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This paper discusses the I(2)model with breaks in the deterministic component and illustrates themodel
with an analysis of German and US prices, exchange rates, and interest rates in the period 1975–1999.
It provides new results on the likelihood ratio test of overidentifying restrictions on the cointegrating
relations when they contain piecewise linear trends. One important aim of the paper is to demonstrate
that a structured I(2) analysis is useful for a better understanding of the empirical regularities underlying
the persistent swings in nominal exchange rates, typical in periods of floating exchange rates.
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1. Introduction

Over the past three decades, floating currencies have shown
a tendency to undergo persistent swings away from purchasing
power parity (PPP) for extended periods of time that are followed
by periods in which exchange rates move persistently back
toward this benchmark.1 These long swings in real exchange rates
have puzzled international macroeconomists for a long time. The
literature has attempted to account for such fluctuations with
a Rational Expectations Hypothesis (REH) sticky-price monetary
model, such as Dornbusch (1976) or one of its New Open Economy
Macroeconomic (NOEM) formulations; see Lane (2001) for a
review article of the NOEM literature.
These models typically imply that the nominal exchange rate

and relative goods prices are unit-root processes, while the real ex-
change rate is stationary. This theory has led empirical researchers
to make use of an I(1)model to analyze the data. Most report that

∗ Corresponding address: Department of Economics, University of Copenhagen,
Øster Farimagsgade 5, bld. 26, DK-1353 Copenhagen K, Denmark. Tel.: +45
35323071, +45 35 32 0681.
E-mail address: soren.johansen@econ.ku.dk (S. Johansen).

1 The PPP puzzle is the inability of one model to account for both the high
persistence and the high volatility of real exchange rates. For reviews of this
literature, see Rogoff (1996), Taylor and Taylor (2004), Sarno and Taylor (2003) and
Mark (2001).

the I(1) null hypothesis cannot be rejected for the nominal ex-
change rate and relative goods prices, but that it can for the real
exchange rate in favor of stationarity. They also report that the real
exchange rate, though stationary, is very persistent, i.e., a near-I(1)
process.
However, assuming that an I(1) model is appropriate, rather

than testing whether the I(2) condition can be rejected on open-
economy macroeconomic data sets, is problematic. When data are
approximately I(2) rather than I(1), a conclusion that the real
exchange rate is stationary (or stationary but highly persistent)
reached in the I(1)model is likely to bemisleading. This is because
when an I(1) model is applied to I(2) data, cointegration is not
from I(1) to I(0), but from I(2) to I(1). Thus, the ‘consensus’
conclusion in the literature that real exchange rates are stationary
but highly persistent might have to be replaced by the conclusion
that the change in real exchange rates is stationary but highly
persistent. Indeed, the results of Juselius’s (2008) cointegrated VAR
analysis of German and US goods prices and exchange rates over
the post Bretton Woods period show that this is the case. The
paper shows that if the I(1) model is applied, nonetheless, the
choice of r = 1 (suggested by the trace test) leaves an unrestricted
characteristic root of 0.99 in the model, essentially demonstrating
that the estimated long-run relation is in fact CI(2, 1) rather than
CI(1, 1). The paper concludes that an empirical understanding of
currency swings is not likely to be reached without allowing for an
I(2) component and including interest rates.

0304-4076/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
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That interest rates are important for a full understanding of
the long swings puzzle also follows from the monetary model of
Frydman and Goldberg (2007, 2008), which replaces the Rational
Expectations Hypothesis (REH) with an Imperfect Knowledge Eco-
nomics (IKE) representation of forecasting behavior. In Frydman
et al. (2009), we show that this IKE model implies that relative
goods prices, as well as nominal and real exchange rates, are I(2)
and that there is a cointegrating relationship between the real
exchange rate and the real interest rate differential. All of these
results are found in this paper. They are strengthened by other
studies that find I(2) trends in other data sets that include ex-
change rates, goods prices, and money supplies; see Juselius
(1994), Kongsted (2003, 2005), Kongsted and Nielsen (2004) and
Bacchiocchi and Fanelli (2005).
Thus, there are two competing economic theories attempting

to explain the pronounced persistence in exchange data, one
claiming that real exchange rates are stationary, though highly
persistent, i.e., near I(1), the other claiming that the change of real
exchange rates is I(1), but highly persistent, i.e., the level of the
real exchange is near I(2). The cointegrated VARmodel seems ideal
for discriminating between these two views because hypotheses of
I(0), I(1), and I(2) can be formulated within the unrestricted VAR
without having to impose any of them from the outset.
The paper tests both the I(1) and the I(2) condition in a

cointegrated VAR model that describes monthly data for German
and US prices, exchange rates and interest rates in the period
1975–1999. Since the I(2) condition cannot be rejected, the data
are structured into three different levels of persistence. This
enables us to confront the basic assumptions underlying the
competing theories with the data.
The reunification of Germany in 1991 was a major institutional

event which is likely to have caused a structural break in the data,
and the test for overidentifying restrictions on the cointegration
structure is developed for the I(2) model with breaks in the
deterministic component. The test procedures discussed in this
paper build on previous work in Johansen (1992, 1996, 1997,
2006a), Rahbek et al. (1999), Paruolo (2000, 2002) and Nielsen and
Rahbek (2007).
The paper is organized as follows. Section 2 motivates the need

for why the I(2) model needs deterministic components with
breaks. Section 3 discusses the Maximum Likelihood parameter-
ization of the I(2)model, while Section 4 shows how to test struc-
tural hypotheses in thatmodel. Section 5 estimates an unrestricted
VARmodel with deterministic components containing breaks, and
tests the finalmodel specification. Section 6 discusses the choice of
the two reduced rank indices determining the number of I(1) and
I(2) trends in the model. Section 7 reports a number of test results
based on non-identifying hypotheses as a general description of
CI(2, 1) relationships in the data. Section 8 reports an overidenti-
fied long-run structure of polynomially cointegrated relations, and
Section 9 uses the MA representation to discuss whether changes
in the real exchange rate and long-term interest rate differen-
tial can be considered stationary but highly persistent. Section 10
concludes.

2. Deterministic components and the I(2) model

A proper specification of deterministic terms in the I(2)
model is necessary for the model to fit the data and hence
yield statistically good estimates. From the outset, an I(2) model
generates a linear deterministic trend from the initial values, but
no trend in the long-run relations. Therefore, if a trend is needed
in the cointegrating relations it has to be explicitly modelled. See
Rahbek et al. (1999) for a discussion.
Fig. 1, upper panel, shows the graphs of the price differential

and the nominal exchange rate and illustrates the tendency in
the latter to undergo long swings. Three features stand out:

(1) the downward sloping stochastic trend in price differentials;
(2) the big persistent swings in the nominal exchange rate evolving
around a similar downward sloping trend as in relative prices;
and (3) an indication of a change in the slope of the relative
price trend around 1991 (possibly also around 1980–1981). The
graph in Fig. 1, lower panel, of the real exchange rate, ppp =
p1 − p2 − s12, shows that the downward sloping trend in relative
prices has been approximately canceled by the similar trend in
the nominal exchange rate. The long persistent swings remain
essentially unchanged.
The change in the relative price trend mentioned in (3) is likely

to be associated with the German reunification in 1991:1, that is
January 1991. This was a very significant event which is likely to
have strongly affected German, but not US, prices. The merging of
East and West German prices may have produced a step effect in
German prices which, as long as it is purely technical, should be
removed prior to the VAR analysis. The possibility of an additive
step effect has been tested and the effect removed prior to the
VAR analysis using a procedure in Nielsen (2004). In addition, the
unification is likely to have produced dynamic effects on prices,
exchange rates and interest rates to be accounted for by breaks in
the deterministic component within the dynamics of the model.
We allow for the possibility of such breaks by a broken linear trend
in the long-run relations, a step dummy in the growth rates, and an
impulse dummy to account for a blip in the acceleration rates. For
a detailed description of the role of deterministic trends in the I(2)
model, see Section 3 and Juselius (2006, Chapter 16). These effects
are tested in Section 7.
As appears from the graphs of the data in Fig. 2, there are

a number of additional outlying observations, the majority of
them belonging to the short-term interest rates in the period
of monetary targeting 1980–1982. Hansen and Johansen (1999)
tested the hypothesis of constant parameters for this highly
volatile period and it was strongly rejected. Because of this, we
exclude the observations from 1980:2 to 1982:3 from the model
analysis.2
To summarize, the baseline VARmodel is specifiedwith a linear

deterministic trend allowing for a shift in the slope in 1991:1, a step
and an impulse dummyat the samedate, aswell as a fewadditional
impulse dummies to be subsequently defined.

3. The I(2) model with piecewise linear deterministic terms

To ensure that the piecewise linear deterministic components
do not cumulate to quadratic or cubic trends, we need to discuss
how to restrict these components to enter the I(0), I(1), and
I(2) directions of the VAR model. Without loss of generality,
this discussion can be based on the VAR(3) model formulated in
acceleration rates, changes and levels:

∆2xt = Γ1∆
2xt−1 + Γ∆xt−1 +Πxt−1 + ΦsDs,t + ΦpDp,t

+ΦtrDtr,t + µ0 + µ1t + µ2tb,t + εt , (1)

t = 1975:7, . . . , 1998:12, (2)

where x′t = [ppt , s12,t ,∆p2,t , b1,t , b2,t , s1,t , s2,t ], with ppt = (p1 −
p2)t describing the log of relative prices, s12,t the Dmk/$ rate,
b1,t , b2,t the long-term bond rates, s1,t , s2,t the short-term interest
rates3 and a subscript 1 stands for Germany and 2 for USA. We
denote by tb,t = (t − b+ 1)+ a broken linear trend; Ds,t is a vector

2 As a sensitivity check, the model has been estimated without the hole in
1980–1982 and without correcting for outliers. The main conclusions hold, but the
results seem less reliable.
3 Annual interest rates in percentages have been transformed to monthly rates
by dividing by 1200 to achieve comparability with monthly log changes.
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Fig. 1. The graphs of the (mean and range adjusted) German–US price differential, pp, and the nominal exchange rate, s12 (upper panel), and the ppp = pp − s12 (lower
panel).

Fig. 2. The graphs of German and US short-term and long-term interest rates in levels (left-hand side) and differences (right-hand side).

of step dummies (. . . , 0, 0, 1, 1, . . .), Dp,t is a vector of permanent
impulse dummies (. . . , 0, 0, 1, 0, . . .),Dtr,t is a vector of transitory
impulse dummies (. . . , 0, 0, 1,−1, 0, 0, . . .), and all parameters
are unrestricted.
The hypothesis that xt is I(1) is formulated as a reduced rank

hypothesis,

Π = αβ ′, where α, β are p× r, (3)

implicitly assuming that Γ is unrestricted. The hypothesis that xt
is I(2) is formulated as an additional reduced rank hypothesis,

α′
⊥
Γ β⊥ = ξη

′, where ξ, η are (p− r)× s1, (4)

whereα⊥ denotes a p×(p−r)matrix of rank p−r forwhichα′⊥α =
0, and the notation α⊥ = α⊥(α

′

⊥
α⊥)

−1 is used. Condition (3) is
associated with the variables in levels and (4) with the variables
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in differences. The intuition is that the differenced process also
contains unit roots when data are I(2).
Based upon (4), we define the orthogonal decompositions

(β, β⊥1 = β⊥η, β⊥2 = β⊥η⊥) and
(α, α⊥1 = α⊥η, α⊥2 = α⊥ξ⊥)

of dimensions r , s1, and s2 respectively. The moving average
representation of the solution of the I(2)model under assumptions
(3) and (4), and the condition |α′

⊥2Ψβ⊥2| 6= 0 (where Ψ =

Γ βα′Γ + Ip − Γ1), is given by

xt = C2
t∑
j=1

j∑
i=1

(εi + ΦsDs,i + ΦpDp,i + ΦtrDtr,i

+µ0 + µ1i+ µ2t91:1,i)

+ C1
t∑
j=1

(εj + ΦsDs,j + ΦpDp,j + ΦtrDtr,j

+µ0 + µ1j+ µ2t91:1,j)
+ C∗(L)(εt + ΦsDs,t + ΦpDp,t + ΦtrDtr,t
+µ0 + µ1t + µ2t91:1,t)+ A+ Bt, (5)

where A and B are functions of initial values (x0, x−1, x−2) and the
coefficient matrices are complicated functions of the parameters,
satisfying the relations

C2 = β⊥2(α′⊥2Ψβ⊥2)
−1α′
⊥2, (6)

β ′C1 + α′Γ C2 = 0, C1α + C2Γ β̄ = 0, (7)

β ′
⊥1C1 = −α⊥1

′(I − Ψ C2), (8)

(β, β⊥1)
′B = 0, β ′A+ ᾱ′Γ B = 0; (9)

see Johansen (1992) for more details. It follows from (5), (6), (7)
and (8) that the processes

∆2xt , β ′xt + ᾱ′Γ∆xt , (β, β⊥1)
′∆xt (10)

are trend stationary. This means that xt is I(2), and that the long-
run (polynomially cointegrating) relations are β ′xt + ᾱ′Γ∆xt .
Finally, (β, β⊥1)′∆xt are the medium-run relations between the
differences of xt .
To facilitate the interpretation of the I(2) trends and how they

load into the variables, we denote β̆⊥2 = β⊥2(α′⊥2Ψβ⊥2)
−1, so that

C2 = β̆⊥2α′⊥2. (11)

It appears that C2 has a similar reduced rank representation
as C1 in the I(1) model, so it is straightforward to interpret
α′
⊥2
∑t
j=1
∑j
i=1 εi as a measure of the s2 second-order stochastic

trends which load into the variables xt with the weights β̆⊥2.
From (5), it follows that an unrestricted constant will cumulate

twice to a quadratic trend, and an unrestricted trend to a cubic
trend, and similarly for the step dummy and the broken trend.
Thus, the coefficients of the deterministic components need to
be appropriately restricted in the model equations to avoid
undesirable effects in the process.
Since the parameters in model (1) are restricted by the two

reduced rank conditions, (3) and (4), Johansen (1997) proposed a
parameterization in which the individual parameters are variation
independent. The parameterization below, supplemented with
deterministic terms, is used in the empirical analysis:

∆2xt = α

ρ ′ ( ττ01
τ0

)′ ( xt−1
t91:1,t−1
t − 1

)
+

(
ψ
ψ01
ψ0

)′ (
∆xt−1
Ds91:1,t−1
1

)
+α⊥Ωκ

′

(
τ
τ01
τ0

)′ (
∆xt−1
Ds91:1,t−1
1

)
+ ΦpDp,t + ΦtrDtr,t + εt , (12)

where α⊥Ω = Ωα⊥(α′⊥Ωα⊥)
−1, t91:1,t is a linear trend starting in

1991:1, Ds91:1,t is a step dummy starting in 1991:1, Dp,s is a vector
of impulse dummies, and Dtr,t is a transitory dummy; see Table 1
for a complete description.
In the following, we use dt = (t91:1t , t)′ andwrite (12) in amore

compact form as

∆2xt = α(ρ ′τ̃ ′x̃t−1 + ψ̃ ′∆x̃t−1)+ α⊥Ωκ ′τ̃ ′∆x̃t−1
+ΦpDp,t + ΦtrDtr,t + εt , (13)

where τ̃ = (τ ′, τ01, τ0)
′
= (τ ′, τ ′d)

′, ψ̃ = (ψ ′, ψ01, ψ0)
′
=

(ψ ′, ψ ′d)
′, and x̃t = (x′t , d

′
t)
′. Let α′Ω = (α′Ω−1α)−1α′Ω−1, then

α′Ωα⊥Ω = 0, andα
′
Ωα = Ir , and compared to the parameterization

(1) we have τ = (β, β⊥1), ψ ′ = α′ΩΓ , and κ
′
= α′

⊥
Γ τ̄ .

In the polynomially cointegrating relation ρ ′τ̃ ′x̃t−1 + ψ̃ ′∆xt−1,
the term τ̃ ′∆x̃t−1 is already trend stationary, so we define the
coefficient δ̃′ = ψ̃ ′τ̃⊥(τ̃

′

⊥
τ̃⊥)
−1τ̃ ′
⊥
as the coefficient to ∆x̃t−1

needed to render β̃ ′x̃t + δ̃′∆x̃t trend stationary.
We let p1 be the dimension of x̃t . An advantage of this param-

eterization is that the parameters (α, τ̃ , ψ̃, ρ, κ,Φp,Φtr ,Ω) are
variation independent.Wenext give expressions for themain com-
ponents of the deterministic trends in xt and τ ′xt and the trend
stationary relations ∆2xt , β ′xt + ψ ′∆xt , and τ ′∆xt . The proof of
the next lemma is essentially contained in Rahbek et al. (1999),
which investigated the case of a restricted linear term. We need
to pay special attention to the dummy variables which generate
many different trends, because they are not linearly independent
when shifted in time.

Lemma 1. The deterministic term in the model equation (12),

µt = αρ
′τ ′ddt−1 + (αψ

′

d + α⊥Ωκ
′τ ′d)∆dt−1 + ΦpDp,t + ΦtrDtr,t ,

implies that xt has a deterministic trend which consists of dt =
(t91:1,t , t)′, a linear trend from the initial values, and broken linear
trends from the impulse dummies plus terms that are bounded, and a
sum of impulse dummies with exponentially decreasing coefficients.
Hence the trend in ∆2xt is a sum of impulse dummies with
exponentially decreasing coefficients.

Proof. It follows from (5) that the initial values generate a
linear trend A + Bt , and the term ΦpDp,t + ΦtrDtr,t generates
broken linear trends, step dummies, and a linear combination of
impulse dummies with exponentially decreasing coefficients. The
remaining terms are generated by dt and∆dt , and give

[C2α⊥Ωκ ′τ ′d + C1αρ
′τ ′d]

t∑
j=1

dj−1 + C1[αψ ′d + α⊥Ωκ
′τ ′d]dt−1

+

∞∑
i=0

C∗i [αρ
′τ ′ddt−1−i + (αψ

′

d + α⊥Ωκ
′τ ′d)∆dt−1−i],

where we have used that C2α = 0; see (6).
We want to prove that

C2α⊥Ωκ ′ + C1αρ ′ = 0,

by multiplying it by (β, β⊥1, β⊥2)′, so that
∑t
j=1 dj−1 does not

appear.
1. Multiplying by β ′, we find the result from β ′C2 = 0 and

β ′C1α = 0; see (6) and (7).
2. Multiplying by β ′

⊥1 and using β
′

⊥1C2 = 0, we see that the first
term is zero, and from the expression β ′

⊥1C1 = −ᾱ
′

⊥1(Ip − Ψ C2),
see (8), we find that the next term is zero.
3. Finally, we multiply by β ′

⊥2, and show that

β ′
⊥2C2α⊥Ωκ

′
+ β ′

⊥2C1αρ
′
= 0.
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Table 1
Estimated outlier coefficients.

Dummy variables in the model
Dtax Dp79:10 Dp82:08 Dtr84:01 Dp85:02 Dp86:02 Dp88:08 Dp89:02 Dp97:07

∆2pp 0.01
[9.77]

* * * * * * * 0.01
[3.49]

∆2s12 * * * 0.06
[2.67]

*
−0.07
[−2.35]

* * *

∆2∆p2 * *
−0.00
[−2.75]

* *
−0.00
[−3.33]

* * *

∆2b1 * * * * 0.00
[2.36]

* * * *

∆2b2 * 0.00
[2.31]

−0.00
[−2.64]

* 0.00
[4.08]

−0.00
[−3.96]

* * *

∆2s1 * * * * 0.00
[2.79]

* 0.00
[5.55]

0.00
[4.40]

*

∆2s2 * 0.00
[5.18]

−0.00
[−12.67]

−0.00
[−13.41]

0.00
[3.27]

* * * *

t-values in brackets.
* indicates a t-value<2.0.

From (7), we find

C1α = −C2Γ β̄ = −C2α⊥Ωκ ′τ ′β̄,

so we get

β ′
⊥2C2α⊥Ωκ

′
+ β ′

⊥2C1αρ
′
= β ′

⊥2C2α⊥Ωκ
′(Ir+s1 − τ

′β̄ρ ′).

The following identity holds:

Ir+s1 − τ
′β̄ρ ′ = Ir+s1 − τ

′τρ(ρ ′τ ′τρ)−1ρ ′

= ρ⊥(ρ⊥(τ
′τ)−1ρ⊥)

−1ρ⊥(τ
′τ)−1. (14)

To see this, set β = τρ and multiply by the full rank matrix
(ρ⊥, τ

′τρ).
Thus we find

β ′
⊥2C2α⊥Ωκ

′
+ β ′

⊥2C1αρ
′

= β ′
⊥2C2α⊥Ωκ

′ρ⊥(ρ⊥(τ
′τ)−1ρ⊥)

−1ρ⊥(τ
′τ)−1.

Finally, we use that α⊥2 = α⊥ξ⊥, where ξ = κ ′ρ⊥, and find

C2α⊥Ωκ ′ρ⊥ = β⊥2(α′⊥2Ψβ⊥2)
−1α′
⊥2Ωα⊥(α

′

⊥
Ωα⊥)

−1κ ′ρ⊥,

but

α′
⊥2Ωα⊥(α

′

⊥
Ωα⊥)

−1κ ′ρ⊥ = ξ
′

⊥
α′
⊥
Ωα⊥(α

′

⊥
Ωα⊥)

−1κ ′ρ⊥

= ξ ′
⊥
ξ = 0.

Thus the trend in xt has the form indicated in the lemma. �

Corollary 2. The deterministic term in∆x2t , β̃
′x̃t+ψ̃ ′∆x̃t , and τ̃ ′∆x̃t

consists of a sum of impulse dummies with exponentially decreasing
weights, which we denote generically by Rt . It follows that

E(β ′xt + ψ ′∆xt) = −ρ ′τ ′ddt − ψ
′

d∆dt + Rt , (15)

E(τ ′∆xt−1) = −τ ′d∆dt + Rt . (16)

Therefore

E(τ ′xt) = −τ ′ddt + bounded terms. (17)

Proof. It follows from Lemma 3 that E(∆2xt) = Rt , and from the
model equation (12) we find, using αΩ = (α′Ω−1α)−1α′Ω−1, that

α′ΩE(∆
2xt) = E(ρ ′τ̃ ′x̃t−1 + ψ̃ ′∆x̃t−1)+ α′ΩΦpDp,t + α

′

ΩΦtrDtr,t ,

α′
⊥
E(∆2xt) = κ ′E(τ̃ ′∆x̃t−1)+ α′⊥ΦpDp,t + α

′

⊥
ΦtrDtr,t .

From the first relation it is seen that

E(β ′xt + ψ ′∆xt) = −ρ ′τ ′ddt − ψ
′

d∆dt + Rt ,

so

ρE(τ ′∆xt−1) = E(β ′∆xt−1) = −ρ ′τ ′d∆dt + Rt . (18)

From the second relation it follows that

κ ′E(τ ′∆xt−1) = −κ ′τ ′d∆dt−1 + Rt .

Writing κ ′τ ′ = κ ′(ρ̄ρ ′ + ρ̄⊥ρ ′⊥)τ
′, we find

κ ′ρ̄⊥ρ
′

⊥
E(τ ′∆xt−1) = κ ′E(τ ′∆xt−1)− κ ′ρ̄ρ ′E(τ ′∆xt−1)

= −κ ′ρ̄⊥ρ
′

⊥
τ ′d∆dt−1 + Rt ,

so

ρ ′
⊥
E(τ ′∆xt−1) = −ρ ′⊥τ

′

d∆dt−1 + Rt ,

which together with (18) gives (16), and by summation we find
(17). �
Thus the main terms in the trend of the polynomially cointe-

grating relations is dt and∆dt , whereas τ̃ ′∆xt has only∆dt .
The four deterministic terms modelled by the parameters

(τ01, τ0, ψ01, ψ0) in (12) are exactly the (main) deterministic terms
that appear in the trend stationary processes.

4. Testing hypotheses in the I(2) model

In this section, we discuss hypotheses on the parameters α, β̃ ,
and τ̃ , in the parameterization (13).

4.1. Hypotheses on α

We discuss two types of hypotheses, the hypothesis of no levels
feedback and the hypothesis of a unit vector in α.
First, let xt = (x′1t , x

′

2t)
′ be a decomposition of the variables into

two sets of p − m and m variables, and decompose α = (α′1, α
′

2)
′

similarly. The hypothesis on no levels feedback from x2 to x1,

α =

(
α1
0

)
=

(
Ip−m
0

)
α1, (19)

or α2 = 0, means that the acceleration∆2x2t does not react imme-
diately to a disequilibrium error in the polynomial cointegration
relations β ′xt−1 + δ′∆xt−1. Expressed differently, this means that
the error term ε2t cumulates to common trends, and in this sense
the variables in x2t are pushing variableswith long-run impact. The
hypothesis of weak exogeneity of x2t is a restriction on the rows
of (α, α⊥1), and that is not tested here; see, however, Paruolo and
Rahbek (1999).
Second, the hypothesis that a unit vector, e1, is in α, is

formulated by
α = (e1, e1⊥φ). (20)
An equivalent way of saying this is that the first row of α⊥ is zero,
e′1α⊥ = 0, so
α⊥ = e1⊥ψ.
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This has the interpretation that the errors of the first equation are
not cumulating and in this sense the variable is purely adjusting
Juselius (2006, p. 200).
Both hypotheses are restrictions on the coefficient of the

(asymptotically) stationary polynomial cointegration relations,
β ′xt−1 + δ′∆xt−1, and therefore the likelihood ratio test statistics
are asymptotically χ2 with degrees of freedom mr and p +
r − 1, respectively, corresponding to the number of restricted
parameters.

4.2. Tests on β̃

We consider in Section 8 tests for linear restrictions on each β̃
vector

β̃ = (h1 + H1ϕ1, . . . , hr + Hrϕr), (21)

where hi is p1 × 1 and linearly independent of Hi which is p1 ×
mi of rank mi, both known, and ϕi is an unknown parameter of
dimensionmi × 1.
We then need the following result.

Lemma 3. In the I(2) model with piecewise linear deterministic
trends, and β̃ identified by the restrictions (21), the asymptotic
distribution of the maximum likelihood estimator of (ϕ1, . . . , ϕr) is
mixed Gaussian, so the asymptotic distribution of the likelihood ratio
test for the hypothesis (21) is χ2(

∑r
i=1(p1 − r −mi)).

The proof is given in the Appendix by establishing that the
asymptotic distribution of the score function is mixed Gaussian
with a non-singular conditional variance. Related results have been
derived previously. In Johansen (1997), the asymptotic distribution
of β̂ was given for the case of no restriction and no deterministic
components, and Rahbek et al. (1999) show the result for the case
of no restrictions when the process has a linear trend. General
conditions on β were dealt with by Boswijk (2000) and Johansen
(2006a), but for themodelwith no deterministic components. Here
we give a direct proof for the model at hand when β̃ is identified
by the linear restrictions (21).
The result will be applied to simplify the estimated polynomial

cointegration relations. The hypotheses do not involve the
coefficient δ̃ in β̃ ′x̃t+δ̃′∆x̃t , because the asymptotic theory for such
hypotheses has not been worked out.4

4.3. Tests on τ̃

By decomposing τ̃ = τ̃ ρρ̄ ′ + τ̃ ρ⊥ρ̄
′

⊥
= β̃ρ̄ ′ + η̃ρ̄ ′

⊥
, it was

proved above that ̂̃β − β̃ , suitably normalized, is asymptoti-
cally Gaussian given β ′

⊥2C2
∫ u
0 W (s)ds and β

′

⊥1C1W (u); see (30).
Similarly, one can show that̂̃η− η̃, suitably normalized, is asymp-
totically mixed Gaussian given β ′

⊥2C2W (u). The two limits are
mixed Gaussian but not jointlymixed Gaussian, so hypotheses that
involve both β̃ and η̃ (and ρ) need not give rise to an asymptotic
χ2 distribution. Johansen (2006a, Theorem5) gave a sufficient con-
dition for asymptotic mixed Gaussian inference in a submodel of
the I(2)model. The condition formulates a separation between the
parameters, which ensures that the usual conditioning argument
leading to asymptotic χ2 distributions holds. In the case of deter-
ministic terms we have exactly the same structure of asymptotic
distributions, so the same theorem holds, and the investigation of
hypotheses on τ is valid also for τ̃ .

4 In fact the theory has recently been worked out, see Boswijk (2009).

Table 2
Misspecification tests.

Multivariate tests (p-values in brackets)
Residual autocorrelation LM(1) χ2(49) = 69.98

(0.03)

Residual autocorrelation LM(2) χ2(49) = 22.38
(1.00)

Test for normality χ2(14) = 81.64
(0.00)

Test for ARCH LM(1) χ2(784) = 942.43
(0.00)

Univariate tests:
∆2pp ∆2s12 ∆2∆p2 ∆2b1 ∆2b2 ∆2s1 ∆2s2

ARCH 0.49
[0.78]

2.26
[0.32]

5.62
[0.06]

6.95
[0.03]

5.30
[0.07]

1.96
[0.37]

0.40
[0.82]

Skew 0.01 0.22 0.10 0.19 −0.10 0.38 −0.04
Kurtosis 2.88 4.16 3.63 3.63 3.90 4.38 4.87
Normality 0.02

[0.99]
13.38
[0.00]

5.43
[0.07]

5.65
[0.06]

9.32
[0.01]

16.10
[0.00]

29.38
[0.00]

We consider first the same restriction on all vectors in τ̃ ; that
is,

τ̃ = Hφ, (22)

where H is p1 × m is known and φ is an m × (r + s1) matrix of
unknownparameters. An equivalent formulation isR′τ̃ = 0,where
R = H⊥.
The other hypothesis corresponds to (20); that is,

τ̃ = (b, b⊥ϕ), (23)

where b is p1 × 1 and known and ϕ is a (p1 − 1) × (r + s1 − 1)
matrix of unknown parameters.
The test statistic for the first test is asymptotically distributed

with degrees of freedom (p1 − m)(r + s1), and, in general, the
test for the second one is also asymptotically distributed as χ2
with s2 − 1 degrees of freedom. There is, however, one case
when the asymptotic distribution is not a χ2 distribution. This is
when the vector b is a vector in β̃; that is, when the hypothesis
β̃ = (b, b⊥ξ) is satisfied; see the discussion of this hypothesis in
Johansen (2006a).
This problem can be avoided by first testing the hypothesis

β̃ = (b, b⊥ξ) and, if accepted, then b is a vector in τ̃ . If it is rejected,
we can test τ̃ = (b, b⊥ϕ) and apply theχ2 distribution becausewe
have checked that b 6∈ sp(β̃).

5. Misspecification testing of the baseline VAR

The VARmodel in (12) was specified to account for the German
reunification as explained in Section 2.5 In addition there are
a number of outlying observations that need to be accounted
for. Since the VAR estimates have been shown to be reasonably
robust to moderate excess kurtosis (long tails) as long as the error
distribution is symmetrical (Gonzalo, 1994) only extraordinarily
large shocks producing skewed residuals have been corrected for.6
The dummies and their estimated effects are reported in Table 1,
which shows that the very large shocks were associated with large
and unexplainable changes (given our data and our model) in
the short-term interest rates and the US bond rate. The dummy
variable, Dtax, measures the impact on German prices from a
number of excise taxes in 1991:7, 1991:1, and1993:1 to finance the

5 All calculations have been performed in the computer package CATS in RATS
(Dennis et al., 2005).
6 Note that, contrary to the static regressionmodel, the dummies donot eliminate
the corresponding observation. They only account for the unanticipated shock at
the time it occurred, essentially saying that an extraordinary event had caused the
shock. In the next period it is no longer unanticipated and the dynamics of themodel
should take account of the observed data.
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Table 3
The likelihood ratio test statistics for cointegration rank indices.

p− r r s2 = 7 s2 = 6 s2 = 5 s2 = 4 s2 = 3 s2 = 2 s2 = 1 s2 = 0

7 0 1736.66
[0.00]

1401.16
[0.00]

1136.50
[0.00]

907.46
[0.00]

714.25
[0.00]

527.21
[0.00]

378.62
[0.00]

279.67
[0.00]

6 1 1124.95
[0.00]

894.68
[0.00]

668.66
[0.00]

479.63
[0.00]

328.40
[0.00]

199.85
[0.00]

159.87
[0.00]

5 2 655.74
[0.00]

464.29
[0.00]

280.35
[0.00]

150.24
[0.01]

103.36
[0.17]

94.56
[0.30]

4 3 274.49
[0.00]

144.03
[0.02]

78.91
[0.76]

48.72
[0.96]

43.14
[0.99]

3 4 73.69
[0.85]

41.69
[0.99]

24.67
[1.00]

23.68
[1.00]

2 5 22.13
[1.00]

11.12
[1.00]

8.19
[1.00]

1 6 8.18
[0.93]

0.13
[1.00]

reunification. All dummyvariables, except the one in 1984:1which
is a transitory dummy (. . . , 0, 1,−1, 0, . . .), are impulse dummies
(. . . , 0, 1, 0, . . .).
With this model specification, Table 2 shows that the model

passes most of the specification tests. However, multivariate
normality and no ARCH are rejected. The former is mostly due to
excess kurtosis in the nominal exchange rate and the interest rates.
The latter is mostly due to some ARCH effects in the bond rates.
Because the cointegrated VAR results should be reasonably robust
to excess kurtosis and ARCH effects as long as they are moderately
sized, we continue with this model specification.

6. Determining the two reduced rank indices

The number of stationary polynomially cointegrating relations,
r , and the number of I(1) trends, s1, among the p − r common
stochastic trends are determined by the likelihood ratio test. The
asymptotic distribution was found by Nielsen and Rahbek (2007)
for the case of no deterministics, and Kurita (2007) found the limit
distributions when there are broken linear trends. Since ourmodel
has a broken linear trend restricted to be in the cointegration
relations, and a shift dummy restricted to the differences, the
asymptotic distributions of the likelihood ratio tests have been
simulated with a program kindly made available by Heino Bohn
Nielsen.
Table 3 reports the tests of the joint hypothesis (r, s1, s2) for all

values of r, s1 and s2, where s2 is the number of I(2) trends and
s1 = p− r − s2. The test procedure starts with the most restricted
model (r = 0, s1 = 0, s2 = 7) in the upper left-hand corner,
continues to the end of the first row (r = 0, s1 = 7, s2 = 0),
and proceeds similarly row-wise from left to right until the first
acceptance.
The first non-rejection is for {r = 2, s1 = 4, s2 = 1} with a

p-value of 0.17. This case implies six unit roots in themodel, which
is consistent with the results in Table 4 which suggest that the un-
restricted VAR contains at most six (near) unit roots. The following
case {r = 3, s1 = 2, s2 = 2} is strongly accepted and similarly im-
plies six unit roots in the model. To further check these two cases,
Table 4 reports the roots for the case of r = 2, 3 and s2 = 0, 1, 2,
respectively. The case {r = 3, s1 = 4, s2 = 0} would leave two
near unit roots (0.93 and 0.91) in the model, whereas {r = 2, s1 =
5, s2 = 0} would leave one near unit root (0.90) in the model. Im-
posing either {r = 2, s1 = 4, s2 = 1} or {r = 3, s1 = 2, s2 = 2} re-
moves all large roots from the model. Therefore, the choice seems
to be between two (three) polynomial cointegration relations
(β̃ ′xt+ δ̃′∆x̃t ) and three (two)medium-run relations in differences
(β̃ ′
⊥1∆x̃t ). Checking the t-values of α̂3 shows five highly significant

Table 4
The seven largest estimated characteristic roots.

r s1 s2 1 2 3 4 5 6 7

7 0 0 1.0 0.98
(0.04)

0.98
(−0.04)

0.97 0.89
(0.06)

0.89
(−0.06)

0.41

3 4 0 1.0 1.0 1.0 1.0 0.93 0.91 0.43
3 2 2 1.0 1.0 1.0 1.0 1.0 1.0 0.38

2 5 0 1.0 1.0 1.0 1.0 1.0 0.90 0.59
2 4 1 1.0 1.0 1.0 1.0 1.0 1.0 0.51

coefficients (with t-values in the range of 15.4 to 3.4), which sug-
gests that the third polynomial cointegration relation is indeed sta-
tionary. This is further supported by the graphs in Fig. 5. Based on
this, we will continue with the case {r = 3, s1 = 2, s2 = 2}.
How can we understand the finding of two I(2) trends? The

persistent downward sloping trend of the price differential and the
persistent long swings in the nominal exchange rate (see Fig. 1,
upper panel)may verywell have the property of a near I(2)process
corresponding to a double root of (1.0 and 0.93) and (1.0 and
0.91), respectively. The second root may not be exactly I(2), but
persistent enough for the test not to reject it as a unit root.
Altogether, the results seem to suggest that the persistent

movements in the data are (near) I(2). Treating the process as
I(1) is likely to yield unreliable inference (see Johansen, 2006b;
Juselius, 2008) as one (or two) very persistent components in the
data would be treated as stationary.

7. Testing non-identifying hypotheses

The three groups of tests in this section provide an approximate
description of the properties of the data. To illustratewhat the tests
find, Fig. 3, upper panel, shows the graphs of ∆(pp)t and ∆s12,t .
The idea of testing the various non-identifying hypotheses of this
section is to obtain a first approximate description of the time-
series properties of the data.We beginwith a graphical illustration.
The upper panel of Fig. 3 shows the graphs of∆(pp)t (upper panel),
∆s12,t (middle panel) and ∆pppt (lower panel) filtered through
a 12-month moving average.7 It is notable that the inflation rate
differentials exhibit more persistent behavior than the changes in
nominal exchange rates. Fig. 4 shows the graphs of the long-term
spread (upper panel) and the short-term interest spread (lower
panel). In both cases, the spreads exhibit pronounced persistence.

7 The series are plotted as a 12-month moving average to filter out the strong
seasonal and other high-frequency components in prices. The data used in the
analysis is of course non-filtered.
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Table 5
An identified long-run structure in β .

The structure: β̃ = (h1 + H1ϕ1, . . . , hr + Hrϕr ), χ2(10) = 9.19 [0.51]
pp s12 ∆p2 b1 b2 s1 s2 t91.1a ta

β̃ ′1 −0.01
[−23.49]

0.01
[23.49]

0.00
[NA]

1.00
[NA]

−1.00
[NA]

0.00
[NA]

0.00
[NA]

0.00
[NA]

0.07
[5.60]

β̃ ′2 0.00
[NA]

0.001
[6.32]

0.09
[10.25]

0.00
[NA]

1.00
[NA]

0.00
[NA]

−1.00
[NA]

0.19
[4.36]

0.00
[NA]

β̃ ′3 −0.01
[−5.51]

0.00
[NA]

1.00
[NA]

0.00
[NA]

0.00
[NA]

−0.74
[−16.48]

0.00
[NA]

−0.20
[−4.83]

0.00
[NA]

δ̃′1 −0.92 0.15 0.03 0.03 0.04 0.04 0.04 0.00 −0.01
δ̃′2 −0.51 −0.17 0.02 0.02 0.02 0.03 0.02 0.00 −0.00
δ̃′3 1.31 −0.07 −0.04 −0.04 −0.05 −0.06 −0.05 0.00 0.00

α′1 0.39
[3.99]

−4.47
[−3.19]

−0.59
[−8.62]

0.00
[0.67]

−0.03
[−2.86]

0.03
[4.59]

−0.04
[−4.86]

α′2 0.29
[4.53]

2.88
[3.11]

−0.29
[−6.48]

−0.03
[−6.58]

0.00
[0.30]

−0.06
[−13.55]

0.00
[0.66]

α′3 −0.29
[−3.00]

−1.47
[−1.06]

−0.48
[−6.98]

0.01
[1.44]

0.00
[0.33]

0.02
[2.67]

−0.02
[−2.39]

a The trend has been multiplied by 10000.

Fig. 3. Graphs of∆ppt (upper panel),∆s12,t (middle panel), and∆pppt (lower panel). All three series are smoothed by a 12-month moving average filter.

7.1. Same restriction on all τ̃

There are a number of interesting hypotheses that can be
formulated as the same restrictions on τ̃ , described in Section 4.3,
expressed either as τ̃ = Hϕ or R′τ̃ = 0. We test the following four
hypotheses:

1. H1: R′1τ̃ = 0, where R′1 = [1, 1, 0, 0, 0, 0, 0, 0, 0]; i.e., we
test whether we can impose the ppp restriction on all τ̃
vectors. If not rejected, it would imply that the nominal to
real transformation x′t = [pppt ,∆p1,t ,∆p2,t , b1,t , b2,t , s1,t , s2,t ]
would be econometrically valid (Kongsted, 2005) in the sense
of transforming an I(2) vector to an I(1) without loss of
information. The hypothesis is rejected based on χ2(5) =
16.64 [0.01].

2. H2: R′2τ̃ = 0, where R
′

2 = [0, 0, 0, 0, 0, 0, 0, 1, 0]; i.e., we test
whether the broken trend is long-run excludable from τ̃ . Based
on χ2(5) = 9.99 [0.08], the hypothesis was borderline not
rejected. Thus, there is only weak evidence that the direction
of the trend in relative prices and/or nominal exchange rates
changed at the time of the reunification of Germany.

3. H3: R′3τ̃ = 0, where R′3 = [0, 0, 0, 0, 0, 0, 0, 0, 1]; i.e., we
test whether the trend is long-run excludable from τ̃ . The

hypothesis was rejected based on χ2(5) = 13.75 [0.02]. Thus,
there is some evidence that the trend is econometrically needed
as a local approximation of the downward sloping trend in
relative prices and in the nominal exchange rate.

4. H4: R′4τ̃ = 0, where

R′4 =
[
0, 0, 0, 0, 0, 0, 0, 0, 1
0, 0, 0, 0, 0, 0, 0, 1, 0

]
;

i.e., we test whether the trends can be left out of the long-
run relations. The hypothesis was rejected based on χ2(10) =
24.50 [0.01]. Thus, the hypothesis that the downward sloping
trend strongly visible in Fig. 1 is stochastic rather than deter-
ministic is rejected. However, the hypotheses of no trends were
only borderline rejected, which supports our prior assumption
that a deterministic trend should only be considered a local
approximation.

Imposing theppp transformation of the data [pppt ,∆p1,t ,∆p2,t ,
b1,t , b2,t , s1,t , s2,t ], despite not being supported by the test, is likely
to suppress some information in the data. The estimated long-run
structure in Section 8 shows that one relation is consistent with
the ppp transformation, whereas the other two are not. Also, test
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Fig. 4. The German–US long-term bond spread (upper panel) and the short-term interest spread (lower panel).

Fig. 5. Graphs of the three polynomial cointegration relations. The upper panel describes the IKE relation, themiddle panel the inflation expectations relation, and the lower
panel the German inflation rate relation.

results of H2–H4 show that the linear trend is significant in the
long-run relations. The hypotheses that the slope changed at the
reunification seems to have empirical support, though not very sig-
nificantly so. The estimated results in Section 8 show that the trend
effects in the long-run relations are absolutely tiny but, neverthe-
less, highly significant. Altogether, the above tests seem to confirm
our model specification.

7.2. A known vector in τ̃

Next, we shall test five hypotheses formulated as a known
vector b in τ̃ . If not rejected, they imply that the variable in question
(conditional on ∆xt−1) is at most I(1). If, in addition, it is not a

vector in β̃ , then the test implies it is I(1). This hypothesis was
rejected for all variables tested below, which implies that our tests
are tests of I(1).

1. H5: τ̃ = (d1, d1⊥ϕ) where d1 = [1, 0, 0, 0, 0, 0, 0, 0, 0];
i.e., we test whether relative price is I(1). This hypothesis is
strongly rejected based on χ2(4) = 55.56 [0.00], implying that
this variable can be considered I(2).

2. H6: τ̃ = (d2, d2⊥ϕ) where d2 = [0, 1, 0, 0, 0, 0, 0, 0, 0];
i.e., we test whether the nominal exchange rate is I(1). This
hypothesis is rejected based on χ2(4) = 9.76 [0.04], implying
that this variable can be considered I(2).

3. H7: τ̃ = (d3, d3⊥ϕ) where d3 = [1,−1, 0, 0, 0, 0, 0, 0, 0];
i.e., we test whether the real exchange rate is I(1). This
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hypothesis is not rejected based on χ2(4) = 4.90 [0.30], which
implies that pppt can be considered I(1).

4. H8: τ̃ = (d4, d4⊥ϕ) where d4 = [0, 0, 0, 1,−1, 0, 0, 0, 0];
i.e., we test whether the bond rate spread is I(1). This
hypothesis is not rejected based on χ2(4) = 3.65 [0.46], which
implies that b1,t − b2,t can be considered I(1).

5. H9: τ̃ = (d5, d5⊥ϕ) where d5 = [0, 0, 0, 0, 0, 1,−1, 0, 0];
i.e., we test whether the short spread is I(1). This hypothesis
is borderline not rejected based on χ2(4) = 8.43 [0.08], which
implies that this variable can be considered I(1) butwith a large
second root.

As discussed in the introduction, the monetary model with IKE
implies that∆pppt is stationary but highly persistent, or near I(1),
whereas REH implies that∆pppt iswhite noise or alternatively that
pppt is stationary. The graphs of∆s12,t and∆ppt in Fig. 3 illustrate
that both are highly persistent processes,which is supported by the
test results of H5 and H6. The graph of ∆pppt in the lower panel
looks almost indistinguishable from the graph of ∆s12,t8(though
with opposite sign). The fact that H7 could not be rejected must,
therefore, imply that ∆pppt (though stationary) is a highly per-
sistent process.9 This is also confirmed by the estimated Moving
Average (MA) representation in Section 9. Hypothesis H8 could
also not be rejected, implying that the ppp and b1,t − b2,t are of
a similar order of integration and, hence, could be cointegrated (as
they turned out to be). As the monetary model with IKE implies
cointegration between the two variables, this is of some interest.

7.3. Hypotheses on α

Finally, we shall test two hypotheses described in Section 4.1
both formulated on α. The first one is a test of a zero row in α and
implies no long-run levels feedback of the variable in question. The
second is a test of a unit vector in α and implies pure adjustment
of the variable in question.

1. H10: e′iα = 0, where ei is the i
th unit vector. This hypothesis was

not rejected for nominal exchange rate, χ2(3) = 5.24 [0.15],
and the US bond rate,χ2(3) = 1.27 [0.74]. The joint hypothesis
is also accepted based on χ2(6) = 6.578[0.362].

2. H11: α = (ei, ei⊥φ). This hypothesis was accepted for the US
inflation rate based on χ2(3) = 2.41 [0.66]. Thus, US prices
seem purely adjusting.

The findings that there is little long-run levels feedback on the
US bond rate and the nominal exchange rate, and that prices are
strongly adjusting are hard to reconcile with the REH theories, but
again perfectly consistent with IKE behavior.

8. Testing identifying restrictions on the long-run structure

The decomposition τ̃ = (β̃, β̃⊥1) defines three stationary
polynomially cointegrating relations, β̃ ′i xt + δ̃iψ̃

′∆x̃t , i = 1, 2, 3,
and five stationary cointegration relations between the differenced
variables, τ̃ ′∆x̃t . How to test over-identifying restrictions on β̃ was
discussed in Section 4.2, whereas overidentifying tests on β̃⊥1 have
not yet been derived. Even though unrestricted estimates of β̃⊥1
can be calculated, we will not discuss them here as they may not
be economically meaningful.

8 This is mostly because∆s12,t has a much larger variance than∆ppt .
9 Applying an autoregressive model to ∆pppt produced a root of approximately
0.85–0.90, depending on the length of the lag structure. However, the ARmodelwas
not a good description of the time-series behavior of ∆pppt , and should therefore
only be seen as indicative.

To obtain standard errors of the estimated β̃ coefficients we
need to impose identifying restrictions on each of the polynomially
cointegrating relations reported above. The asymptotic distribu-
tion of the test of identifying restrictions on β̃ is given in Lemma 3,
and the results in Table 5.
When interpreting the β̃ relations below we shall only include

the first two elements of δ̃′∆xt corresponding to the inflation rate
differentials and the depreciation/appreciation rate, as pp and the
s12 were the only variables tested to be I(2) in the previous section.
The first cointegrating relation involves the long-term real

interest rate spread and ppp. Similar relationships have previously
been found in Juselius (1995; 2006, Chapter 21) and Juselius and
MacDonald (2004, 2007). The close co-movements between the
two series, illustrated in Fig. 1, are quite remarkable.10

β̃ ′1x+ δ̃
′

1∆x = (b1 − 0.92∆p1)− (b2 − 0.92∆p2)

+ 0.15∆s12 − 0.01ppp+ 0.000007t. (24)

The second is a relation between the US term spread and US
inflation relative to German inflation. It can be interpreted as
expected inflation, measured by the term spread, as a function of
actual inflation rates and the change in the Dmk/$ rate:

β̃ ′2x+ δ̃
′

2∆x = (b2 − s2)+ 0.60∆p2 − 0.51∆p1
− 0.17∆s12 + 0.001s12 + 0.000019t91.1. (25)

The third relation, essentially a relation for German inflation
rate, is similar to the relation found in Juselius and MacDonald
(2007). It shows that the German inflation rate has been (almost)
homogeneously related to US inflation rate, German short-term
interest rate, and the change in the Dmk/$ rate:

β̃ ′3x+ δ̃3∆x = 1.31∆p1 − 0.31∆p2 − 0.74s1
− 0.07∆s12 − 0.01pp− 0.00002t91.1. (26)

All three relations contain a tiny, but significant, trend effect
which is not straightforward to interpret. It seems, however, likely
that the linear trend effect in the relations is a proxy for some
information not included in the analysis. For example, the small
trend effect in (24) might very well account for a productivity
differential between the two economies. In (25) the reunification
trendmight be a proxy for a change in themarket’s reassessment of
the riskiness of the nominal Dmk/$ rate. In (26), the trend together
with the pp may imply that German inflation rate, in addition to
following the US inflation rate, the short-term interest rate, and
the change in the Dmk/$ rate, has adjusted in the long run to the
deviation of relative prices from trend. Fig. 5 shows that the three
polynomially cointegrating relations are very stationary.
The estimated α coefficients show that relative prices and the

US inflation rate adjust very significantly to all three cointegration
relations, whereas the nominal exchange rate adjusts to the first
two relations, though less significantly so. Of the two long-term
rates, the US bond rate is not significantly adjusting (except with
a tiny coefficient to the first relation) consistent with the test of a
zero row in α in Section 7.3, whereas the German bond rate is very
significantly adjusting to the second relation. Of the two short term
interest rate, the German rate is very significantly adjusting to all
three relations, whereas the US rate is primarily adjusting to the
first relation.

10 REH monetary models imply that the long-term real interest rate spread and
ppp are separately I(0). By sharp contrast, the cointegrating relationship between
these two variables is consistent with the monetary model under IKE. See Frydman
et al. (2009).



Author's personal copy

S. Johansen et al. / Journal of Econometrics 158 (2010) 117–129 127

Table 6
The common stochastic trends and their loadings.

ppt
s12,t
∆p2,t
b1t
b2,t
s1,t
s2,t

 =


1.556 −0.693
2.432 3.356
0.007 0.074
0.008 0.091
0.000 0.084
0.017 0.162
0.000 0.119


[
α′
⊥2,1

∑∑
ε̂s

α′
⊥2,2

∑∑
ε̂s

]

+



c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44
c51 c52 c53 c54
c61 c62 c63 c64
c71 c72 c73 c74




α′
⊥2,1

∑
ε̂i

α′
⊥2,2

∑
ε̂i

α′
⊥1,1

∑
ε̂i

α′
⊥1,2

∑
ε̂i

+


b11 b12
b21 b22
b31 b32
b41 b42
b51 b52
b61 b62
b71 b72


[
t91.1
t

]

where[
α′
⊥2,1
α′
⊥2,2

]
=

−0.00[−0.13]
0.01
[1.06]

−0.00
[−0.30]

1.00
[NA]

−0.47
[−8.03]

−0.47
[−7.99]

−0.00
[NA]

0.01
[0.29]

0.00
[0.24]

−0.03
[−0.78]

0.00
[NA]

−0.12
[−0.77]

−0.01
[−0.05]

1.00
[NA]


t-values are given in [ ] and standard errors are calculated using Paruolo (2002).

9. The (near) I(2) trends and how they load into the data

Table 6 reports the weights with which the two (near) I(2)
stochastic trends have affected the variables of the system. As
the weights of the I(1) trends are complicated functions of all
estimated matrices (see Section 3), they will not be reported. The
discussion will, therefore, focus on the I(2) trends and how the
estimated weights are helpful in understanding more fully the test
results of the previous section.
We note that the first I(2) trend, essentially measuring the

twice cumulated shocks to the bond spread and the German term
spread, loads into pp and s12 with coefficients of the same sign,
while not exactly the same magnitude. The coefficients to the
interest rates are very close to zero. We interpret this I(2) trend
as describing the long-term downward sloping trend visible in
both relative prices and nominal exchange rates. The second I(2)
trend, essentially measuring the twice cumulated shocks to the
US short-term interest rate, loads primarily into s12 and into pp
with a coefficient of opposite sign, reflecting the tendency of the
nominal exchange rate to move away from relative prices for
extended periods of time. It also loads into the remaining variables
with coefficients which might be large enough to suggest some
significant effects. Based on this, we can now get an expression for
the (near) I(2) properties of the ppp:

pp− s12 = (1.556− 2.432)α′⊥2,1
∑∑

ε̂s

− (0.693+ 3.356)α′
⊥2,2

∑∑
ε̂s.

This expression suggests that the real exchange rate is indeed near
I(2) in the sense of being strongly influenced by the second I(2)
trend. The fact that it could not be rejected as an I(1) process in
Section 7.2,H7, suggests that the loading−0.876 is not statistically
significant from zero and that the loadings to the second stochastic
trend have large standard errors, consistentwith the high volatility
characterizing exchange rate movements in currency markets.
This volatility is also visible in the relatively larger loadings to
the nominal exchange rate compared to relative prices. Also, the
finding that the I(1) hypothesis was rejected for both s12,t and ppt ,
but not for pppt , suggests that the loadings 2.43 and 1.56 are both
significant, whereas 0.876 is not.
The expression for the long-term bond spread is given by

b1 − b2 = (0.008− 0.000)α′⊥2,1
∑∑

ε̂s

+ (0.091− 0.084)α′
⊥2,2

∑∑
ε̂s,

showing that the loadings to both I(2) trends are tiny and, as the
testing ofH7 showed, not significant.

Finally, an expression for the short-term spread is given by

s1 − s2 = (0.017− 0.000)α′⊥2,1
∑∑

ε̂s

+ (0.162− 0.119)α′
⊥2,2

∑∑
ε̂s,

showing that the loadings to the I(2) trends are tiny also in this
case, but that the loadings to both trends are larger than for the
bond spread, probably explaining whyH8 was almost rejected.

10. Conclusions

This paper has discussed a number of likelihood ratio tests
in the I(2) model. Using these procedures we have been able to
investigate the empirical regularities behind the long swings in the
Dmk/$ rate. This has been done by structuring the data according
to different levels of persistence using the I(2) model. We have
argued that to ignore such trendswhen they are present in the data
is likely to impede a full understanding of the data. Moreover, the
I(2) framework enabled us to present some empirical regularities
in characterizing the long swings properties of real and nominal
exchange rates. The finding that the I(1) or near I(2) hypothesis
cannot be rejected for these variables indicates a rejection of
the monetary model under REH in favor of its IKE counterpart.
The fact that price inflation was found to be ‘purely’ adjusting,
whereas therewas little evidence of long-run feedback on nominal
exchange rates, is also in conflict with the assumptions of the REH
models. In striking contrast, these results accord well with the
IKE monetary model of currency swings, helping us to resolve one
of the core anomalies in international macroeconomics, the PPP
puzzle (Frydman et al., 2008, 2009). Thus, the common practice of
not testing for double unit roots in the data may lead economists
to draw erroneous inferences from their ‘statistical’ analyses.
From amore general point of view, we find that the general-to-

specific approach of a cointegrated VAR model is potentially very
important as a way of making abductive inference in economics
(Hoover, 2006). This is because it allows us to systematically search
for an econometric model that is as simple as possible (but not
more so), without distorting some of the information in the data.
Thus, this approach should allow us to ask whether the standard
theory is too restrictive and, if so, what theoretical structure we
should be looking for in explaining regularities in the data. Instead
of leaving the investigation to the interplay between theory and
the data, the specific-to-general approach imposes constraints
according to the ‘favored’ model and is therefore likely to be
detrimental to understanding the data properly from a theoretical
and empirical perspective (see Juselius and Franchi, 2007).
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Appendix. Proof of Lemma 3

When discussing the asymptotic distribution of the estimator
of β̃ = (β ′, β ′d)

′
= ρ ′(τ ′, τ ′01, τ

′

0), it is convenient to introduce the
true value denoted by β0, and normalize the parameter and the
estimator on the p1 × r matrix c ′ = (β̄0, 0)′ as β̃c = β̃(c ′β̃)−1.
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Then the restrictions on β̃c are not linear, but an expansion of β̃c
around β̃0c shows that

β̃c − β̃
0
c = c⊥(β̃

0′
⊥
c⊥)−1β̃0′⊥ (β̃ − β̃

0)+ O(|β̃c − β̃0|2)

=

(
Pβ0
⊥

0
−βdβ̄

0′ I2

)
(β̃ − β̃0)+ O(|β̃c − β̃0|2),

where we have used the expressions

c⊥ =
(
β0
⊥
0

0 I2

)
, β̃0

⊥
=

(
β0
⊥
−β̄0β0′d

0 I2

)
. (27)

In the following we shall omit the superscript 0, usually given to
indicate the true value.
We decompose τ̃ = τ̃ ρρ̄ ′ + τ̃ ρ̄⊥ρ ′⊥ = β̃ρ̄

′
+ η̃ρ ′

⊥
, and replace

the variation independent parameters (ρ, τ̃ ) by the variation inde-
pendent parameters (β̃, η̃, ρ). The likelihood function is denoted
`T (θ), and the score function with respect to ϕi is therefore

∂

∂ϕi
`T (θ) = α

′

iΩ
−1

T∑
t=1

εt(x′t−1Pβ⊥ − d
′

t−1βdβ̄
′
; d′t−1)Hi

+ ρ̄ ′iκα
′

⊥Ω

T∑
t=1

εt(∆x′t−1Pβ⊥ −∆d
′

t−1βdβ̄
′
;∆dt−1)Hi.

The second term is always dominated by the first, so we focus on
the first. We find using Pβ⊥ = Pβ⊥1 + Pβ⊥2 and β⊥1 = τ̄ ρ⊥, that
the (main) trend in β ′

⊥1xt is−ρ
′

⊥
(τ ′τ)−1τ ′ddt = vdt , see (17). Then

H ′i

(
Pβ⊥ −β̄β ′d
0 I2

)(
xt−1
dt−1

)
= H ′i

(
Pβ⊥2
0

)
xt−1 + H ′i

(
−β̄β ′d
I2

)
dt−1 + H ′i

(
Pβ⊥1
0

)
xt−1

= H ′i

(
β⊥2
0

)
β ′
⊥2xt−1 + H

′

i

(
−β̄β ′d + β⊥1v

I2

)
dt−1

+H ′i

(
β⊥1
0

)
(β ′
⊥1xt−1 − vdt−1)

= Mi2β ′⊥2xt−1 +Middt−1 +Mi1(β
′

⊥1xt−1 + ρ
′

⊥
(τ ′τ)−1τ ′ddt−1),

(28)

say, where the terms are of the order T 3/2, T , and T 1/2 respectively,
because the cumulated randomwalk inβ ′

⊥2xt−1 dominates the first
term, the second, dt−1, is of the order of T and in the last term the
process has been detrended so it is dominated by the randomwalk.
Because β̃ is identified, we have that H ′i β̃⊥ has full rank

mi, because if φ′H ′i β̃⊥ were zero, then Hiφ would be a linear
combination of βj, j = 1, . . . , r , and hi + Hi(ϕi + φ)would satisfy
the same restrictions as βi. The assumption of identification then
shows that φ = 0. This implies that also

rank
(
H ′i

(
Pβ⊥ −β̄β ′d
0 I2

))
= rank (Mi2,Mid,Mi1) = mi,

and we exploit this as follows. Let rank(Mi2) = m2i, soMi2 = viw′i ,
where vi ismi×m2i andwi is s2×m2i are of rankm2i. Similarly, let
v̄′i⊥Mid = bic

′

i be of rank mdi; then the matrix b̄
′

i⊥ν̄
′

i⊥Mi1 has rank
m1i = mi −m2i −mdi, as is seen from the display: v̄′i
b̄′iv̄
′

i⊥
b̄′i⊥v̄

′

i⊥

 (Mi2,Mid,Mi1) =
v̄′iMi2 v̄′iMid v̄′iMi1
0 b̄′iv̄

′

i⊥Mid b̄′iv̄
′

i⊥Mi1
0 0 b̄′i⊥v̄

′

i⊥Mi1

 .
(29)

The asymptotic behavior of the various processes in (28) is
summarized in

T−3/2v̄′iMi2β
′

⊥2x[Tu]
d
→ v̄′iMi2β

′

⊥2C2

∫ u

0
W (s)ds = Gi2(u),

T−1b̄′iv̄
′

i⊥Midd[Tu]→ b̄
′

iv̄
′

i⊥Midd(u)
′
= Gid(u),

T−1/2b̄′i⊥v̄
′

i⊥Mi1(β
′

⊥1x[Tu] + ρ
′

⊥
(τ ′τ)−1τ ′dd[Tu])

d
→ b̄′i⊥v̄

′

i⊥Mi1β
′

⊥1C1W (u) = Gi1(u),

(30)

and we define Gi(u) = (G2i(u)′,Gdi(u)′,G1i(u)′)′, and d(u) =
limT→∞ T−1d[Tu] which is assumed to exist; that is, the broken
linear trend breaks at a given fraction of the sample.
We now define the normalizing matrices

A−1iT = (T
3/2vi, Tvi⊥bi, T

1/2vi⊥bi⊥)
′ and

AiT = (T−3/2v̄i, T−1v̄i⊥ b̄i, T
−1/2v̄i⊥ b̄i⊥),

and find that the triangular structure (29) implies that the limit of
the normalized score function is

T−1/2A′iTH
′

i

T∑
t=1

(
Pβ⊥ −β̄β ′d
0 I2

)(
xt−1
dt−1

)
ε′tΩ

−1αi

d
→

∫ 1

0
Gi(dW )′Ω−1αi.

Thus the normalized score function with respect to the parame-
ters ϕ1, . . . , ϕr is asymptotically mixed Gaussian, because the pro-
cesses Gi(u) depend on C2W (u) and β ′⊥1C1W (u), both of which are
functions of (α⊥1, α⊥2)′W (u), see (7), and are therefore indepen-
dent of α′Ω−1W (u).
The i, jth block of the asymptotic conditional variance is given

by themi ×mj matrix

α′iΩ
−1αj

∫ 1

0
Gi(u)Gj(u)′du. (31)

Similarly, the main term of the information with respect to ϕi
and ϕj is given by

α′iΩ
−1αjH ′j

(
Pβ⊥ −β̄β ′d
0 I2

) T∑
t=1

(
xt−1
dt−1

)(
xt−1
dt−1

)′ ( Pβ⊥ 0
−βdβ̄

′ I2

)
Hi,

and, normalized by T−1/2A′iT and T
−1/2AiT , the limit is given by (31).

The asymptotic distribution of the estimator of ϕi is found from the
usual expansion of the likelihood function and is given by

{T−1/2A−1iT (ϕ̂i − ϕ
0
i )}

d
→

{
α′iΩ

−1αj

∫ 1

0
Gi(u)Gj(u)′du

}−1
×

{∫ 1

0
Gi(dW )Ω−1αi

}
.
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