inverse problem based on the nontruncated sensi-
tivity equation and the adjoint theorem.

2.1. Nontruncated sensitivity equation and noniterative inverse
formulation

In this section, we derive a generalized sensitivity formulation
for estimating the exact variation in the measurement that results
from an arbitrary change in the properties of the system, by fol-
lowing a generalized perturbation and adjoint theory [20,43-46].
To evaluate the exact variational formulation, the derivation takes
into accounts not only the direct (first-order) effect by the change
in the optical properties of the medium but also the indirect
(second-order) effect by the change in the light intensity, both due
to the system variation.

Consider the time dependent equation of radiative transfer (TD-
ERT) that describes transient light propagation in tissue:

10 Q
TWEER) _ (V. Qe 2~ (ta+ u) (.7 2)

+Ms/p(52’, Q)Y (t,r, )dQ'+S(t, 1, ) (1a)

4

with the reflective boundary condition:
YT R o o =R(Q - Q) (t.r @) o . (1b)

where (¢, r, R) is the radiance in units of Wem—2sr—1; a and
s are the absorption coefficient and the scattering coefficient, re-
spectively, both in units of cm~1; p(®’, ) is the scattering phase
function that describes scattering from direction €’ into €; S(t,
r, ) is the source term inside the medium, and ¢ = cy/n is the
speed of light in the medium where ¢y is the speed of light in
vacuum and n is the refractive index of the medium (n = 14
is used in this work). We employ here the Henyey-Greenstein
phase function [47] commonly used in tissue optics, given by p(€?’,
Q) = 1/47 (1 — g2)/(1 — g2 — 2gcos(6))3/? with an anisotropic fac-
tor g and scattering cosine cos(f). Also, we use here the reflec-
tive boundary condition given by Eq. (1b) where R(£2i,L) is the re-
flectivity at Fresnel interface (i.e., air-tissue) from direction i into
direction R, and the subscript b denotes the boundary surface of
the medium and 7}, is the unit normal vector pointing outward the
boundary surface.

Together with the boundary conditions Eq. (1b), the Mellin or
Laplace transform of Eq. (1a) [37,38], can be obtained in the fol-
lowing discretized form as:

Ay =b (2)

where A is the matrix of coefficients that depend on optical prop-
erties i = (Wa,Us) and the geometry of the medium, and b is the
right-hand side vector that incorporates boundary conditions and
internal light sources (e.g., bioluminescent or fluorescent emis-
sion) inside the medium. For discretization, the node-centered
finite-volume method is used for the spatial domain and the
discrete ordinates method for the angular domain, respectively
[21,22,32],. With proper boundary conditions and optical proper-
ties of the medium, the forward operator A of light propagation



HK. Kim, Y. Zhao, A. Raghuram et al.

is well-defined (i.e., square and non-singular), and thus invertible.
Therefore, Eq. (2) always has a unique and exact solution given by
¥ = A~ 'b, which provides a spatial distribution of light intensities
at all points inside the medium and on the medium surface. In
this work, Eq. (2) is solved with a Krylov subspace based block
biconjugate gradient stabilized (BiCGSTAB) method [19]. With the
intensity vector ¥ available, a physical quantity of interest such as
surface measurement z at a certain location can then be expressed
as a linear functional of the intensity vector y:

z=Qy (3)

where Q is the measurement operator that maps ¥ onto z and
depends on imaging systems, i.e., contact and non-contact systems
take different forms of Q.

Noting that ¥ in Eq (3) is subject to the forward solution of
Eq. (2), we can write Egs. (2) and (3) together into the constrained
form by using a functional called Lagrangian as:

L(¥:1) = Q¥ + AT (Ay —b) (4)
where the vector A is an adjoint variable called a Lagrange mul-
tiplier that constrains the measurement Q¥ to the forward model
Ay — b = 0. Following a variational principle [44], this functional
L(Y¥; A) is stationary about functions ¥ and A for which the gra-

dient VL is therefore required to be zero with respect to ¥ and A
as:

ViL(¥:1) =AYy -b=0— A¥y =b (5a)

VyL(¥:1) =Q" +AA =0 A"A = -Q" (5b)

where Eq. (5a) is equal to the forward model and Eq. (5b) is the
adjoint model that will be used later for the inverse formulation.
Substituting Eqs. (5a) and (5b) into Eq. (4) also gives the following
expression for measurement z as

L(¥:1)=Q¥y =-A"b=2z (6)

Eq. (6) indicates that measurement z can be described in terms of
two equivalent mathematical forms: one in terms of forward solu-
tion ¥ and another in terms of adjoint solution A. This, therefore,
can suggest that two different approaches are possible for eval-
uation of the variation in the measurement with respect to the
variation in the system parameters, i.e., one approach based on
z = QY and another approach on z = —ATh. However, it should
be noted that the two approaches lead to the same sensitivity for-
mulation, although the different procedures are followed, as shown
in Appendix A. Therefore, we present here the procedure based on
z=Qy.

To find the variational relationship between measurement z and
system properties A, ¥ and b, we consider two systems at differ-
ent states in terms of system properties: one with the reference
(or base) state and another with the target (or altered) state. The
reference state can be defined as a state that is already known or
can be reasonably assumed based on a priori knowledge or data.
In practice, the reference state can refer to an initial guess of un-
known optical properties in static imaging or baseline assumption
in dynamic imaging. The target state can be defined as a state that
deviates from the reference state by an unknown amount. There-
fore, the target state can imply an unknown distribution of optical
properties for static imaging, or an unknown next time point for
dynamic imaging. Hence, the deviation between the reference state
and the target state can be formally expressed as the differences in
the properties of the system Ay = b as:

AA=A-AAYy=v—v, and Ab=b-b (7)
and, for the measurement z,

Az=z-Z=QV¥ — Q¥ = QAY (8)
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where the properties A, W b and 7 represent the reference state
and the properties A, ¥, b and z indicate the unknown target state.

Therefore, with Eq. (7) into A¥ = b, the target state system
can be rewritten in terms of the reference state and the deviation
amount as:

A+ AA)($+ Atﬁ) —b+Ab 9)

which, using the reference state Ay = b, also reduces to:
AAY=Ab — AAY — AAAY. (10)

Eq. (10) is often referred to as the exact perturbed system, which
represents the exact variational relationship between the reference
state and the target state when optical properties are varied from
I to L+ Ap, the intensity from ¥ to ¥ + Ay and the right-hand
side from b to b+ Ab. Here the variation Ay can be a spectral
absorption change Apg, scattering change Aps or wavelength-
independent chromophore concentration change Ac based on the
relation Ap, = €}, Ac where &y denotes spectral molecular extinc-
tion coefficients.

The intensity variation Ay given by Eq. (10) can now be related
to the measurement variation Az given by Eq. (8) through the
adjoint model (Eq. (5b)). Using the reference state adjoint model

KTX = —QT, Eq. (8) can be rewritten as:
Az=QAY = —X AAY. (11)

Taking the inner product of Eq. (10) with A and subtracting
Eq. (11) gives the generalized exact sensitivity relationship be-
tween the measurement difference and the variations in the
system properties as:

Az = —XT<Ab - AA%) + X AAAY. (12)

Depending on the inverse problems to be solved, Eq. (12) can be
recast into two different sensitivity formulations as:

Az XT(AA%AAM,) :XTAA(%A:/z) (13a)
and
Az=—X (Ab). (13b)

The first formulation given by Eq. (13a) is obtained, assuming
that the right-hand side b is not varied between the reference
state and the new state, i.e., Ab=0. Therefore Eq. (13a) describes
the sensitivity of intensity variation Ay onto optical parameter
variation Apu alone, and thus can be used for standard DOT
problems of reconstructing Ag. On the other hand, the second
formulation given by Eq. (13b) is obtained under the assumption
that A+ AA~ A with AA ~ 0 between the two states. This as-
sumption is often widely made in inverse source problems such as
bioluminescence and fluorescence tomographic problems, i.e., the
background optical properties can be assumed to be the same both
for excitation and emission states. As a result, Eq. (13b) reveals the
linear relationship between source-term variation Ab and inten-
sity variation Avy. Thus, because Eq. (13b) is already formulated
into the linear inverse system, we focus here on Eq. (13a) to derive
the linear inverse formulation of standard DOT problems. It should
also be noted that the whole expression Eq. (12) should be used
when source term also changes with absorption and scattering
coefficients in the medium.

Since the coefficient matrix A is linear with respect to op-
tical properties u, the difference matrix AA can be written as
AA = (0A/op)Ap. For the diffusion equation (DE), this linearity
is not valid in general, but can be used for the cases where the
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diffusion coefficient D = 1/3(uq + p5) can be reasonably approxi-
mated as D ~ 1/3u;. Then, Eq. (13a) can be expressed as

~TO0A—- —T0A
Az = (X Mlﬁ)Au—l— <X aﬂAlﬁ)Au

— A —
_ XT%(¢+A¢)AIL=SntAu (14a)
or, equivalently,
_ 1(-T0A— 1(=T0A
Inz—1Inz = z(k aﬂw/t)Au+ Z(X aﬂAiﬁ)Au
1-T0A [+ 1
= 2% W(lﬁ-l— At/t)Au = ~SuAn (14b)

when the measurement variation is expressed in the exponential
form as z =ze®?? instead of z=Z + Az. Here Sy is the nontrun-
cated sensing matrix that comprises both the first-order sensitivity
matrix (first term) and the correction matrix (second term). When
the variation Au of optical properties is sufficiently small, i.e.,
a differential change, then the intensity variation Ay can also
be assumed to be sufficiently small. In this case, by neglecting
the second order term AAAY (« AA and Av¥) in Eq. (10) and
also ApAY (« Ap and AY) in Eq. (14), we can obtain the
following first-order sensitivity (i.e., linearized perturbation) form
of Eq. (10) as:

AAY + AAY =0 (15)

and Eq. (14) also reduces to
—T 0A— 0z
Az = (k B’LIII)A[L = |:3[Li|AIL (16)

which forms a basis for the linearized perturbation inverse
model based on the first-order sensitivity (Jacobian) coefficient
given by dz/ou [20,24-26],. However, in this work we retain the
cross-product correction term AAAY in Egs. (10) and (14) to
not compromise accuracy. It should be noted from Eq. (14) that
the nontruncated sensing matrix Sy can be obtained once the
flux difference Ay is determined. In the following, we present
the method to estimate this flux difference Ay by deriving the
projection matrix that maps the measurement change Az onto the
flux change AY.

Using the relation ¥ + Ay = ¥, Eq. (13a) can be written as the
following general form:

=T
Az =LA AAY, (17a)
and, given M measurements at locations ri(i = 1, ..., M),
Eq. (17a) gives the following linear system as:
AZ] 5\.11 5\.1‘]\] (AAI//‘)l
: = : : : . (17b)
Azy A Iy | L(AAY)y
For Ns source illuminations at locations r; (j = 1, ..., Ns) partic-

ularly with the fixed number of detectors, Eq. (17b) can be ex-
panded into the matrix-matrix linear system with multiple right-
hand sides as:

X = AZ (18a)
with
X]J X],N
¢ = : : ,

XMJ . XM,N
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Fig. 1. Singular value (o;) spectrum of the adjoint matrix @ truncated at a small
positive value (~ 10-6) for measurement geometries with 16 x 16 and 25 x 25
source-detector pairs.

[ (AAY); (AAY)Y
X= : : ;
| (AAY), (AAY)Y
Azl . AZ
AZ = : . : (18b)
| Azl ... Az

where @ € RM * N js the adjoint sensing matrix, X € RVNsis the
system variation matrix, and AZ € RM*Ns js the measurement vari-
ation matrix. Here the measurement Z is known for the target state
and the reference prediction Z, and the adjoint matrix ® can also
be precalculated for the reference state, so Eq. (18a) can be solved
for X. But note that the adjoint matrix @ typically has full row
rank (Rank(®) < N, i.e., rank deficient) as shown in Fig. 1 for its
non-zero singular value spectrum. Therefore, we solve the linear
system given by Eq. (17b) or Eq. (18) by using the rank deficient
Moore-Penrose least squares method, which leads to the solution
X = ®T(®®T)-1 AZ with sparsity constraints.

Once the system variation matrix X =
[AAY, AAY, ..., AAYy ] is obtained for all Ns sources, the
intensity variation vector AY¥ can be easily calculated for all N
sources by using Eq. (10) as:

A¥ = —(B) 'X=—-(A) @"(®@") 'AZ=HAZ (19)

where the matrix AW =[Ay, AY,, ..., Ay ] e RN and H e
RN xM s the projection operator that transforms measurement
variation AZ back into flux variation AW. Eq. (19) is now used into
Eq. (14) to evaluate the nontruncated sensing matrix Sp;. Since A
and @ are defined at the reference state, Sy can also be precalcu-
lated before reconstruction is started. Therefore, the unknown op-
tical property change Ap can be found by solving the following
linear least squares problem of Eq. (14) as

Aji = argmin||AZ — Sy A |3 (20)
An

where AZ ¢ RMsMx 1) g ¢ RNsMxN) and Ay, ¢ RIN x 1),

Thus, given the target measurement z, the reference predic-
tion Z and the reference system matrix A(/i), the unknown opti-
cal property variation Ap can be found in a noniterative manner
through Egs. (15)-(20). The term ‘noniterative’ is used here to em-
phasize that the SENSOR algorithm does not require repeated solv-
ing of the forward model while iteratively updating A u. This fea-
ture of the SENSOR method is distinct from traditional nonlinear
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Fig. 2. The sparse function values r,, (x) with different sparsity parameter os.

minimization algorithms that solve the forward problem repeat-
edly with an iterative update of Au, which often leads to large
CPU time in the total reconstruction time. Also, it should be noted
that the approach has no restriction, in principle, placed on the
variation amount AA for its validity, while the linear perturbation
approximation requires the variation Au to be sufficiently small.
Also it should be noted that the formulations presented here can
be directly applied to a multispectral tomographic model [22] as
given in Appendix B.

2.2. Asymptotic 1o norm minimization and sparsity enhancement

The sparsest representation of the solution Ag to Eq. (20) can
be achieved with the following [y-norm minimization as:

argn;in |Apllo subject to |AZ — Sy Ap|2 (21)
"

where ||Ap|lo is the [y norm that represents the number of non-
zero elements in Ap. Mathematically, the optimization problem
(21) subject to the Iy norm is a non-convex problem, which means
it is very difficult to find a Il constrained global minimum and thus
the solution can easily fall into one of local minima. Another dif-
ficulty with [y norm comes from its non-differentiability. Current
methods for solving such non-convex problems as Eq. (21) have
been focused mainly on so-called greedy algorithms of matching
pursuit (MP) type [47-51] and convex relaxation algorithms [52-
56] based on a I; norm and linear programming. These two kinds
are useful for finding sparse solution but have disadvantages of re-
quiring a priori information about the sparsity, relatively high sen-
sitivity to measurement noise, or limited performance in the asym-
metric measurement systems with non-fixed source-detector con-
figuration (i.e., varying numbers of sources and detectors) [57].

To address this problem, we propose here a new approach that
achieves a Iy norm asymptotically from a smooth I, norm, similarly
to the work [58-59] as done for a sparse signal recovery in the
field of signal processing. Therefore, the approach is started with a
globally convergent convex method (l;) and gradually converted to
a non-convex method that achieves the sparsest solution. To this
end, the asymptotic sparse function is designed here that has the
following form:

2
Xi
X2 + o5

To, (Xi) = (22)
where x; is the i-th element of the sparse solution vector Au and
o is the tuning parameter that adjusts a level of sparsity in the
solution. Fig. 2 shows the values of the sparse function 14 (;) as a
function of x;. We observe that as the value of o goes close to zero,
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Toy (X)) ~ 1 when x? >> o and 14, (x;) ~0 when ¥} < o, whereas

as o increases rq, (x;) resembles a smooth I,-norm function. There-
fore, with the asymptotic function r; (x;), the lp-norm of Ap can

be approximated as
X2
= ! . 23
e 9

i

[Amllo~R=" 1o (x)

2.3. Minimization with SENSOR algorithm

With the asymptotic lp-norm function given by Eq. (22), the
original optimization problem Eq. (21) is now rewritten into the
following constrained form:

1

Aft= arglgilﬂ{f(Aﬂ) =AZ-SaAnlZ+B) 1o (Aui)}

(24)

where the first term is the data fit error and the second term is
the lp norm constrained to enforce the sparsest solution and B is
the regularization parameter that balances the efforts of minimiz-
ing the data fit error and the [ term at once. Therefore, the sparest
solution to Eq. (24) can be found at the point that minimizes the
mismatch ||AZ—SA[,L||% and the [y norm simultaneously.

The minimization of Eq. (24) starts with a large value of oy,
and gradually decreases it to a smaller value to approximate the
lo norm asymptotically. The large value of o is required in the
beginning of this minimization process because it ensures that an
initial search Au? is already in the vicinity (i.e., local convex) of
global minimum and thus the risk of falling into a local minimum
can be avoided. The inverse solution to Eq. (24) with a very large
value of o5 — oo is given by Au® = ST(SST)~1AZ, which is often
referred to as the pseudo inverse solution and can be efficiently
evaluated using the truncated singular value decomposition (SVD)
method. From this initial smooth solution Au®, we then find a
nonzero maximum value |Au®| and set it to the initial value o0
for the sparsity tuning parameter. This initial value o © is then ad-
justed to decrease monotonically by a predefined factor as ¥ = tos
with 0.5 < t < 1 at k-th iteration.

Starting with Au% we solve the minimization problem
Eq. (24) with the projected gradient descent method [60]. The
gradient calculation of f{Au) is straightforward and given as

g=VIi(Ap)=-S"(AZ-SAp)+ B VR(Aw) (25)

where VR(X) is the gradient vector of the I norm Eq. (23) given
as

[ 20 x2 205XmX% T
VR(Ap) = [—(XM)Z —(X%M)z] (26)
With the gradient g available, the iterate is generated as
Apt — Ap* - pkgt, (27)

and Ap in Eq. (27) is further updated into the feasible solution
set through orthogonal projection as

At A;L"+§(AZ—SA;L") (28)
where § is the orthogonal projection matrix defined as
§=s7(ss) " or§=(s's)”'s" (29)

depending on the rank of the matrix S. The regularization parame-
ter B is started with Bg||STAZ|| and adjusted iteratively according
to the data fit error ||ST(AZ — SAu)|| as B = BolIST(AZ — SAw)|.
Based on all the descriptions so far, the detailed steps of the
SENSOR algorithm are given in the following table (see Table 1).
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Table 1
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Sensitivity Equation based Noniterative Sparse Optical Reconstruction (SENSOR) algorithm.

Initialize AZ, H,S, 0], «, Bo, t, KMAX, IMAX, err, €, tol

Find initial support region supp = {j| Cov = AZ'S;; > tol}

Obtain reduced S = Sqypp = {S|j € supp(j)} where ' is the j-th column vector of S
Set Ap® =ST(SST) ' AZ o) = max(|Ap®)). B = BolISTAZ||

Compute sparsity-level sequence {o], to!
FOR k = 1, KMAX

Setos =0} andi=1

WHILE (err > £ AND i < IMAX)

KMAX—1511 Wi k k=l1g1 5T
t o} with o) = max(t*~'o,0/)

Update A <~ Ap + pkd* with d = -g in Egs. (23)-(27)
Update Apt < Ap +S(AZ-SAp*) with § in Egs. (28)-(29)

Compute residual err = || pkd¥||
Seti=1i+1
END

Update support region supp = {j| Cov = (AZ — SA;L)TSiJ- > tol}

Update reduced S,

Set Auk = Apiand k =k + 1
END

={S/| jesupp(j)} where § is the j-th column vector of S

Output Auoptimal — Aﬂk
5
16° 5 X 10
— original I original
\k—greconditioned 15 Ml preconditioned
10° g
= @
S =
10 g
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10710 0
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Fig. 3. Properties of the sensing matrix S with and without preconditioning with
25 x 25 source-detector measurements: (a) singular value spectrum; (b) correlation
distribution between column vectors.

2.4. Preconditioning and correlation-based dimensional reduction

In the linear inverse formulation AZ = SAu as described ear-
lier, the sensing matrix S is ill-conditioned because, in a typ-
ical setting of optical imaging, the system is under-determined
(M <« N) and the singular values of S cluster around zero, i.e.,
the columns of the sensing matrix are highly correlated. There-
fore, we precondition the sensing matrix S towards making the
correlations between the columns smaller (i.e., making the col-
umn vectors linearly more independent). To this end, we com-
pute in this work the preconditioner by minimizing the Frobe-
nius norm as P = argmin||PS —I||r, which leads to the solution
that makes the PS close to an identity matrix. For full row rank
(e.g., under-determined) system, the preconditioner P is given as
P = ST(SST)~1, also known as the Moore-Penrose least squares so-
lution matrix, while for full column rank (e.g., over-determined)
system, P is given as P = (STS)~1ST. In practice, this pseudo-inverse
preconditioner matrix P can be easily evaluated by using the single
value decomposition (SVD) method. By multiplying the precondi-
tioner P = ST(SST)~1 on both sides of AZ = SAu, we then obtain
the preconditioned sensing matrix S* and the preconditioned mea-
surement matrix Z* as

S* —PS, and AZ* — PAZ. (30)

Fig. 3 shows the singular value spectrum and the distribu-
tion of correlation values between column vectors of the original
sensing matrix S and the preconditioned sensing matrix $* with
the 25 x 25 source-detector measurements. The results clearly
demonstrate that the preconditioned system has uniform singu-
lar value distribution at 1 and clustered correlations around zero
(i.e., highly independent column vectors in S$*, while for the origi-
nal non-preconditioned matrix S the correlation values are higher

and spread over the larger range and also many singular values are
close to zero (i.e. highly correlated column vectors in S). Thus, the
preconditioner P = ST(SST)~1can stabilize the inversion process by
making the sensing matrix better conditioned.

Furthermore, we employ here an efficient dimensional reduc-
tion scheme that reduces the sensing matrix iteratively by mak-
ing use of the correlation information between measurements and
columns of the sensing matrix. The j-th column §/ of the sensing
matrix can be viewed as a vector of weights that projects the op-
tical property change Au; of the j-th element (or voxel) onto the
measurement space AZ, as

AZ = ZSJA/,LJ
j

(31)

AZ=S"Ap +S*Apz+.. . SApj+---+SNApy. (32)

Therefore, the correlation Cor(AZ, S) between AZ and columns
S, which is given by Cor(AZ, S) = AZTS, can be used to deter-
mine which elements of Au have high correlation with AZ and
thus should be included into reconstruction and which elements
of Ap have low correlation with AZ and can be excluded from re-
construction. To maximize computational efficiency, this reduction
can be applied recursively throughout the optimization process, at
each step of iterations, in order to keep adjusting the sensing ma-
trix into the reduced one that consists of high-correlation columns
alone. As a result, this can lead to a great reduction in the sens-
ing matrix and make sparse reconstruction computationally very
efficient.

2.5. Parallel implementation

Solving large linear systems is a performance bottleneck both
in the forward and inverse computations in terms of computation
time because it comprises a large number of matrix-matrix and
matrix-vector products and operations. Therefore, parallel solving
of these linear systems is the most effective way to improve com-
putational efficiency. In this work, we focus on parallel solving
of the linear systems resulting from multiple source illuminations
given by AZ = SAu (Egs. (17)-(18)). Parallel implementation of
solving AZ = SAp is done on a framework of OpenMP [61] with
multicore CPUs. To reduce communication overhead between K
processors taking part in parallel computing, we use static schedul-
ing so that K tasks are optimimally distributed over K available
processors. In addition, synchronization is further optimized so
that threads do not wait until other threads are finished, leaving
none of K processors waiting or idling during computation.
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Fig. 4. Comparison in accuracy between the linearized approximation and the nontruncated sensitivity formulation: (a) problem setup; (b)-(d) calculated E, M', and L(s),

respectively. Note that s = 0.0001 is used in L(s).

3. Results and Discussions

In this section, we first show the validity and accuracy of the
nontruncated sensitivity equation Eq. (10), which is crucial to the
noniterative inverse formulation of our SENSOR algorithm. Then
we discuss in details the performance of the SENSOR algorithm
using both numerical and experimental data. In both cases, we fo-
cus on the reconstruction of absorption coefficients in the medium.
However, it should be noted that the method presented here can
be used without loss of generality across all domains of DOT appli-
cations, including the simultaneous reconstruction of both absorp-
tion and scattering. The code performance is evaluated in terms of
CPU time and accuracy with an emphasis on spatial and temporal
resolution. To illustrate the performance metrics, we compare the
new algorithm with our existing PDE-constrained reduced-Hessian
sequential quadratic programming (rSQP) method [21-22]. This ap-
proach has been known to be the fastest iterative method of its
kind to date since it solves the forward and inverse problems si-
multaneously within a framework of PDE-constrained optimization
[21-22].

3.1. Validity and accuracy of nontruncated sensitivity formulation

To validate the accuracy of nontruncated sensitivity formula-
tion, we provide here a comparison between the linearized sensi-
tivity formulation (Eq. (15)) and the nontruncated sensitivity equa-
tion (Eq. (10)) on their computed values of three parameterized
time data E, M!,L(s), with different variations Au, in absorp-
tion coefficient. For this comparison, the 4cm x 4cm x 2cm
block phantom is used with the background absorption and re-
duced scattering coefficients given by of wul=0.15 cm~! and
uh=9 cm~!, and with a 04cm x 04cm x 2cm cylindric in-
clusion of absorption inhomogeneity iq = 1+ Au, embedded
within the medium (Fig. 4a). The amount Au, is varied from
Apg = 0.075cm~! to 1.05 cm~!, corresponding to 50% to 700% of
ub respectively.

The computations of three parameterized time data are done
with varying single-detector distance Fig. 4a). The accuracy of the
two formulations Eqgs. (10) and (15) is compared against the exact
solution obtained with solving the original equation (Eq. (2)) with
given optical properties. Fig. 4 shows the results with source-
detector separation d = 3 cm, in which the parameterized data are
computed using the two formulations as a function of absorption
variation Apg. As shown in Fig. 4b-4d, the nontruncated formula-
tion gives a perfect agreement with the exact solution Eq. (2) for
all variations, while the linearized formulation deteriorates rapidly
with increasing variation, with error up to 100%. Based on ex-
tensive comparisons on accuracy for other cases, although not
presented here, we found that the nontruncated sensitivity for-
mulation provides accurate predictions regardless of absorption
variations and thus can be used for quantitative imaging in all
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Fig. 5. 3D numerical model and source-detector configuration.

range of absorption variations, whereas the linearized formulation
can only be used within the limit of linearization.

3.2. Numerical experiments

To simulate the situation of neural activity in the cortex be-
low the skull, we consider a 5cm x 5cm x 0.7 cm numerical
model as shown in Fig. 5. The background optical properties of
the numerical phantom are given as absorption coefficient of b2 =
0.15 cm!, scattering coefficient of 2 =90 cm~1, anisotropy fac-
tor of g = 0.9 and refractive index of n = 1.4. The 7 mm thickness
and pub =90 cm! scattering coefficient of the domain, which cor-
responds to ~ 60 mean free paths (MFPs), are set to mimic the hu-
man skull within acceptable range [62,63]. All targets are located
on the bottom (below the “skull”) at depth of 7 mm with absorp-
tion inhomogeneity of uf = 0.65 cm~! that is ~4 times larger than
the background absorption: absorption contrast is set high in order
to show that the SENSNOR algorithm performs well beyond typi-
cal absorption contrast (20~40%) in brain activities. The medium is
also discretized with a mesh of N =51 x 51 x 8 = 20808 voxels.
As shown in Fig. 5, 9 sources and 9 detectors are placed at regu-
lar intervals of 1 cm on the top surface of the medium. This yields
a total of 81 source-detector pairs that can be used for simulated
measurement and reconstruction.

For numerical experiments, we generate noise-free data z(t) by
solving the time-dependent equation of radiative transfer (TD-ERT)
with a known distribution of optical properties for test cases, with
the same source-detector configuration as shown in Fig. 5. Syn-
thetic measurements containing noise are simulated by adding a
noise term to Z in the form z(t)% = Z(t) + @WOpiser Where o ppice
is the standard deviation of measurement noises and o is the ran-
dom variable with normal distribution. This simulated noisy time-
of-flight (ToF) measurement z(t)°» are then processed with Mellin
and Laplace transforms to give new parameterized data sets given
by E, M, L(s). For these three parameterized data E, M! and L, the
corresponding sensitivity and adjoint equations are expressed in
the explicit forms as follows:

Azp = X;AA(JE + AVIE>, andA'A; = Q' (33a)
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Fig. 6. Normalized correlation distribution between measurement and columns of
the sensing matrix: (a) AZ and S without preconditioning; (b) with preconditioned
Z* and S*.

Azy = hop {AA(JMI + AwM,) - BA:/fE}, and A' %y = —Q" (33b)

Az = XIAA(%L n AlﬁL), and A%, = —Q (330)
which gives Ay, AM! and Ay with Egs. (17)-(19), and leads to
the inverse formulation for the normalized data (t) = M'/E and
L(s) = L(s)/E as

AW = 2T, {AA<¢M1+A1/IM1)—8XA¢E}

(t) 51

_EA'EAA<$E+A¢E>:S$)A”’ (34a)

Al(s) = %x{m(mmm) - L%xgm(hmm) —skAp (34b)
The above two normalized quantities (t) and L(s) are used as input
to the reconstruction code as described in Table 1. Also, by def-
inition L(s) = [e Sty dt, the Laplace parameter s in L(s) describes
an exponential change rate in the temporal point spread function
(TPSF) curve. Therefore, the small s involves late arriving photons
(i.e., photons that travelled deeper and longer inside the medium),
whereas the larger s corresponds to early arriving photons (i.e.,
photons that travelled near the line of sight between the source
and the detector). Thus, the parameter s brings region specific data
to reconstruction and affects spatial resolution. For our reconstruc-
tions, we use L(s = 0.0001) since it brings high sensitivity to ab-
sorption changes in the target region (~at depth of 7 mm).

As we described earlier, we also present here how the corre-
lation between measurement AZ and sensing matrix ® can be
used to reduce the sensing matrix for computational efficiency. The
correlation distribution AZTS is computed both with and with-
out the preconditioner given by Eq. (31) for the problem setup
with 9 sources and 9 detectors (Fig. 5). Fig. 6 shows a histogram
of normalized correlation coefficients between measurements and
columns of the sensing matrix (corresponding to voxel contribu-
tion). It can be clearly seen that most of voxels have zeros or
close-to-zero correlation and only a fraction (~1600 voxels) has
non-zero correlation with measurement and thus needs to be used
for reconstruction. Fig. 6 also demonstrates that the precondition-
ing makes the correlation distribution more favorable towards the
sensing matrix reduction. That is, almost 18500 voxels have near-
zero correlation for the preconditioned system while, without the
preconditioning, fewer elements (~10000 elements) exhibit near-
zero correlation. As a result, with the preconditioning the origi-
nal sensing matrix can be reduced to 10 % of its original size in
the first reduction step alone, and further reduced close to the tar-
get sparsity level (« N) during optimization, which can lead to a
great saving in the reconstruction time. Based on this observation,
we apply our correlation-based reduction scheme to all reconstruc-
tions presented in this work.
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3.2.1. Impact of noise

We examine here the effects of noise on the code performance
using various absorption inclusions: one to three targets at the
same depth and five targets at different depths. The noise im-
pact is tested with noise free and 15 dB noise level based on
SNR = 10log (z(t)/o) where z(t) is the temporal point spread func-
tion (TPSF) of light. As mentioned earlier, we use parameterized
data (e.g., E, M, L), not TPSF data, for reconstruction, and these pa-
rameterized data are analytically obtained with Mellin or Laplace
transform of the original TPSF data. So to correctly simulate param-
eterized data containing noise, we first generate noise-free TPSF
(z(t)) by solving the TD-RTE, and then add a random noise &(t)
of 15 dB to z(t) in order to obtain noise-added TPSF as z(t) =
Z(t) + €(t). Then we perform Mellin and Laplace transforms of z(t)
to compute noise-added parameterized data for E, M and L, re-
spectively, which are used as input to the reconstruction code. As
a result, the noise level of parameterized data differs from the
noise level of the original TPSF data. For the TPSF data with 15 dB
noise, the resulting noise level of parameterized data, after Mellin
or Laplace transformation, is reduced to approximately 50 dB. So it
should be noted that our reconstruction is done on these ~50 dB
parameterized data that is extracted from the 15 dB TPSF data z(t).
All targets are of the same size of 1 mm3. The two-target cases are
further divided into two different cases having the targets sepa-
rated by 1 mm and 2 mm, respectively. Fig. 7 shows the target ori-
entations for all cases considered here. With (t) and L(s = 0.0001)
collected for all 81 source-detector pairs, the reconstructions are
performed using the SENSOR method and the rSQP method. The
parameters used for the SENSOR reconstruction are as follows: the
regularization adjusting factor 8y = 0.1 ~0.01, the target spar-
sity level parameter o] = 1.0 x 1075, the sparsity decreasing fac-
tor t = 0.5 and the number of maximum iterations KMAX = 20.
The rSQP reconstruction is done with I, norm regularization and
terminated when either the objective function value or its relative
change becomes as small as 1.0 x 1076. Note that numerical re-
sults reported here are with the (t) data as we found that (t) and
L(s) give almost identical results both in terms of CPU time and
accuracy.

Fig. 8 shows the cross-sectional maps at depth of 7 mm from
the 3D reconstruction results obtained with the SENSOR and the
PDE-constrained method using noise free data (oo dB). Note that
the targets are not seen elsewhere except at depth of 7 mm. It can
clearly be seen that the SENSOR algorithm accurately retrieves the
targets in all cases, achieving maximum sparsity through [y-norm
minimization, whereas the rSQP method only leads to underesti-
mated and blurry results as commonly observed for I,-norm based
image reconstruction. The line profiles passing across the targets
are presented in Fig. 9 to provide a close look at the target area.
As shown in the figures, the targets are resolved very well in all
cases, even in the Tmm-separation two-target case.

Fig. 10 shows that the results obtained with 50 dB parameter-
ized data (~15 dB TPSF data) are almost identical to those with
noise-free data (also see Table 2), which is true both for the SEN-
SOR method and the rSQP method. This observation demonstrates
the robustness of parameterized data to noise. This robustness
is attributed mainly to an integral operator of Mellin or Laplace
transform used to obtain E, M, and L. In other words, fundamen-
tally, the integral operator serves as low-pass filters, because time
varying random noises distributed around true values are can-
celled out when integrated over time (Appendix B). As a result,
this makes parameterized data E, M, and L essentially far less af-
fected by random noises than the original temporal point spread
function (TPSF) that is easily compromised by such noises.

In addition, we also examine the depth resolution with the
SENSOR algorithm. To this end, we consider the case with five ab-
sorption targets located at different depths: one target at depth of
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Fig. 7. Exact target orientations and their absorption coefficients for all test cases: (a) single target; (b) two targets 2 mm apart from center to center (1 mm from side to
side); (c) two targets 3 mm apart from center to center(2 mm from side to side); (d) three targets. The target size is 1 mm?3, the same for all cases.
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Fig. 8. Reconstructions with noise free data obtained using the SENSOR method (top row) and the rSQP method (bottom row): (a) single target; (b) two targets 2 mm apart

from center to center (1 mm from side to side); (c) two targets 3 mm apart from center to center (2 mm from side to side); (d) three targets. The target size is 1 mm?, the
same for all cases.
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Fig. 9. Line profiles extracted from the images presented in Fig. 8, obtained with the SENSOR method; (a) single target; (b) two targets 2 mm apart from center to center
(1 mm from side to side); (c) two targets 3 mm apart from center to center (2 mm from side to side). The target size is 1 mm?, the same for all cases.
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Fig. 10. Cross-sectional maps from the 3D reconstruction with parameterized temporal data with 50 dB noise level (corresponding to the TPSF data z(t) with approximately
15dB noise level) by using the SENSOR method (top row) and the rSQP method (bottom row): (a) single target; (b) two targets 2 mm apart from center to center (1 mm
from side to side); (c) two targets 3 mm apart from center to center (2 mm from side to side); (d) three targets. The target size is 1 mm?, the same for all cases.
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Table 2
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The reconstruction CPU times and accuracy obtained with the SENSOR and rSQP methods using noise-free data and
noise-added data, respectively. The numbers in parenthesis indicate the speedup factors by SENSOR over rSQP. Note that
the 50 dB noise in E, M, L corresponds to approximately 15 dB noise in TPSF z(t).

Schemes  Cases CPU time (speedup factor)  Correlation p  Deviation §
Noise free SENSOR Single target  0.021 s (17619) 1.0 0.01
Two-target 0.021 s (17667) 0.95/0.99 0.32/0.11
Three-target 0.023 s (16043) 0.99 0.02
rSQP Single target 370 s 0.22 0.98
Two-target 371 s 0.27 0.96
Three-target 369 s 0.18 0.98
50 dB (~15 dB in z(t)) ~ SENSOR  Single target ~ 0.021 s (17619) 0.99 0.01
Two-target 0.023 s (16130) 0.91/0.99 0.43/0.14
Three-target 0.022 s (16727) 0.99 0.02
rSQP Single target 370 s 0.22 0.97
Two-target 371 s 0.25 0.98
Three-target 368 s 0.18 0.98
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z=0 mm
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z=4 mm 0.25 z=5 mm 0.95
0.15 0.15

z=2 mm gi58 z=3 mm 555
ftalem™!]

0.15

2=6mm ., 2=7mm .,
falem™]

0.15 0.15

Fig. 11. True and reconstructed distributions of the 5 targets located at different depths: 3D true distribution of the 5 targets (top row); 2D cross-sectional maps at different

depths extracted from the 3D reconstruction (second and third rows).

3 mm, one target at depth of 5 mm, and three targets at depth of
6 mm, respectively (Fig. 11). The background optical properties are
kept the same as before with 12 = 0.15 cm~! and u2f =90 cm—1,
but this time the targets are set to have much lower absorption
at uf =025 cm~! to mimic absorption change (20~40% increase)
due to neural activities and metabolism in the human brain. To
examine depth resolution, the cross-sectional images are obtained
at different depths from the 3D reconstruction. Fig. 11 shows the
cross-sectional images at all depths from z = 0 cmto 0.7 cm be-
low the top surface for the case with the five targets. The results
clearly show that the SENSOR method performs excellent in depth
resolution as well as spatial resolution between the targets - all
the targets are reconstructed exactly where they are located, not
visible elsewhere.

3.2.2. CPU times and accuracy quantification

The accuracy of each reconstruction is quantified using the cor-
relation coefficient p € [ — 1, 1] and the deviation factor é € [0,
oo) defined as

R R I (= )
T Do owh 0T e

where u! is the true image, u” is the reconstruction image, uf and
uT are the mean values and o(u!) and o (") are the standard de-

(35)

10

viations of u! and u'respectively, and n refers to the total number
of distinct mesh nodes. By definition, the correlation coefficient p
can take any value between -1 and 1, with p = 1.0 correspond-
ing to an exact match between the true and reconstruction images,
but it typically takes the positive value between 0 and 1 unless in-
put data to reconstruction is extremely noisy. The deviation factor
6 € [0, oo) denotes normalized root mean square error (RMSE). Ac-
cordingly, the closer p gets to 1 and § to 0, the better is quality of
reconstruction.

Table 2 provides the CPU times and accuracy in terms of cor-
relation p and deviation § factors as given in Eq. (35). As shown
in Table 2, the SENSOR method gives a significant speedup in the
reconstruction process in all cases considered here. For the case
of the noise-free data, the SENSOR method achieves sparsest solu-
tion in ~20 milliseconds, while the rSQP method takes about ~370
seconds to convergence. Therefore, the SENSOR method is about
17000 times faster than the rSQP method. Similar CPU times are
observed for the noise case: 20-23 milliseconds with the SENSOR
that corresponds to a speedup factor of ~17000 (see Table 2). Note
that both of the two methods are implemented with OpenMP for
parallel computing and executed on the same machine (Intel Core
i9 process). Therefore, it is clear that the speedup of the SENSOR
method is achieved by the algorithm advances made with the non-
iterative nature of the inverse formulation and the sensing matrix
reduction, which is not exploited by the iterative rSQP method.
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Fig. 12. Impacts of inner iterations and sensing matrix reduction: (a) RMSE with
increasing inner iterations; (b) reduced sensing matrix with the number of outer
iterations.

CPU times can also be affected by inner iterations that are per-
formed for each o in the sequence {oJ, 02, ...,0/MX} as de-
scribed in the algorithm (Table 1). Fig. 12a shows how the num-
ber of inner iterations affects convergence for the case with three
targets. In this case, inner iterations improve the data fit only for
the first two iterations, which suggests that the number of inner
iterations can be reduced to a small number to avoid unnecessary
inner iterations. Based on this observation, the number of inner it-
erations is fixed at 2 in all simulation cases presented here. The
sensing matrix reduction is one of the major algorithmic features
leading to fast convergence. Fig. 12b demonstrates how efficiently
the sensing matrix can be truncated at each step of the outer iter-
ations based on the correlation threshold: starting from the 20808
columns (corresponding to the 20808 voxels of the medium), the
matrix is reduced to only 7 columns at convergence, which leads
to a significant time saving in the total reconstruction time.

In addition to the CPU time, the accuracy of reconstruction
is measured and reported here to address spatial resolution. The
correlation factor p(pe, 4r) € [ — 1, 1] and the deviation factor
(e, ur) € [0, oo) as defined in Eq. (35) are computed for the
bottom area where the absorption targets are located. The val-
ues of p(te, i4r) and (e, (4r) are given in Table 2. In all cases,
the SENSOR method provides very high correlation factors of p
~ 1, which means highest correlation (i.e., highest spatial resolu-
tion) is achieved. The deviation factors §, which indicates RMSE, is
much lower with the SENSOR method in all cases than the rSQP
method. In both methods, as expected, the 1Tmm-separation case
gives larger deviation from true image than the 2mm-separation
case, i.e., §1™™ = 0.32 and §2™™ = 0.11 with the SENSOR method,
while §1mM™m — 043 and §2™™ = (.14. Also, there is no noticeable
difference in both p(ue, tr) and &( e, 4r) between noise-free and
15 dB cases for both methods. Again, as discussed earlier, this is
due to the robustness of parameterized data used here on noise.

3.3. Experimental results

We present here absorption reconstruction results using exper-
imental data. Fig. 13 shows the time-domain (TD) system for mea-
surements of time-of-flight (ToF) light intensities on the medium
surface. The system consists of three main parts: illumination, de-
tection, and target medium. For illumination, we use an ultrashort
pulsed laser (NKT Photonics SuperK EXTREME) that emits 100 fem-
toseconds pulses at wavelength of 680 nm as a light source, with
duration of 100 femtoseconds. The detection of temporal light in-
tensities traveling back to the medium surface is performed by a
time-correlated single photon counting (TCSPC) system from Pi-
coQuant that employs a fast-gated single-photon avalanche diode
(SPAD) from MPD with a temporal resolution of 50 picoseconds.
As shown in Fig. 13, the galvo mirrors are used to allow precise
light delivery onto and from the skull tissue phantom.

Similar to the numerical phantom, the 5cm x 5cm x 0.7 cm
scattering medium is employed as the background medium.

1
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The optical properties of this background medium are given by
e =00cm™!, us = 90cm~!, g = 0.9 and n = 14. Locations and
absorption strengths of targets are generated by using an E-Ink dis-
play that is placed behind the scattering phantom block (Fig. 13).
The display panel has an array of pixels that can be programmed
to generate various patterns and structures at different gray levels
(i.e., different absorption levels) on a white background. Note that
the white background of the display panel is considered as perfect
scatterer. With this experimental setup, we perform spatial reso-
lution tests: one single target, two targets at different separations
and more complex pattern target.

3.3.1. Single-target and two-target cases

We looked at the single and two-target cases. As in numerical
experiments, the targets are of the same size of 1 mm?3 and all
located on the bottom at depth of 7 mm. The two-target case has
the targets separated by 1mm distance from side to side (2mm
center to center). For computational efficiency, we use a dense
source-detector configuration, in which the 5 x 5 sources and
5 x 5 detectors are located at intervals of 2mm approximately
on the 0.5cm x 0.5 cm top surface area over the targets located
in the middle of the bottom surface. As the sources and detectors
are clustered on smaller region than in numerical simulations,
the computational domain for reconstruction is also reduced to
the dimension of 2cm x 2cm x 0.7 cm accordingly (Fig. 14).
This source-detector configuration leads to a total of 25 x 25
time-of-flight (ToF) measurements. Two separate measurements
are made for calibration purpose: one without a target (so-called
“reference state”) and one with a target (so-called “target state”).

Fig. 15 shows an example of ToF light intensity measurement
for the reference state (blue) and the target state (red) obtained
with source number 7. ToF data is treated with a 50-point Gaussian
fit for noise removal and transformed with parameterized data to
give integrated signal E, Mellin 15 moment M;, Laplace transform
L(s). The new data E, M; and L(s) are then normalized to the ref-
erence predictions to give the calibrated mean time < t >4, and
normalized Laplace transform L g, (Fig. 12b) as:

Em Mt
Ecalib = E:r:; 'Ep.refv Mcalib = M:.r:; 'Mpred.refv

L

L(S)calib = pie ‘Lp,ref (35&)
Lm,ref
Meaib £ Leaiip

< t>cqlip = Ew,-Ib » L(S) catin = Ecall,b~ (35b)

cal catu

The differences < t > calib, tar <t >culib,ref and i(s)calib,tar —
Z(s)w,ib,ref are computed for each source and detector pair and are
used as input to the image reconstruction algorithm in the form of
matrix Z as described in Sec. 2.1 and 2.2.

The data (t) and L(s = 0.0001), as mentioned earlier, are used
for the reconstructions. Fig. 16 shows the cross-sectional maps of
the reconstructed targets for the single and two-target cases. The
line profiles across the targets are also extracted from the same
images to provide clear visualization of spatial resolution achieved
for the cases. As shown in Fig. 16, both single and two targets are
accurately recovered with the targets. The code took about 6 mil-
liseconds for the single target case, and 7 milliseconds for the two
targets case, both on an Intel Core i9 processor.

3.3.2. Three-target and arbitrary pattern cases

We also test additional experimental data using 3 randomly dis-
tributed targets and arbitrary pattern cases. For the three-target
case, the targets have the same size of 4 mm in side length and
are separated approximately by 1 cm distance between the targets.
The three randomly distributed targets case has 4mm-square size,
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Lens: 2-inch, 100 mm focal length

Fig. 13. Experimental setup for time-of-flight light measurement.

@ source
@ Detector

—oe®
2121
2mm

e xe
e e
ze e
0 ne
e xe
e ye
se ne

@ e ye

/)
W
@
\
..K‘.
-0 ~0 =0
-e .o _e
=5
e O ZO
“® =@ O
“® =0 O
+*0 <@ 0
»® -0 O
ce e

\
\
\. s
\\
ve ~e

g
g

Fig. 14. A0.2cm x 02cm x 0.cm voxel target case: (a)a2cm x 2cm x 0.7cm
experimental phantom with a single square target at the bottom; (b) source-
detector configuration.

and the arbitrary line pattern absorption case is also tested with
line thickness of 0.2 cm. The absorption coefficients of the targets
are set to be puf = 1.3 cm~!. To achieve desired spatial resolution
in these cases, all reconstructions presented here are carried out
using the 10 x 10 sources and 10 x 10 detectors distributed at reg-
ular intervals over the 4cm x 4cm x 0.7cm computational domain.
The cross-sections from reconstruction are presented in Fig. 17 for
each case, showing that the targets are accurately resolved from
side to side in all test cases. The reconstruction time is around 30
milliseconds for all cases considered here.

3.3.3. Different target-background contrast cases

The reconstruction accuracy is also affected by the background
absorption: for example, the reconstruction of a small absorption
object embedded in the high absorbing background can often pose
a challenge to achieving quality reconstruction of high resolution.
To address the effects of absorption varying background on ac-
curacy, we have further tested the algorithm on non-white back-
ground cases, in which the background medium is varied to dif-
ferent gray levels leading to different absorption contrasts to the

ps

0 500 1000 1500 0

(a)

detector #

— target

— reconstruction|

0
-0.25 -0.1 0 0.1 0.25 -0.25 -0.1 0 0.1 0.25
z[em] zlem]

Fig. 16. Image reconstruction results and line profiles for the 1 mm-square target
(first column) and the two 1 mm-square targets in 1mm separation from side to
side (second column).

' 12
(a)

Fig. 17. Image reconstruction results of (a) three random targets; (b) arbitrary pat-
tern. The white dot lines in (a) indicate the target boundaries.

(b)

target. To this end, we consider here the two-target case with the
targets in size of 1 mm?> separated by 1 mm from side to side,
located at the depth of 7 mm as before. Four different contrasts
are tested with varying background absorption as u2 = 0.26 cm™1,

<t> L(s=0.0001)

20 30 0 10 20 30
detector #

Fig. 15. Examples of ToF measurement and parameterized temporal responses: (a) ToF measurement with source 7 and detector 19; (b) parameterized data, E, (t), L(s) with

s = 0.0001.
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Fig. 18. Image reconstruction results with different target-background contrasts. The top row indicates the cross-sectional map of each case, while the bottom row shows

the line profiles extracted from the cross-section maps of the 3D reconstructions.

0.37 cm~1, 0.79 cm~'and 1.06 cm~!. Absorption targets (black dots)
in this experiment are almost perfect absorbers of light. Measure-
ments are taken with 5 x 5 sources and 5 x 5 detectors equidis-
tantly spaced within the 2cm x 2 cm surface area. Fig. 18 shows
the line profiles extracted from the reconstructions (bottom row),
along with the true distribution of the two targets (top row). It
can be seen that in all cases the separation between the two tar-
gets are clearly visible, even in the case of the highly absorbing
background given by ub=1.06 cm~!. These results demonstrate
that the SENSOR algorithm, together with the use of parameterized
data, can effectively differentiate between the background and the
targets to a great variety of contrast.

4. Summary and Conclusions

In this work, we have developed a novel image reconstruc-
tion algorithm called sensitivity-equation-based noniterative sparse
optical reconstruction (SENSOR). This algorithm can be used to
provide ultrahigh spatial and temporal resolution optical tomo-
graphic neuroimaging. The new method makes use of a nontrun-
cated sensitivity equation, which allows to reformulate a non-
linear iterative inverse problem into a noniterative inverse prob-
lem for fast one-shot image reconstruction. Further acceleration
has been achieved by implementing the sensing matrix reduction
scheme that exploits the correlation information between mea-
surements and columns of the sensing matrix. In addition, the new
method also adopts an asymptotic [y-norm function into the in-
verse model, which promotes sparsest representation of absorption
changes scarcely distributed in the brain. The method has achieved
additional speedup with parallel computing through OpenMP on a
multicore processor.

The method has been tested using both numerical and exper-
imental data. The numerical simulations are used to evaluate the
performance of the SENSOR method with respect to CPU times
and accuracy, with comparison to the fastest iterative image recon-
struction method (rSQP). The spatial resolution and speed of the
method is further tested on various experimental data sets: sin-
gle target cases with different target sizes, multiple targets cases
in different separations, and also arbitrary line pattern case. The
reconstruction results demonstrate that the SENSOR method is ca-
pable of producing high-resolution image of absorption changes
in approximately 1 mm?3 volumes at depth of 7 mm (~60 MFPs)
within the medium in 20~30 milliseconds. This opens the door,
for example, to non-invasive cellular-resolution real-time monitor-
ing of neuronal electrical activities, which we will pursue in the
future.
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While the algorithm presented in this paper is based on time-
domain data, the approach presented here can be easily adapted,
without loss of generality, to continuous wave (CW) and frequency
domain (FD) systems. It is therefore expected that the SENSOR
method can greatly aid to provide further applications beyond neu-
ral imaging.
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Appendix
Appendix A

The exact sensitivity equation can also be derived from using
the relationship z = —ATb. To this end, we write the target state
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system in terms of the reference state and the variation (or pertur-
bation) with a fixed source b as:

AY =b — (A+AA) (%erp): (A1)
Taking the inner product of Eq. (A1) with A gives

KTK<W+A1//) X AA (EJFAW): (A2)
With the adjoint model XTK =-Q and the identity
P = QY = —ATh, Eq. (A2) can be rewritten as

— 7’[‘ —

Q(¢+A¢)+x AA(¢+A1/;)= (A3)
z+XTAA<$+A¢)= (A4)
Az=z-7=-X AA<¢+A1//) (A5)

Thus, the above formulation given by Eq. (A5) is equivalent to the
inverse formulation given by Eq. (13a) based on z = QY.

Appendix B

In a multispectral tomographic model that exploits
the linear relationship given by Apu, =€}\-AAC where €y =
(€/1h02> € -+ - €otner)  denotes molecular extinction coefficients
between tissue chromophores and absorption coefficient, the
SENSOR method can be applied with the following similar for-
mulations for a tomographic image of chromophore concentration
changes Ac such as AHbO, and AHb. Given the multispectral
data Az"', Az, Az"" from multiple wavelengths (w!, w2,

w™), Eq. (14) can be reformulated to allow for a multispectral
approach as:

—T.w! 9AV! ad [Lg’l (7 w!
W% ?(aw x Ac)(l/l LAY ) (B1)
w2 L w? AV 2 0 [Lawz ; —w? w2
A" =X Z(aﬂf x ha A (1/f +AY ) (B2)
wn 3 TwW" oAW™ Emg“ ( )
A" =L ;(MT x i 1// +Ay"") (B.3)

where the superscripts w!, w?,..., w" denote the wavelengths, the
variables A, A, ¥ and At are evaluated as a function of wave-
length and Ac = (AHDbO,, AHb, AH,0,...)". As a result, Egs. (B.1)-
(B.3) can be put together to form a following matrix-vector system
as:

Az [ (o o) (3 4 A"
TG ) ) faoe s
o] [0 () (5 )
=S%Ac (B.4)
which can be solved following the same procedure given in

Sections 2.2-2.4 for the chromophore change Ac.
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100 TPSF

50

0
0 500 1000

Fig. C.1. Example of noise free data (blue) and noise added data (red) of temporal
point spread function (TPSF) of light.

Appendix C

As shown in Fig. B, temporal data z(t) containing random noise
can be written as a sum of true (noise-free) signal z(t) and noise
term &(t) as

Z(t) = Z(t) + €(t) (C1)

Since Mellin transform is defined as M" = ft“F(t)dt plugging

(B1) into M™ gives the following:

M = / () + € (0))de (C2a)
0
= /t“f‘(t)dt+/t"e(t)dt (C.2b)
0 0
~ /t“f‘(t)dt+0 (C.2¢)
0

when ¢(t) is assumed to follow normal distribution. The same can
be true for Laplace transformed data L(s). Thus an integral opera-
tor of parameterized data serves as a low pass filter that effectively
removes noise by cancelling out random noise distributed around
true values when integrated over time (see Fig. C.1). As a result,
this makes parameterized data E, M, and L essentially far less af-
fected by random noises than the original temporal point spread
function (TPSF) easily compromised by such noises.
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