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Two-Aperture Microfluidic Probes 
as Flow Dipoles: Theory and 
Applications
Mohammadali Safavieh1,2, Mohammad A. Qasaimeh3, Ali Vakil4, David Juncker2,5,6 & 
Thomas Gervais7,8

A microfluidic probe (MFP) is a mobile channel-less microfluidic system under which a fluid is injected 
from an aperture into an open space, hydrodynamically confined by a surrounding fluid, and entirely 
re-aspirated into a second aperture. Various MFPs have been developed, and have been used for 
applications ranging from surface patterning of photoresists to local perfusion of organotypic tissue 
slices. However, the hydrodynamic and mass transfer properties of the flow under the MFP have not 
been analyzed, and the flow parameters are adjusted empirically. Here, we present an analytical 
model describing the key transport properties in MFP operation, including the dimensions of the 
hydrodynamic flow confinement (HFC) area, diffusion broadening, and shear stress as a function 
of: (i) probe geometry (ii) aspiration-to-injection flow rate ratio (iii) gap between MFP and substrate 
and (iv) reagent diffusivity. Analytical results and scaling laws were validated against numerical 
simulations and experimental results from published data. These results will be useful to guide 
future MFP design and operation, notably to control the MFP “brush stroke” while preserving shear-
sensitive cells and tissues.

Microfluidics refers to the manipulation of minute amounts of liquids, which typically takes place within 
the confinement of closed microchannels1–3. However, one of the drawbacks of “closed” microfluidics is 
the challenge to process objects likely to induce clogging or that are simply too large to fit in a channel 
network, such as tissue sections, large cells and particles. Open microfluidic systems overcome some of 
these problems by using hydrodynamic flow confinement (HFC) to confine a fluid stream such as in 
microfluidic probes (MFP)4–6 or capillary effects to confine droplets between a probe tip and a surface, 
such as in the “chemistrode” configuration10,7,8. Using the HFC property of MFPs, reagents injected by 
the probe can be confined within close proximity of the probe, allowing their delivery to a surface with 
high spatial resolution and lower shear stress than in channel-based microfluidics systems.

In its most general definition, a MFP is an open microfluidic system consisting of a flat, blunt tip 
with two apertures for injection and re-aspiration of a liquid stream in a gap between the probe and a 
substrate while hydrodynamically confining it with the surrounding fluid. Fig. 1 shows a schematic of a 
two-aperture MFP in operation. Reported MFP applications include surface gradients generation9, high 
resolution additive and subtractive bio-patterning of biomolecules and single cells in a highly-controlled 
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fashion4, maskless lithography by dissolving photoresist on a coated surface10, lysis of human breast 
cancer cells and collecting and analysis of mRNA released from the lysate11, pharmacokinetic studies 
on cells12, staining of tissue sections13,analysis of neutrophil dynamics during chemotaxis14,15, and per-
fusion of organotypic brain slices16. In all these studies17, the MFP design, flow rates and gap height 

Figure 1. Schematic representation of a two-aperture MFP. (A) The MFP is aligned by using the 
probe holder (not shown here) and is set close to the transparent substrate at the top of the inverted 
microscope20. The fluid is injected and aspirated from the capillaries at the top, which makes the injected 
flow hydrodynamically confined. (B) Picture of the MFP21 composed of a silicon chip bonded to a PDMS 
block with inserted capillaries. The mesa and the microfluidic apertures are enclosed in the white dashed 
box. (C) A close up schematics of the flow under the MFP and the resulting HFC. (D) Microscopic image 
of the MFP showing the mesa and the microfluidic apertures. The scale bar is 50 μ m. (E) Schematic of a 
two-aperture MFP for the analysis of flow profiles including a reference frame. The apertures are separated 
by a distance d and are of square side a. In the case of round aperture probes, the dimension a corresponds 
to the aperture diameter. The origin was set at the center of the connecting line between the two apertures. 
(F) A finite element model of stream lines under a two-apperture MFP clearly shows the HFC area as well 
as the stagnation point (SP) located on the far side of the injection aperture. The stagnation position (R) is 
defined as the distance between the center of the MFP and the SP.
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were optimized empirically and calibrated experimentally based on a trial and error method. Previous 
analyses in other probe geometries (microfluidic quadrupoles) have demonstrated that the steadiness 
and high reproducibility of MFP patterns are due to the presence of Hele-Shaw flow patterns at suffi-
ciently small gap sizes. Under these conditions, the flow underneath the probe can be considered quasi 
two-dimensional and readily analyzed using potential flow theory drawing upon the strong analogy 
between 2D flow fields and electrostatic fields9. Christ and Turner have studied convection in various 
two-aperture MFP configurations18. Their hydrodynamic pressure measurements at several points under-
neath the probe, supported by numerical models and relevant pressure scales thoroughly confirm the 
validity of potential flow assumptions when modeling the flow behavior under the probe. Yet, their anal-
ysis does not provide an analytical framework to quantify neither advection nor diffusion in two-aperture 
MFPs. Advection and diffusion are essential parameters to operating MFPs and control diffusion gradi-
ent generation, shear stress at the surface, confinement area, and the effect of port geometry.

Here, we introduce the relevant physical theory describing the various design and operation param-
eters within a MFP. The two-aperture probe is analyzed as a flow dipole (or doublet)19 using the same 
formalism as for 2D electrostatic dipoles. The model also goes further than the conventional Hele-Shaw 
formalism by also taking into account diffusive mass transfer. We extract several analytical results as well 
as scaling laws to control important parameters such as HFC zone dimensions, shear stress and diffusion 
gradients within the gap below the mesa. The resulting model was used to establish universal rules for 
systematic probe design and operation. The validity of the analysis was tested against numerical models 
and experimental data. Finally, the shear stress on the substrate was calculated for various operating 
conditions and a working range based on the tolerance of cells to shear stress was established.

Results
In their most general form, dipolar microfluidic probes comprise two apertures of dimension a separated 
by a distance d from center–to-center. The apertures are made into a flat mesa of side dimensions L1 ×  L2, 
which is suspended above another flat surface, forming a gap G (Fig. 1). Fluid is injected through one 
of the apertures at a flow rate Qinj and aspirated back by the second aperture at a flow rate Qasp =  αQinj, 
where α is a parameter expressing the ratio between aspiration and injection flow rates (>1 for con-
finement to exist). Detailed experimental procedures for MFP operations are explained elsewhere20,21.

HFC data described here was obtained from previously published experimental results using a 
particular MFP geometry (d =  50 μ m, square apertures with a =  25 μ m, and mesa dimensions of 
(550 μ m ×  447 μ m)4. The gap size and ratio of injected to aspirated flow rates were changed from one 
experiment to another.

The size of the HFC was determined experimentally by injecting a solute, namely fluorescently 
labelled IgG molecules under the MFP, which was atop a substrate where the IgGs readily adsorbed. The 
size of the adsorption area following a 10 s exposure was determined by fluorescent imaging as illustrated 
in Fig. 2.

Leakage-free HFC was achieved for flow ratios α ≥  2.5 for the particular MFP described in Fig. 2. For 
lower values of α, the injected fluid flow pattern is sufficiently large to extend into the area outside the 
mesa and is no longer confined. The binding adsorption patterns of IgGs on the substrate were controlled 
by the flow ratio α and strongest for flow ratios between α =  2.5 to α =  4. For increasing flow ratios, 
the surface patterns gradually vanished, indicating that the injected IgGs were instead recaptured by the 
aspiration inlet without reaching the substrate surface.

The confinement as a function of the gap between the mesa of the MFP and the substrate was also 
assessed experimentally (Fig. 2B). For gaps varying from 4 μ m to 50 μ m and for flow ratios of 2.5 to 4, 
the HFC is relatively insensitive to the gap size. However, for smaller gap sizes and large flow ratios, a 
“wing effect” can occur, by which the diffusion gradient is located underneath the injection aperture (See 
Figs. 2B(7) and 2B(10)). For a flow ratio of 4, the size of the adsorbed pattern shrinks with increasing gap 
size. At large enough α values, the adsorption pattern disappeared completely when the gap became too 
large. Thus for a range of flow ratios, the surface pattern shrinks for increasing gap sizes, but at the same 
time the intensity of the fluorescence weakens reflecting that the local concentration of the molecules in 
solution near the substrate diminishes as the MFP is moved further away (Fig. 2B). Quantitative criteria 
have been derived, based on the theory presented below, to determine the critical values of α and G 
under which the adsorption pattern is stable (see Supplementary Information).

Theory: Formulation of the general MFP problem. The general configuration describing flow in a 
gap of height G right below a MFP is introduced schematically in Fig. 1E. When the gap G between the 
plates is sufficiently small, the flow profile between the plates can be described as a quasi two-dimensional 
flow, or Hele-Shaw flow22,23 (See supplementary information), mathematically akin to Darcy’s law24.
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with z being the vertical distance above the bottom flat surface inside the probe where the no-slip 
boundary conditions are satisfied at z =  0 and z =  G The low Reynolds number assumption behind the 
Hele-Shaw flow approximation requires small inertial forces compared to the pressure and viscous forces 
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in the flow. The Reynolds number of the flow underneath the probe is Re =  ρUL/η, where the charac-
teristic length L =  G2/d under the lubrication approximation and U is the characteristic velocity found 
under the probe. From the working conditions yielding the highest Re number in this paper, we obtain 
Remax <  0.11 (a detailed derivation is provided in the supplementary information).

In this configuration, the flow exhibits a parabolic flow profile in the direction of local in plane fluid 
flow. A pseudo two-dimensional flow profile arising from a scalar potential function p(x, y) can be 
obtained by defining the height-averaged velocity under the probe19.

Figure 2. HFC patterns for different flow ratios and gap sizes. (A) (1–4) Fluorescence micrographs of the 
adsorbed protein pattern are shown for various flow ratios. (5–8) Corresponding HFC simulation results for 
various flow ratios. Gap between MFP and substrate is kept at G =  10 μ m. The scale bar is 50 μ m. (B) (1–3, 
7–9) Fluorescence micrographs of the adsorbed protein on the surface are shown for different gap sizes. 
Images are from Juncker, D., Schmid, H. & Delamarche, E. Multipurpose microfluidic probe. Nat. Mater. 4, 
622–8 (2005). (4–6, 10–12) Numerical simulations show the concentration of injected protein at the bottom 
substrate. The flow ratios are (1–6) 2.5 and (7–12) 4. Scale bar : 50 μ m. In all experiments and simulations, 
the injection flow rate was set at Qinj =  0.44 nL/s, and the IgG diffusion was set to D =  40 μ m2/s.
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where η is the fluid dynamic viscosity and p(x, y) is the pressure distribution. In open microfluidics, the 
Hele-Shaw condition is generally met as it requires both creeping flow (Re ≪  1) and that the flow profile 
varies smoothly over a distance L much larger than the gap G (specifically (L2 ≫  G2)) where L is the char-
acteristic length in (x, y) of the observed flow behavior. When Re ≪  1, the superposition principle can be 
applied to add up the flow potential of the injection and aspiration apertures to compute a doublet19, a 
flow profile with streamlines mathematically identical to the field lines in a two-dimensional electrostatic 
dipole, or even more physically accurate, to the current density lines in a two-dimensional current dipole.

Analysis of the ideal MFP. Unlike electric charges, no flow apertures can be practically reduced to a 
point source of streamlines. Instead, they must be viewed as openings (round, square, or others) of char-
acteristic dimension α. Yet, when the distance between the apertures is much larger than the apertures, 
the point source approximation is very effective in modeling multipolar flow behavior. We consider here 
the circular aperture as a general case. Since we are in the presence of a potential flow, Gauss’s theorem9 
(Eq. (3)) can be readily used to readily calculate in polar coordinates the velocity profile outside a round 
aperture of thickness G and radius a/2:
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In polar coordinates, the mass balance equation provided above yields the simple result:
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The flow profile under the MFP can be calculated as a superposition of two monopoles of different 
flow rates located at ± d/2 from the origin on the x-axis as illustrated in Fig. 1E. When a ≪  d, the point 
source approximation is accurate, and the dimension a can be neglected. The full velocity profile under 
the probe is then given in Cartesian coordinates by:
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Stagnation point and hydrodynamic confinement limit
When α >  1, a point of zero velocity (stagnation point) occurs outside the injection aperture at a 

distance χSP of the center of the probe as shown in Fig. 1F. The location of this stagnation point satisfies 
the condition:
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The latter condition on υy is satisfied for all y due to the symmetry of the problem along the x-axis. The 
condition on υx specifies the position of the stagnation point:
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This key result describes the maximum distance R from the probe center at which the injected analyte 
will travel before being recaptured by the aspiration inlet. In other words, injected analytes are confined 
within closed streamlines as represented in Fig. 1F. The definition of R is highly analogous to the con-
finement length defined earlier for microfluidic quadrupoles, in which α α= / ( + )/( − )R d 2 1 1 9. In 
both cases, when α =  1, injection and aspiration flow rates are equal and the stagnation point is found 
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at infinity, just as in a regular dipoles and quadrupoles. In Fig. 3A,B, the numerical values of R are plot-
ted against their theoretical value obtained in Eq. (7) as funtions of α  and G. Coefficients of determina-
tion R2 are listed in Table 1. As expected, the best match is obtained for the probes where the ratio of 
aperture size to interaperture distance (a/d) is minimum (R2 =  0.99 for a/d =  1/6) and the worst for the 
largest a/d ratios (R2 =  0.96 and 0.92 for a/d =  ½). Thus the R2 value provided in Table 1 can be viewed 
as a quality test of the point source analytical model when compared to the full 3D numerical solutions.

An exact expression for the width of the HFC underneath an ideal doublet can also be calculated 
using a similar method involving stream functions (see supplementary information).

Figure 3. Scaling of confinement area and effect of diffusion broadening on HFC. The set of simulation 
data (shown in black dots), and scaling laws has been shown in each graphs with (a) d =  150 μ m (a =  25 μ m, 
round), (b) d =  100 μ m (a =  25 μ m, round), (c) d =  80 μ m (a =  25 μ m, round), (d) d =  50 μ m (a =  25 μ m, 
square). Mesa sizes were sufficiently large not to induce significant effect on the flow. Effect of (A) flow ratio 
and (B) gap size on the stagnation position R. The diffusion length varies with (C) the flow ratio (~Qinj

−1/2) 
and (D) the gap size (~G1/2). (E) The confinement area varies as a function of flow rate (E) and gap size (F) 
according to the scaling laws in A–D. The gap size in (A) (C) (E) is 10 μ m. The flow ratio in (B) (D) (F) is 
set to α  =  2.5. The default values for injection flow rate was 0.44 nL/s, for the flow ratio was α  =  2.5, the gap 
between the MFP and the substrate was G =  10 μ m, and for the diffusion coefficient of the injected flow was 
D =  40 μ m2/s, and were varied one at a time in each experiment. The fit coefficients in (E) and (F) are shown 
in Table 1 as well as the coefficient of determination R2 for every model used.
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Scaling laws of diffusion broadening along the HFC area. In most practical situations, analytes 
within the probe will have a non-negligible diffusivity and will induce a concentration gradient on the 
outskirts of the HFC area. This broadening will yield significantly larger surface adsorption patterns than 
expected from the HFC alone. Furthermore, this diffusive broadening can be exploited, as described 
elsewhere, to generate rapidly tunable, highly reproducible sharp floating concentration gradients9. The 
general advection-diffusion equation of a diffusive species C(x, y) within under the MFP is described in 
cartesian coordinates by the equation:

  ∂
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where v  is found in Eq. (5). While easily solved using finite element methods, the unwieldy Eq. (8) offers 
little physical insight in its current form. However, a scaling law describing the characteristic diffusion 
length of the HFC can be obtained by linearizing the velocity profile near the stagnation point using a 
Taylor series expansion of Eq. (5). Therefore:


π

α
α

≈ −
( − )

( − ) + (( − ) ) − + ( ) .
( )

ˆ ˆv
Q

d G
x x O x x x y O y y

2
1

{[ ] [ ] } 9
inj

SP SP2

3
2 2

To extract the Péclet number near the stagnation point we make Eq. (8) and Eq. (9) dimensionless, 
by using the following scales:
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Thus, after simplifications, Eq. (8) can be expressed under its canonic form:
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Although Eq. (11) has separable variables, we leave to future work the determination of its full solu-
tion, which would need to take into account the curvature of the diffusion interface near the stagnation 
point, which itself depends on several operation variables. In a first approximation, analogous to the one 
performed on quadrupoles elsewhere9, we make Eq. (11) one dimensional by setting the y-components 
of the concentration derivatives to 0. In most cases, this approximation is highly justified since the inter-
face radius of curvature is much larger than the diffusion length scale. Furthermore, the diffusion broad-
ening region, in almost all cases in Fig.  2, display a uniform thickness even far from the SP, only 

Scaling law/analytical Solution a b c d
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R d
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R2 =  0.96 R2 =  0.97 R2 =  0.98 R2 =  0.99

B) R vs G idem
R =  58.33 R =  93.33 R =  116.66 R =  175

R2 =  0.92 R2 =  0.97 R2 =  0.98 R2 =  0.99

C) DL vs α = . π α

α( − )
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1 3
R2 =  0.91 R2  =  0.96 R2 =  0.99 R2 =  0.96

D) DL vs G idem R2 =  0.98 R2 =  0.95 R2 =  0.91 R2 =  0.97

E) CA vs α 
=
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2
c1 =  0.44 c1 =  0.35 c1 =  0.29 c1 =  0.23

c2 =  15.43 c2 =  22.77 c2 =  17.71 c2 =  25.46

R2 =  0.99 R2 =  0.99 R2 =  0.98 R2 =  0.99

F) CA vs G = ( + )CA c c G1 2
2

c1 =  121.21 c1 =  244.22 c1 =  284.24 c1 =  471.87

c2 =  28130 c2 =  10617 c2 =  11900 c2 =  830.31

R2 =  0.92 R2 =  0.78 R2 =  0.98 R2 =  0.98

Table 1. Analytical results and scaling laws for position of stagnation point, confinement area and 
diffusion length (Fig. 3).
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decreasing in thickness when nearing the aspiration aperture. The approximation is further justified 
when using square apertures as they flatten the diffusion profile at the SP even at small curvature radii 
(e.g. Figs 2A(7) and 2B(11)). Finally, the symmetry plane along the y-axis implies that ∂ /∂ =C y 0 near 
y =  0. When considering the steady state solution only and setting ∂ /∂ =C y 02 2 , the simplified Eq. (11) 
with its boundary conditions becomes:
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The boundary conditions in Eq. (12) are valid only for high Peclet number, i.e. when the diffusion 
broadening area is thin an outside of the injection aperture, a condition typically met in probe operation. 
Solving Eq. (12) yields:
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where erfc(x) is the complementary error function25.

Practical considerations in MFP operation. The time scale t0 = d2/(4DPe) is the characteristic time 
for which the steady state diffusion profile is achieved when the system is perturbed either by a move-
ment of the probe or by a change in the flow rates applied. It is of interest to note that the settling time 
decreases with an increasing flow ratio α . When α  =  1, the settling time becomes theoretically infinite 
as the HFC zone extends to infinity. The characteristic length scale = / = /( )x x x d Pe20  is the char-
acteristic length of the diffusive broadening (concentration gradient) at the edge of the HFC. A diffusion 
length scale can be experimentally defined as the distance between the points of concentration 0.1 and 
0.9. Applying this criterion to Eq. (13) yields:
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Using typical experimental conditions for MFP operation9, Qinj =  0.44 nL/s, G =  10 μ m, d =  50 μ m, 
α =  2.5, D =  40 μ m2/s (IgG), we find the specific values of Pe =  60, t0 =  260 ms, and x0 =  8 μ m. Thus, 
the settling time is short (<1 s ) increasing linearly as t0 ~ G and the diffusion length is fairly steady, 
increasing as x0 ~ G1/2. Finally, the area of the HFC scales as the square of the characteristic length 
Lc

2 ~ [(c1*R + c2*Δ x/2)]2, where c1 and c2 are proportionality constants. As both R and Δ x linearly depend 
on d, the area of the HFC scales as d2 (see supplementary information). The validity of the scaling laws 
derived in the previous section is verified by comparing with full 3D numerical simulations in Fig.  3. 
Strong agreement was found between the simulation and theory for the stagnation point location, con-
finement area as well as diffusion length, as described by the R2 values compiled in Table 1. Calculations 
of scaling laws for the confinement area has been explained in further details in the supplementary 
information.

Shear stress analysis. The MFP has been used to expose cells and tissues with various chemicals, 
and an important parameter that can influence the treatment outcome is shear stress. Shear stress plays 
a major role in many biological phenomena bringing about a number of cellular/intracellular events26–28. 
For example, endothelial cells and neutrophils transduce the applied shear stress stimulus into intracel-
lular biochemical responses, by which they regulate the vessel structure29,30. Similarly, these stimuli also 
affect the orientation of osteoblasts and neurons resulting in cellular migration and matrix outgrowth31,32. 
An important application of the MFP is detaching shear sensitive cells without damaging the cell mem-
brane, and thus calibration of shear stress is necessary.

In Hele-Shaw flows, the shear stress is directly proportional to the normalized velocity profile:
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The maximum value τ max is found where the maximum value of ν  lies, i.e. at (x =  −(1 − a/d), y =  0) 
near the inner edge of the aspiration aperture (Fig. 4A). To reflect this observation, we rescale τ max using 
the aspiration flow rate α Qinj as the new characteristic flow rate and using the aperture size a instead of 
probe length d as the new characteristic length. It ensues that when = / ��a a d 1 or α ≫  1, the contri-
bution of the injection aperture to the maximum velocity becomes insignificant, giving the simple scales 
τ ατ≈ /amax 0  and τ ατ≈ . /a0 866max 0  , respectively for the round and square aperture probes for the 
maximum shear rate under the probe (see supplementary information). Thus maximum shear stress is 
inversely proportional to gap G (~1/G2, Fig.  4B) and varies linearly with the aspiration flow rate Qasp. 
Hence, we expect the maximum shear stress to vary linearly with the flow ratio, as shown in Fig.  4C. 
Maximal shear stress is an important experimental parameter since in biological systems cells are affected 
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by shear, and for example the growth rate of endothelial cell was shown to be susceptible to shear as low 
as 1 Pa33.

High shear stresses can cause damage to the cell membrane, and consequently, lead to cell death34. 
To account for this issue in MFP design and operation, the maximal shear stress at the bottom of the 
substrate is characterized first by varying the flow ratio and then by varying the gap size while keeping 
the other parameter constant. Combining the knowledge from former studies of cell detachment using 
low shear stress (around 0.5 Pa)32 to detach PC12 neural cells and maximum shear stress that can be 
tolerated by neurons (around 1.5 Pa)32, we performed a set of simulations with different gaps and flow 
rate ratios. By considering both limits described above, we outlined the safe operational parameters of 
the MFP to work with neurons (Fig. 4D).

HFC contour and width. Another important application of the current MFP model is to allow pre-
cise control over the shape and dimensions of the probe writing head based on user-controlled parame-
ters. When used in surface patterning mode, the dimensions of the HFC area will dictate the shape of the 
“brush stroke” that the MFP leaves when it writes on a surface. One can proceed to visualize the shape 
of the hydrodynamic flow confinement (HFC) area by determining the associated stream function22 of 
the velocity profile. In general terms, the stream function is defined as:

ψ ψ
( , ) =

∂
∂
, ( , ) = −

∂
∂ ( )

v x y
y

v x y
x 16x y

Thus, integrating the y-velocity component in normalized coordinates of Eq. (5) yields:

Figure 4. Shear stress distributions under the two apertures MFP. (A) Dimensionless shear stress 
distribution profiles along the middle line at the bottom substrate showing that max shear stress occurs at 
the inner edge of the aspiration aperture (α  =  2.5, Qinj =  0.44 nL/s). (B) Maximum shear stress at the bottom 
of the substrate as a function of gap size G (α  =  4, Qinj =  0.44 nL/s). The dash line represents the shear stress 
approximation found by neglecting the contribution of the injection aperture (monopole approximation), 
which slightly underestimates Eq. (15) by a maximum of 15% when d/a >  2 and α  >  2. (C) Maximum shear 
stress at the bottom surface as a function of the flow rate ratio α  (G =  10 μ m, Qinj =  0.44 nL/s). Dash line: 
monopole approximation of the shear stress. (D) Calibration of MFP’s operation conditions with respect to 
two parameters of flow ratio and gap size to apply shear stress on neurons. The upper and lower limits are 
1.5 Pa and 0.5 Pa, respectively. The hatched zone represents appropriate condition of flow ratio and gap size 
for local cell detachment by trypsinization while avoiding shear-induced damage to the surrounding cells.
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where the integration constant can be set to zero. As the streamlines define the trajectory of an infinites-
imal particle in the flow field, the streamline passing by the stagnation point (2xSP/d = (α + 1)/(α − 1) , 0) 
will describe the envelope of the HFC (neglecting diffusivity). In Eq. (11), the streamline corresponding 
to this condition is
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Hence, Eq. (18) is the function describing the upper half (y >  0) of the HFC contour. While the 
variables cannot be separated, the shape of the implicit stream function is plotted in Fig. 5A forvarious 
values of α.

The HFC area or simply confinement area (C. A.), i.e. the area of the spot left by the probe in surface 
patterning mode, can be found by plotting Eq. (18) for a specific value of α and numerically integrating 
under the curve. One exception occurs when α =  2 where Eq. (18), once simplified, yields 
(2x/d −  1)2 +  (2y/d)2 =  4, which is the equation of a circle of radius x =  d centered at the injection aper-
ture (x =  d/2) (Fig. 5A). The confinement area of the HFC in this particular case is C.A. =  πd2. Another 
exception occurs when α =  3, which also has a simple solution: C.A. =  /d3 3 42  =  1,299 d2. Other cases 
can be found numerically, for example C.A. =  8,712 d2 (α  =  1.5), C.A. =  0,8264 d2 (α  =  4), C.A. =  0,6130 

Figure 5. HFC shape and dimension. (A) Stream functions representing the contour of the HFC in the 
symmetrical upper half plane for the ideal point source probe. Plots are presented for various flow ratios 
α. The particular case of α =  2 is a half circle of radius identical to the interaperture distance d. (B) Plot 
of the normalized half width W(α)/d and the normalized length 2R/d of the HFC with respect to the 
flow rate ratio α  =  Qasp/Qinj. Although the width is systematically shorter than the length in all cases, the 
two dimensions follow the same scale (linear with d, and varying as 1/(α  −  1)). (C)Various brush strokes 
produced by the moving MFP in surface patterning mode. Movement (C) parallel to probe axis, (D) 
perpendicular to probe axis, (E) arbitrary at an angle θ  with the probe’s axis.
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d2 (α  =  5), C.A. =  0,4908 d2 (α  =  6). In all cases, confinement area will be proportional to the square of 
the inter-aperture dimension d and will decrease with increasing flow ratio α. Diffusion is set to 0 every-
where in this section to highlight the contribution of the flow profile alone to the C.A.

Theoretical HFC Width. Perhaps the simplest and most generally applicable result of this paper is the 
positions of the probe’s stagnation point R as described in Eq. (7). Another useful measurement is the 
HFC maximum width W, the maximum extent of the HFC in the dimension perpendicular to the probe’s 
main axis. The HFC width as a function of flow rate has been studied numerically and experimentally 
elsewhere18, but without the insight provided by a complete mathematical derivation, which is provided 
here for the ideal case of point sources under the Hele-Shaw flow assumption.

Since the contour of the HFC can be described theoretically by the stream function described in Eq. 
(18), we can compute the local maximum of the HFC width in the y dimension by differentiating the 
stream function with respect to x such that

ψ∂
∂
= − = . ( )x

v 0 19y

Physically, this represents the point at the edge of the HFC at which the y component of the velocity 
is identically zero. Using the normalized coordinates, we get:
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This is the condition that must be respected when vy =  0 and y =  ymax =  W/2, where W is the HFC width. 
Substituting Eq. (20) in Eq. (18) yields:
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This is the transcendental equation that analytically describes the HFC’s normalized full width 
( = /
∼W W d2 ). The width function α( )

∼W  is plotted in Fig. 5B. Note that Eq. (21) is a normalized function 
and that it is therefore valid for any MFP geometry where the point source approximation can be made.

Discussion
Applications to brush stroke analysis and probe operation control. One of the most important 
applications of the current model is to be able to control the shape and dimensions of the probe writing 
head by specifying user-defined parameters such as the injection and aspiration flow rates or the probe 
gap G. The contour function described in Eq. (18), combined with the HFC maximum radius R (Eq. (7)) 
and the HFC width W (Eq. (21)) completely defines the area and maximum dimensions of the MFPs 
writing area. To account for the diffusive broadening around the contour, Eq. (14) can also be applied. 
However, all these parameters specify the shape of the probe’s writing under static conditions. When the 
probe is moving at constant velocity U in any given direction with respect to a fixed substrate, viscous 
forces will tend to deform the static flow profile. The fully developed Hele-Shaw profile will be a super-
position of a parabolic flow profile stemming from the probe apertures and a Couette flow profile of 
mean velocity U/2 induced in the direction of the probe displacement. This flow behavior can be reduced 
to a purely parabolic flow profile as in Eq. (1) by placing oneself in a referential moving in the direc-
tion of the probe at the mean fluid velocity U/2. In doing so, the height-averaged flow profile found in  
Eq. (2) is kept unchanged and the flow in this reference frame is identical to that of Eq. (5) (see proof 
in supplementary information). Once solved, the velocity profile in the probe’s moving frame, using the 
dimensionless scales described in Eq. (10), now takes the form
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where θ is the angle of the probe velocity vector with the probe axis and β =  πGUd/2Qinj is the dimen-
sionless probe velocity. When β  >  1, the probe velocity disturbs the HFC contour significantly. Yet when 
β  ≪  1, the contour can be assumed not to be perturbed by the probe movement. Using the typical 
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operation parameters previously described (Qinj =  0.44 nL/s, G =  10 μ m, d =  50 μ m), we find that the 
probe perturbation due to its velocity is negligible when U ≪  2Qinj/πGd =  0.6 mm/s. This critical velocity 
can be made arbitrarily large without changing the HFC contour by increasing Qinj and Qasp proportion-
ally while keeping the ratio α constant.

Within this approximation of small β, we now define a “brush stroke” for the probe operation where 
the width of the stroke will depend on the user-controlled parameters, including the probe’s velocity and 
displacement angle (Figs  5(C–E)). The brush width can be decomposed in its two principal axes: the 
width of the probe when moving parallel and perpendicular to the probe’s axis, respectively W and ⊥W , 
where W  is calculated using Eq. (21) and

α
α

= + =
−
. ( )⊥W d R d

2 1 23

The linear combination describing the brush stroke at low velocities for an arbitrary xy probe dis-
placement is generally described as:

α α θ α θ( ) = ( ) + ( ) . ( )⊥W W Wcos sin 24eff

It is important to point out that the diffusion broadening has not been taken into account when 
deriving Eq. (24) and to do so would require needlessly cumbersome mathematical derivations. However, 
the effect of diffusion can be simply taken into account by making the approximation that the diffusive 
broadening is small compared to the HFC radius and increases it uniformly by a distance Δ x, obtained 
from Eq. (14), on each side except near the aspiration aperture. Under this approximation, 
α α ∆ α( , ) = ( ) + ( , )W D W x D2 and α α ∆ α( , ) = ( ) + ( , )⊥ ⊥W D W x D  and Eq. (24) can still be 

used.

Conclusion
In this paper, we have provided a theoretical analysis of ideal dipolar probes (d ≫  a ≫  G) and tested the 
validity of our transport model under probes with finite aperture sizes and arbitrary geometries. The 
analysis is then validated with data obtained from simulations and previously published experimental 
data. The general set of analytical results and scaling laws are summarized in Table 2. The simple results 
established will allow precise control of HFC dimensions and confinement area, diffusion length and 
gradient properties at the HFC’s edges and shear stress control with respect to flow rate ratio α and gap 
size G. They will provide precise design criteria (d,a, and mesa dimensions, during fabrication process) 
and control the probe’s brush stroke and velocity during operation (α, G, Qinj, D). For example, if the 
user seeks a circular HFC of area A at the tip, the inter aperture distance d to obtain this exact area can 
readily be calculated (in this special case, when α =  2, the HFC area is precisely A =  πd2, see supplemen-
tary information). Once the value of d is found, the dimensions of the mesa need only to be a few times 
larger than the maximal R value of the HFC (with R = 3d/2 when α =  2). Then, using the formula for the 
HFC outer edge (Table 2), the precise shape of the HFC could then be calculated for any value of α for 

Design Criteria Formula Validity Domain

HFC outer edge – Eq. (16) ψ α( , ) = ( − ) π 

 x y 1 2
Ideal 2D MFP

Stagnation position (R) – Eq. (6) =








+

−
R d Qasp Qinj

Qasp Qinj2

R < <  L1,L2 (mesa dimensions), 
R ≫  G, d ≫  a

HFC Width parallel to axis – Eq. (20) W// Idem

HFC Width perpendicular to axis – Eq. (22) = + = α
α⊥ −

W Rd d
2 1

Idem

Péclet Number – Eq. (9) =
π

α
α

( − )Pe
Qinj

DG8
1 3 Vicinity of SP

Diffusion length scale (DL) – Eq. (12) ∝ /DL d Pe R ≫  G, d ≫  a

HFC Response time – Eq. (9) ∝ α

α( − )
t G

1 3
Under Hele-Shaw Condition

Shear stress (τ ) – Eq. (14) τ η= →/v G6 Idem

Max Shear stress

τ ατ≈ /d amax 0 Round apertures

τ ατ≈ . /d a0 86max 0 Square apertures

τ =
η

π

Qinj

G d0
6

2
Characteristic scale

Table 2.  Design criteria, formula and validity domain of two apertures MFP. This parameters 
and related formula provide substantial guide to select best experimental conditions for cell study 
applications.
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this probe. Finally, the outer edge diffusion layer can be adjusted during the experiment by modulating 
the gap size G while maintaining the HFC’s circular shape constant. In the previous example, we can 
also determine in advance whether we need square/round, or large/small apertures. Small apertures will 
be preferred in situations where α  is large to prevent the “wing effect” (Fig. 2B-10) that occurs when the 
stagnation point is found inside the aperture. Large apertures are, on the other hand, preferable when 
the shear stress needs to be minimal (Fig. 4B,C).

We also provide a complete characterization of the MFP’s “brush stroke” when operating in surface 
patterning mode. The analysis suggests that the simplest way to precisely control the width of the stroke 
is to move the MFP either parallel or perpendicular to its axis since the width of the stroke ( ,⊥ //W W ) 
is then completely independent of the flow velocity and given a simple formula (Table  2) that can be 
easily modified to account for diffusion by adding the diffusion broadening scale (DL, Table  2) to the 
width.

The results presented in Table  2 can also be used to indirectly measure and calibrate probe height 
above a surface by looking at diffusion length with respect to G (∝ √G) or shear stress as a function of 
the applied flow rates. Finally, the general theoretical framework provided here, and the set of analytical 
results that stem from it, enables a more precise control for MFPs of any shape or form in a variety of 
applications including neuron migration35, stem cell differentiation36,37 and shear-dependent cell pora-
tion38,39 without using costly, complicated trial and error experimental method.

Methods
Numerical Modeling. The numerical models were established using the finite element method 
with commercial software (COMSOL Multiphysics 3.5a, USA) on a computer with 8 cores, 64-bit 
CPU and 26 GB RAM. The computational model was built by combining Stokes flow and steady state 
convection-diffusion mass transfer equations. Boundary conditions were assumed to be “no-slip” con-
ditions at solid surfaces and “open boundaries” at atmospheric pressure at the perimeter of the MFP. To 
compute the mass transfer model, the MFP’s rigid walls and substrate surface are considered as insulators 
and the flux was set to zero. The concentration at the perimeter was set to zero reflecting the assumption 
that under HFC no solute reaches the edge, and that the large volume constitutes a sink. Concentration 
at the injected aperture was normalized and set to 1 to provide a relative scale. At the aspiration aperture, 
diffusion was neglected owing to the local dominance of convective mass transport.

Numerical calculations of the HFC were performed and the calculated concentration as a function 
of position at the substrate surface was reported as function of flow ratio in Fig. 2A, and as function of 
the gap size, Fig. 2B and Fig. 2B. There is a good visual agreement between experimental and numerical 
results, which was also quantified by measuring the surface area for each case, and comparing it for dif-
ferent flow conditions (Fig. S1). The observed discrepancy between numerical and experimental results 
can be mainly attributed to the indirect measurement of protein adsorption at the surface rather than 
the direct measurement of the flow profile. Uncertainty on the experimental gap, exposure time, as well 
as vibrations of the MFP while running the experiment will cause the protein footprint on the surface 
to spread. As a consequence, the pattern on the surface is not a record of the average pattern, but of the 
maximal extent of the flow profile that may occur due to various fluctuations during the 10 s of streaming 
across the surface. Nevertheless, the numerical models are in good agreement with the adsorbed protein 
experiments. To extend the validity of our models to any probe geometry and to extract useful design 
criteria based on scaling laws (see section “Theory”), numerical simulations of the MFP with various 
geometries and gaps, and under different flow rates were performed using full 3D finite-element models.

To test the limits of our advection/diffusion models, we have proceeded to perform the following 
series of simulations emulating probe geometries already used in the literature, Table S1. Water was 
used as fluid (solvent) with a density of 998.2 kg/m3 and dynamic viscosity η =  0.001 N·m/s (at 20 °C). 
Immunoglobulin G (IgG) was used as solute and a diffusion coefficient in water of D =  4 ×  10−11 m2/s was 
used7. The flow regime was estimated prior to the simulations to help select the appropriate models. The 
Reynolds number in all regimes was on the order of Re ≈  O(10−2) ≪  1 indicating creeping flow condi-
tions to be treated using Stokes formalism22. Similarly, the Peclet number representing the ratio between 
convective and diffusive mass transport was found to be high (Pe ≫  1)40 for all MFP operation regimes, 
indicating that convective mass transport dominates diffusion except very close to the stagnation point.
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1. Comparison between experiment and simulation of HFC area for an MFP with two 
apertures 

   

 

 

 
FIG. S1 Comparison between experimental and numerical results in total area of 
confinement vs. (a) different flow ratios (b) gap sizes between MFP and substrate. (a) 
Effect of flow ratio on total area of HFC at the bottom substrate. Diffusion coefficient for 
all cases is 40 μm²/s. The dash lines in each graphs serves as the guide to the eye. By 
increasing the flow ratio, total area of HFC is getting smaller. The gap between MFP and 
substrate is 10 μm. (b) Effect of gap size on the HFC. By increasing the gap size, HFC will 
be larger. The aspiration ratio is 2.5. Numerical results systematically underestimate the 
experimental observations by roughly 25%. This behavior is to be expected as the 
experimental confinement area is based on surface adsorption of fluorescent IgG and not 
directly on the fluorescence intensity in the fluid itself. As time passes by, the adsorption 
front slowly moves outward. 
 
 
2. Calculation of the confinement area  
 

 
 
FIG S2 Schematic of the image processing for calculating the confinement area in a 
microfluidic probe with two apertures. The confinement area image is transformed into 
the grey scale using the COMSOL package. Then by setting the threshold value into 0.5 
and transforming into the bitmap image using Adobe Photoshop CS5. The white pixels of 
the image are added to calculate the area. Using the aperture area as the scale, the 
confinement area in pixels is converted to a surface area expressed in μm2.  
 
3. Comparison between normalized velocity of round and square opening in MFP 
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FIG. S3 Comparison of velocity profiles in 
square and round aperture MFP  (A) Plot of 
the x component of the normalized velocity 
profile for 2D dipolar probes with square 
and round apertures of characteristic 
dimension a (2.5 =ߙ, d = 50 μm, a = 25 
μm). (B) Relative error between round and 
square aperture. The maximum relative 
error between a square and a round 
aperture is 13,3% and occurs at x = a/2. 
At a distance x = a and beyond, 
approximating a square opening by a round 
opening overestimates the flow velocity by 
less than 2%. C) Plot of the isopotential 
lines for the velocity potential in normalized 
units X = 2x/a, Y = 2y/a for both round 
and square apertures. Both sets of 
isopotential lines, while significantly 
different near the aperture, become nearly 
identical a short distance away from the 
square aperture. It is useful to observe 
that, under the Hele-Shaw regime, the 
velocity potential is linked to the pressure 
field near an aperture by the 
proportionality constant െܩଶ ⁄ߟ12 , as in Eq. 
(2). 
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3.1 Flow near a square monopole 

In a 2D potential flow, the velocity at any point near a distribution of sources can be 
computed by a superposition of point sources. Drawing analogy with Coulomb’s Law in 
electrostatics, albeit in a 2D geometry instead of 3D, the general expression describing 
this superposition principle is given by the integral:  

  
(S1)

 

where Q is the injected flow rate, G is the gap size between the probe and the surface, 
and S is the aperture surface. Notation refers to Fig. 1E. 
 
Expressed in Cartesian coordinates, for a single square opening of surface S = a2 whose 
center is located at the origin, this equation becomes : 

. (S2)
 

 
The above solution treats a square opening as a sum of point sources located between -
a/2 and a/2. 
 
All further analysis can be simplified by making  (S2) dimensionless using the following 

groups: 
		
 

2x
a
, '

2x '
a
, 

2y
a
, '

2y '
a
,  which yields: 

 (S3)
 

 
The velocity potential can then be obtained by further integrating Eq. (S3) such that: 
 

 (S4)
 

 
 
It is of interest to note that Eq. (S4) also represents the expression of the dimensionless 
pressure underneath the probe as the pressure and velocity potential are directly 
proportional as described in Eq. (2). Analytical solutions exist for both Eq. (S3) and Eq. 
(S4), but offer little physical insight. Eq. (S4) is plotted in Fig. S3C and compared to the 
simple case of round apertures. To determine the position of the stagnation points, we 
are however only interested in the x-velocity component on the x-axis. 

,

 (S5)
 

whose solution is: 
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(S6)
 

This function represents the fluid velocity at a distance ߯	 ൌ  from the center of a ܽ/ݔ2
square opening perpendicular to one of its sides. Let’s rename this dimensionless function 
as: 

 (S7)
 

By comparison, the normalized velocity around a round opening can be obtained from Eq. 
(3) (with 2r/a = ):  

 (S8)
 

The values of (S7) and (S8) are plotted against each other in Fig. S3A and S3B of the 
current paper, showing that when x > a, round and square openings have extremely 
similar flow profiles. Fig. S3C further confirms in 2D the fast convergence of both square 
and round apertures to the same potential lines when x>a.  
 
3.2 Comparison between a square dipolar probe and a round dipolar probe 
 
The total velocity around two square openings separated by a distance d at a distance x 
of the probe’s center is given by a superposition of these functions. 

 where  ˜ d 
d

a
.  is the aspiration/injection flow 

ratio. 
 
The stagnation point on the axis of the MFP will be located at  such that the 
following condition is preserved:  

 (S9)
 

The above equation is transcendental and has to be solved numerically. The x-component 
of the velocity profile, which is the function describing the normalized flow perpendicular 
to the distance between two apertures, has been plotted for circular and rectangular 
apertures (Fig. S3). A useful approximation can be made in the case where . We 
find that the solution approaches to the particular case of individual round openings, i.e. 
Eq. (7) in the main text.  
 

3.4 Model corrections for square apertures 

Square-aperture MFPs have been widely used, sometimes based on an arbitrary design, 
and other times due to microfabrication constraints. Certain applications, such as surface 
patterning, may also be better served by rectangular rather than round apertures.7 Yet, 
as seen above (Fig S3B), the difference between flow around a square MFP and a round -
aperture MFP is negligible but to a distance closer than a outside the edge of the square 
apertures. We conclude that in most cases, efficient probe modeling can be carried out by 
using the round aperture model instead of the square one with minimal discrepancies. 
However, for MFPs when the half inter-aperture distance d/2 is close to the square 
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aperture size a, such as in the probe described in Fig. 3 (curve (d): a = 25 μm, d = 50 
um) then the geometry of the aperture will influence the flow profile. 

3.5 Model corrections for finite size apertures 

When the aperture a becomes non negligible with respect to the inter aperture distance 
d, there will be distortions appearing due to the fact that the pressure and velocity 
profiles are different right below the apertures than everywhere else under the probe. 
Furthermore, in the real three-dimensional case, the flow under a MFP is supplied from 
the top wall into the gap, the approximation that the flow is purely two-dimensional is no 
longer valid right below the apertures. In fact, the hydraulic resistance of the device will 
be much less below the apertures due to the tubing extending vertically up and leaving 
room for the vertical jetting of fluid.  This decreased resistance below the apertures will 
lead to a decreased resistance in the shortest flow path, i.e. along the x-axis from the 
inlet to the outlet, which has a characteristic length d-a instead of d in the case of the 
point source model. Therefore, the presence of apertures of non-negligible dimensions 
will cause the fluid injected under the probe to flow preferentially inward along this 
shortest path, with the effect of decreasing the outward flow rate. This results in the 
formation of a stagnation point closer than expected with point sources located at  d/2. 
Yet, the variation on the position of the stagnation point should be negligible as long as d 
>> a. In Fig. 3A, we purposely model finite aperture sizes to test the predictive limit of 
the point source model in non-ideal cases. The relative errors on the position of the SP 
introduced by the finiteness of the aperture are respectively of 3-8% (a/d = 1/6) and 7-
25% (a/d = 1/2). Fig. 3C-F shows the diffusion broadening and confinement area 
variations as a function of  and gap size G in two apertures MFP. All represent excellent 
matches between 2D analytical models and full 3D simulation. The larger discrepancies 
found pertain to curve (d) and in general to situations where G is no longer much smaller 
than the aperture size a (G/a = 0.4) and a no longer much smaller than distance d (a/d 
= 0.5). In these particular limiting cases, the Hele-Shaw condition is broken locally near 
the aperture. Eq. (13) correctly predicts the diffusion length behavior as the function of α 
and G which can be seen in Fig 3C-D. Calculations of confinement area have been 
explained in Fig. S2. 
 
4. Stability analysis of the HFC under the probe for varying flow rate ratios and gaps 
 
In Fig. 2, we observed both experimentally and numerically a disappearance of the 
hydrodynamic flow confinement under certain operating conditions, resulting in a 
decreased exposure concentration at the substrate’s surface below the probe. In the first 
case, Fig. 2A(8), the flow rate ratio is set to α = 8 while maintaining gap height at G = 10 
μm for a probe of aperture ratio a/d = ½. In the second case, Fig. 2B(12), α was kept at 
2.5 while G was set to 50 μm. The two losses of confinement can be explained 
quantitatively using the arguments below:  
 
4.1 HFC disappearance with increasing flow rate ratio 
 
As the flow rate ratio α is increased the stagnation point is found closer to the injection 
aperture. Past a critical α value, it is no longer defined as it resides under the injection 
aperture.  Mathematically, this condition is expressed as R < d/2 + a/2.  Using the 
expression of R found in Eq. (7), we get the critical α at which the SP will be defined as:  
 

		
 1

2d
a
. 

(S10)
 

In the case shown in Fig. 2, d/a = 2 and α < 5. For α > 5, we expect that the pattern will 
be lost underneath the probe. Using the reasoning provided above in section 3.5, 
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stagnation points are always found closer to the injection aperture than theoretically 
predicted using a point source approximation, due to the decreased hydraulic resistance 
in the flow path directly between the two apertures. Thus, for systems where the ratio 
a/d is large (close to 1), it is likely that confinement will be lost at values smaller than 
expected in Eq. (S10). Nevertheless, the latter provides a useful simple criterion to 
ensure correct probe operation.  
 
4.2 HFC disappearance with increasing gap 
 
As the gap is increased between the probe mesa and the substrate, injected species will 
more predominantly flow to the aspiration outlet by a path closer to the probe mesa than 
the substrate. When G/d becomes large, no species is expected to reach the substrate 
before being recaptured by the aspiration aperture. ܴ݁ ൌ ܩܳߙߩ	 ⁄ߟ݀ܽߨ ≪ 1 (see section 6 
below), but ܩଶ ݀ଶ⁄ ≫ 1. However, this behavior will occur only when the Hele-Shaw 
condition is broken. Within the Hele-Shaw condition, flow is expected to be uniform in the 
vertical (z direction). Therefore, the critical G at which this condition will be broken can 
be simply stated as :   
 

min G  d ,G 
ad
Q







 

(S11)
 

In the experimental case presented in Fig 2A panel 4, we get respectively from Eq. (S11) 
G = 50 μm and G = 1 mm. In most cases, unless the flow rate is very high, the 
constraint G2<<d2 will be the limiting one. This condition explains why, when G = 50 μm, 
the HFC confinement pattern is lost in Fig. 2B panel 12. 
 
5. Derivation of the Hele-Shaw flow profile for a probe moving at constant velocity 
 
When moving at constant velocity U above a static surface, a MFP will generate a Couette 
flow profile that will superpose to the flow profile arising from the injection and aspiration 
flow rates. In such circumstances, the Hele-Shaw flow profile, Eq. (1), has to be modified 
to account for new boundary conditions in the vertical direction, namely vH-S(x,y,0) = 0 
and vH-S (x,y,G) = U. Thus the new Hele-Shaw profile respecting these conditions is now 

 
(S12)

 

The height-averaged flow profile is thus given by 

 
(S13)

 

Eq. (S13) can be made identical to Eq. (2) by performing the calculations in the reference 
frame of the Couette flow’s average velocity using the Galilean transformation  
 

 
(S14)

 

In this reference frame, the probe’s velocity profile is identical to that of Eq. (5). The 
velocity profile can then be obtained in the reference frame of the moving probe by 
applying the transformation in Eq. (S14) 
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(S15)

 

where θ is the angle that ሬܷሬԦ makes with the probe axis. This equation can be further 
simplified to Eq. (22) using the dimensionless groups described in Eq. (10). 
 
6. Low Reynolds Numbers Hele-Shaw Flow  

We provide here a derivation of the Hele-Shaw approximation from the full Navier-Stokes 
equation. This analysis yields explicit expression of the Reynolds  number under the Hele-
Shaw approximation as well as the geometrical constraints that must be obeyed to 
operate in this regime.  

The motion of an incompressible flow of a Newtonian fluid is governed by the 
conservation of mass and momentum equations, given by (neglecting gravitational 
forces)  

 (S16)
 

 
(S17)

 

 

 

 

Where ሬܸԦሺݔ, ,ݕ ሻݖ ൌ ሺݒ௫, ,௬ݒ ௭ሻݒ  is the velocity field,  is the pressure field, ߩ and ߟ  are, 
respectively, fluid density and dynamic viscosity. We render these governing equations 
dimensionless by introducing the dimensionless variables  

 
(S18)

 

Where ݀ is the characteristic length scale in the ,x y  directions, ܩ  is the characteristic 
length scale in the ݖ  direction, and ܷ  is the characteristic velocity. The governing 
equations, known as the Navier-Stokes equations, in the dimensionless forms become 
(neglecting the unsteady term)     
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When the gap ܩ between the plates relative to the distance between the apertures ݀ is 
sufficiently small, the terms on the order of ܩଶ ݀ଶ⁄  can be omitted in front of the other 
terms. This conditions that ܩଶ ݀ଶ⁄ ≪ 1  is the first requirement for the Hele-Shaw 
approximation to be valid. We observe that, under this approximation, the effective 
Reynolds number in front of the dimensionless inertial term defined as	ܴ݁ ൌ ଶܩܷߩ	 ⁄݀ߟ , as 
typical in flows under the lubrication approximation. Note that our analysis neglect the 
entrance effect in the proximity of the apertures, and the flow is approximated as purely 
in the x, y  directions. Setting	ݒ௭ ൌ 0, and using the expression of Re derived above, we 
obtain 
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(S20)

 

The last equation gives p̂  p̂ x̂, ŷ  . When ܴ݁ ≪ 1, the inertial terms on the left hand side 

can be neglected in front of the pressure and viscous forces and the flow profile between 
the plates can therefore be described as a quasi two-dimensional flow by the Hele-Shaw 
approximation.22,23 

 
(S21)

 

with z  being the vertical distance above the bottom flat surface inside the probe where 
the no-slip boundary conditions are satisfied at ݖ ൌ 0 and ݖ ൌ  Note that the variables .ܩ
are converted back into their dimensional forms.  
Water was used as a solvent with a density of 998.2 kg/m³ and dynamic viscosity η = 
0.001 N·m/s (at 20°C). For the injection flow rate of ܳ, the maximum velocity under 
the probe can be used to compute the highest possible Reynolds number. This highest 
velocity U is found right at the inner edge of the aspiration aperture, where ܷ ൌ
ܳߙ ⁄ܩܽߨ . For the most stringent operating conditions used in this paper, ܳ ൌ
,ݏ/ܮ݊	0.44 ܩ ൌ ,݉ߤ	50 ܽ ൌ ,݉ߤ	25 ݀ ൌ ߙ and ,݉ߤ	50 ൌ 4, the maximum Reynolds number close 
to the aspiration aperture becomes ܴ݁௫ ൌ ܩܷߩ ⁄ߟ ൌ ܩܳߙߩ ⁄ߟ݀ܽߨ ൌ 0.11. In this particular 
extreme case, corresponding to the experimental results in Fig. 2B(9), G = d and the 
Hele-Shaw validity domain is violated. Thus Re <<1 is the second important requirement 
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to fully validate the Hele-Shaw approximation. It is interesting to note that for all the 
probe geometries and operating conditions presented in this paper, the Hele-Shaw 
approximation breaks down before Re becomes larger than unity.    
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