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ABSTRACT
Locus coeruleus neurons innervate multiple brain regions. These neurons release
noradrenaline through their axonal varicosities into the extracellular space
through synaptic and volume transmission during states of arousal. The extracel-
lular space is a channel that surrounds brain cells, facilitating diffusion-mediated
transport of signaling molecules, ions, and drugs. Distal astrocytic processes
expressing β-adrenergic receptors are targets of noradrenaline. In this review, we
discuss work in cortical tissue indicating that β-adrenergic agonist, isoproterenol,
expands astrocytic processes. Isoproterenol-driven increase in volume of astro-
cytic processes contributes partially to decrease in the extracellular space volume
from 22% to 18%. Decrease in the extracellular space volume suggests increased
concentration of ions, neurotransmitters, and neuromodulators diffusing in the
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extracellular space, which, in turn, facilitates neuronal signaling during nor-
adrenaline release in cortex.

Keywords: Noradrenergic system; volume transmission; astrocytes; diffusion; extra-
cellular space; volume fraction; tortuosity; real-time iontophoretic (RTI) method;
electron microscopy; sleep�wake cycle

THE NORADRENERGIC SYSTEM—GENERAL REMARKS

Noradrenergic signaling is implicated in learning and memory, attention,
anxiety and stress, arousal, and mood1,2 and in experience-dependent
cortical plasticity.3�6 A major source of noradrenergic signal in the cen-
tral nervous system arises from a collection of brain stem neurons, called
locus coeruleus (LC). LC neurons synchronously fire together in tonic and
phasic modes. A single LC neuron innervates various brain regions,
including the cortex, the cerebellum, the hypothalamus, and the spinal
cord, through axonal branching to exert a widespread synchronous influ-
ence on these brain circuits.7 Recent work also suggests that there are
functionally and anatomically separate LC projection groups, since
Chandler et al.8 showed that LC neurons innervating subregions of the
prefrontal cortex are distinct from those innervating the motor cortex.

DIVERSITY OF NORADRENERGIC RECEPTOR EXPRESSION
UNDERLIES DIVERSITY OF ASTROCYTIC RESPONSES

The functional outcome of noradrenaline (NA) released from axonal vari-
cosities of LC neurons depends on the distribution of noradrenergic
receptors among brain cells within and across brain regions. All three
noradrenergic receptors (ARs), α1 (subtypes: α1A, α1B, and α1D), α2 (sub-
types: α2A, α2B, α2C, and α2D), and β (β1, β2, and β3), are metabotropic
G-protein coupled receptors. In neurons, α1-AR and β-AR are postsynaptic
while α2-ARs are both pre and postsynaptic and β2-ARs are shown to act
presynaptically.1 In astrocytes, activation of α1-ARs activates the enzyme,
phospholipase C, that catalyzes the conversion of phosphatidylinositol
4,5-bisphosphate into two signaling molecules, inositol 1,4,5-trispho-
sphate (IP3) and diacylglycerol. The released IP3 binds to a transmem-
brane glycoprotein on the endoplasmic reticulum called IP3 receptor
(InsP3R), which induces a conformational change in InsP3R that subse-
quently allows InsP3R to release calcium from the endoplasmic reticulum
into the cytoplasm.9 Aoki et al.10 localized α2A-ARs on postsynaptic mem-
branes and in nonsynaptic locations of axons, dendritic shafts, and astro-
cytic processes in the monkey dorsolateral prefrontal cortex. Astrocytic
α2-ARs interact preferentially with Gi-proteins that inhibit adenylyl
cyclases and 30,50-cyclic adenosine monophosphate (cAMP) production.
Within astrocytes, inactivation of adenylyl cyclases promotes
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glycogenesis, but through its βγ subunit, α2-ARs also couple positively
with protein kinase C and calcium to promote glycogenolysis under cer-
tain situations.9

Activation of β-ARs stimulates adenylyl cyclases, which, in turn,
increase the formation of cAMP. Upregulation of cAMP within astrocytes
activates cAMP-dependent protein kinases that phosphorylate cytoskele-
tal proteins, such as glial fibrillary acidic protein (GFAP) and vimentin to
alter the morphology of astrocytic processes11,12 and glycogen phosphory-
lase to promote glycogenolysis.9 Through these downstream effectors,
adrenergic receptors (α1, α2, and β) contribute to the many astrocytic
functions such as glycogen metabolism, immune response regulation,
release of neurotrophins, such as brain-derived neurotrophic factor and
nerve growth factor, and morphological changes.9,13,14 Astrocytic β-ARs
are also implicated in brain diseases, such as Alzheimer’s disease, stroke,
multiple sclerosis, and human immunodeficiency virus encephalitis.13

Using immuno-electron microscopy, Aoki15 found a ninefold greater
encounter of β-ARs on astrocytic processes of adult cortex, compared to
neuronal processes, suggesting that nonneuronal component is more
responsive to NA. This notion is supported by a recent study showing a
robust calcium signaling induced in neocortical astrocytes but not neu-
rons by NA, acting predominantly through α1-ARs.

16 Additionally, it is
important to note that β-ARs expressed on astrocytes that ensheath syn-
apses occur displaced from noradrenergic terminals.15,17 The distribution
of ARs on multiple cell targets such as neurons, glia, and microglia
within the central nervous system18,19 suggests that NA released into the
surrounding extracellular space (ECS) can have multiple targets besides
the synaptic junction. This is achieved through volume transmission,
i.e., extrasynaptic diffusion-mediated transport of transmitters, modula-
tors, trophic factors, and neurotransmitters, including NA, in the ECS,14

that allows for interactions among their many targets.

NORADRENERGIC SYSTEM RELATES TO FUNCTION OF
ASTROCYTES

Astrocytes are a major type of glial cells in the central nervous system
and provide many additional functions. Astrocytes participate in main-
taining ionic composition and pH of extracellular fluid,20 and they
accommodate a powerful uptake system for a major excitatory neuro-
transmitter, glutamate.21 Astrocytes express the major Na1-dependent
glutamate transporters GLT-1 (Glutamate Transporter-1) and GLAST
(Glutamate Aspartate Transporter) that remove extracellular glutamate
released during synaptic transmission, thereby preventing excitotoxi-
city.21 Once accumulated inside astrocytes, glutamate is converted to
glutamine with the enzyme glutamine synthetase and is transported
back to neurons.22 Application of an α1-AR agonist, phenylephrine,
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increases glutamate uptake in vivo, indicating that the noradrenergic
signal intensifies glutamate uptake.23 Astrocytes are involved in main-
taining extracellular level of potassium ([K1]ECS) around 3 mM. During
neuronal activity, [K1]ECS increases to 10�12 mM, and during anoxic
depolarization associated with ischemic conditions in brain, [K1]ECS can
rise to become as high as 70 mM.24,25 Astrocytes remove excess potassium
through passive “spatial buffering,” facilitated by inwardly rectifying K1

channels and coupling of astrocytes via gap junctions, and through a
Na1/K1-ATPase pump that pumps K1, along with water molecules,
inward of astrocytes.26,27 Astrocytic β-AR agonist, isoproterenol (ISO),
activates Na1/K1-ATPase, to increase the removal of [K1]ECS.

28 Thus, the
noradrenergic system enables astrocytic functions through α1-AR and
β-ARs. Astrocytes also express water channels, aquaporin 4 (AQP4) that
contribute to water homeostasis and transport within brain.29,30 While
functional interplay between the AQP4 channels and the NA system
remains to be tested, it has been shown that the levels of NA are
increased in the medial prefrontal cortex of AQP4-knockout mice.31 In
short, through a variety of mechanisms, astrocytes modulate neuronal
communication and make an impact on excitability of neuronal popula-
tion, both of which may be enhanced further by the release of a number
of substances from glia.

Morphology of astrocytes and their distribution in the neuropil are
well suited in accomplishing these diverse functions. A small cell body of
an astrocyte is surrounded by a network of astrocytic processes. Proximal
astrocytic processes extending from the cell body are less numerous but
thick and contain the intermediate protein, GFAP,32,33 which undergoes
phosphorylation in response to changes in cAMP level that, in turn, alter
astrocyte morphology.11,12 The proximal astrocytic processes extend into
morphologically complex distal processes devoid of GFAP. In contrast to
the proximal processes, distal astrocytic processes are very thin and
thread-like but account for about 85% of an astrocyte’s volume.34 These
fine distal astrocytic processes are interposed between neurons and their
processes, often wrapping structures, such as synapses. They are also
positioned at the interface between the brain and surrounding tissue,
forming glia limitans that line the pia mater or the astrocytic endfeet on
blood vessels.32,35 In fact, since these distal fine processes express ARs,
transporters, and channels, they are the main functional domain of
astrocytes. As will be described below,36 we have evidence indicating
that these fine distal processes that are devoid of GFAP nevertheless
undergo morphological changes induced by β-ARs. These changes may
occur via depolymerization of F-actin,37 which cannot be visualized read-
ily by conventional electron microscopic methods.

Astrocytic processes need to be distributed throughout the neuropil in
order to be effective in ionic and water regulation and, indeed, they are.
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At the same time, astrocytic processes need to be present at specific loca-
tions within the neuropil (e.g., close to synapses) in order to remove
excess glutamate from perisynaptic regions as well as to participate in
the modulation of synaptic transmission. This is accomplished through a
uniform distribution of astrocytes within the neuropil. It has been
reported that each astrocyte occupies a separate anatomical domain,
resulting in a nonoverlapping tiled layout in the neuropil.34,38,39 Because
of their complex morphology and uniform distribution, astrocytes
function as diffusion barriers for signaling molecules, including neuro-
modulators and ions released into the ECS synaptically and extrasyna-
ptically, thereby contributing to the structural and molecular properties
of the ECS.

NORADRENERGIC SYSTEM’S EFFECTS ON ASTROCYTES IN VITRO

Noradrenergic signal can induce morphological reorganization of astro-
cytic processes and morphological changes of astrocytes in culture and
hypothalamic slices, where ISO has been used to activate β-AR on cul-
tured astrocytes.11,40 Cultured astrocytes from adult rat neurohypo-
physes41 and astrocytes cultured from rat cortex at postnatal days 2�312

alter their morphology upon activation of β-AR. Bicknell et al.40 found
that pituicytes cultured from neurohypophyses are transformed from
amorphous to stellate morphology when a β-AR agonist, ISO, is added to
the medium. Vardjan et al.12 performed quantitative analysis of astro-
cytes cultured from cortical brain tissue during incubation with ISO. It
was reported that the cross-sectional area of astrocytes is reduced while
the perimeter of astrocytes is increased upon β-AR activation, and that
cultured astrocytes acquire a stellate morphology. We note that Vardjan’s
morphometric analyses focused on the more proximal astrocytic pro-
cesses containing GFAP detected by immunolabeling, and therefore the
fine GFAP-negative portions of astrocytic processes that could not be
detected by confocal microscopy were excluded from this analysis.

NORADRENERGIC SYSTEM’S EFFECTS ON ASTROCYTES IN SITU

Aoki15,42 reported a rich expression of β-AR at neuronal membranes of
cortical synapses neonatally, but of their dominance at astrocytes in
adulthood. Based on this study, Sherpa et al.36 speculated that noradren-
ergic input to the adult visual cortex is likely to change the morphology
of astrocytic processes, and that this morphological change, in turn,
changes the structure of ECS and impacts the diffusional transport of
substances in the ECS. In contrast to previous studies in cultured astro-
cytes, the β-AR agonist, ISO, was applied to astrocytes embedded within
the microenvironment of intact neuropil of acutely prepared adult visual
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cortex slices, and the analysis was focused on fine, distal astrocytic pro-
cesses, previously estimated to occupy 85% of an astrocytic volume.34 In
agreement with previous studies in culture,12 Sherpa et al.36 reported sig-
nificant changes of astrocytic morphology.

Sherpa et al.36 found that ISO induced changes in several parameters
of astrocytic morphology using electron microscopy (Fig. 12.1). First, the
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total cytoplasmic area of astrocytic processes was increased, suggesting
expansion of distal astrocytic processes. Second, the total plasma mem-
brane length of astrocytic processes encountered within electron micro-
graphs was increased, suggesting new membrane synthesis. Third, the
total number of astrocytic profiles encountered per unit area was
increased. Fourth, the ratio of the plasma membrane length to (cyto-
plasmic area)1/2 for each astrocytic profile was increased. Changes in the
last two parameters suggest the formation of additional astrocytic
profiles after ISO treatment.

All findings of Sherpa et al.,36 except for the first one, agree with
quantitative analyses of cultured astrocytes exposed to ISO.12 While
Sherpa et al.36 found an increase in the total cytoplasmic area of astro-
cytic processes, Vardjan et al.12 reported that the cross-sectional area of
astrocytes was reduced upon β-AR activation. As alluded to above, this
discrepancy may arise from the different domains of astrocytes that were
studied: while Sherpa et al.36 analyzed distal astrocytic processes,
Vardjan et al.12 analyzed the astrocytic cell body and proximal processes.
It is likely that these results are, in fact, in agreement with each other.
As a cultured astrocyte changes from the amorphous to stellate morphol-
ogy, its cytoplasm is likely to be redistributed between the cell body and
the distal processes. This would result in findings reported by Vardjan
et al.12 and Sherpa et al.36 Taken together, study of astrocytic morphology
in intact brain neuropil suggests that β-AR-induced changes in astrocytic
morphology may have important functional implications by allowing for
repositioning of targets of signaling molecules, such as neurotransmitter
transporters, ion channels, receptors (including β-AR), and aquaporin
channels within brain neuropil.

Besides β-AR, astrocytes respond with activation of α1-ARs during the
release of NA in the cortex. Ding et al.43 observed a widespread increase
in astrocytic calcium level in cortical astrocytes of awake mice from
activation of α1-ARs. Later, Paukert et al.44 observed that activation of
astrocytic α1-AR induces a rise of intracellular calcium level simulta-
neously in cerebellum and visual cortex during locomotion. The NA medi-
ated enhancement in calcium signaling in astrocytes is thought to
facilitate astrocytes in detecting changes in neural activity. β-AR-mediated
morphological changes in astrocytes also occur over an area of visual corti-
cal neuropil36 similar to the increase in cortical calcium signaling during
α1-AR activation.

BRAIN EXTRACELLULAR SPACE

The β-AR-induced expansion of astrocytic processes contributes to the
diffusion properties of brain ECS. Brain ECS is a large compartment of
brain tissue formed by numerous narrow spaces that surround brain
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cells. It occupies about 20% of the total brain tissue volume,45,46 but the
individual intercellular gaps are only about 30�60 nm wide.47,48 The ECS
is filled with ionic solution and macromolecules of the extracellular
matrix (ECM), predominantly proteoglycans and glycosaminoglycans.
The ECS has a fundamental role in brain function. It facilitates diffu-
sional transport of neuroactive substances, nutrients, metabolites, and
therapeutic agents, while also serving as a reservoir of ions and growth
factors sequestered by the ECM. Extracellular concentration and distribu-
tion of these substances is determined by the ECS structure.

Early studies of the ECS structure employed electron microscopy,
which has a power to resolve individual narrow intercellular channels.
Today, the morphometric approaches are sparingly used whenever the
ECS parameters need to be precisely quantified. The main drawback of
morphometric approaches is that the conventional fixation procedures
cause significant water redistribution, leading to distortion of the ECS
structure.47,49 It has been shown that aldehydes required for ultrastruc-
tural preservation causes greater than 10% loss of the ECS.50

Transport of substances in the ECS is primarily mediated by diffusion.
Diffusion, in turn, can be exploited as an experimental tool to quantify
macroscopic parameters of ECS structure in live tissue.51 Diffusion-based
methods that study the ECS employ small extracellular probe molecules,
such as a cation, tetramethylammonium (TMA1, MW 74), to quantify
two parameters of the ECS structure: volume fraction and tortuosity.
This method is called the real-time iontophoretic (RTI) method.45 Since
TMA1 has been used mostly, it is also known as the TMA1 method. The
volume fraction (α) represents the proportion of tissue volume occupied
by the ECS. The tortuosity (λ) quantifies the hindrance imposed on the
diffusion process by the tissue, relative to an obstacle-free medium.
Tortuosity is defined as (D/D�)1/2, where D is the free diffusion coefficient
in a free medium and D� is the effective diffusion coefficients in
brain.45,51 Alternatively, diffusion hindrance can be defined as diffusion
permeability (θ), which is a ratio of the effective diffusion coefficient in
the brain tissue and the free diffusion coefficient.52 In isotropic healthy
brain, α is about 0.2 and λ is about 1.6 (i.e., diffusion of a small extracel-
lular probe molecule in brain tissue is slowed down about 2.5 times, rela-
tive to an obstacle-free medium).46,51

Light microscopic images of brain tissue may lead us to believe that
brain microstructure is static. But that is far from the truth. Neuronal
spines have been shown to be pruned during development and to grow
or move during synapse formation and to underlie synaptic plasticity.53

Similarly, astrocytic processes were shown to be highly mobile, and be
attracted to sites of high neuronal activity.54 Cellular elements thus
appear to be in a state of constant change and rearrangement, and these
processes contribute to brain plasticity essential for learning, adaptation,
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and survival. Since the ECS compartment is a counterpart of the cellular
compartments, its structure also changes. These changes may be acute
and reversible, such as during physiological conditions, when neurons
are activated or osmotically challenged.55,56 These changes may also be
permanent, such as during brain trauma and in disease states. For exam-
ple, the ECS structure changes significantly in many pathological states
associated with cellular edema.55,57,58 These dynamic or permanent
changes in the ECS structure impact the extracellular concentration and
distribution of substances diffusing in the ECS.

NORADRENERGIC SYSTEM’S EFFECTS ON EXTRACELLULAR
SPACE STRUCTURE

A number of RTI studies performed in anesthetized animals, mostly
rodents, isolated brain slabs such as an isolated turtle cerebellum and
acute brain slices reported that the ECS occupies about 20% of the total
brain volume.56 Until recently, it was assumed that this value of ECS vol-
ume would apply to awake brain state as well. However, a recent study
from Maiken Nedergaard’s group59 reported that the ECS volume dramati-
cally decreases during an awake state. In this study, RTI measurements
were carried out in the cortex of mice during sleep, awake, and under
anesthesia. The ECS volume recorded in sleeping animals at midday and
in animals anesthetized with a ketamine�xylazine mixture (α5 0.23)
was in good agreement with previously reported values of the ECS vol-
ume within acute brain slices.56 However, the value of α was only about
0.14, when animals woke up in the evening. This represents a significant
decrease (40%) in α during the awake state. Interestingly, no significant
change in tortuosity was found between the sleep state and the awake
state. Xie et al.59 also reported that noradrenergic signaling is involved in
the ECS volume changes during the sleep�wake cycle. They showed that
a cocktail of adrenergic antagonists applied on the cortical surface of an
awake animal increased the ECS volume from 0.14 to 0.23, indicating that
blockade of adrenergic activity reverses increase in the ECS volume from
that of the awake to the sleep state.

The study by Xie et al.59 raised several questions. First, which brain
compartment alters its volume in a manner reciprocal to the ECS volume
changes? Second, which adrenergic receptors are responsible for the ECS
volume changes? The study by Sherpa et al.36 provided some answers to
these questions (Fig. 12.2). In this study, ultrastructural analysis with
electron microscopy and diffusion analysis of the ECS parameters was
carried out in acutely prepared slices of the rat visual cortex with and
without exposure to the βAR agonist, ISO. As already described, ultra-
structural analysis found that astrocytic processes expanded during
ISO application. It was also reported that α significantly decreased from
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0.22 to 0.18 in the ISO condition, while λ remained constant. The ECS
volume obtained during ISO application in slices36 is larger than during
awake state in vivo.59 This discrepancy may result from an enhancement
of NA signaling from an intact LC in an awake brain whereas only a
selective enhancement of NA signaling occurs in slices through βAR acti-
vation. Taken together, Sherpa et al.36 identified astrocytes as one com-
partment that changes its volume in response to noradrenergic
activation. Furthermore, this study identified βARs as one type of norad-
renergic receptors involved in this process.

ECS structural parameters determine the spatiotemporal distribution
of neuroactive substances diffusing in the ECS. As α is reduced under
ISO conditions, cells and cellular processes in such a neuropil experience
higher concentrations of released ions, neurotransmitters, and neuromo-
dulators, and this enhances their actions on target sites. Our simulation
model of extracellular diffusion in control conditions and in ISO condi-
tions predicts such an effect (Fig. 12.3). Simulations show that the con-
centration of diffusion molecules reaches higher maximum and persists
at a higher level in the ISO condition than in the control condition.
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CONCLUSIONS

The noradrenergic system projects to the entire cortex and its func-
tional outcome depends on the LC neurons innervating the cortex and
diverse ARs situated among neurons, astrocytes, and microglia in the
cortex. Recent work in the visual cortex reported that through volume
transmission, NA activates β-ARs located on astrocytes, to expand dis-
tal astrocytic processes. Expansion of astrocytic processes accounts,
partly, for the reduction in the ECS volume in cortex. Future studies
may address whether this phenomenon is generalized to the other cor-
tical regions that are innervated by the LC neurons. A reduced ECS vol-
ume will increase concentration of ions, neuromodulators, and
neurotransmitters, leading to a signaling boost of these molecules on
target sites. Owing to these changes in concentration of diffusing
molecules in the ECS, we attribute a functional role to NA-driven
expansion of astrocytic distal processes, i.e., modulation of communi-
cation among brain cells.

This review presents new important findings on how noradrenergic
signal exerts its widespread effect on brain function through astrocytic
morphology. It would be important in future to test for the β-AR-induced
morphological changes in microglia, which also express β-ARs19 and have
received much attention regarding synaptic plasticity during the critical
period for developmental plasticity.60
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ABBREVIATIONS

AR adrenergic receptor

AQP4 aquaporin 4

cAMP 30,50-cyclic adenosine monophosphate

ECM extracellular matrix

ECS extracellular space

GFAP glial fibrillary acidic protein

GLAST glutamate aspartate transporter

GLT-1 glutamate transporter-1

IP3 inositol 1,4,5-trisphosphate

ISO isoproterenol or isoprenaline

LC locus coeruleus

NA noradrenaline, norepinephrine

RTI real-time iontophoretic

TMA1 tetramethylammonium
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