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Abstract
Purpose  Diffuse optical tomography breast imaging system (DOTBIS) non-invasively measures tissue concentration of 
hemoglobin, which is a potential biomarker of short-term response to neoadjuvant chemotherapy. We evaluated whether 
DOTBIS-derived measurements are modifiable with targeted therapies, including AKT inhibition and endocrine therapy.
Methods  We conducted a proof of principle study in seven postmenopausal women with stage I-III breast cancer who were 
enrolled in pre-surgical studies of the AKT inhibitor MK-2206 (n = 4) or the aromatase inhibitors exemestane (n = 2) and 
letrozole (n = 1). We performed DOTBIS at baseline (before initiation of therapy) and post-therapy in the affected breast 
(tumor volume) and contralateral, unaffected breast, and measured tissue concentrations (in μM) of total hemoglobin (ctTHb), 
oxyhemoglobin (ctO2Hb), and deoxyhemoglobin (ctHHb), as well as water fraction (%).
Results  We found consistent decreases in DOTBIS-measured hemoglobin concentrations in tumor volume, with median per-
cent changes for ctTHb, ctHHb, ctO2Hb, and water fraction for the entire cohort of − 27.1% (interquartile range [IQR] 37.5%), 
− 49.8% (IQR 29.3%), − 33.5% (IQR 47.4%), and − 3.6% (IQR 10.6%), respectively. In the contralateral breast, median 
percent changes for ctTHb, ctHHb, ctO2Hb, and water fraction were + 1.8% (IQR 26.7%), − 8.6% (IQR 29.3%), + 6.2% (IQR 
29.5%), and + 1.9% (IQR 30.7%), respectively.
Conclusion  We demonstrated that DOTBIS-derived measurements are modifiable with pre-surgical AKT inhibition and 
endocrine therapy, supporting further investigation of DOTBIS as a potential imaging assessment of response to neoadjuvant 
targeted therapies in early stage breast cancer.
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Introduction

Neoadjuvant chemotherapy (NACT) is increasingly used 
in early stage breast cancer given the potential for less 
morbid breast surgery [1–3], the ability to assess tumor 
response to therapy, and compelling evidence that patho-
logic complete response (pCR) associates with improved 
long-term clinical outcomes [4]. Current methods to assess 
response to neoadjuvant therapy, including physical exam 
and standard breast imaging techniques, lack sensitivity 
[5, 6],are costly [7], or use intravenous contrast (i.e., gad-
olinium-based MRI contrast agent) and/or ionizing radia-
tion [8]. There is therefore an unmet need for a sensitive, 
non-invasive, non-ionizing method to assess response to 
neoadjuvant therapies in breast cancer, which could inform 
treatment decisions and optimize patient outcomes.

Diffuse optical tomography breast imaging system 
(DOTBIS) is a novel three-dimensional imaging modality 
that quantitatively measures near-infrared light absorption 
and scattering in tissues to determine tissue concentrations 
of oxyhemoglobin (ctO2Hb), deoxyhemoglobin (ctHHb), 
water, and fat, thereby providing information on tissue vas-
cularity and distinguishing malignant from normal breast 
tissue [9–12]. DOTBIS has been investigated as a method 
to assess early response to NACT in breast cancer, and 
studies have shown that two-week decreases in ctO2Hb and 
ctHHb concentrations are significantly different between 
patients who do and do not achieve pCR after completion 
of NACT [13, 14]. However, DOTBIS has not yet been 
evaluated as a potential imaging assessment of response 
to neoadjuvant endocrine or targeted therapies in breast 
cancer, which are increasingly utilized in clinical trials 
and practice.

In this proof of principle study, we performed DOTBIS 
imaging among women with early stage breast cancer who 
were enrolled in a pre-surgical study with either the AKT 
inhibitor MK-2206 or an aromatase inhibitor, with the goal 
of assessing whether DOTBIS-derived measurements are 
modifiable with these therapies.

Methods

Study population

We conducted a proof of principle study among women 
at Columbia University Irving Medical Center (CUIMC) 
in New York, NY, USA with newly diagnosed, histologi-
cally confirmed, operable clinical stage I–III breast can-
cer. Patients were eligible if they had not received prior 
systemic chemotherapy or radiation therapy for their 

breast cancer, and if they were concurrently enrolled in 
a pre-surgical treatment trial at CUIMC. We ultimately 
enrolled patients from three treatment trials that were open 
at CUIMC at time of this study: (1) a pre-surgical study 
with the allosteric AKT inhibitor MK-2206 [ClinicalTri-
als.gov Identifier: NCT01319539] [15], (2) a pre-surgical 
study of alternative dosing of exemestane [ClinicalTrials.
gov Identifier: NCT02598557] [16], and (3) a neoadju-
vant study of letrozole plus ribociclib vs. placebo [Clini-
calTrials.gov Identifier: NCT02712723] [17]. Patients in 
the trial of pre-surgical MK-2206 received two weekly 
oral (po) doses of MK-2206, on days -9 (± 1 day) and -2 
(± 1 day) before surgery. Those enrolled in the trial of 
exemestane received either exemestane 25 mg po daily, 
three times weekly, or weekly for a total of 4 to 6 weeks 
before surgery, and those in the trial of letrozole ± riboci-
clib were randomized to letrozole 2.5 mg po plus placebo 
daily vs. ribociclib at two dosing schedules for a total of 
22 weeks before surgery. The institutional review board 
at CUIMC approved the study protocol (AAAI9154). 
Informed consent was obtained from all patients prior to 
their enrollment.

Study procedure

Each participant underwent a baseline assessment including 
breast tumor size (mm) measurement with calipers as well as 
pre-treatment core needle tumor biopsy with assessment for 
tumor histological subtype, grade, estrogen receptor (ER), 
progesterone receptor (PR), HER2 expression, and Ki67 pro-
liferation index. At initial assessment, tumor anatomic clini-
cal stage was determined according to the American Joint 
Committee on Cancer (AJCC) 8th Edition, and patient age 
(in years), menopausal status (premenopausal, postmeno-
pausal), and body mass index (BMI) in kg/m2 were recorded.

All patients underwent DOTBIS of the affected breast 
(tumor volume) and contralateral, unaffected breast at two 
time points: before initiating treatment (baseline), and after 
completion of pre-surgical therapy. The DOT breast imaging 
procedure has been previously described [13, 14]. Briefly, 
DOTBIS measurements were made by placing each subject’s 
breasts into a measurement head containing 96 optical fibers 
(32 sources and 64 detectors per breast). During the optical 
measurements, light from four laser diodes (wavelengths 
765–905 nm, light intensity around 5 mW well below the 
ANSI standards) were sequentially coupled into 64 fib-
ers that contacted the breast. Transmitted light intensities 
were collected by 128 detection fibers in total (64 detec-
tion fibers per breast) coupled to individual silicon photo-
diodes, which recorded the light intensities. The measured 
data were then processed by a partial differential equation 
(PDE)-constrained multispectral image reconstruction code 
[18] that employs the equation of radiative transfer as a light 
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propagation model. As a result, the volumetric image of 
ctO2Hb, ctHHb, water, and total hemoglobin concentration 
(ctTHb), which is defined by Eq. 1, are generated for both 
breasts. Based on the assumption that changes in absorption 
(i.e., ctO2Hb, ctHHb, ctTHb) would most strongly reflect 
tumor responsiveness to target therapies, we did not include 
scattering parameters in our reconstruction.

Tumor volume was selected by entering radiologic infor-
mation such as tumor side, clock position and distance from 
the nipple, and assumed as true for all the imaging time 
points by the automated tumor selection algorithm. Due to 
high vascularization and metabolic activity characteristics 
attributed to the tumor volume, an automated code selects 
the highest value in the breast quadrant previously identi-
fied from the tumor position. Next, a region-based image 
segmentation method selects neighboring pixels considering 
a mask factor of 0.9. Values for ctTHb, ctO2Hb, and ctHHb, 
as well as water fraction (%) were quantified by calculating 
the mean concentration for the region of interest.

Outcome measures and statistical analysis

Given the small number of patients enrolled, statistical anal-
ysis was descriptive. Median age at diagnosis and BMI (in 
kg/m2) were calculated for the entire cohort. Percent change 
in each DOTBIS-derived measurement from baseline to 
post-therapy was calculated for each patient, and median 
percent change and interquartile range (IQR) were then cal-
culated for the patient cohort. We also calculated absolute 
change in Ki67 proliferation index from baseline to post-
therapy among patients, when available.

Results

Between July 2012 and May 2018, we enrolled seven 
women, of whom four were concurrently enrolled in the 
MK-2206 study, two in the exemestane study, and one in the 
letrozole ± ribociclib study, who was randomized to receive 
placebo. Baseline clinicopathologic characteristics are 
summarized in Table 1. All women were postmenopausal, 
with median age at diagnosis 67 years (range, 51–72 years) 
and median body mass index (BMI) 30.5 kg/m2 (range, 
24.5–36.5 kg/m2). Six women had hormone receptor-posi-
tive, HER2-negative breast tumors, and one (Patient 2) had 
a triple-negative tumor.

Change in DOTBIS measurements from baseline to post-
treatment in the tumor volume and contralateral breast are 
summarized in Table 2 and shown in box plots in Fig. 1. 
Median percent changes for ctTHb, ctHHb, ctO2Hb, and 

(1)ctTHb = ctO
2
Hb + ctHHb
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water fraction in the tumor volume for the entire cohort 
were -27.1% (IQR 37.5%), − 49.8% (IQR 29.3%), − 33.5% 
(IQR 47.4%), and − 3.6% (IQR 10.6%), respectively. In the 
contralateral breast, the median percent changes for ctTHb, 
ctHHb, ctO2Hb, and water fraction averaged over the whole 
breast volume were + 1.8% (IQR 26.7%), − 8.6% (IQR 
29.3%), + 6.2% (29.5%), and + 1.9% (30.7%), respectively. 
Representative three-dimensional maps for one patient 
who received MK-2206 and one who received letrozole are 
shown in Fig. 2, with images for all patients shown in Sup-
plemental Fig. 1

Among the four patients who received MK-2206, median 
percent changes for ctTHb, ctHHb, ctO2Hb, and water 
fraction in the tumor volume were − 17.6% (IQR 11.7%), 
− 39.7% (IQR 22.8%), − 10.4% (IQR 29.5%), and 2.8% 
(IQR 3.8%), respectively. Patient 5, who received letrozole 
for a total of 21.9 weeks, had the greatest absolute change 
in DOTBIS measurements in both breasts, with percent 
change in ctTHb, ctHHb, and ctO2Hb of − 73.1, − 62.1, 
and − 83.4%, respectively, in the tumor volume and − 23.2, 
− 29.6, and − 17.9%, respectively, in the contralateral breast. 
Patients 6 and 7 each received exemestane for approximately 
one month, and while both showed decrease in all DOT-
BIS parameters in the tumor volume, Patient 6 had a greater 
absolute decrease exceeding 50% in ctTHb, ctHHb, and 
ctO2Hb. Of note, Patient 7 had the greatest absolute change 
in all DOTBIS parameters in the contralateral breast among 
the study cohort, with a 45.5% increase in ctO2Hb.

Change in Ki67 proliferation index was able to be calcu-
lated for five patients and is summarized in Table 2. Three 
of the five patients, all of whom received MK-2206, had 
decrease in Ki67 with therapy, while the two remaining 
patients, both of whom received exemestane, either had no 
change in Ki67 (Patient 6) or an increase in Ki67 (Patient 
7). Notably, Patient 5 did not have calculable post-treatment 
Ki67 because only rare invasive cancer cells were present in 
the surgical specimen.

Discussion

We demonstrated that DOTBIS-derived measurements, 
including ctTHb, ctHHb, and ctO2Hb, were modifiable with 
the targeted anti-neoplastic interventions MK-2206 and aro-
matase inhibitor therapy. While there was variability in the 
type and duration of therapy that patients received, there 
was a consistent decrease in DOTBIS-measured hemoglobin 
concentrations in the tumor volume, as well as observed 
change in DOTBIS measurements in the contralateral breast.

As novel neoadjuvant therapies are increasingly used in 
early stage breast cancer, identifying an imaging-based bio-
marker of response to these therapies not only could have 
treatment implications, but also could be used in the clinical Ta
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trial setting as a predictor of pathologic response. Our cur-
rent proof of principle study could not assess for statistical 
correlation between changes in DOTBIS measurements and 
pathologic response given the relatively short interventions 
in the pre-surgical trials, as well as our small patient cohort 
with heterogeneity in type and duration of therapy. However, 
our finding that DOTBIS measurements in breast tumors 
were modifiable with pre-surgical targeted and endocrine 
therapies, including after only one week of therapy, is in 
agreement with our previous studies demonstrating that 
short-interval change in DOTBIS measurements with stand-
ard NACT and correlated with pathologic response [13, 14]. 
Future prospective studies are therefore warranted to further 
investigate DOTBIS’s ability to predict pathologic response 

among women who receive novel breast cancer therapies. In 
addition, given that the rate of pCR is expected to be less 
than 10% among women with hormone receptor-positive, 
HER2-negative breast cancer [19], future studies should 
evaluate for correlation between change in DOTBIS meas-
urements and change in Ki67, a validated prognostic marker 
among women receiving neoadjuvant therapy, including 
endocrine therapies [20, 21].

In addition, our DOTBIS system uniquely images 
both the affected and unaffected breasts simultaneously, 
allowing for the evaluation of changes in DOTBIS meas-
urements in the contralateral breast with neoadjuvant 
therapies. We previously observed that DOTBIS-meas-
ured ctO2Hb in the contralateral breast among women 

Fig. 1   Box plots of pre- and 
post-therapy DOTBIS measure-
ments in tumor volume and con-
tralateral breast among enrolled 
patients (n = 7)
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undergoing NACT for early stage breast cancer was 
modifiable with chemotherapy and correlated with mam-
mographic density [22], a known biomarker of breast 

cancer risk that shows dynamic change and is predictive 
of breast cancer recurrence among women who receive 
adjuvant tamoxifen [23–25]. While we did not compare 

Fig. 2   Axial MIP of the reconstructed 3D ctTHb maps within the 
affected breast (i.e. tumor volume) and the contralateral breast for two 
representative patients before and after pre-surgical therapy adminis-

tration. Dashed circle indicates tumor volume localization. Patient 4 
received the AKT inhibitor MK-2206, and Patient 5 received letrozole
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DOTBIS measurements to mammographic density in this 
study nor evaluate if changes in contralateral DOTBIS 
measurements correlated with clinical outcomes, this is 
an area of potential research, particularly with neoadju-
vant endocrine-based therapies. Changes in contralateral 
as well as tumor volume DOTBIS measurements might 
also be explained by altered angiogenesis in breast tissue 
as a result of pre-surgical therapies, particularly among 
those who received MK-2206, given the role of the PI3K/
AKT/mTOR pathway in angiogenesis [26].

The main limitation of our trial is the small number of 
enrolled patients at a single academic institution, which 
might limit generalizability and, as mentioned, did not allow 
us to statistically evaluate for associations between change in 
DOTBIS measurements and validated pathologic outcomes, 
including pCR or change in Ki67. The heterogeneity in pre-
surgical therapy and treatment duration among patients also 
limited our ability to assess for such associations, particu-
larly given that most patients received pre-surgical treatment 
for a month or less and would be unlikely to achieve pCR 
with such a short duration of treatment.

Conclusion

We demonstrated that DOTBIS-derived measurements 
are modifiable with neoadjuvant targeted and endocrine 
therapies among women with early stage breast cancer, 
and therefore warrants further investigation in larger, 
multicenter prospective studies to determine the potential 
clinical utility of DOTBIS-derived images as a marker of 
response to these therapies.
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