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Young infant rat pups learn to approach cues associated with

pain rather than learning amygdala-dependent fear. This

approach response is considered caregiver-seeking and

ecologically relevant within the context of attachment. With

maturation, increases in the stress hormone corticosterone

permit amygdala-dependent fear, which is crucial for survival

during independent living. During the developmental transition

from attachment to fear learning, maternal presence

suppresses corticosterone elevation to block amygdala-

dependent fear learning and re-engage the attachment

circuitry. Early life trauma disrupts this developmental

sequence by triggering a precocious increase of

corticosterone, which permits amygdala-dependent threat

responses. In this review, we explore the importance of the

stress hormone corticosterone in infants’ transition from

complete dependence on the caregiver to independence, with

consideration for environmental influences on threat response

ontogeny and mechanistic importance of social buffering of the

stress response.
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Introduction
Pioneering research on infant-caregiver dyads, which

began in the mid 1900’s, highlights stress as a major

mediator of infant caregiving quality/experiences and is

critical in programming neurobehavioral development

[1,2]. Importantly, it was the combined insights from

clinical and basic scientists, with diverse research areas

across many species, that linked disturbed maternal care/

separation and compromised threat response functioning

[1,3,4]. This concept of stress as a mediator between

infant experiences and programming of neurobehavioral

function is still prevalent today and has been documented

in many diverse species [5–7].

The stress hormone corticosterone is typically thought of

as damaging to infant behavioral and neural development

[8,9]. However, it is now clear that corticosterone is also

critically important for normal brain development and

normal infant neurobehavioral functioning [10,11]. Here

we review the effects of corticosterone within the context

of normal development using infant rat fear/threat learn-

ing and expression as a framework. The behavioral neu-

robiology of threat response is relatively well-defined,

especially in the rodent and is a useful template to explore

how corticosterone modulates the neurodevelopment of

fear/threat learning and expression. While differences

exist between humans and rodents in the stage of neu-

rodevelopment at birth [12], we focus here on the expe-

rience-dependent learning and how it shapes threat

response behaviors that are phylogenetically conserved

among species and provide an important bridge for trans-

lating rodent and nonhuman primate findings to humans’

[6,13,14].

In adults of many diverse species, threat presentation will

prompt a defensive threat response specific to the envi-

ronment and threat intensity: in rats and humans, these

responses can range from hiding, freezing, fleeing or

attack. As we explore the development of threat response

and its modulation by corticosterone, it is important to

consider the ecological context of this behavior as the

infant transitions from complete dependence to indepen-

dence. Altricial animals, such as the rat and human,

require extensive caregiving to survive. A reciprocal bond

between the infant and caregiver, termed attachment,

must be learned by both to maintain this close contact.

Infants of most altricial species are physically incapable of

defending themselves from predators. Accordingly, an

infant of altricial species will typically seek the caregiver

for protection, and only later, begin to attack a predator or

freeze. This review will discuss the neurobiology that

supports this ecologically and age-appropriate change in

fear/threat response and how this developmental switch is

controlled by corticosterone to produce adaptive beha-

viors during early development.

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in Behavioral Sciences 2017, 14:78–85 www.sciencedirect.com

mailto:ans525@nyu.edu
http://www.sciencedirect.com/science/journal/23521546/14
http://dx.doi.org/10.1016/j.cobeha.2017.03.007
http://dx.doi.org/10.1016/j.cobeha.2016.12.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cobeha.2016.12.010&domain=pdf
http://www.sciencedirect.com/science/journal/23521546


Ontogeny of innate fear expression:
modulation by corticosterone
In altricial species, very young infants confined to the nest

depend entirely on their caregiver for protection. The

expression of fear changes during maturation in ways that

are appropriate to the developmental stage and ecological

niche of the animal: the infant rat pup does not freeze to

predator odor until it begins to crawl out of the nest [15].

For a rat, these brief excursions begin around postnatal

day (PN) 10 [15], at which point the amygdala becomes

functionally integrated to support innate species-specific

defensive responses to predator odor, such as freezing

[16–19]. Initially, it was thought that this reflected matu-

ration of the amygdala at PN10: this, however, turned out

not to be the case. While amygdala development is

protracted and continues through adolescence, major

nuclei of the amygdala become visible and support plas-

ticity days before the amygdala begins to support threat

response behavior [20,21], provided sufficient levels of

corticosterone are present in the amygdala [22,23]. The

importance of maturation of the hypothalamic-pituitary-

adrenal (HPA) axis and increased corticosterone levels in

shaping the ontogeny of threat response was uncovered

by Takahashi, who found that an increase in corticoste-

rone in younger animals enables freezing to predator odor

[24]. Adrenalectomy at PN10 prevents development of

freezing behavior, which can be reinstated by delivering

exogenous CORT (Figure 1) [18].

Thus, in order to understand the impact of corticosterone

on the developing brain, it is important to first consider

the ontogeny of the HPA axis, which undergoes consid-

erable changes in most altricial species. The period of

reduced stress-induced corticosterone release prior to the

age of PN10 has been termed the ‘stress hyporesponsive

period’ (SHRP). Gradual increase in basal corticosterone

levels over the course of this period reaches a critical

threshold at PN10 to terminate the SHRP and permit the

amygdala to become active with exposure to predator

odor [25]. The SHRP is observed at multiple levels of the

HPA-axis, including blunted pituitary adrenocorticotro-

pic hormone (ACTH) secretion, decreased sensitivity to

corticotropin-releasing hormone (CRH) and an adrenal

gland hyporesponsive to circulating ACTH levels [26].

Thus, the stress hormone corticosterone plays two roles in

defining the neurodevelopment of threat response: 1)

gradual increases in endogenous corticosterone reach a

critical threshold and 2) an acute threat (shock or predator

odor) will produce an immediate increase in stimulus-

evoked corticosterone. Together, this change in the stress

system permits the switch to trigger a specific threat

response.

Research from our lab and others expanded on

Takahashi’s to show that either ontogenetic or experi-

mentally manipulated changes in corticosterone level

control whether the amygdala is activated by predator

odor, as measured by c-Fos expression. Fear is expressed

if the amygdala is functionally activated by corticoste-

rone, while decreasing corticosterone results in sup-

pressed amygdala activity and blocked fear expression

[17,27]. Importantly, corticosterone acts as a switch with

the power to activate the amygdala to permit fear expres-

sion. While circadian regulation of corticosterone causes

fluctuations in baseline corticosterone levels throughout

the day, importantly, this fluctuation in corticosterone

does not appear to have a detectable impact on the control

switch that induces amygdala activation and threat

response, since threat responses occur regardless of the

time of day.

Ontogeny of learned fear
In addition to innate, naturally occurring threats in the

environment, animals also learn to tag stimuli in the

environment with threat value, which provides a neces-

sary substrate for behavioral plasticity. Learning about

threat is phylogenetically conserved and is supported by a

relatively simplistic circuit that appears homologous

across mammalian species. Threat learning is a rapid,

robust form of classical conditioning, where a neutral

conditioned stimulus (CS; e.g. tone or odor) is paired

with an aversive unconditioned stimulus (US; e.g. electric

shock). After temporal pairing of the CS-US, an associa-

tive link between CS and US causes the neutral CS to

take on threat value [28,29]. Once a CS takes on the threat

value, the animal will show defensive/fear responses to
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Corticosterone control of amygdala-dependent threat response and

threat learning in development. During the stress hyporesponsive

period (SHRP) that occurs prior to PN10, corticosterone (CORT) levels

are low and the amygdala is unresponsive to predator odor as well as

odor cue conditioning. This result is also observed in older pups that

have received adrenalectomy, and is reversed by injecting exogenous

CORT. In pups older than PN10, the amygdala is responsive to

predator odor and supports fear conditioning. This is also observed in

pups as young as PN6, if exogenous corticosterone is injected into

the amygdala.
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presentations of the CS, even in the absence of the US.

These threat responses are typically similar in form to

responses to predator odor.

As we explore the development of learned fear responses,

we will highlight the role of corticosterone in supporting

ecologically adaptive behaviors as the infant transitions

from complete dependence on the caregiver to indepen-

dence [15,16,30,31]. The ability to tag stimuli with threat

value is absent during the SHRP until PN10 [15,30]. As is

the case for innate fear expression discussed above, the

ontogenetic delay is due to the failure of the amygdala to

become functionally active in response to threat [16].

Indeed, in PN10 pups and older, pairing odor with

moderate shock (0.5 mA to the tail or foot) will activate

the amygdala and support fear/threat learning [16]. A

causal link between fear/threat learning and the amygdala

is revealed by experiments in which pharmacological

suppression of the amygdala in older pups (� PN 10)

will block odor-shock threat/fear learning, although this

manipulation has no effect on pups still too young to

engage in amygdala-dependent fear learning [32]. Like-

wise, tetanic stimulation of the basolateral amygdala does

not induce long-term potentiation in pups younger than

PN10, in contrast to older pups [33]. Together, these

studies suggest that activation of the amygdala is causal to

support associative fear learning in pups older than PN10,

thus representing the functional emergence of the amyg-

dala in threat response at that time point.

As discussed previously, basal corticosterone levels

increase over the course of the SHRP of postnatal devel-

opment. By PN10, basal corticosterone increases suffi-

ciently to reach a threshold for engaging learning plastic-

ity within the amygdala during odor-shock conditioning

[34]. Bilateral amygdala administration of corticosterone

in PN8 pups will prematurely induce amygdala plasticity

in response to odor-shock conditioning and support fear/

threat learning [23]. However, in pups younger than PN6,

the amygdala is too immature to support odor-shock

conditioning, even with corticosterone injection into

the amygdala. Conversely, intra-amygdala blockade of

corticosterone receptors in older pups (PN10-15) is suffi-

cient to suppress amygdala activation and abolish odor-

shock fear/threat conditioning [23] (Figure 1). Thus,

between the ages of PN6 and PN15, corticosterone is

necessary and sufficient to support both amygdala plas-

ticity and subsequent fear/threat learning.

During the SHRP of early development (PN < 10), pups

paradoxically prefer to approach a conditioned stimulus

(e.g., neutral odor, such as peppermint) that has been

paired with a painful stimulus [31,35–37]. Indeed, a

shock-paired odor becomes powerful enough to support

social interactions with the mother, including nipple

attachment, which otherwise requires maternal odor.

Neither failure of the pup to detect pain or varied

threshold for pain explain this pain-induced odor prefer-

ence [38,39]. Importantly, odor-shock conditioning in

pups during the SHRP does not functionally activate

the amygdala threat response circuitry. Instead, this par-

adoxical preference is under control of the unique neuro-

biological circuitry for attachment learning: the olfactory

bulb, anterior piriform cortex, and hyperfunctioning nor-

adrenergic locus coeruleus (Figure 2) [40–42]. During the

SHRP, when corticosterone levels are low, increases in

norepinephrine (NE) are integral for forming pup-care-

giver attachment [40]. Noradrenergic cell bodies located

in the locus coeruleus send axons to innervate the mitral-

tufted cells of the olfactory bulb with NE [43,44]. In

young pups, this produces learned attachment-related

odor preferences and learning-induced plasticity in the

bulb and piriform cortex [45].

Ecological significance of the late emergence
of threat learning
Why would it be advantageous for pups to have a delayed

onset for fear/threat learning? For species that require

parental care for survival, infants must learn rapid and

robust attachment to their caregiver, regardless of the

quality of care that they receive [46]. As stated above,

abused pups paradoxically approach cues associated with

maltreatment [47,48]. Importantly, odor-shock condition-

ing in pups during the SHRP of early development

(PN < 10) does not functionally activate the adult-like

fear/threat circuit, but rather engages the age-dependent
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Corticosterone acts as a control switch between attachment circuitry

and amygdala-dependent threat response. In pups younger than

PN10, high levels of norepinephrine (NE) are secreted by the locus

coeruleus (LC) into the olfactory bulb (OFB), thus activating learning-

induced changes in the OFB and anterior piriform cortex (aPir) to

support attachment to the caregiver. As corticosterone (CORT) levels

increase at PN10, the OFB will respond to threats likely by co-

activation of the posterior piriform cortex (pPir) and amygdala to

produce an independent defensive response, such as freezing.

Between PN10-15, maternal presence will socially buffer threats to the

pup, thus reducing pup corticosterone, suppressing amygdala activity

and eliminating the independent defensive response.
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learning circuit critical for survival in young pups—the

attachment neural system used by pups to learn about and

attach to the caregiver. Typical maternal behaviors, such

as pup retrieval or entering/leaving the nest, are at times

associated with brief painful stimuli as the dam occasion-

ally handles pups roughly or tramples them [46,48]. Pup

survival depends on strong, learned attachment to the

caregiver, and any associative learning such as odor-pain

associations with the caregiver, could pose a threat to this

bond. Thus, delayed onset of amygdala dependent CS-

US learning may have evolved to prevent pups from

avoiding the caregiver, regardless of the quality of care.

In summary, the stress hormone corticosterone has an

adaptive role in defining pup’s immediate neurobehavioral

response. The gradual increase in endogenous corticoste-

rone over early neurodevelopment together with the stim-

ulus-evoked increase in corticosterone control the devel-

opment of pup threat response behavior, thus ensuring

adaptive and ecologically appropriate response to threat.

This illustrates the important role of this stress hormone in

producing adaptive behaviors [10].

Maternal social buffering of corticosterone
response
Next, we will describe a system controlled by corticoste-

rone that enables pups to rapidly and repeatedly switch

back and forth between the immature attachment behav-

ior of younger pups in the nest and the more mature

freezing behavior of the older pups (Figure 3). Under-

standing the immediate effects of corticosterone on

developing pups requires an understanding of how mater-

nal presence modifies pups’ corticosterone levels [5]. This

is termed ‘social buffering’ and is observed in many species

and across development [49–51]. Social buffering has

robust beneficial effects by reducing pain and anxiety while

enhancing healing in both humans and rats [5,52–56].

Previous work has shown that maternal presence is suffi-

cient to block pain-induced increases in corticosterone

[57]. Due to the critical role of corticosterone in turning

on and off fear conditioning in pups, we explored whether

naturalistic control of corticosterone by social buffering

could control rapid switching between fear/threat learn-

ing and attachment learning in pups. Indeed, our lab has

found that mother’s presence controls pups’ shock-

induced preference vs. aversion learning. As illustrated

in Figure 3 we have termed this brief developmental

period the Transitional Sensitive Period, which extends

from PN10 through PN15 in typically developing pups

[22]. Specifically, maternal absence during odor-shock

conditioning in pups at PN10-15 functionally activates

the amygdala and induces a strong aversion to the condi-

tioned odor. However, if this same conditioning takes
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Figure 3
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Maternal control of corticosterone determines rapid and responsive switch in adaptive threat response behaviors during the Transitional Sensitive

Period (PN10-15). Pup corticosterone (CORT) levels in response to threat are under maternal control between PN10-PN15. In the presence of a

mother that perceives no threat, pups corticosterone levels are low and attachment circuitry is active: norepinephrine (NE) is released by the locus

coeroeleus (LC) to produce the paradoxical behavior wherein pups approach a conditioned odor stimulus paired with shock. If the mother is

fearful, she emits an alarm pheromone, which increases pup corticosterone and activates the amygdala dependent threat-response circuitry: the

pup will then avoid conditioned odor stimulus paired with shock. This corticosterone induced amygdala dependent threat response is also

observed when pups are alone.
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place in the presence of the mother, amygdala plasticity is

suppressed, blocking threat learning and reactivating the

locus coeruleus-dependent neural circuitry supporting

attachment learning [22,32]. The mechanism for maternal

suppression of fear learning is through social buffering as

determined by microdialysis of the hypothalamic para-

ventricular nucleus (PVN): that is, maternal presence

reduces pups’ basal corticosterone levels via reduction

of NE release into the pup’s PVN, resulting in blockade

of HPA activation [58]. This link between PVN NE and

amygdala-dependent threat behaviors has been shown to

be causal: blockade of PVN NE prevents maternal social

buffering of HPA activation. Furthermore, maternal

social buffering of the HPA axis can be overridden by

a microinjection of NE receptor agonists into the PVN,

which increases corticosterone in the mother’s presence

and permits the amygdala-dependent behavioral

response to threat. More recently, these findings have

been paralleled in humans and non-human primates

[5,7,59].

However, social buffering is compromised in children

reared with an abusive caregiver [6]. This has been

modeled in non-human primates reared with a naturally

abusive caregiver [7]. Rodent research from our lab has

modeled abusive caregiving using the Scarcity Model of

low resources, where the mother is provided with insuffi-

cient nest-building material. This manipulation produces

abnormal maternal behaviors, including increases in

rough handling or trampling of pups as well as reduced

nurturing behavior, even though pups gain weight nor-

mally [47]. Across species, these models have confirmed

that early life trauma from the caregiver degrades the

mother’s ability to socially buffer both corticosterone

levels and threat response behavior, suggesting loss of

some beneficial effects of social buffering [5,6,60]. Fur-

thermore, pups reared with a stressed mother exhibit

enhanced levels of corticosterone, arising both from cor-

ticosterone delivered through the mother’s milk and

endogenously generated corticosterone release by the

pup [61]. These increases in corticosterone induced by

early-life abuse prematurely end the SHRP, resulting in a

precocious termination of the sensitive period for attach-

ment learning [62] (Figure 4). Thus early life trauma

alters the neurobehavioral trajectory of threat response

development.
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Figure 4
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Early life abuse increases pup corticosterone and induces premature closure of the sensitive period for attachment learning. In the Scarcity Model

of early life abuse, mother rats are provided with insufficient nesting material for five days of early post-natal development (PN8-12). In response,

the mother is more likely to scatter, trample or roughly transport her pups. Notably, pup corticosterone levels increase more rapidly in response to

the maltreatment, which triggers early (�PN7) termination of the stress hyporesponsive period (SHRP), which is the sensitive period for attachment

learning. Early onset of the Transitional Sensitive Period observed in the Scarcity Model is associated with reduced maternal buffering of pup

corticosterone response to threat stimuli.
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Social transmission of fear
However, complete suppression of fear in offspring is

likely not adaptive in all situations and indeed, the

mother is capable of overriding this social buffering

suppression of fear. The mother is also capable of increas-

ing pups’ corticosterone and this highlights a critical role

for social transmission of fear from the mother to infants

[63,64]. Specifically, if the caregiver expresses fear of an

odor in the presence of the pups, the pups will learn to

fear that odor. The mechanism for this learning appears to

be the mother’s release of an alarm pheromone, which

increases basal corticosterone level in pups and permits

amygdala plasticity for fear learning of the odor. Thus,

although the caregiver’s presence at default buffers stress

and fear, the presence of the frightened caregiver induces

fear in pups. Similar social learning occurs throughout

development and has been well documented in adults

[65,66].

Conclusion
We reviewed the role of the stress hormone corticosterone

with an emphasis on new directions in our understanding

of how this stress hormone has immediate impact on pup

adaptive behavior. Furthermore, while the negative

effects of stress are typically emphasized, it is also clear

that normal increases in corticosterone over development

can produce adaptive behaviors in pups. Here we gave

examples of how corticosterone in the pup is controlled

by the mother for adaptive expression of fear: socially

buffering pups’ corticosterone to decrease fear but also

increasing pups’ corticosterone via caregiver’s alarm pher-

omone to increase fear. The caregiver’s control of pup

behavior and learning enables the caregiver to regulate

pups’ expression of adaptive behaviors, ultimately

benefiting pups’ survival.
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