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Abstract

We develop a novel characterization of participants’ forecasts with a mix-

ture of normal variables involving a Markov chain, and formulate four new

behavioral specifications, including three implied by the diagnostic expecta-

tions approach. We also consider DE’s time-invariant specification, originated

by Gennaioli and Shleifer, as well as two full-information REH specifications.

We derive several new predictions for Coibion and Gorodnichenko’s regression

of forecast errors on forecast revisions. Predictions of all seven specifications

are inconsistent with the observed instability of CG’s individual-level regres-

sions based on inflation forecasts. Our findings suggest how to build on key

insights of the REH and behavioral approaches.
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1 Introduction

Coibion and Gorodnichenko (CG, 2015) proposed regressing market partici-

pants’ forecast errors on their forecast revisions, as measured by survey data,

to test predictions of alternative theoretical specifications implied by the ra-

tional expectations hypothesis (REH). CG’s (pp. 2651, 2653) ingenious idea

was that predictions of full- and limited-information REH models “map” onto

the constant term and the slope of their regression.1 This mapping is direct,

based on the assumption that the process driving outcomes and participants’

forecasting strategies — how they form forecasts on the basis of available infor-

mation — is time-invariant, as exemplified by a standard AR process.

Here, we extend the applicability of the CG regression to testing predictions

of theoretical specifications of participants’ forecasting strategies that allow for

change in the process driving outcomes. Following a prevailing practice, we

represent change in these specifications with a stationary Markov chain.2

Our approach rests on a novel characterization of participants’ forecast-

ing strategies involving a Markov chain with a mixture of normal probability

density functions (pdfs). This characterization plays a key role in our formula-

tion of alternative specifications of forecasting strategies, as well as in deriving

these specifications’ predictions for the constant term and the coefficient of

forecast revision (the slope) in the CG regression.

We formulate three new specifications implied by the diagnostic expecta-

tions (DE) approach. By allowing for change, our specifications extend the

original formulation of DE by Gennaioli and Shleifer (GS, 2018, p.155) and

their co-authors, which constrain the process driving outcomes and how par-

ticipants forecast them to be time-invariant.

We contrast GS’s formulation of DE with a version of Barberis, et al.’s

(1998) pre-DE behavioral model, as well as with of our alternative specification

1CG focused on two classes of limited-information REH models: the noisy information
models, originated by Lucas (1973) , and the sticky-information model proposed by Mankiw
and Reis (2002). CG (p. 2655) also considered predictions for their regression of “a number
of extensions of [REH] models with information rigidities.”

2Hamilton (1988) originated modeling of change in REH models with Markov chains.
See Hamilton (2008) for an extensive review of subsequent developments.
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of DE based on that model. Thus, including DE’s time-invariant formulation,

we test the predictions of five behavioral specifications of participants’ forecasts

for the coefficients of the CG regression.

We also specify and test the predictions of a full-information rational ex-

pectations (FIRE) model involving a Markov chain, as well as those of its

time-invariant counterpart, for the CG regression.

Our dataset consists of time-series of inflation forecasts from 1969 to 2014

by 24 individuals included in the US Survey of Professional Forecasters (SPF),

with over 50 observations by each individual for the one-quarter-ahead forecast

revision. We estimate a CG regression for each of the forecasters.

Our estimation of the individual CG regressions yields two main findings.

First, each of the five behavioral specifications that we consider appear to be

inconsistent with survey data for each of the forecasters. Our estimates of

the 24 individual CG regressions are also inconsistent with the time-invariant

FIRE specification, as well as with FIRE allowing the process driving outcomes

to evolve according to a Markov chain.

Because of the central importance of inflation expectations in macroeco-

nomic models, the inflation forecast, as measured by the survey data, has

been the most prominently studied variable.3 However, earlier studies have

primarily examined the aggregate of the survey data of the three-quarters-

ahead forecasts of inflation.4 CG (2015) show that hypothesizing that the

time-invariant model represents the process driving inflation, and that the ag-

gregate of participants’ forecasts conforms to the sticky or noisy information

REH-alternatives alternatives to FIRE, predicts a constant equal to zero and

a positive slope in their regression. However, as they (p. 2652) emphasize, this

prediction “obtains only when averaging across agents.” Because we confront

predictions of specifications of participants’ forecasts with the individual sur-

3For examples, see Coibion and Gorodnichenko (2012), Angeletos, Huo and Sastry (2021),
and Bianchi, Ludvigson, and Ma (2021).

4In Frydman and Stillwagon (2021), we report the estimates of the individual CG regres-
sions for the three-quarters-ahead forecasts of inflation. They are essentially the same as
those reported here for the one-quarter-ahead forecasts, thereby providing further evidence
of the empirical inadequacy of the theoretical specifications of participants’ forecasts that
we consider.
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vey data, we leave a reexamination of the REH-implied limited information

specifications on the basis of aggregate data for a companion paper.

However, our theoretical framework reveals a difficulty inherent in relying

on the CG regression to test the REH limited-information alternatives to FIRE

on the basis of aggregate data. It also reveals the CG regression’s inability to

distinguish predictions of behavioral specifications, including DE, from those of

FIRE involving a Markov chain, on the basis of both individual and aggregate

data.

A finding of a positive coefficient of forecast revisions in the CG regression

has traditionally been interpreted as an “underreaction,” and a negative slope

coefficient as an “overreaction.” Once change in how outcomes unfold over time

is represented with a Markov chain, FIRE predicts that the constant is equal to

zero, as in time-invariant counterpart. However, unlike its time-invariant coun-

terpart, FIRE predicts the slope as being either positive or negative. Thus,

introducing a Markov chain into the process driving outcomes renders FIRE’s

predictions compatible with either underreaction, implied by REH’s limited-

information specifications on the aggregate level, or overreaction, implied GS’s

specification of DE on the individual level. Remarkably, FIRE’s prediction of

a negative coefficient of forecast revisions in the CG regression is the same as

that of GS’s specification of DE, which has been proposed to formalize market

participants’ representativeness-driven deviations away from FIRE.

Our approach avoids this difficulty by relying on the central implications

of our theoretical framework: once change in the process driving outcomes

and in how participants forecast them is represented with a stationary Markov

chain, the predicted constant and slope coefficients in the CG regression do not

change over time. Thus, subjecting the constant and the coefficient of forecast

revisions in the CG regression to tests of structural breaks provides a hitherto

unexplored way to test alternative models of expectations, including DE and

other behavioral specifications, as well as FIRE. We find that these coefficients

undergo structural breaks, thereby revealing the inconsistency of both REH

and behavioral specifications with survey data on participants’ forecasts.

The structural instability of the CG regression therefore points to a pri-
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mary explanation of our findings. Despite their apparent differences, REH

and behavioral specifications of participants’ forecasting strategies typically

rest on a shared premise: these strategies can be represented with a stationary

stochastic process over an infinite past and indefinite future.

Our analysis also yields several novel theoretical implications regarding an

increasingly accepted description advanced by GS (p. 11) that DE “builds on

the famous representativeness heuristic of human judgment uncertainty. . . proposed

by Daniel Kahneman and Amos Tversky.” This has recently led them to assert

that DE is “a psychologically founded non-Bayesian model of belief formation,”

which implies that participants systematically and predictably “overreact to

news” about a payoff-relevant variable, relatively to REH-implied forecasts

(Bordalo, et al., 2020, p. 2749, emphasis added).

However, as we show here, the overreaction supposedly implied by DE is

not a regularity. Rather, it is an artifact of GS’s particular specification of

DE, which rests on their assumption that how the representativeness heuristic

impels participants to deviate from REH can be formalized with the REH-

implied forecast revisions.

GS’s “REH-like” specification of DE represents the representativeness-

driven “distortion” of participants’ forecasts, relative to REH, as being based

on an “objective” process driving outcomes, as formalized by an economist’s

model. Because this “objective” process, according to Muth’s (1961) hypoth-

esis, underpins REH, DE’s supposed overreaction, relative to REH, is driven

solely by news about the payoff-relevant outcomes.

GS’s specification of DE as being based on the pdf underpinning REH

appears to be at odds with behavioral economists’ empirical evidence. For

example, Barberis, et al. (1998, pp. 310-317) provide an extensive and thor-

ough review of evidence of how the representativeness heuristic, as well as

other psychological mechanisms, influence market participants’ assessment of

uncertainty about stock returns. In contrast to GS’s assumption that the

“distortion” caused by the heuristic arises solely from news, Barberis, et al.

conclude that,

the psychological evidence does not tell us quantitatively what kind
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of information is strong and salient (and hence is overreacted to)

and what kind of information is low in weight (and hence is under-

reacted to) (p. 317, emphasis added).

Adhering to the pre-DE behavioral models’ core premise, Barberis, et al.

argue (p. 318) that, “If our model is to generate the [pattern] of returns doc-

umented in the empirical studies, the investor must be using the wrong model

to form expectations.” They formulate such a “wrong” model by assuming

that, while an economist’s model specifies earnings to evolve according to a

random walk, the investor “thinks that the world moves between two ‘states’

or ‘regimes’ and that there is a different model governing earnings in each

regime.” As is typical in the literature, they formalize this assumption with

the two-state Markov chain.

Our alternative specification of DE builds on Barberis, et al.’s model. Once

we acknowledge the relevance of behavioral economists’ findings, DE no longer

implies the regularity of overreaction. Depending on the values of the Markov

chain’s transition probabilities, other model parameters, and the realizations

of payoff-relevant variables, DE overreacts in some periods and underreacts in

others periods, relative to the REH-implied forecast.

To be sure, our finding that behavioral specifications are inconsistent with

the survey data is compatible with behavioral economists’ compelling evidence

that psychological and other non-fundamental factors have a substantial in-

fluence on participants’ forecasts.5 What our findings of structural instability

reject is behavioral models’ formalization of this evidence with a stationary

stochastic process.

Moreover, although our findings are inconsistent with REH, they should

not be interpreted as a rejection of the relevance of Muth’s (1961) hypothesis in

specifying participants’ forecasts. As we discuss in Section 14, to build models

that rest on Muth’s hypothesis and yet recognize the relevance of behavioral

findings requires acknowledging that the process driving market outcomes un-

5For early reviews of this evidence, see Barberis, et al. (1998) and Shleifer (2000).
Throughout their book, GS (2018) extensively discuss subsequent studies documenting the
influence of non-fundamental factors on participants’ forecasts.
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dergoes change that cannot be represented with a stationary stochastic process,

such as a Markov chain. Our findings suggest that, as Knight (1921) empha-

sized, market participants recognize the uncertainty that such unforeseeable

change engenders and revise their forecasting strategies accordingly.

The plan of the paper is as follows. Sections 2 and 3 provide a formal

overview of the DE approach in the context of the Linda experiment and

highlight the key steps in applying the approach in macroeconomic and finance

models. Building on GS’s formulation, Section 4 presents a general definition

of overreaction in terms of the means of the "objective" and reference pdfs,

which underpin an economist’s specification of DE.

Using this definition, Sections 5 and 6 show that the regularity of overre-

action is an artifact of GS’s specification of the reference pdf as being based

on the “objective” process represented by an economists’ model. Section 7

formulates a Markov counterpart of GS’s time-invariant specification of DE

and characterizes the “objective” and reference distributions with mixtures of

normal pdfs. This characterization implies that, as with GS’s time-invariant

specification, overreaction is assumed to be of the same sign and a fixed pro-

portion of the REH-implied forecast revision. Section 8 formulates the speci-

fication of DE based on Barberis, et al.’s (1998) model and shows that DE no

longer implies the regularity of overreaction.

Relying on the characterization of the REH, reference, and DE specifi-

cations with mixtures of normal pdfs established in the foregoing sections,

Sections 9, 10 and 11 derive predictions of the theoretical specifications of

participants’ forecasts for the coefficients of the CG regression. Section 12

summarizes these predictions, and Section 13 presents our findings that the

predictions of all of the behavioral and FIRE specifications considered in the

paper are inconsistent with the survey data on forecasts of inflation by each

of the 24 forecasters. Section 14 addresses the implications of our findings

for building macroeconomic and finance models. The proofs are presented in

Online Appendix A. The sketch of the econometric methodology and detailed

estimates of the CG regression for each of the 24 forecasters are in Online

Appendix B.
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2 Diagnostic Expectations in the Linda Experiment

Here, we follow Gennaioli and Shleifer (2018) and provide an overview of the

main concepts underpinning their DE approach in the context of the Linda ex-

periment. The simplicity of the experiment enables us to highlight a difficulty

overlooked by GS, but which is inherent in any application of the represen-

tativeness heuristic in economic models: events that in some contexts appear

representative of other events may, in other contexts, appear unrepresentative

of those events. As Kahneman and Tversky (1972, p. 431) acknowledged,

“Representativeness, like perceptual similarity, is easier to assess than to char-

acterize. In both cases, no general definition is available.”

2.1 An Overview of the Linda Experiment

The Linda experiment features a fictitious 31-year-old woman who currently

works as a bank teller. As a college student, Linda engaged in “progressive”

activities, including opposing discrimination, advocating for social justice, and

participating in anti-nuclear demonstrations. We treat the set of 31-year-old

women who graduated from college as a population, which we denote withW .

We denote the subset of those who engaged in progressive activities while in

college with Hp ⊂W .
Tversky and Kahneman (TK, 1983 p. 297) presented the following state-

ments to their experiment’s subjects:

• Linda is a bank teller, places her among individuals in the set T ⊂W .

• Linda is a bank teller who is also active in the feminist movement (the set
F ), which places her among the individuals comprising the intersection

T ∩ F ⊂W .
Kahneman and Tversky asked the subjects whether it was more or less

probable that Linda is among the bank tellers who are also active in the

feminist movement (in T ∩ F ) than that she is among generic bank tellers (in
T ). An overwhelming majority of subjects responded that it is more probable

that Linda is in T ∩ F than that she is in T . This finding was then replicated
in many Linda-like experiments in a variety of contexts.
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2.2 Representativeness in an Experimental Setting

TK (pp. 296-297, 299) hypothesized that their findings could be explained

by subjects’ reliance on a psychological mechanism, which they called the

representativeness heuristic and operationalized in terms of the ratio of the

relevant frequencies.6

Definition 1 “An attribute is representative of a class if it is very diagnostic,
that is, if the relative frequency of this attribute is much higher in that class

than in a relevant reference class”

For example, in the context of the Linda experiment, TK consider the

event T ∩ F as an “attribute,” Hp as a “class,” and individuals who do not

have a history of progressive activities, Hnp, as a “reference class.” The idea

underpinning TK’s operationalization of Definition 1 was that one would ex-

pect feminist bank tellers to be more prevalent among the individuals who,

like Linda, have a progressive history, f(T ∩ F |Hp), than among the individ-

uals who do not have that history, f(T ∩ F |Hnp).7 It is this apparently much

greater prevalence that TK referred to in describing T ∩ F as being “very

diagnostic” of Hp, which they formalized with f(T∩F |Hp)
f(T∩F |Hnp)

>> 1

We assume that the uncertainty about the events in the Linda experiment

can be represented with a probability measure on the space Ω = Hp ∪ Hnp.

Thus, we operationalize Definition 1 in terms of the ratio of the conditional

probabilities:

R(A|C,Cref) = P (A|C)
P (A|Cref) , (1)

where, in the context of our foregoing example, A = T ∩ F ⊂ Ω, C = Hp,

and Cref = Hnp. According to Definition 1, A “is representative” of C if it is

“very diagnostic,” that is, if

R(A|C,Cref ) > d >> 1. (2)

6All citations only to page numbers refer to TK (1983).
7f(T ∩F |Hp) = n(T∩F∩Hp)

n(Hp) , f(T ∩F |Hnp) = n(T∩F∩Hnp)
n(Hnp) , and n(·) stands for a number

of individuals in a respective set.
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2.3 Diagnostic Probabilities

GS (pp. 144-152) introduce DE in the context of the Linda experiment. They

represent subjects’ assessment of uncertainty with a so-called distorted prob-

ability measure and specify how representativeness distorts subjective proba-

bilities (p. 148) as follows:

P
DE

(A|C) = P (A|C) �R(A|C,Cref))�θ Z, (3)

where P
DE
(·|·) specifies a distorted (subjective) probability on the space Ω,

which we refer to as a diagnostic probability, P (·|·) is the “objective” probabil-
ity, and θ > 0 formalizes the degree of distortion. Z ensures that (3) specifies

a well-defined probability.

3 From the Laboratory to Real-World Markets

To operationalize how the representativeness heuristic “distorts” market par-

ticipants’ assessment of uncertainty, an economist would specify the probabil-

ity distribution of outcomes (an analog of the attribute T ∩F ) that he aims to
explain in terms of a set of causal variables (an analog of the class HP ), usu-

ally called information available to participants. Because any formal economic

model rests on the premise that it specifies the “objective” process driving out-

comes, an economist, relying on Muth’s (1961) hypothesis, can then represent

a participant’s “rational” assessment of uncertainty, and her REH forecasts,

with the “objective” distribution, as specified by the economist’s model.

However, there does not appear to be a theoretical argument that would

enable an investigator — an experimental psychologist or an economist — to

specify the reference class. By providing information to the subjects that

Linda has a progressive history, HP , TK (p. 300) aimed to influence them to

compare her to those who do not have that history, thereby considering HP

as the relevant reference class.

In real-world market settings, by contrast, an economist has no way to

influence participants’ interpretation of the context within which they assess

representativeness of uncertain events. However, empirical evidence on how
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market participants actually assess uncertainty provides a basis for specifying

the reference class that participants might have considered relevant. Behav-

ioral economists have provided compelling evidence that participants’ forecasts

do not conform to REH, and formalizing this evidence could provide the basis

for specifying the reference class.

GS proposed DE to provide a unified approach to explain such behavioral

findings. However, GS chose to formalize their argument — that the represen-

tativeness heuristic impels participants to overreact to information, relative to

the REH forecasts — with a specification of the reference class of outcomes that

is based on the “objective” probability distribution, which underpins REH.

However, as we show in Section 8, once we specify the probability distribution

of the reference class of outcomes on the basis of behavioral economists’ find-

ings, the supposedly “distorting” influence of the representativeness heuristic,

as formalized with the analog of (3), does not result in the regularity of over-

reaction. DE overreacts to information in some periods and underreacts in

others.

4 Representativeness in Macroeconomics and Finance

Models

In contrast to the Linda experiment, the concept of representativeness in

macroeconomic and finance models involves continuous random variables. To

fix ideas, we consider a payoff-relevant variable xt+1 = ln hxt+1, and formal-
ize an “attribute” (an analog of A = T ∩ F in (1)) with the measurable

event, xt+1 ∈ A ⊂ R+, and a “class” (an analog of C = Hp) with an event

xt ∈ C ⊂ R+. We also operationalize the “reference class” (an analog of
Cref = Hnp) with an event xreft ∈ Cref ⊂ R+.
GS (p. 154) define xt+1 ∈ A’s representativeness of xt, relative to xreft ,

in terms of the ratio of conditional probability density functions (pdfs), as

follows:

10



Rgs(xt+1|xt, xreft ) =
f(xt+1|xt)

f ref (xt+1|xreft )
> 1, xt+1 ∈ A, xt ∈ C, xreft ∈ Cref (4)

where f(xt+1|xt) is the “objective” (conditional) pdf of xt+1, as hypothesized
by an economist’s model.8 We refer to f ref(xt+1|xreft ) as a (conditional) refer-

ence pdf, which is assumed by an economist to characterize the reference class

that participants consider relevant. We note that GS’s (p. 154) specification

of the reference class of outcomes specifies xreft = xt−1.

TK define representativeness in terms of probabilities (or, equivalently fre-

quencies of discrete events), which for continuous variables can be written

as

R(xt+1|xt, xreft ) =

U
A
f(xt+1|xt)dxt+1U

A
f ref(xt+1|xreft )dxt+1

> 1, xt ∈ A, xreft ∈ Cref . (5)

However, if the ratio of “objective” and reference pdfs satisfies (4), there exists

an event xt+1 ∈ A, which is representative of xt, relative to xreft , in the sense

that (5)

4.1 Tractable Specification

To render the operationalization in (4) tractable in deriving the testable pre-

dictions of macroeconomic and finance models, GS (p. 155) specify the “ob-

jective” pdf of xt+1, conditional on xt as

f(xt+1|xt) = 1

σt+1|t
√
2π
exp

%
−(xt+1 −mt+1|t)2

2
�
σt+1|t

�2
&
, xt+1 ∈ A, xt ∈ C, (6)

8In addition to xt, an economist’s model typically specifies the conditioning set to include
other relevant information (such as realizations of the model’s variables) up to time t.
Allowing for such a larger information set would not alter any of our conclusions here.
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where mt+1|t and
�
σt+1|t

�2
denote the conditional mean and the variance. GS

(p. 155) also assume that the reference class that underpins participants’

assessment of xt+1’s representativeness can be characterized with the normal

pdf:

f ref (xt+1|xreft ) =
1

σreft+1|t
√
2π
exp

−(xt+1 −mref
t+1|t)

2

2
�
σreft+1|t

�2
 , xt+1 ∈ A, xreft ∈ Cref ,

(7)

where mref
t+1|t and

�
σreft+1|t

�2
denote the conditional mean and variance.

4.2 Diagnostic Expectations

Using (4), GS (p. 154) specify the “distorted” pdf of xt+1 in the class xt:

fde(xt+1|xt) = f(xt+1|xt)
k
Rgs(xt+1|xt, xreft )

lθ
Z(θ, xt, xt−1), (8)

where, we refer to fde(xt+1|xt) as the diagnostic pdf, θ > 0, and Z(θ, xt, xt−1)
is specified to ensure that fde(xt+1|xt) integrates to 1. We denote the condi-
tional mean of a diagnostic density with mde

t+1|t. GS call m
de
t+1|t a diagnostic

expectation (DE) of xt+1, conditional on xt.

GS’s Proposition 5.1. (p. 155), which we restate here, provides the basis for

their argument that DE implies the regularity of overreaction.

Proposition 2 Suppose that, as specified in (6) and (7 ), the “objective,” and
reference (conditional) pdfs underpinning representativeness, in (4), are nor-

mal. Then, provided that (1 + θ)
�
σreft+1|t

�2
> θ

�
σt+1|t

�2
, there exists Z(θ, xt, xt−1)

that renders the diagnostic pdf, fde(xt+1|xt) in (8), a well-defined normal pdf
with the following conditional mean and variance,

mde
t+1|t=mt+1|t + γ

�
mt+1|t −mref

t+1|t
�
, (9)

�
σdet+1|t

�2
=
γ
�
σreft+1|t

�2
θ

, (10)
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where

γ = θ

�
σt+1|t

�2�
σreft+1|t

�2
+ θ

��
σreft+1|t

�2
− �σt+1|t�2)� > 0. (11)

Proof: GS (pp. 217-19).

4.2.1 REH-Implied Specification of Participants’ Forecasts

Muth (1961, p. 316) advanced the pathbreaking hypothesis that an economist

could formally relate a participant’s forecasts to “the way the economy works”

by specifying them as being consistent with an economic model’s specification

of the process driving outcomes. Muth implemented his hypothesis in a model

that assumed that how outcomes have unfolded over an infinite past and will

unfold over an indefinite future can be represented with a stationary stochastic

process. It was this implementation that came to be known as the rational

expectations hypothesis (REH).

Adopting Muth’s hypothesis, the conditional mean and variance of the pdf

characterizing the REH forecast are the same as their “objective” counterparts,

that is, mreh
t+1|t = mt+1|t and σreht+1|t = σt+1|t. This implies that mde

t+1|t in (9) can

be written as

mde
t+1|t = m

reh
t+1|t + γ

�
mreh
t+1|t −mref

t+1|t
�
, (12)

where γ in (11) is defined accordingly. GS (p.155) refer to mde
t+1|t > mreh

t+1|t
(mde

t+1|t < mreh
t+1|t) as the “overreaction” (“underreaction”) of DE, relative to

the REH forecast. Proposition 2 shows that if f(xt+1|xt) and fref(xt+1|xt) are
normal, then DE overreacts if and only if mreh

t+1|t > m
ref
t+1|t.

5 Representing Deviations from REH as Driven by Re-

vision of the REH Forecast

GS proposed DE as a new approach to specifying forecasts in behavioral-

finance models that aimed to explain empirical findings that participants’

forecasts do not conform to REH. However, their specification of the refer-

ence pdf shares a key feature with its REH counterpart: both are based on the

“objective” process driving outcomes, as formalized by an economist’s model.
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However, in contrast to the REH forecast, which is conditional on xt, GS (p.

154) specified the mean of the reference pdf, mref
t+1|t as conditional on xt−1. We

refer to this specification as REH-like and denote it with mreh
t+1|t−1. We state

this key assumption of GS’s specification of DE as follows:

Assumption 3 The “distorting” influence of the representativeness heuristic
on participants’ forecasts, mreh

t+1|t−mref
t+1|t, is driven solely by the revision of its

REH counterpart, which we formally state as follows

mde
t+1|t −mreh

t+1|t = γ
�
mreh
t+1|t −mref

t+1|t
�
= γ

�
mreh
t+1|t −mreh

t+1|t−1
�
. (13)

This assumption implies that the supposed regularity of overreaction is in fact

generated by a well-known property of REH forecasts: by design, the revision

of such a forecast is driven solely by the time-t realization of news about xt.

6 Overreaction as an Artifact of the REH-like Specifi-

cation of the Reference PDF

GS (p.174) illustrate their argument that DE implies an overreaction in the

context of the following standard AR(1) model,

Xt+1 = ρXt + µ+ εt+1, (14)

where 0 < ρ < 1 and µ are constants, and εt ∼ iidN(0, σ2). In the context
of this section, this model specifies the “objective” process driving a payoff-

relevant variable xt. Thus, according to Muth’s hypothesis,

mreh(gs)
t+1|t =E(Xt+1|xt) = ρxt + µ (15)

= ρ2xt−1 + (1 + ρ)µ+ ρet, (16)�
σ
reh(gs)
t+1|t

�2
= σ2, (17)

where et, in (16), denotes the realization of εt.
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Furthermore, according to Assumption 3, the mean and the variance of the

reference pdf, in (7), are given by

mref(gs)
t+1|t =E(Xt+1|xt−1) =

= ρ2xt−1 + (ρ+ 1)µ, (18)�
σ
ref(gs)
t+1|t

�2
=(1 + ρ2)σ2. (19)

Because the “objective” and reference pdfs are normal and
�
σ
ref(gs)
t+1|t

�2
>�

σ
reh(gs)
t+1|t

�2
, Proposition 2 holds, which together with Assumption 3, implies

that

m
de(gs)
t+1|t −mreh(gs)

t+1|t = γ(gs)
�
mreh
t+1|t −mreh

t+1|t−1
�
=
�
mreh
t+1|t −mreh

t+1|t−1
�
= γ(gs)ρet,

(20)

where γ(gs) = θ
(1+ρ2)(1+θ)

, and et is the realization of εt.

GS (p. 155) refer to et > 0 (et < 0) as good (bad) news about the payoff-

relevant outcome xt. Expression (20) shows that the supposed regularity of

overreaction, relative to REH, is an artifact of GS’s Assumption 3: good (bad)

news leads participants to overreact in the same direction and in the propor-

tionately (predictable) magnitude as the REH forecast revision.

7 Allowing for Change in the REH-like Specification of

DE

The AR process, in (14), exemplifies the usual structure of macroeconomic

and finance models, an overwhelming majority of which assume away change

in the process driving outcomes. Models that recognize change in this process

typically represent it with a Markov chain. Such representations imply that

the news about xt comprises the realizations of εt as well as the realized state

of the Markov chain at t.

We show here that the REH-like specification of DE involving a Markov

component in both the REH and reference pdfs implies overreaction to news.
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As with the time-invariant specification, this overreaction is an artifact of

GS’s Assumption 3 that the “distorting” influence of the representativeness

heuristic on participants’ forecasts can be represented with a revision of the

REH forecast.

7.1 AMarkov Specification of the Change in the Process

Driving An Outcome

We follow the prevailing practice in a particularly simple way by allowing the

mean of the process, in (14), to change over time, which we formally state as

follows:

Xt+1 = ρXt + µt+1 + εt+1, (21)

where µt evolves according to a Markov chain, which switches between two

states, µ(1) and µ(2) with the transition probabilities p12 and p21 . Here 0 < ρ <

1 is a constant, and εt ∼ iidN(0, σ2). It follows from (21) that, while xt and

µt−i for i = 0, 1... are dependent, xt and µt+i for i = 1, 2....are independent.
9

Macroeconomic and finance models typically constrain the parameters of

a Markov chain, such as (µ(1), µ(2), p12 , p21 ), to remain unchanging over an

infinite past and indefinite future. Thus, in the context of these models, the

unconditional distribution of µt eventually converges to a steady-state (sta-

tionary) probability distribution (Lawler, 2006, p. 15). In accordance with

the usual practice, we make the following assumption:

Assumption 4 The distribution of the Markov process µt is stationary: P (µt =
µ(1)) = π, P (µt = µ

(2)) = (1− π), for all t.

This assumption implies that for all t

E (µt)= πµ(1) + (1− π)µ(2), (22)

V (µt)= π(1− π)
�
µ(1) − µ(2)�2 , (23)

where the expression for V (µt) is derived in the proof of Lemma 6 in Online

Appendix A.
9To save on notation, (lower case) µr denotes a random variable.
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7.2 REH Forecasts as a Mixture of Normal PDFs

Allowing µt to evolve according to a Markov chain implies that, in contrast

to (14), the conditional pdf of the REH-implied forecasts is no longer simply

normal. However, the following lemma shows that the pdf of xt+1, conditional

on xt, implied by (21) is a mixture of the two normal pdfs with the following

means and variances:

m
(mk,i)
t+1|t =E(Xt+1|xt, µt+1 = µ(i)) = ρxt + µ

(i), (24)�
σ(mk,i)

�2
= σ2 +E(µt − µ(i))2, (25)

where “mk” in the superscript “(mk, i)” denotes that the process driving xt+1
has a Markov component, and “i ” denotes whether µt+1 = µ

(1) or µt+1 = µ
(2).

Lemma 5 Suppose that (21) characterizes the process driving xt+1. Then,
conditional on xt, the “objective” pdf of xt+1, denoted with greh(mk)(xt+1|xt), is
the following mixture of the two conditional normal pdfs with the means and

variances in (24) and (25):

greh(mk)(xt+1|xt) = πf (1)(xt+1|xt, µt+1 = µ(1))+(1−π)f (2)(xt+1|xt, µt+1 = µ(2)),
(26)

Proof in Online Appendix A.

This lemma implies that the “objective” pdf is normal. Furthermore,

from (26), (24), (25), (22), and (23), the (conditional) mean and variance

of greh(mk)(xt+1|xt) are given by

m
reh(mk)
t+1|t = ρxt + µ

(2) + π
�
µ(1) − µ(2)� = ρxt +E(µt), (27)

.
�
σ
reh(mk)
t+1|t

�2
= σ2 + V (µt) (28)

7.3 A Mixture Specification of the Reference PDF

GS assumed that, like REH, the reference pdf is based on the “objective“

process, in (21). However, they specified the reference class of outcomes as
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xt−1. Using the same approach as in Section 7.2, the following lemma shows

that allowing for the Markov component in the “objective” process implies

that the reference pdf is a mixture of the four normal pdfs with the following

means:10

m
(mk,i,j)
t+1|t = E(Xt+1|xt−1, µt+1 = µ(i), µt = µ(j)) = ρ2xt−1+ρµ(j)+µ(i), i, j = 1, 2.

(29)

Lemma 6 Suppose that (21) characterizes the process driving xt+1. Then,
conditional on xt−1, the REH-like reference pdf of xt+1, denoted with gref(mk)(xt+1|xt−1),
is the mixture of the four normal pdfs with means specified in (29),

gref(mk)(xt+1|xt−1) =
2[

i,j=1

pjiπjf
(i,j)(xt+1|xt−1, µt+1 = µ(i), µt = µ(j)), (30)

where pji, j, i = 1, 2 are transition probabilities and πj = P (µt+1 = µ
(j)) for

all t. Furthermore, the mean and variance of gref(mk)(xt+1|xt−1) are given by

m
ref(mk)
t+1|t = ρ2xt−1 + (1 + ρ)E (µt) , (31)�

σ
ref(mk)
t+1|t

�2
=(1 + ρ2)

�
σ2 + V (µt)

�
(32)

+2ρ
�
E
�
µt+1µt

�− [E (µt)]2� .
Moreover,

(1 + θ)
�
σreft+1|t

�2
> θ

�
σreht+1|t

�2
(33)

holds, for any values of the model parameters
�
θ, ρ, µ(1), µ(2), p12,p21

�
.

Proof in Online Appendix A.

10Because the explicit expression for
�
σ(mk,i,j)

�2
plays no role in our argument, we omit it

to save space. The derivation of this expression is analogous to that for
�
σ
ref(mk)
t+1|t

�2
in (32)

below.
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7.4 Overreaction

The normality of the REH and reference mixtures of pdfs and (33) ensures

that Proposition 2 holds for the mixture specification of DE. Moreover, analo-

gously to GS’s time-invariant specification, DE’s REH-like specification of the

reference pdf that includes a Markov component is tantamount to assuming

that the participants’ overreaction, relative to the REH forecast, can be rep-

resented with the revision of the REH forecast. We state this conclusion and

that of the previous section with a proposition:

Proposition 7 Suppose that an economist assumes that while the reference
pdf is based on the ““objective” normal pdf, which underpins REH, partic-

ipants assessing an event’s xt+1 ∈ A’s representativeness consider xt−1 the
reference class of outcomes. Then, DE’s REH-like specification overreacts to

good (bad) news, regardless of whether it is time-invariant or involves a Markov

component.

Proof in Online Appendix A.

8 The Irregularity of DE’s Overreaction in Pre-DE Be-

havioral Models

GS (pp. 137-152) argue that their specification of the reference pdf formalizes

Kahneman and Tversky’s findings in the Linda-like experiments in a variety

of contexts. However, as we discussed in Section 3, Kahneman and Tver-

sky (1972, p. 431) emphasized that there appears to be no theoretical basis

for specifying the reference class that participants might consider relevant in

assessing the representativeness of uncertain events.

Moreover, GS’s specification of the reference pdf, and thus of DE, as be-

ing based on the “objective” pdf underpinning REH appears to be at odds

with behavioral economists’ empirical evidence. For example, the seminal

pre-DE behavioral-finance model of Barberis, et al. (1998) is based on exten-

sive evidence about how psychological influences drive market participants’

assessment of uncertainty about stock returns. One of the main psychological
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mechanisms underpinning their model’s specification of participants’ forecasts

is the representativeness heuristic. However, they argue that TK’s and other

empirical findings do not provide a basis for specifying how the news drives

the overreaction or underreaction of participants’ forecasts. As they put it,

Unfortunately, the psychological evidence does not tell us quantita-

tively what kind of information is strong and salient (and hence is

overreacted to) and what kind of information is low in weight (and

hence is underreacted to). For example, it does not tell us how

long a sequence of earnings increases is required for its strength

to cause significant overpricing. Nor does the evidence tell us the

magnitude of the reaction (relative to a true Bayesian) to informa-

tion that has high strength and weight, or low strength and weight

(p. 317, emphasis added).

This assessment of empirical evidence stands in contrast to GS’s assump-

tion that the “distortion” caused by the heuristic arises solely from news.

Barberis, et al. argue (p. 318) that the deviation of participants’ forecasts

from their REH counterpart arises from “the investor...using the wrong model

[of earnings] to form expectations [of returns].” While an economist’s model

assumes that earnings evolve according to a random walk, the investor “thinks

that the world moves between two ‘states’ or ‘regimes’ and that there is a dif-

ferent model governing earnings in each regime.” Barberis, et al. formalize

this assumption with the two-state stationary Markov chain.

Our alternative to GS’s specification of DE adapts the key premise of Bar-

beris, et al. and other pre-DE behavioral models. We assume that the partic-

ipants’ assessment of representativeness is implied by the “wrong” reference

pdf, rather than being driven solely by news, and show that DE no longer

implies the regularity of overreaction. Depending on the values of the para-

meters of both the REH and reference pdfs, as well as the realizations of xt,

DE overreacts in some periods and underreacts in other periods.
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8.1 A Behavioral Markov (BM) Specification of DE

To facilitate comparison with GS’s REH-like specification of the reference pdf,

we use an AR(1) process, in (14), to characterize the ‘objective” process driving

xt, which we restate here for convenience,

Xt+1 = ρXt + µ+ εt+1, (34)

However, adapting Barberis et al.’s assumption that participants “think that

the world moves between two ‘states,’” we specify the reference process that

participants consider relevant as being based on the following “wrong” version

of the “objective” process in (34):

Xt+1 = ρ
(b)
t Xt + µ

(b)
t+1 + εt+1, (35)

where “b” in the superscript denotes that ρ(b)t and µ(b)t specify the BM model.

Each of them evolves according to a Markov chain, which switches between

two states, ρ(b,i), and µ(b,i) i = 1, 2 with the transition probabilities, p12, and

q12, respectively and εt ∼ iidN(0,σ2). To simplify the presentation, we assume
that ρ(b)t and µ(b)t are independent. It follows from (35) that, while xt and µt−i
for i = 0, 1... are dependent, xt and µt+i for i = 1, 2....are independent. We also

assume that, while xt and (µ
(b)
t−i, ρ

(b)
t−1−i) for i = 0, 1... are dependent, xt and

(µ(b)t+i, ρ
(b)
t+1−i) for i = 1, 2...are independent. Analogously to the specification

in (21), we also assume that ρ(b)t and µ(b)t are stationary Markov chains.

8.1.1 AMixture Characterization of the Behavioral Reference PDF

A proof analogous to that of Lemma 6 shows that the reference pdf implied

by (35) is a mixture of the four normal pdfs:

gref(b)(xt+1|xt) =
2[

i,j=1

π(j)ρ π(i)µ f
(b,i,j)(xt+1|xt, ρ(b)t = ρ(b,j), µ

(b)
t+1 = µ

(b,i)), (36)

where π(j)ρ and π(i)µ , j, i = 1, 2, are components of the respective stationary dis-

tributions. Furthermore, the conditional mean and variance of gref(b)(xt+1|xt)
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are given by

m
ref(b)
t+1|t =E(ρ

(b)
t )xt +E(µ

(b)
t ) (37)

=E(ρ
(b)
t )ρxt−1 + ρµ+E(µ

(b)
t ) + ρet, (38)�

σ
ref(b)
t+1|t

�2
=σ2 + V (ρ

(b)
t )E(x

2
t ) + V (µt) (39)

where E(ρ(b)t ), E(µ
(b)
t ), V (ρ

(b)
t ), and V (µ

(b)
t ) are the means and variances, which

are specified analogously to (22) and (23).

8.1.2 A Behavioral Markov DE May Overreact or Underreact

Because the mixture in (36) is a normal pdf, and (17) and (39) show that�
σ
ref(b)
t+1|t

�2
>
�
σ
reh(gs)
t+1|t

�2
, Proposition 2 holds. Thus, the diagnostic expec-

tation implied by GS’s specification of the time-invariant REH pdf, and the

BM specification of the reference pdf is given by

m
de(b)
t+1|t=m

reh(gs)
t+1|t + γ(b)

�
m
reh(gs)
t+1|t −mref(b)

t+1|t
�

(40)

=m
reh(gs)
t+1|t + γ(b)

qk
ρ− E(ρ(b)t )

l
xt + µ− E(µ(b)t )

r
(41)

where, from (11), (17) and (39), γ(b) = θ σ2

σ2+(1+θ) V (ρ
(b)
t )E(xt)2+V (µt)

.

The expression in (41) shows that, according to the BM specification, whether

DE overreacts, relative to its REH counterpart, depends on whether
k
ρ−E(ρ(b)t )

l
xt+

µ−E(µ(b)t ) > 0. The following lemma states this point explicitly:

Lemma 8 Suppose that the specification of DE based on (34) and (35) charac-
terizes how the representativeness heuristic leads participants away from fore-

casting according to REH.

Letting ρ− E(ρ(b)t ) > 0 implies that if and only if

xt >
E(µ

(b)
t )− µ

ρ− E(ρ(b)t )
.

holds, DE overreacts, that is, mreh(gs)
t+1|t > m

ref(b)
t+1|t holds. Conversely, letting
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ρ− E(ρ(b)t ) < 0 implies that if and only if

xt <
E(µ

(b)
t )− µ

ρ− E(ρ(b)t )
.

holds, DE underreacts, that is, mreh(gs)
t+1|t < m

ref(b)
t+1|t holds.

To be sure, representing change with a Markov chain, as Barberis, et al.’s

(1998) behavioral specification of particiapnts’ forecasts, is quite restrictive.

However, relaxing GS’s REH-like specification of the reference pdf illustrates

a more general point. Once we acknowledge the behavioral economists’ pre-DE

evidence that participants’ forecasts are not based on the “objective” process

driving outcomes, as hypothesized by an economist’s model, DE no longer im-

plies the regularity of overreaction. Depending on the values of the model pa-

rameters of both the REH and reference pdfs,
�
ρ, µ,σ2, ρ(b,i), µ(b,i), π

(i)
ρ , π

(i)
µ

�
,

i = 1, 2, and the realizations of xt, DE overreacts in some periods and under-

reacts in others periods.

9 Extending the Applicability of Coibion and Gorod-

nichenko’s Econometric Framework

Coibion and Gorodnichenko (CG, 2015) proposed a new regression-based frame-

work for testing the predictions of sticky and noisy REH models based on

survey data on participants’ forecasts of macroeconomic variables. CG (pp.

2651, 2653) point out that the theoretical structure of these REH specifica-

tions “map” directly onto the following regression relationship between ex post

forecast errors and forecast revisions:

xt+h − Ft(xt+h) = α+ β [Ft(xt+h)− Ft−1(xt+h)] + υt+h, (42)

where Ft(xt+h) denotes participants’ time-t forecast of a variable xt at time

t+ h, and υt+h is the error term implied by a theoretical specification of par-

ticipants’ forecasts. We derived our mixture characterization of participants’

forecasts of xt+1, conditional on xt. Consequently, in deriving predictions of
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alternative specifications of these forecasts for the CG regression, (42), we set

h = 1.

CG point out that the FIRE specification of participants’ forecasts, based

on a time-invariant process for xt predicts that

αfire(gs) = βfire(gs) = 0. (43)

where “fire” in the superscript “fire(gs)” denotes that FIRE’s predictions for

the coefficients in (42) are based on (14). CG also show that hypothesizing that

the time-invariant model, in (14), represents the process driving an outcome

and that the aggregate of participants’ forecasts conforms to the sticky or noisy

information alternatives to FIRE implies that α = 0 and β > 0.

We extend the applicability of the CG regression to testing predictions of

theoretical specifications of participants’ forecasts that involve a stationary

Markov component. Relying on our mixture characterization of the REH and

reference pdfs, we derive predictions for α and β, in (42), of the REH-llike

Markov and Behavioral specifications of DE in Sections 7 and 8.1, respectively.

We also derive predictions of the early (pre-DE) behavioral specification of

participants’ forecasts, as exemplified by Barberis, et al. (1998), as well as

that of FIRE based on a model involving a Markov component, as exemplified

by (21)..

10 Predictions of DE’s Specifications for the CG Re-

gression-

Hypothesizing that DE represents participants’ forecasts, expression (12) re-

lates participants’ forecast error, fet+1, to their forecast “distortion,” fdt, and

REH’s forecast error, fereht+1, which we restate as

fet+1 = −γfdt + fereht+1, (44)
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where

fet+1= xt+1 −mde
t+1|t, (45)

fdt=
�
mreh
t+1|t −mref

t+1|t
�
, (46)

fereht+1= xt+1 − E(Xt+1|xt). (47)

On the other hand, the CG regression, in (42), involves the relationship be-

tween participants’ forecast error, fet+1, and their forecast revision, frt:

fet+1 = xt+1 −mde
t+1|t = α+ βfrt + υt+1, (48)

where

frt=m
de
t+1|t −mde

t+1|t−1

=(1 + γ)
�
mreh
t+1|t −mreh

t+1|t−1
�− γ

�
mref
t+1|t −mref

t+1|t−1
�

(49)

We now derive the predictions for the coefficients α and β, in (42), that

hold for any specification of DE satisfying Proposition 2, restated in (44). To

this end, we note that the outcome xt+1 is the time-t+1 realization of Xt+1, in

(14) (21), or (35). Moreover, from (45)-(47) and (49), the conditional means

mde
t+1|t−i, m

reh
t+1|t−i, m

ref
t+1|t−i, i = 0, 1, are the time-t realizations of random

variables, which we denote with Mde
t+1|t−i, M

reh
t+1|t−i, and M

ref
t+1|t−i, i = 1, 2.

respectively. Consequently, fet+1, fdt, fereht+1, and frt are time-t realizations

of the following random variables:

FEt+1=Xt+1 −Mde
t+1|t, FDt =M

reh
t+1|t −M ref

t+1|t, (50)

FEreht+1=Xt+1 −M reh
t+1|t, FRt =M

de
t+1|t −Mde

t+1|t−1. (51)

Constraining the “objective” process driving xt to be time-invariant, as

exemplified by (14), implies that FEreht+1 = εt+1. Moreover, from (20), GS’s

REH-like specification of the reference pdf implies that FDt = ρεt. Thus,

from (44) and (49), FEt+1 = −γρεt + εt+1and FRt = (1 + γ)ρεt − γρεt−1.

Assuming εt ∼ iidN(0,σ2) ensures that all variables in (50) and (51) are
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normally distributed.

When µt evolves according to a Markov chain, each of these variables in-

volves a Markov component. However, an argument analogous to that in the

proof of Lemmas 5 and 6 shows that for each of the behavioral specifications

of participants forecasts considered in Sections 7 and 8.1, each of the variables,

FEt+1, FDt, FEreht+1, and FRt, is a mixture of normal pdfs, and thus each is

also normally distributed.

For example, consider FDt implied by DE’s specification involving aMarkov

component, formulated in 7. The following lemma shows that FDt is a mixture

with two normal components.

Lemma 9 Suppose that the REH-like Markov specification of DE, in Section
7.1, represents participants’ forecasts. Then, the pdf of FDt, denoted with

g(mk)(fdt), is the mixture of the two conditional normal pdfs:

g(mk)(fdt) = πf (1)(fdt|µt = µ(1)) + (1− π)f (2)(fdt|µt = µ(2)),

where the mean of each of the components, f (i)(fdt|µt = µ(i)), i = 1, 2, is
given by

m
(i)
fdt
= E(FDt|µt = µ(i)) = ρ

�
µ(i) −E(µt)

�
(52)

Proof in Online Appendix A.

The normality and stationarity of FEt+1, FDt, FEreht+1, and FR provide a

straightforward way to express the predictions of any DE specification satis-

fying Proposition 2 for the coefficients of the CG regression, (48). Using (44),

the standard expression for the conditional mean of jointly normal variables

expresses these predictions in terms of the moments of the variables in (50)

and (51):
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E(FEt+1|FRt)=−γE(FDt|FRt) +E(FEreht+1|FRt) (53)

=−γ
�
E(FDt) +

Cov(FDt, FRt)

V (FRt)
[FRt − E(FRt)]

�
+E(FEreht+1|FRt)

where 0 < γ < 1 and Cov(·, ·) is the covariance.
While E(FEreht+1|FRt) = 0 for the time-invariant REH-like specification of DE,
allowing for change with a Markov chain renders E(FEreht+1|FRt) 9= 0. Thus,
the predictions of the Markov REH-like and behavioral specifications of DE for

the coefficients in the CG regression in (48) must also take into account that

E(FEreht+1|FRt) = E(FEreht+1) + Cov(FEreht+1,FRt)

V (FRt)
[FRt −E(FRt)]. As we show in

Sections 10.1 and 11.2, respectively, this point renders invalid Bordalo, et al.’s

(2020, p. 2756) assertion that hypothesizing that DE represents individual

forecasts unambiguously predicts β < 0, as well as the usual assertion that

FIRE necessarily predicts β = 0.

Denoting with the superscript “de” the coefficients of the CG regression

implied by a DE specification of participants’ forecasts satisfying Proposition

2, we summarize the argument in this section with a proposition:

Proposition 10 Suppose that the REH and reference pdfs can be represented
with the mixtures of normal pdfs, which arise from stationary Markov chains or

time-invariant processes representing xt, and that DE represents participants”

forecasts. The following expressions characterize the predations of any such

DE specification for the coefficients in the CG regression (48):

αde=E(FEreht+1|t) + (54)

−γE(FDt)− Cov(FE
reh
t+1, FRt)− γCov(FDt, FRt)

V (FRt)
E(FRt)

βde=
Cov(FEreht+1, FRt)− γCov(FDt, FRt)

V (FRt)
. (55)

Proposition 10 relates the predictions of the magnitudes and signs of the
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coefficients αde and βde to the moments of the variables FEt+1, FDt, FEreht+1,

and FRt implied by a particular specification of the REH and reference pdfs.

In the remainder of this section, we apply this proposition to derive the pre-

dictions of DE’s REH-like and behavioral Markov specifications, formulated

in Sections 7 and 8.1.

10.1 Predictions of the REH-like Specifications of DE

The following corollary to Proposition 10 derives the relevant moments of

FEt+1, FDt, FEreht+1, and FRt implied by the REH-like Markov specification

of the reference pdf, and states DE’s prediction for the coefficients of the CG

regression, (48), denoted with the superscript “de(mk).”

Corollary 11 Suppose that DE’s REH-like Markov specification, in Section
7.1, characterizes participants’ forecasts. Then,

1. αde(mk) = 0 at all t.

2. βde(mk) < 0 if 1 < p12 + p21 < ( 1
γ(mk)ρ

− 1) �(1 + γ(mk)(1− ρ)
�
.

(a) If this condition is not satisfied, there are values of the model para-

meters, (µ(1), µ(2), p12, p21, ρ, σ2) for which βde(mk) > 0

3. However, the sign and the magnitude of βde(mk) are unchanging over

time.

Proof in Online Appendix A.

According to Proposition 7, the REH-like Markov specification implies

overreaction, that is, mde
t+1|t > mreh

t+1|t. This has led Bordalo, et al. (2020)

to assert that β < 0 indicates the regularity of overreaction. However, Corol-

lary 11 reveals that, because Cov(FEreht+1, FRt) 9= 0, the slope coefficient in the
CG regression implied by the that theoretical specification involving a Markov

component may be either positive or negative. Nevertheless, the REH-like

Markov specification implies an unambiguous testable prediction: α = 0 and

the sign and magnitude of β to remain unchanging over time, thereby suggest-

ing either the regularity of overreaction or underreaction.
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10.1.1 Predictions When the Markov Chain Persists in a Regime

According to Corollary 11, although the Markov specification of DE allows for

change in how participants forecast outcomes, it nonetheless predicts that α =

0 and it is unchanging over time. However, the persistence of a Markov chain

in one state for a prolonged period of time might cause structural break(s)

in α. For example, Engel and Hamilton (1990) formalized such persistence

with a two-state Markov chain in which they constrained the probabilities

of switching, p12 and p21, to be small, implying that the process would be

expected to stay in one state for a long time. During each of such subperiods,

typically referred to as regimes, α would remain unchanged, but it would take a

different sign and (generally) a different magnitude in one regime as compared

with the other.

The following corollary states predictions of assuming regime persistence

for the coefficients of the CG regression, denoted with αde(mp) and βde(mp);

Corollary 12 Suppose that the transition probabilities p12 and p21 are suf-
ficiently small, so that the process driving µt, in (21), may stay in one of

the regimes for a long period of time of time, and yet undergo intermittent

structural breaks that can be detected by an econometric procedure. Then,

the REH-like Markov specification of DE in Section 7.1 implies the following

testable predictions for the coefficients of the CG regression, in (48), denoted

with αde(mp) and βde(mp):

1. αde(mp) switches the sign (from positive to negative or vice versa) when

the transition from µt = µ
(i) to µt = µ

(j) occurs, i, j = 1, 2, i 9= j.

(a) The magnitude of αde(mp) is the same in each of the regimes of µt.

2. βde(mp) < 0 and its magnitude is unchanging over time, regardless of

whether µt persists in one of the regimes.

Proof in Online Appendix.
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This corollary shows that while the regime persistence may help explain

intermittent structural breaks in αde(mp), the structural change in CG regres-

sion’s constant term is constrained in a way that can easily be tested. For

example, although
�
µ(1) − E (µt)

�
> 0 and

�
µ(2) − E (µt)

�
< 0, the magnitude

of these terms is the same. As we show in the proof of this corollary, this

implies that the magnitude of αde(mp) is the same across the two regimes.

10.2 Predictions of the Behavioral Markov Specifica-

tion of DE

The BM specification of DE in Section 8.1 defines the variables in (50) and

(51). The following corollary derives the moments of these variables and uses

Proposition 10 to state predictions for the coefficients of (48), denoted with

αde(b) and βde(b):

Corollary 13 DE’s Behavioral Markov specification, in Section 8.1, implies
the following predictions for the coefficients of the CG regression, in (48):

1. Either βde(b) < 0 or βde(b) > 0.

2. Either αde(b) > 0 or αde(b) < 0.
3. However, the signs and magnitudes of αde(b) and βde(b) are unchanging

over time.

Proof in Online Appendix A.11

11 Predictions of the Pre-DEBehavioral and REH Spec-

ifications of Participants’ Forecasts

Here, we adopt the approach of the preceding section to derive predictions of

the pre-DE behavioral specifications of participants’ forecasts, as exemplified

by Barberis et al. (1998), as well as predictions of FIRE involving a Markov

component. To this end, we note that any specification of forecasts denoted

11The proof of this corollary shows that the signs and magnitudes of αde(b) and βde(b)

depend on the fixed model parameters, (ρ, µ, γ(b)), as well as on E(ρ(b)t ) and E(µ
(b)
t ), which

are also assumed to be unchanging over time.
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with mfor
t+1|t satisfies the following relationship:

xt+1 −mfor
t+1|t =

�
mreh
t+1|t −mfor

t+1|t
�
+ f�reht+1|t, (56)

Analogously to (50) and (51), we also define the random variables, the mo-

ments of which underpin the predictions of a specification of forecasts for the

coefficients α and β in the CG regression, (48):

FEt+1=Xt+1 −Mfor
t+1|t, FDt =M

reh
t+1|t −Mfor

t+1|t, (57)

FEreht+1=Xt+1 −Mreh
t+1|t, FRt =M

for
t+1|t −Mfor

t+1|t−1.. (58)

We assume that pdf implied by REH and a specification of participants fore-

casts are simply normal or can be characterized with a mixture of normal

components. Using the standard expression for the conditional normal vari-

ables underpinning Proposition 10, the following proposition states predictions

of any specification of participants’ forecasts, denoted with αfor and βfor.

Proposition 14 Suppose that the process driving outcomes and participants’
forecasts can be represented with mixtures of normal pdfs arising from station-

ary Markov chains. The following expressions characterize the predictions of

any such specification for the coefficients in the CG regression (48):

αfor=E(FEreht+1|t) + (59)

+E(FDt)− Cov(FE
reh
t+1, FRt) + Cov(FDt, FRt)

V (FRt)
E(FRt)

βfor=
Cov(FEreht+1, FRt) + Cov(FDt, FRt)

V (FRt)
. (60)

11.1 Predictions of Barberis et al.’s (1998) pre-DE Be-

havioral Specification

The BM specification of DE, in Section 8.1, defines the variables in (57) and

(58) implied by Barberis et al.’s (1998) pre-DE specification. Using the proof of

Corollary 13 and Proposition 14, the following corollary states the predictions
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of this behavioral specification for the coefficients of (48), denoted with αde(b)

and βde(b):

Corollary 15 Suppose that, while the “objective” process driving outcomes is
time-invariant, in (34), participants’s forecasts are based on process, in (35),

the mean of which evolves according to a two-state Markov chain. Such non-

REH specification of forecasts implies the following predictions for the coeffi-

cients of the CG regression, in (42):

1. Either β(beh) < 0 or β(beh) > 0.

2. Either α(beh) > 0 or α(beh) < 0,
3. However, the signs and magnitudes of α(beh) and β(beh) are unchanging

over time.

11.2 Predictions of FIRE for the CG Regression

Consider the hypothesis that FIRE based on a model involving a Markov

component, in (21), represents participants’ forecasts. This defines Mfor
t+1|t =

Mfire
t+1|t, which sets FDt = 0. The proof analogous to that of Lemma 9 implies

the following expressions for the variables FEt+1 and FRt:

FEt+1=Xt+1 −Mfire(mk)
t+1|t =

�
µt+1 − E (µt)

�
+ εt+1, (61)

FR1=M
fire(mk)
t+1|t −Mfire(mk)

t+1|t−1 = ρ [µt −E (µt)] + ρεt (62)

Using Proposition 14, the following corollary states the predictions of FIRE

involving a Markov component for the coefficients of the CG regression, de-

noted with αfire(mk) and βfire(mk) :

Corollary 16 Suppose that FIRE based on the model (21) represents partic-
ipants’ forecasts. Such specification implies the following predictions for the

coefficients of he CG regression:

1. αfire(mk) = 0 at all t.

2. Either βfire(mk) > 0 if p12 + p21 < 1, or βfire(mk) < 0 if p12 + p21 > 1.12

12βfire(mk) = 0 if p12 + p12 = 1. Because this case does not affect our interpretation of
empirical findings in Section 13, we omit it from the corrollary.
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(a) However, the sign and magnitude of βfire(mk) are unchanging over

time.

Proof in Online Appendix A.

A finding of β > 0 in the CG regression has traditionally been interpreted

as an “underreaction,” and β < 0 as an “overreaction.” However, once change

in how outcomes unfold over time is represented with a Markov chain, FIRE

predicts either α = 0 and β < 0, or α = 0 and β > 0. Therefore, allowing

for a Markov component in the process driving outcomes may render FIRE’s

prediction the same as that of GS’s REH-like specification of DE, which has

been thought to represent deviations from FIRE.

12 Summary of the Predictions

Table 1 summarizes predictions for the CG regression of the four behavioral

specifications of participants’ forecasts, including three implied by the DE

approach, as well as the two versions of FIRE that we consider in this paper,

and refers to the respective corollaries as well as CG (2015) and Bordalo, et

al. (2020), for their derivations.
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Table 1: Predictions of Theoretical Specifications of Participants’ Forecasts

Model Prediction for α Prediction for β

REH-like Specifications of DE

A: GS’s Time-Invariant α = 0 β < 0

B: Involving a Markov Component α = 0 β < 0 or β > 0

C: Assuming Regime Persistence α > 0 and α < 0 β < 0

D: Behavioral Markov Specification of DE α > 0 or α < 0 β < 0 or β > 0

E: Pre-DE Behavioral Specification α > 0 or α < 0 β < 0 or β > 0

REH-implied Specifications

F: Time-Invariant FIRE α = 0 β = 0

G: FIRE Involving a Markov Component α = 0 β < 0 or β > 0
Caption: A: Bordalo, et al (2020), B: Corollary 11, C: Corollary 12,

D: Corollary 13, E: Corollary 15, F: CG (2015), G: Corollary 16..

CG also show that hypothesizing that the time-invariant model, in (14),

represents the process driving an outcome, and that the aggregate of partic-

ipants’ forecasts conforms to the sticky or noisy information alternatives to

FIRE, implies that αfire(ar) = 0 and βfire(ar) > 0. However, as CG (p. 2652)

emphasize, this prediction “should not be expected at the individual level.”

Because we confront predictions of specifications of participants’ forecasts with

the individual survey data, we leave a reexamination of the REH-implied lim-

ited information specifications for a companion paper.

The models listed in Table 1 differ in several important respects. How-

ever, regardless of the pdfs implied by their specification of the “objective”

process driving outcomes and participants’ forecasts of them, the Assumption

4 of these processes’ stationarity implies that the moments of the variables

underpinning the predictions in columns 2 and 3 are time-invariant. Thus,

subjecting the coefficients α and β of the CG regression to tests of struc-

tural change, which we present in the following section, provides a hitherto

unexplored way to confront behavioral specifications of participants’ forecasts,

including diagnostic expectations, with survey data.13

13Greenwood and Shleifer (2014) concluded, on the basis of a time-invariant specification
for survey data, that participants’ forecasts are largely unrelated to fundamental factors.
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13 Empirical Findings

Here, we tests predictions in Table 1 by estimating individual CG regressions,

based on survey data of inflation forecasts by 24 professionals.

13.1 Full-Sample Estimates of the CG Regression

We begin with the full-sample estimates, which the literature typically focuses

on in assessing the empirical adequacy of theoretical specifications of expecta-

tions. Table B1 in Online Appendix B displays such estimates of the individual

CG regressions. The estimates are based on data from 24 individuals in the

Philadelphia Federal Reserve’s Survey of Professional Forecasters with more

than 50 observations of their one-quarter-ahead forecast revisions of the Gross

Domestic Product’s inflation. Table 2 presents the summary of the tests of

the coefficients of these individual regressions grouped across forecasters.

Table 2: Grouping of Individuals Based on Tests of Full-Sample Regressions’

Estimates
Individuals α β Consistent with

13/24 α = 0 β = 0 Model F in Table 1

5/24 α = 0 β < 0 Models A, B and G

4/24 α 9= 0 β < 0 Models D and E

1/24 α = 0 β > 0 Models B and G

1/24 α 9= 0 β = 0 No model in Table 1

Bordalo, et al. (2020) assert that “for individual forecasters the prevalent

pattern is overreaction (p. 2779).” By contrast, we find that the estimates

for only five of the 24 individual regressions are consistent with α = 0 and

β < 0.14 Even more surprising in Table 2, is the number of individual CG

regressions that fail to reject time-invariant FIRE (model F). For 13 of the 24

Frydman and Stillwagon (2018) reexamine this conclusion by testing for structural stability
of participants’ forecasts directly, rather than via the CG regression. They show that,
in contrast to Shleifer and Greenwood’s conclusion, both fundamental and psychological
factors drive participants’ forecasts. For a recent paper relating structural breaks in how
participants forecast outcomes to market sentiment, see Frydman, et al. (2020).
14See Table B1 in Online Appendix B for the full-sample estimates and t-values for all 24

forecasters.
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forecasters, we cannot reject at even 10% that α = 0 and β = 0. However,

these interpretations of the empirical findings presume the stationarity of the

process driving outcomes and in how participants forecast them.

13.2 Time-Invariance of the Coefficients of the CG Re-

gression

Models in Table 1 differ in a number of important respects. However, all

of them rest on a common premise: the process driving outcomes and par-

ticipants’ revisions of their forecasting strategies can be represented with a

stationary Markov chain. One of the central implications of our theoretical

framework is that, although such representations do allow for change in the

specification of individuals’ forecasting strategies, they predict that the con-

stant and slope coefficients in the CG regression do not change over time.

Predictions of Models B, D, E, and G in Table 1 formalize this implication.

For example, according to Corollary 11, the REH-like specification of DE

with a Markov component (Model B) predicts α = 0 and either β < 0 or

β > 0, for all t, depending on the values of transition probabilities and other

parameters. However, under the stationarity assumption, Model B predicts

that β must remain either positive or negative in both sign or magnitude for

all t. Similarly, while the behavioral Markov specification (Model D) predicts

that α > 0 or α < 0 , and β < 0 or β > 0, it also predicts that the CG

regression’s coefficients are time-invariant both in sign and magnitude.

Model C is the only model among those in Table 1 predicting structural

break(s) under the stationarity Assumption 4. These breaks could arise from

intermittent switches between persistent regimes, as formalized with the low

off diagonal transition probabilities. However, as Corollary 12 shows, while

the regime persistence may cause the constant term α to undergo intermittent

structural breaks, this change is constrained in a way that can easily be tested.

Although α differs across the two regimes, its positive (or negative) sign and

its magnitude are the same within each regime.
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13.3 Structural Breaks in the Individual CG Regres-

sions

According to Propositions 10 and 14, regardless of the specification of the

“objective” and reference pdfs, the Assumption 4 of these processes’ station-

arity implies that the moments of the variables, in (50), (51), (57), and (58),

that underpin these predictions are time-invariant. Thus, subjecting the coef-

ficients of the CG regression to tests of structural change provides a hitherto

unexplored way to confront alternative models of expectations, including di-

agnostic expectations, with survey data on participants’ forecasts. Moreover,

the predictions of any of the specifications in Table 1 for the constant and the

slope in the CG regression depend on different moments of the variables, in

(50), (51), (57), and (58). Whereas the prediction for α depends on the means

and the covariances of these variables, the prediction for β depends only on

the covariances. Thus, the tests for structural breaks require a procedure that

allows the constant and slope of the CG regression to break at different times.

Consequently, we rely on the Multiplicative Indicator Saturation (MIS)

procedure, which has been designed to detect breaks in the coefficients of the

regression model at potentially different times. MIS is an extension of the

Autometrics algorithm (Doornik, 2009) and the indicator saturation methods

of Hendry, et al. (2008) and Castle, et al. (2015), whose consistency properties

and appropriate size and power have already been demonstrated in previous

studies under a range of conditions.15 For an overview of the MIS methodology,

see Online Appendix B.

By contrast, because the Bai-Perron (1998) procedure does not allow the

constant and the slope to break at different times, on theoretical grounds, it

is not suitable for testing the structural stability of predictions for α and β in

the CG regression (42). Nonetheless, given its widespread use, we also report

results of the Bai-Perron test.
15For recent applications of MIS and further references, see Castle, et al. (2017).
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Table 3: Structural Breaks in the CG Regressions Detected by MIS and

Bai-Perron Procedures
Full Sample Individuals α Break β Break α or β Bai-Perron

α = β = 0 13/24 12/13 6/13 13/13 7/13

α = 0; β < 0 5/24 5/5 2/5 5/5 3/5

α 9= 0; β < 0 4/24 4/4 3/4 4/4 1/4

α = 0; β > 0 1/24 1/1 1/1 1/1 0/1

α 9= 0; β = 0 1/24 1/1 0/1 1/1 1/1

Columns 1 and 2 of Table 3 restate the results of the tests of the CG re-

gressions grouped by number of individuals. Row 2 and Column 2 restates the

results of the full-sample estimates that 13 out of 24 individual CG regressions

yielded a constant and the revision (slope) coefficient, not significantly differ-

ent from zero, which is consistent with the time-invariant FIRE. Columns 3, 4,

and 5 report the proportion of those 13 individual regressions that experience

instability in the constant α, slope β, and either α or β. As column 5 row

2 shows, all of those 13 individual regressions experience a significant break

in either the constant or the slope. The apparent prevalence of FIRE in the

full-sample CG regressions is therefore completely overturned: the structural

breaks detected by MIS in all of the individual regressions that did not re-

ject time-invariant FIRE in the full sample are strongly inconsistent with that

specification.

Of the 11 remaining individual regressions, all 11 experience a break in

either α or β, as shown in column 5 of rows 3-5. This rejects all of our

specifications in Table 1, with the possible exception of the persistent regime

specification of DE (Model C).

In Table 3, column 4, there are 12 individual regressions with a time-

invariant β. As shown in Figures B1-B4 in Appendix B, nine indicate β < 0.

The constant term, α, in seven of these individual regressions experience breaks

in magnitude, while maintaining the same sign. This renders the estimates of

these seven regressions inconsistent with Model C.

However, for the other two individual regressions indicating a time-invariant

β < 0, the constant term, α, undergoes two breaks within the sample, with its
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sign switching at each break. Thus, according to Corollary 12, the estimates of

these two regressions would be consistent with Model C if the magnitude of α

is the same in each regime. Whenever a Markov chain returns to and persists

within one of the regimes, we can reject this hypothesis for one of the indi-

vidual regressions at 5% and at 10% for the other. For the latter regression,

the second regime consists of only five observations. Although this entails low

power, its point estimate of α is six times larger in magnitude than that in the

third regime.

In summary, MIS finds that all of our models in Table 1 are rejected based

on the estimates of the 24 individual CG regressions.

The last column of Table 3 provides the summary for Bai-Perron tests

relative to the full-sample estimates in columns 1 and 2. These results, like

MIS, reveal that the full-sample estimates are misleading. More than half of

the cases that cannot reject time-invariant FIRE in the full sample experience

breaks, with sub-samples where either α 9= 0 and/or β 9= 0 (see Table B2 in
Online Appendix B for further details). Similarly, three of the five full-sample

estimates apparently consistent with time-invariant DE are no longer robust

after Bai-Perron tests: they experience either sub-periods with a statistically

significant α 9= 0, or β loses significance or changes sign.
It is clear from Table 3 that the Bai-Perron procedure detected breaks in

fewer individual regressions than did MIS. What is again surprising, however,

is the significant number of regressions that still cannot reject FIRE after the

Bai-Perron tests (six of 24). When contrasted with MIS, which rejects FIRE
for all 24 regressions, this indicates a problem with Bai-Perron constraining α

and β to break only simultaneously.

In particular, we find that more individual regressions experience a break

in the constant than in the slope (23 vs. 12, as shown in Table 3). Moreover,

as Figures B1-B4 show, breaks in the constant typically outnumber breaks in

the slope for most individual regressions. This is consistent with our argument

for using MIS: because the predictions for the CG constant depend, in part, on

different moments of the relevant variables, the slope and constant may break

at different points in time.
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13.4 Diversity of Forecasting Strategies

A number of papers have found significant diversity in how participants fore-

cast outcomes.16 A study that is of particular interest from the viewpoint of

this paper is von Gaudecker and Wogrolly (2021) which documents significant

diversity in households’ beliefs about the stock market. They identify five

separate groupings of forecasting strategies,17 and then estimate panels of the

CG regression for each group, based on the premise that individuals within

these groups do not revise how they forecast outcomes.

Our results suggest that the diversity of participants’ forecasting strategies

is substantially compounded by their revision of how they forecast outcomes at

times and in ways that cannot be characterized with a stationary process, such

as a Markov chain. As can be seen in Figures B1-B4 in Online Appendix B,

the timing, direction, frequency, and magnitude of the breaks across individual

regressions differ vastly.

14 Concluding Remarks: A Way Forward

The empirical inadequacy of all five alternative behavioral specifications of

participants’ forecasts casts doubts on the behavioral approach’s core premise

that market participants commit systematic, predictable errors, and that an

economist can specify these errors precisely with a probability measure. Our

findings support an argument advanced by Lucas in the early 1970s. As Lu-

cas (1995, pp. 254-255) pointed out in his criticism of adaptive expectations,

macroeconomic and finance models that violate Muth’s (1961) hypothesis,

as DE and other behavioral-finance models do, suffer from a “glaring” in-

consistency.18 When an economist represents an individual’s assessment of

16See Mankiw, et al. (2003), Reis (2020) and references therein.
17After determining the groupings, von Gaudecker and Wogrolly also examine differences

across groups in terms of demographics, investment behavior, and response to returns and
economic news.
18Lucas (1995, p. 255) recounts how the importance of ridding intertemporal models

of such inconsistency persuaded macroeconomists to abandon the micro-founded models of
the 1960s and embrace their REH counterparts. For an extensive discussion and formal
illustration of this revolutionary development in macroeconomic theory, see Frydman and
Goldberg (2007) and Frydman and Phelps (2013).
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uncertainty about payoff-relevant outcomes in a way that is inconsistent with

his own model’s representation of this uncertainty, he contradicts his model’s

hypothesis: that it represents the actual uncertainty about these outcomes.

Lucas’s argument that Muth’s hypothesis should underpin the construc-

tion of logically coherent and empirically adequate macroeconomic and finance

models appears persuasive. REH implements Muth’s hypothesis in a model

that represents the uncertainty about payoff-relevant outcomes with a sta-

tionary stochastic process. However, Muth’s hypothesis neither presumes nor

requires that an economist rely on such representations. Indeed, our finding

that the two FIRE specifications based on a stationary stochastic process are

inconsistent with the survey data points to the inadequacy of such represen-

tations.

There is another largely overlooked reason why economists should consider

moving beyond models that represent outcomes with a stationary stochastic

process. Imposing consistency within such models, as REH does, rules out,

by design, the influence of non-fundamental factors, thereby rendering Muth’s

hypothesis inherently incompatible with behavioral economists’ evidence that

such factors play an important role in how participants form forecasts.

One way to move beyond the prevailing approach is to specify how out-

comes unfold over time and how participants forecast themwith non-stationary

stochastic processes. Because such representations would not imply that the

coefficients of the CG regression are time-invariant, they might be consistent

with structural breaks in those coefficients. However, representing the change

in the process driving outcomes with a non-stationary Markov chain and im-

posing Muth’s hypothesis would also rule out the influence of non-fundamental

factors on participants’ forecasts.

Moreover, if the process driving outcomes and individuals’ forecast revi-

sions could be represented with a single non-stationary process, according to

Muth’s hypothesis, participants would revise their forecasts at approximately

the same time and in similar ways. However, as we documented in the preced-

ing section, there is substantial diversity in the estimates and timing of breaks
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across the individual CG regressions, which suggests that individuals revise

their forecasts at different times and in widely diverse ways.

It is nonetheless possible to reconcile the representation of such diversity,

as well as the influence of both fundamental and psychological factors (such as

market sentiment) in a consistent model that adheres to Muth’s hypothesis.

This, however, requires recognizing, as Knight (1921) argued, that the process

driving outcomes undergoes unforeseeable change, which by definition cannot

be represented ex ante with a single stochastic process, regardless of whether

it is stationary or non-stationary.

Acknowledging that participants recognize that they face so-called Knight-

ian uncertainty as a result of unforeseeable change would enable economists

to represent the role of psychological factors, such as market sentiment, in a

model that is consistent with Muth’s hypothesis. In a novel paper, Ilut and

Schneider (2014) show that this enhances our understanding of business cycles.

They introduce Knightian uncertainty into a standard New Keynesian Model

and formalize how confidence in future total productivity drives fluctuations

in aggregate outcomes. They show that changes in confidence arising from

Knightian uncertainty are empirically significant in explaining these fluctua-

tions.

More broadly, recognizing that market participants face Knightian uncer-

tainty would allow consistent representations of the autonomous role their

forecasts play in driving outcomes, as argued by Phelps (1970) in his semi-

nal micro-foundations volume.19 Thus, recognizing that the future is open to

change that cannot be specified ex ante with probabilistic rules would enable a

synthesis of major advances in macroeconomic theory since the 1970s. Build-

ing macroeconomic and finance models in accordance with Knight’s seemingly

uncontroversial yet profound insight promises to enhance substantially our

understanding of market outcomes and the role of economic policy.

19For a formal demonstration, see Frydman, et al. (2021).
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15 Online Appendix A

Proof of Lemma 5
Using the law of total probability, we can express the pdf of xt+1, condi-

tional on xt, as follows

greh(mk)(xt+1|xt)= (63)

h(1)(xt+1,µt+1=µ
(1)|xt) + h(2)(xt+1,µt+1 = µ(2)|xt),

where h(i) (·|·), i = 1, 2 denote the respective normal pdfs implied by (21).

Furthermore, we rewrite the above as

greh(mk)(xt+1|xt)= h
(1)(xt+1,µt+1 = µ

(1), xt)

g(xt)

+
h(2)(xt+1,µt+1 = µ, xt)

g(xt)

=
h(1)(xt+1|µt+1 = µ(1), xt)P (µt+1 = µ(1)|xt)g(xt)

g(xt)

+
h(2)(xt+1|µt+1 = µ(2), xt)P (µt+1 = µ(2)|xt)g(xt)

g(xt)
,

where g(xt) is the marginal pdf of xt.Independence of µt+1 and Xt and the

stationarity of a Markov chain {µt} shows that the “objective” pdf is the
mixture of the two normal pdfs, in (26):

greh(mk)(xt+1|xt) = πf (1,1)(xt+1|xt, µt+1 = µ(1))+(1−π)f (1,2)(xt+1|xt, µt+1 = µ(2)).
(64)

where π = P (µt+1 = µ
(1)) for all t.

Proof of Lemma 6
Using the law of total probability, we can express the pdf of xt+1, condi-
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tional on xt−1, as follows

gref(mk)(xt+1|xt−1) =
2[

i,j=1

h(i,j)(xt+1,µt+1 = µ
(i), µt = µ

(j)|xt−1), (65)

where h(i,i) (·|·), i, j = 1, 2 denote the respective pdfs implied by (21).
Analogously to the steps from (63) to (64) in the proof of Lemma 5, the

above can be expressed as

gref(mk)(xt+1|xt−1)

=
2[

i,j=1

f (i,j)(xt+1|µt+1 = µ(i), µt = µ(j), xt−1)P
�
µt+1 = µ

(i), µt = µ
(j)|xt−1

�
Using the assumption that µt+1 and µt are independent of xt−1, we rewrite the

above as

gref(mk)(xt+1|xt−1)=
2[

i,j=1

f (i,j)(xt+1|µt+1 = µ(i), µt = µ(j), xt−1)

×P �µt+1 = µ(i)|µt = µ(j)�P (µt=µ(j)).
Noting that P

�
µt+1 = µ

(i)|µt = µ(j)
�
= pji is the transition probability, this

shows that the reference pdf is the mixture of the four pdfs, in (30):

gref(mk)(xt+1|xt−1) =
2[

i,j=1

pjiπjf
(i,j)(xt+1|xt−1, µt+1 = µ(i), µt = µ(j)), (66)

where πj = P (µt = µ
(j)) for all t.

The mean of gref(mk)(xt+1|xt−1) is the weighted average of the means of the
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components pdfs, m(mk,i,j)
t+1|t in (29):

m
ref(mk)
t+1|t = ρ2xt−1 +

2[
i,j=1

pjiπj
�
ρµ(j) + µ(i)

�
= ρ2xt−1 +

2[
i=1

p1iπ1
�
ρµ(1) + µ(i)

�
+

2[
i=1

p2iπ2
�
ρµ(2) + µ(i)

�
,

which, using pii = (1− pij), i, j = 1, 2, i 9= j and π2 = (1− π1), can be written

as

mref(mk)
t+1|t =E(Xt+1|xt−1) = ρ2xt−1 + π1(1 + ρ)µ(1) − π1p12(µ

(1) − µ(2))
+π2(1 + ρ)µ(2) + π2p21(µ

(1) − µ(2))
= ρ2xt−1 + (1 + ρ)µ(2) + {p21 + π [1 + ρ− (p12 + p21)]} (µ(1) − µ(2)),

where π ≡ π1 = P
�
µt = µ

(1)
�
for all t. Noting that π = p21

p21+p12
, implies that

p21 − π (p12 + p21) = 0. Thus, the conditional mean of the reference pdf is

given by

m
ref(mk)
t+1|t = ρ2xt−1 + (1 + ρ)

�
µ(2) + π(µ(1) − µ(2))�

= ρ2xt−1 + (1 + ρ)E(µt) (67)

To compute the variance of the reference pdf, in(66), we note that (21) and

(67) imply that

�
σref(mk)t+1|t

�2
=E

�
[Xt+1 − E(Xt+1|xt−1)]2 ||xt−1

�
=E

�
ρ [µt −E (µt)]−+

�
µt+1 −E (µt)

��2
=(1 + ρ2)

�
σ2 + V (µt)

�
(68)

+2ρ
�
E
�
µt+1µt

�− [E (µt)]2�
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Finally, Proposition 2 requires that (1 + θ)
�
σ
ref(mk)
t+1|t

�2
> θ

�
σ
reh(mk)
t+1|t

�2
,

which from (28) and (68) follows if

�
1 + ρ2(1 + θ)

�
σ2 + V (µt) + 2(1 + θ)ρE

�
µt+1µt

�− [E (µt)]2 > 0 (69)

We now show that

�
1 + ρ2(1 + θ)

�
V (µt) + 2(1 + θ)ρE

�
µt+1µt

�− [E (µt)]2 > 0 (70)

holds for any values of the model parameters
�
θ, ρ, µ(1), µ(2), p12,p21

�
. To this

end we express E
�
µt+1µt

�− [E (µt)]2 in terms of V (µt) and �µ(1) − µ(2)�2:
E(µt+1µt)=E

�
µtE(µt+1|µt)

�
=µ(1)

�
µ(1)(1− p12) + µ(2)p12

�
π

+µ(2)
�
µ(2)(1− p21) + µ(1)p21

�
(1− π)

=
�
µ(1)

�2
π − �µ(1)�2 p12π + µ(1)µ(2)p12π

+
�
µ(2)

�2
(1− π)− �µ(2)�2 p12π + µ(1)µ(2)p12π

=E(µ2t )− p12π
�
µ(1) − µ(2)�2 , (71)

where we used p21(1− π) = p12π. This shows that

E
�
µt+1µt

�− [E (µt)]2 = V (µt)− p12π �µ(1) − µ(2)�2 (72)

Furthermore, using π = p21
p12+p21

, we express V (µt) as follows:

V (µt)=
�
µ(1)

�2
π +

�
µ(1)

�2
(1− π)− �µ(1)π + µ(1)(1− π)

�2
=π(1− π)

�
µ(1) − µ(2)�2 (73)

= p12π
1

p12 + p21

�
µ(1) − µ(2)�2 , (74)
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which implies that

E
�
µt+1µt

�− [E (µt)]2=V (µt)− p12π �µ(1) − µ(2)�2
= p12π

1− p12 − p21
p12 + p21

�
µ(1) − µ(2)�2 (75)

Substituting (74) into (72) enables us to rewrite the condition (70) as follows

p12π
1

p12 + p21

�
µ(1) − µ(2)�2

× �1 + ρ2(1 + θ) + 2ρ(1 + θ) (1− p12 − p21)
�
> 0 (76)

Finally, we note that both roots of the quadratic equation in the square brack-

ets are negative, and thus (76) holds for any ρ > 0. Via (69), this shows that

(1 + θ)
�
σ
ref(mk)
t+1|t

�2
> θ

�
σreh(mk)t+1|t

�2
holds for any values of the model parame-

ters,
�
θ,σ2ρ, µ(1), µ(2), p12,p21

�
.

Proof of Proposition 7
The difference between the payoff-relevant variable, such as xt, and its REH

forecast,

ηt = Xt −E(Xt|xt−1), (77)

is usually referred to as news about xt, where E(Xt|xt−1) is a conditional ex-
pectation of the “objective” process driving xt. The argument that participants

overrreact to news for the time-invariant REH-like specification is presented

in Section 6. Here we focus on DE’s specification with a Markov component.

Recognizing that the process driving outcomes changes over time, substan-

tially alters the specification and interpretation of the news variable, in (77),

which using (27), is given by:

η
(mk)
t = Xt − E(Xt|xt−1) = µt − E(µt) + εt. (78)

This shows that the news comprises both of the realization of εt (et) and the

value that µt takes, relative to its expectation, E(µt).Depending on the realized

state at t, the realization of η(mk)t can take one of the two values:
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n(mk,j)=µ(j) −E(µt) + et,
=
�
µ(j) − µ(2)�− π(µ(1) − µ(2)) + et j = 1, 2. (79)

The expression for the news, in (79), implies that

µ(j) + et = n
(mk,j) +E(µt) j = 1, 2.

Substituting this into (27) implies that mreh(mk,j)
t+1|t , expressed in terms of xt−1,

the realized state of µt and et, can take one of two values:

m
reh(mk,j)
t+1|t = ρ2xt−1 + ρn(mk,j) + (1 + ρ)E(µt) j = 1, 2,

which, using

m
reh(mk)
t+1|t−1 = ρ2xt−1 + (1 + ρ)E(µt), (80)

implies that

m
reh(mk,j)
t+1|t −mref(mk)

t+1|t−1 = ρn(mk,j), j = 1, 2.

Proof of Lemma 9
According Assumption 3,

FDt =M
reh
t+1|t −M ref

t+1|t =M
reh
t+1|t −M reh

t+1|t−1,

which, from (27), can be expressed as

FDt = ρ [µt − E (µt)] + ρεt.

An argument analogous to the proof of Lemma 5 shows that the pdf of FDt
is the mixture of the following two normal pdfs, conditional on the realization

of µt:

g(mk)(fdt)

= πf (1)(fdt|µt = µ(1)) + (1− π)f (2)(fdt|µt = µ(2)),
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where, the means and variances of the i’s component, i = 1, 2, are given

m
(i)
fdt
=E(FDt|µt = µ(i)) = ρ

�
µ(i) − E(µt)

�
(81)�

σ
(i)
fdt

�2
=V (FDt|µt = µ(i)) (82)

= ρ2
k
σ2 +E(µ2t )− 2E(µt)µ(i) +

�
µ(i)
�2l

Proof of Corollary 11
We first consider

FDt =M
reh(mk)
t+1|t −M reh(mk)

t+1|t−1

It follows from (27) and (21) that

M
reh(mk)
t+1|t =E(Xt+1|Xt) = ρXt +E (µt)

= ρ2Xt−1 + ρµt +E (µt) + ρεt, (83)

M
reh(mk)
t+1|t−1 =E(Xt+1|Xt−1) = ρE(Xt+1|Xt) +E (µt)

= ρ2Xt−1 + (1 + ρ)E (µt) (84)

= ρ3Xt−2 + ρ2µt−1 + (1 + ρ)E (µt) + ρ2εt−1, (85)

which imply that

FDt = ρ [µt −E (µt)] + ρεt (86)

We now consider FRt =Mde
t+1|t −Mde

t+1|t−1:

FRt=(1 + γ(mk))
�
M reh(mk)
t+1|t −M reh(mk)

t+1|t−1
�

(87)

−γ(mk)(M reh(mk)
t+1|t−1 −Mreh(mk)

t+1|t−2 ).

In order to relate M reh(mk)
t+1|t−1 −M reh(mk)

t+1|t−2 to µt and εt, an argument analogous

to those in Sections 7.2 and 7.3 shows that greh(mk)(xt+1|xt−2) is a mixture of
eight normal pdfs with the mean

m
reh(mk)
t+1|t−2 = ρ3xt−2 + (1 + ρ+ ρ2)E (µt) ,
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which, from (80), shows that

M
reh(mk)
t+1|t−1 −M reh(mk)

t+1|t−2 = ρ2
�
µt−1 − E (µt)

�
+ ρ2εt−1, (88)

Substituting (89) and (88) into (87) yields

FRt=(1 + γ(mk))ρ [µt − E (µt)]− γ(mk)ρ2
�
µt−1 − E (µt)

�
(89)

+(1 + γ(mk))ρεt − γ(mk)ρ2εt−1.

Noting that

FE
reh(mk)
t+1|t =

�
µt+1 − E (µt)

�
+ εt+1, (90)

and V (FRt) > 0, the moments of FRt, FDt and FE
reh(mk)
t+1 , which underpin

the predictions in (54) and (55), are given by

E(FRt)= 0, E(FDt) = 0, E(FE
reh(mk)
t+1 ) = 0, (91)

Cov(FRt, FDt)= (1 + γ(mk))ρ2σ2 + (1 + γ(mk))ρ2V (µt) (92)

−γ(mk)ρ3 �E �µt−1µt�− [E (µt)]2� ,
Cov(FRt, FE

reh(mk)
t+1 )= (1 + γ(mk))ρ

�
E
�
µt+1µt

�− [E (µt)]2� (93)

−γ(mk)ρ2 �E �µt+1µt−1�− [E (µt)]2�
where V (µt) = E(µ

2
t )− [E (µt)]2.

According to Proposition 10,

sign(β) = sign
k
Cov(FRt, FE

reh(mk)
t+1 )− γCov(FRt, FDt)

l
. (94)

We now show that whether sign
k
Cov(FRt, FE

reh(mk)
t+1 )− γCov(FRt, FDt)

l
<

0 or> 0 depends on the values of the model parameters
�
µ(1), µ(2), p12, p21, ρ, γ

(mk),σ2
�
.
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Substituting (72) into (92) yields

Cov(FRt, FDt)= (1 + γ(mk))ρ2σ2 + ρ2
�
(1 + γ(mk))− γ(mk)ρ

�
V (µt)

+γ(mk)ρ3p12π
�
µ(1) − µ(2)�2

= ρ2
�
(1 + γ(mk))− γ(mk)ρ

� k
V (µt)− p12π

�
µ(1) − µ(2)�2l(95)

+ρ2(1 + γ(mk))
k
σ2 + p12π

�
µ(1) − µ(2)�2l (96)

In order to derive an analogous expression for Cov(Z1,t, FE
reh(mk)
t+1|t ), (93),

we consider

E
�
µt+1µt

�−E �µt+1µt−1�=E �E �µt+1(µt − µt−1)| �µt, µt−1���
=E

�
µt − µt−1

�
E
�
µt+1|

�
µt, µt−1

��
=E

��
µt − µt−1

�
E
�
µt+1|µt

��
Noting that µt−µt−1 takes two non-zero values, µ(1)−µ(2) with the probability
p21(1− π) and µ(2) − µ(1) with the probability p12π implies that

E
��
µt − µt−1

�
E
�
µt+1|µt

��
=
�
µ(1) − µ(2)�E �µt+1|µt = µ(1)� p21(1− π)

+
�
µ(2) − µ(1)�E �µt+1|µt = µ(2)� p12π

=
�
µ(1) − µ(2)� �µ(2)(1− p21) + µ(1)p21� p12π
+
�
µ(2) − µ(1)� �µ(1)(1− p12) + µ(2)p12� p12π

= {�µ(1) − µ(2)�µ(2) − �µ(1) − µ(2)�µ(2)p21 + �µ(1) − µ(2)�µ(1)p21
+
�
µ(2) − µ(1)�µ(1) − �µ(2) − µ(1)�µ(1)p12 + �µ(2) − µ(1)�µ(2)p12}p12π

=
q
− �µ(1) − µ(2)�2 + �µ(1) − µ(2)�2 p21 + �µ(1) − µ(2)�2 p12r p12π

=
�
µ(1) − µ(2)�2 p12π (p12 + p21 − 1) ,
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which (via (71)) shows that

E(µt+1µt−1)− [E (µt)]2 = V (µt)− p12π (p12 + p21)
�
µ(1) − µ(2)�2 . (97)

Substituting (71) and (97) into (93) yields

Cov(Z1,t, FE
reh(mk)
t+1|t )= (1 + γ(mk))ρ

k
V (µt)− p12π

�
µ(1) − µ(2)�2l

−γ(mk)ρ2
k
V (µt)− p12π (p12 + p21)

�
µ(1) − µ(2)�2l

= ρ
�
(1 + γ(mk))− γ(mk)ρ

� k
V (µt)− p12π

�
µ(1) − µ(2)�2l(98)

−γ(mk)ρ2p12π (1− p12 − p21)
�
µ(1) − µ(2)�2 (99)

We are now ready to derive

δ = Cov(FRt, FE
reh(mk)
t+1 )− γCov(FRt, FDt) (100)

From (96) this difference includes one unambiguously negative term:

δ1 = −γ(mk)ρ2(1 + γ(mk))
k
σ2 + p12π

�
µ(1) − µ(2)�2l < 0 (101)

Using (98) and (95) yields

ρ
�
(1 + γ(mk))− γ(mk)ρ

� k
V (µt)− p12π

�
µ(1) − µ(2)�2l

−γ(mk)ρ2 �(1 + γ(mk))− γ(mk)ρ
� k
V (µt)− p12π

�
µ(1) − µ(2)�2l

= ρ(1− γ(mk)ρ)
�
(1 + γ(mk))− γ(mk)ρ

� k
V (µt)− p12π

�
µ(1) − µ(2)�2l ,

which, combined with (99), yields the second term of (100):

δ2= ρ(1− γ(mk)ρ)
�
(1 + γ(mk))− γ(mk)ρ

� k
V (µt)− p12π

�
µ(1) − µ(2)�2l(102)

−γ(mk)ρ2p12π (1− p12 − p21)
�
µ(1) − µ(2)�2

We now show that there are values of the parameters γ(mk), ρ, p12, and p21

56



for which δ2 < 0, thereby implying (via (101) that

δ = δ1 + δ2 = Cov(FRt, FE
reh(mk)
t+1 )− γCov(FRt, FDt) < 0.

Substituting (74) into (102) expresses δ2 as

δ2= ρ(1− γ(mk)ρ)
�
(1 + γ(mk))− γ(mk)ρ

� k
V (µt)− p12π

�
µ(1) − µ(2)�2l

−γ(mk)ρ2p12π (1− p12 − p21)
�
µ(1) − µ(2)�2

= ρ(1− γ(mk)ρ)
�
(1 + γ(mk))− γ(mk)ρ

�
p12π

1− p12 − p21
p12 + p21

�
µ(1) − µ(2)�2

−γ(mk)ρ2p12π (1− p12 − p21)
�
µ(1) − µ(2)�2

= ρp12π
�
µ(1) − µ(2)�2 (1− p12 − p21) �µ(1) − µ(2)�2

×
�
(1− γ(mk)ρ)

�
(1 + γ(mk))− γ(mk)ρ

� 1

p12 + p21
− γ(mk)ρ

�
=

ρp12π

p12 + p21

�
µ(1) − µ(2)�2 (1− p12 − p21) (103)

×�(1− γ(mk)ρ)
�
(1 + γ(mk))− γ(mk)ρ

�− γ(mk)ρ (p12 + p21)
�

(104)

In order to uncover the conditions under which δ2 < 0, we note that the

term in (103) is negative if and only if

p12 + p21 > 1. (105)

Furthermore, the term in (104) is positive if

1 < p12 + p21 < (
1

γ(mk)ρ
− 1) �(1 + γ(mk)(1− ρ)

�
. (106)

Thus, if p12 + p21 satisfies (106), δ2 < 0..

However, although the right bound in (106) is greater than 1 for any values

of 0 < γ(mk), ρ < 1, if γ(mk)ρ. > 1/3, there are values of 1 < p12+ p21 < 2 such

that

p12 + p21 > (
1

γ(mk)ρ
− 1) �(1 + γ(mk))− γ(mk)ρ

�
> 1, (107)

which implies that the term in (104) is negative, and thus δ2 > 0. We also
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note that if p12+p21 < 1, both (103) and (104) are positive, thus, δ2 > 0. This

shows that the condition (106) is necessary and sufficient for

δ = δ1 + δ2 = Cov(FRt, FE
reh(mk)
t+1 )− γCov(FRt, FDt) < 0

Finally if the condition (106) is not satisfied and

δ2=
ρp12π

p12 + p21

�
µ(1) − µ(2)�2 (1− p12 − p21)

×�(1− γ(mk)ρ)
�
(1 + γ(mk))− γ(mk)ρ

�− γ(mk)ρ (p12 + p21)
�

>−δ1 = γ(mk)ρ2(1 + γ(mk))
k
σ2 + p12π

�
µ(1) − µ(2)�2l

then

δ = δ1 + δ2 = Cov(FRt, FE
reh(mk)
t+1 )− γCov(FRt, FDt) > 0.

Proof of Corollary 12
We formalize regime persistence by constraining µt to take the same value

from t− 2 to t+ 1.Suppose (without a loss of generality) that

µt−2 = µt−1 = µt = µt=1 = µ
(1)

Imposing this constraint in (86), (89), and (90) specifies FRt, FDt, and

FE
reh(mk)
t+1 as follows

FRt=(1 + γ(mk))ρ
�
µ(1) − E (µt)

�− γ(mk)ρ2
�
µ(1) −E (µt)

�
+(1 + γ(mk))ρεt − γ(mk)ρ2εt−1,

FDt= ρ
�
µ(1) − E (µt)

�
+ ρεt,

FE
reh(mk)
t+1 =

�
µ(1) − E (µt)

�
+ εt+1.
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This immediately implies that

E(FRt)= ρ(1 + γ(mk) − γ(mk)ρ2)
�
µ(1) −E (µt)

�
, (108)

E(FDt)= ρ
�
µ(1) − E (µt)

�
, (109)

E(FE
reh(mk)
t+1|t )=

�
µ(1) − E (µt)

�
, (110)

Cov(FRt, FDt)= (1 + γ(mk))ρ2σ2, (111)

Cov(FRt, FE
reh(mk)
t+1|t )= 0, (112)

which (via Proposition 10) indicates the following predictions for the coeffi-

cients of (48) in each of the regimes:

αde(mp)=
�
µ(i) −E (µt)

�× (113)

×
�
1− γ(mk)ρ+ γ(mk)

(1 + γ(mk))ρ2σ2

V (FRt)
× ρ(1 + γ(mk) − γ(mk)ρ2)

�
, i=1, 2

βde(mp)=−γ(mk)(1 + γ(mk))ρ2σ2 < 0(114)

UsingE (µt) = πµ(1)+(1− π)µ(2), the magnitude of
�
µ(1) − E (µt)

�
= (1− π)

�
µ(1) − µ(2)�

is the same as of
�
µ(2) − E (µt)

�
= (1− π)

�
µ(2) − µ(1)�. Thus, (113) implies

that although αde(mp) switches sign between the two regimes, its magnitude

remains the same.

Proof of Corollary 13
As in the GS time-invariant model, in Section 5,

FDt= ρεt,

FEreht+1= εt+1,

which, using (34), (37), (35), and (38, enables us to express FRt, in (50), as

follows:

FRt=
�
1 + γ(b)(1− ρ

�
ρεt − γ(b)

k
ρ− E(ρ(b)t )

l
εt

−γ(b)E
�
ρ
(b)
t

�qk
ρ−E(ρ(b)t )

l
ρxt−1 +

k
µ− E(µ(b)t )

lr
.
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These expressions imply that

E (FDt)=0,

E (FRt)= γ(b)E
�
ρ
(b)
t

�� ρµ

1− ρ

k
ρ−E(ρ(b)t )

l
+
k
µ− E(µ(b)t )

l�
,

Cov(FRt, FDt)=
k
ρ
�
1 + γ(b)

�− γ(b)E(ρ
(b)
t )
l
ρσ2,

E
�
FEreht+1

�
=0

Cov(FRt, FE
reh
t+1)=0,

where we used E(xt−1) =
µ
1−ρ . Then, Proposition 10 implies that

1. Either βde(b) < 0 if and only if ρ

E(ρ
(b)
t )
> γ(b)

1+γ(b)
.

2. αde(b) > 0 if and only if
k
ρ
�
1 + γ(b)

�− γ(b)E(ρ
(b)
t )
l

×
q

ρµ
1−ρ

k
ρ−E(ρ(b)t )

l
+
k
µ− E(µ(b)t )

lr
> 0

3. However, the signs and magnitudes of αde(b) and βde(b) are unchanging

over time.

Proof of Corollary 16
Expressions (61) and (62) imply that

E (FEt+1)= 0,

E (FR1)= 0,

which, from (59), implies that

αfire(mk) = 0 at all t

(61) and (62) also imply that

Cov(FEt+1, FR1) = ρ
��
Eµt+1µt

�− [E (µt)]2� ,
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which, using (75), enables us to express

Cov(FEt+1, FR1) =
ρp12π

p12 + p21

�
µ(1) − µ(2)�2 (1− p12 − p21) .

Then, (60) implies predictions for βfire(mk) stated in the corollary.

16 Online Appendix B

16.1 Full-Sample Individual CG Regressions

Whereas the forecast error is always observed anytime a forecast is reported,

the data point for the forecast revision requires two consecutive forecasts sub-

mitted by an individual. Table B1 is sorted by the number, N, of observations

available for individuals in the survey with more than 50 observations for re-

visions. α̂ and β̂ in the table are, respectively, the full-sample estimate of the

constant and the slope in the CG regression, (42). These results are summa-

rized in Table 2 in the body of the paper.

Table B1: Full-Sample Individual-Level Estimates

N α̂ β̂ N α̂ β̂ N α̂ β̂

100 0.002
[2.19]

−0.342
[−2.27]

70 −0.001
[−0.69]

−0.471
[−1.87]

59 0.006
[4.11]

−0.540
[−1.99]

98 −0.002
[−3.15]

−0.394
[−3.03]

68 0.001
[0.64]

−0.353
[−1.21]

56 0.001
[1.45]

−0.045
[−0.13]

90 −0.001
[−1.38]

−0.460
[−3.68]

65 −0.003
[−3.77]

−0.550
[−3.14]

55 0.001
[0.52]

−0.391
[−2.87]

78 −0.001
[−1.71]

−0.588
[−2.32]

65 0.001
[1.19]

0.308
[0.80]

54 0.001
[1.43]

0.077
[0.32]

78 −0.000
[−0.38]

−0.217
[−1.60]

64 0.001
[0.88]

0.139
[0.67]

53 0.000
[0.15]

0.744
[1.74]

78 0.001
[0.62]

−0.004
[−0.02]

63 0.001
[0.63]

−0.044
[−0.13]

52 −0.003
[−3.99]

−0.084
[−0.77]

78 −0.001
[−1.22]

−0.388
[−1.50]

62 0.000
[0.06]

0.067
[0.27]

52 0.001
[1.39]

−0.192
[−0.67]

70 −0.002
[−1.64]

−0.150
[−.55]

60 0.001
[0.49]

−0.460
[−4.96]

51 0.001
[1.06]

−0.204
[0.93]

Caption: t-values are displayed in brackets under the parameter estimates.
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16.2 Overview of MIS

MIS was first proposed by Ericsson (2012) as an extension of robust estimation

methods which, respectively, detect outliers and mean shifts: impulse indica-

tor saturation (IIS), developed in Hendry, et al. (2008), and step indicator

saturation (SIS), developed in Castle, et al. (2015). The general idea of MIS

is to multiply each regressor by a step indicator for each observation that is

equal to unity up until time j and zero thereafter. This allows for breaks in

the regressors’ coefficients separately and at any point in time. Combined with

IIS and SIS, in the context of the CG regression yields:

xt+1 − Ft(xt+h)=α+ β[Ft(xt+h)− Ft−1(xt+h)] + ΣT−1i=1 β
iµ1t<i[Ft(xt+h)− Ft−1(xt+h)]

+ΣTi=1δ1 + ΣT−1i=2 β
iµ1t<i + error.

The impulse indicators ΣTi=1δ1 (one for each observation) allow for an out-

lier at any point in time. The step indicators ΣT−1i=2 β
iµ1t<i, allow for a dif-

ferential shift in the constant, relative to the end-of-sample constant.20 The

multiplicative indicators ΣT−1i=1 β
iµ1t<i[Ft(xt+h) − Ft−1(xt+h)] allow for a dif-

ferential slope coefficient at any point in time, relative to the end-of-sample

estimate.

The significant multiplicative step and impulse indicators are selected by

the Autometrics tree search algorithm (Doornik, 2009). After the multiplica-

tive indicators have been determined by the algorithm, a model-selection bias

correction is applied (Hendry and Krolzig, 2005). This correction eliminates

the well-known bias originally documented by Lovell (1983).21

20The impulse indicator and step indicator, as specified, are identical in the first observa-
tion, so the latter is summed only from the second observation.
21The correction reduces the absolute value of the coefficients. The size of the adjustment

depends inversely on the t-values and significance level used for selection. This reduces the
selection bias, because this adjustment is larger when there is a greater probability of Type
II error.
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16.3 MIS Estimates of CG Regression

Figures B1-B4 below display MIS estimates of statistically significant breaks in

the constant and revision coefficient of individual regressions based on survey

data from the 24 forecasters. These results have been grouped in rows 2-5 and

columns 3-5 of Table 3.

All of the individual regressions experience breaks in either the constant

or revision coefficient, which are significant at 1%. We can see, however, that

the constant and the slope break at different times, including frequent cases

where the constant changes but the slope does not. As discussed in Section

13.3, this supports our argument for using MIS, rather than the Bai-Perron

test, as a procedure for testing the stability of the individual coefficients in the

CG regression. Each row represents an individual regression. Lines in thick

blue indicate that the term for that individual regression is significant at the

end of the sample. Breaks are relative to the end of sample and significant at

1%.
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Figure B1: MIS Estimates of Significant Breaks in CG Regressions Not

Rejecting FIRE in Full Sample

α β
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α β
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α β

Figure B1 presents the MIS estimates of structural breaks in the 13 indi-

vidual regressions that have not rejected α = β = 0 based on the full sample.

As summarized in row 2 of Table 2, all 13 of these CG regressions experience

breaks in either the constant (12/13) or the slope (6/13).22

22For the revision coefficient in row 1 and 4 of Figure B1, we remove an outlier of two
and one observations respectively, where the parameter spikes dramatically. Hence the
discontinuity in those graphs. This does not alter our conclusion of the presence of breaks,
but the scale adjustment allows one to see the other breaks more clearly.
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Figure B2: MIS Estimates of Significant Breaks in CG Regressions

Apparently Consistent with DE Based on the Full Sample

α β
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Figure B2 displays the MIS estimates of significant, at 1%, structural

breaks in five individual regressions that are consistent with α = 0 and β < 0,

based on the full sample. As summarized in row 3 of Table 3, all regressions

experience breaks in either α or β, which rejects time-invariant DE.

Among them are three cases where MIS estimates indicate a time-invariant

β < 0, which, assuming regime persistence, could render it consistent with

Model C in Table 1. However, one of these cases also experiences breaks in

α that are inconsistent with Model C’s predictions: α switches between two

different values with the same sign.

For the other two, in the third and last rows in Figure B2, the regression

experiences only two breaks, both of which involve sign reversals. For this

to be consistent with model C, the constant term should return to the same

magnitude. For the last row, we can reject at 5% that the constant at the

end of the sample is equal to the magnitude at the beginning. For the case

in the third row, we can reject this hypothesis at 10%. Model C also implies

that the constant terms in successive regimes, while of opposite signs, remain

of identical magnitudes. Although the second regime the third row consists of

only five observations, which entails low power, its point estimate of α is six

times larger in magnitude than that in the third regime.
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Figure B3: MIS Estimates of Significant Breaks in Individual Regressions

Indicating α 9= 0 and β < 0 Based on the Full Sample

α β

As shown in Figure B3, none of the individual regressions are consistent

with any model. Two have clear breaks in β. A third has a break very early in

the sample, which could be viewed as an outlier. However, both that regression

and the regression with a time-invariant β indicate breaks in the constant

which maintain the same sign.

69



Figure B4: MIS Estimates of Significant Breaks in the Remaining Two

Individuals

α β

Figure B4 presents MIS estimates of the two remaining CG regressions.

The first indicates β > 0 with α = 0 based on full-sample estimates, which

could be consistent with either FIRE or DE. However, the breaks in β render

this individual regression inconsistent with all seven specifications in Table 1.

The second CG regression indicates β = 0 and α 9= 0 based on the full-

sample estimates. Although these inferences are not consistent with any of the

models in Table 1, breaks in α with a time-invariant β < 0 could be consistent

with Model C. As Figure B4 shows, however, β remains insignificant. Thus,

this final individual regression is also inconsistent with all seven models in

Table 1..
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16.4 Bai-Perron Test for Structural Breaks in the CG

Regression

The Bai-Perron Procedure determines the significant break dates subject to

a user-input significance level and a trimming parameter which dictates the

minimum duration and maximum number of breaks. A new regression is then

estimated within those breaks.

MIS also detects breaks in each parameter at a user-input significance level.

However, it does not constrain the constant and slope coefficient(s) to break

simultaneously.23

We largely follow Bai-Perron (2003) with a 5% significance level, 15% trim-

ming parameter (corresponding to a maximum of five breaks), and using the

HAC standard errors with the Andrews’ automatic kernel bandwidth estima-

tor. We also use one-lag of pre-Whitening.

We recall that we used 1% significance for MIS. The 5% significance level

used here for Bai-Perron should detect more breaks than if 1% were used for

Bai-Perron. Nonetheless, Bai-Perron finds fewer individual regressions experi-

encing breaks than MIS (13 for Bai-Perron vs. all 24 for MIS).

Table B2 provides the estimates produced by the Bai-Perron procedure.

For ease of interpretation, the model classifications are color coded. Red in-

dicates a full sample or sub-sample estimates consistent with time-invariant

FIRE (α = β = 0), green indicates DE (α = 0 and β < 0), and blue under-

reaction (α = 0 and β > 0). The yellow indicates α 9= 0 and β < 0, light blue

is α 9= 0 and β = 0, and the white α 9= 0 and β = 0.

23MIS also has the advantage of controlling for outliers using the impulse indicator satu-
ration of Hendry, et al. (2008).
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Table B2: Bai-Perron Estimates of Structural Breaks in the Individual CG

Regressions

72



The Bai-Perron test did not detect breaks for six individual regressions
that did not reject FIRE in the full sample (the first six individual regressions

displayed in Figure B1). Therefore, it was unable to reject time-invariant

FIRE for one-quarter of the regressions. Similarly, the Bai-Perron procedure

did not detect breaks for two of the five individual regressions consistent with

α = 0 and β < 0, as well as for the one consistent with α 9= 0 and β = 0, and

three of four with α 9= 0 and β < 0 based on the full-sample estimates. By

contrast, MIS finds breaks in either α or β for all individual regressions.
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