Multidominance in light of conflicting formalizations of minimalism and syntactic economy

Chomsky introduced merge in the early 1990s as the elementary syntactic operation and
defined it as binary set formation of the form M (a,b) = {a, b}. Multidominance, introduced
in the minimalist sense later on (Citko 2005), has been argued to be at odds with Chomskian
conception of merge. For example, Collins and Groat (CG, Collins and Groat 2018) write
about a multidominant tree: “One issue that comes up right away is that [the structure] is a
graph theoretic object. In minimalism, Merge forms sets {X, Y} (2). This paper aims to
argue against such claims, and argue instead that: (Claim 1) There is no meaningful distinction
between merge-based sets and graphs or trees (= directed graphs), particularly in the context
of labeled merge-based sets. (Claim 2) Given that the definition of syntactic “economy” is
severely lacking, there are several conceptions of economy on which multidominant derivations
are more economic than conservative merge-based ones. These points make multidomimance
more minimalist than Chomsky’s IM/EM.

(1). Multiple papers argue against some “graph-theoretic structures” and in favor of some
“set-theoretic ones”. However, this is usually done without any whatsoever discussion of which
graph theory or which set theory is being considered. For example, CG (3) write that graphs
are necessarily “relations (sets of ordered pairs)” and hence are more complicated than merge-
produced sets. This is not necessarily the case, and the two are not at all the same. The
following objections can be posed to these and similar line of arguments:

(1) A set, as a structure, is necessarily a relation. Straightforwardly, S = {a,b} = €(a, S)A
€(b, S). Note that S is nor a label in this case. It’s also true that Chomsky is incorrect when
he claims binary set formation is the simplest operation (over and over: The MP, On Phases,
&c.). Negating is the simplest, and conjoining is the simplest two-place. Merge requires

relations, which is more complex than either negation or truth-functional conjunction alone.
(2) While it’s true that conventionally, (a, b) = Rab; ordered pairs are not the same as relation-

s/predicates and they are not part of set theory without an additional axiom to specify them.
Never did anyone define ordered pairs in syntactic literature'. Notably, since node relations
are relations, they do not inherently require ordered pairs. With a convenient axiomatization
of graph theory, graphs can be stated as sets of the form R(a,b) A R(c, d), making them as

simple as Merge-produced structures.
(3) Labeled merge-produced sets take the form {a, {a,b}}. In this context, upon adoption of

Kuratowski’s* ordered pair definition, we obtain (a, a). Therefore, if labeling is adopted,

there’s no difference in complexity between graphs-as-ordered-pairs and Merge-sets.
As such, the claim that minimalist/conservative Merge is formally preferable to multidom-

inance does not hold up to any scrutiny.

(2). Economy (local or global) has been stated in the form of multiple conditions on possi-
ble structures (like inclusiveness, NTC, &c.), but no rigorous (or any) formal definitions have
been given. Once Chomsky’s objection concerns accessibility: in {a, {b, c}}, ¢ should not be
accessible to form an object {c, {a, {b,c}}}. Such arbitrary constraints usually reference pu-
tative notions of “economy” and ‘“third-factor principles”. We look at the questions from a
purely computational standpoint. Either way, in a structure like {a, {c, {b,a}}}, there are two
a-objects (whether they’re occurrences in the sense of Collins and Stabler (2016) or objects
proper = lexical items). The lexical items come from a workspace, a set with a numeration
of lexical items requisite for the derivation. So, the question appears to be as follows: which

!Options would have included {{{a}, {}}, {{b}}}, {{a, 1}, {b,2}},{a, {a,b}}, {{a}, {a,b}}, &c.

2Which is usually adopted implicitly and so without justification, together with consequences like (a,a) =

{{a}}-




derivation is more costly — (a) the one that accesses the workspace to obtain another occur-
rence of a lexical item, or (b) the one that makes the previous stages of derivation accessible.?
To answer the question, a distinction needs to be made between memory resources, process-
ing resources, and accessibility resources. Storing items in workspace requires memory costs;
putting/taking items in/from workspace and using them in derivation requires processing costs;
being able to access items in previous steps of the derivation requires accessibility costs. We
can, however, model these and compare the competing views on costs.

To do so, we’ll use python functions — not given immediately in the abstract per space
considerations — which both take a list of lexical items and the number of items which move
(as John in John has been seen t j,p,,.) We take a number of assumptions for granted, though:

(4) accessibility is modelled as # of syntactic objects accessible at any point in derivation;
(5) costs for pulling an object from lexicon to workspace, from workspace for derivation, and

to implement an instance of merge (i.e., M(a,b) = {a, b}), are the same;
(6) in a multidominant approach, there are no occurrences; all items in the workspace are ac-

cessible at any point in derivation.
Below, we present the results of a simulation which calculates procedural, memory, and

accessibility expenses. Items accessible at any given point are in blue, memory expense is in
red, and processing is in green.

For the minimalist approach, items are ac-
cessible in the workspace until they are used _, Minimaiist .. Mutidominant
in the derivation, after which only one item —
the formed sentence — is accessible. Memory
expenses is the same after all the items are
selected for the workspace.

We should note that there little if any dis-
cussion in the syntactic literature of the dif- i
ferent types of expenses involved in the pro- : |
cess of syntactic derivation, and Chomsky’s G UG
eclectic appeal to accessibility does not seem
to a defensible argument against multidominance so long as no argument for why accessibility
is more important than processing or memory is given.

The crucial result that we report on is that once we move to the point where the number of
instances of movement (= additional occurrences in the workspace) is greater than the number
of syntactic objects, merge is no longer effective. This is clearly seen from the figure in the
abstract (100 elements in lexicon, 200 instances of movement in the derivation; other graphs are
not included per the space limits). The number of steps in derivation is vastly larger, because it
takes longer to pull things from the lexicon. While there might possible ways of remedying that,
none are available in the existing formalizations of minimalist syntax. Importantly, conservative
merge loses in accessibility as well, because of the sheer number of items in the WS. Yet — while
existence of such movement-rich sentences is of question, the computational point stands.

Conclusion. It seems that a lot of debates surrounding economy and conflicts between
minimalism and multidominance are in fact nested either in uninformed usage of formal tools
or in confusions surrounding the status of “economy”. The hope is that this poster will inspire
further discussion in the area.

Citko. 2002. On the nature of Merge. Linguistic Inquiry, 36(4):475-496.

Collins and Groat. 2018. Copies and Repetitions.

Collins and Stabler. 2016. A Formalization of Minimalist Syntax. Syntax, 19(1):43-78

1000- 1000-

Expenses
Expenses

3Note that this is not necessarily equivalent to tracking the derivation.

2



