Routledge

Contemporary Music Review g
§ Taylor &Francis Group

Vol. 28, No. 1, February 2009, pp. 31-42

Split Levels: Symbolic to Sub-symbolic
Interactive Music Systems

Robert Rowe

The first wave of interactive music systems relied almost exclusively on the Musical
Instrument Digital Interface (MIDI) standard, a symbolic representation of music
modeled closely on the behavior of a piano keyboard, as well as traditional concepts of
music notation. The second wave takes as its input raw audio signals, a sub-symbolic data
representation that is far more flexible while being far less structured. This article will
consider the issues involved with building a pathway back up from sub-symbolic systems to
the symbolic approaches of the first wave, and the relative advantages of the two.
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Introduction

Interactive music systems are computer programs that participate in live
performances of music; they are characterized by their ability to change their
behavior in response to musical input (Chadabe, 1984; Rowe, 1993). As computer
programs, they are necessarily algorithmic. As participants in live performance, the
algorithms that are possible are necessarily constrained. For one thing, they must
depend only on information that is currently present, or that arrived in the past—
they must be causal. This disqualifies music analysis systems that can look anywhere
in a representation of a performance, as human analysts do when considering a
musical score, despite active and compelling research in this area (Pople, 2004;
Temperley, 2001). There are many important interactive music technologies that do
know what is coming: score following is one obvious example. In this discussion I
will nonetheless limit the algorithms under consideration to those that are causal, and
fast enough to operate in the real-time environment of a live stage performance,
possibly including improvisation.

Such algorithmic approaches to composition and performance have been discussed
in numerous publications over the past twenty years (Jorda, 2002; Rowe, 2001;
Winkler, 1998). This review will look at the algorithms employed in inter-
active systems with reference to the input representations that are assumed to be
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available—for example, audio signals (sub-symbolic) as opposed to Musical Instru-
ment Digital Interface (MIDI) information or other symbolic forms. In particular we
will address the parallel universes of symbolic and sub-symbolic interactive systems,
and how new designs and techniques might help us to bridge the two.

Interactive music systems in early implementations usually made use of the MIDI
standard. The MIDI standard has been recognized since its inception to be slow and
limited in its scope of representation (Moore, 1988). Nonetheless, MIDI was the
dominant protocol for the design and implementation of interactive music systems
for a long time, and its use persists today. There were good reasons for this
dominance, particularly at the end of the twentieth century when these systems were
first being developed. MIDI-enabled synthesis, sampling, and effects gear produced
high-quality digital audio at an affordable price. Moreover, offloading the synthesis
duties onto a dedicated piece of hardware freed the CPU of the computer to
concentrate on control-level analysis and composition.

Working with MIDI as a musical representation afforded interactive music systems
access to a very high-level, symbolic description of the music being played into the
system and manipulated within it. Because ‘notes’ were already clearly defined in
terms of pitch, amplitude, onset and offset times, high-level analyses including beat
tracking (Desain & Honing, 1999), key induction (Toiviainen & Krumhansl, 2003),
segmentation (Cambouropoulos et al., 2001), style identification (Dannenberg et al.,
1997) and more could be performed from a relatively secure foundation. In terms of
interaction design, the small, fast, robust, and clear MIDI format made an era of
rapid progress possible.

On the other hand, MIDI transmission rates are too slow to handle large control
streams. Synthesizer manufacturers retreated into bland repetitions of the same
sampling-based architectures. The need to stimulate demand by introducing new
models every few years meant that works written for commercial gear faced technical
obsolescence in a very short period of time as specific boxes broke down and could
no longer be replaced. Already, compositions written as recently as ten years ago may
require a substantial undertaking of technical archeology to be brought into a state of
readiness for renewed performance.

Small wonder, then, that composers have embraced a new generation of
technology that allows the rendering part of interactive music systems (synthesis,
sampling, and effects) to be handled by the CPU of the same computer calculating
larger control structures. The most widespread instance of this phenomenon is the
Max/MSP platform, which itself reflects the evolution of the technology: Max alone
was developed first and is a MIDI-processing environment (Puckette, 1988), while
the later MSP extensions incorporate real-time digital audio signal processing into
the control-level structures organized by Max (Puckette et al., 1998).

The issue for composers of interactive music is that adopting the power and
flexibility of audio-based systems means exchanging a high-level, symbolic
representation for a low-level, sub-symbolic one. All of the hard-won analytical
constructs based on MIDI inputs suddenly disappear when the sub-symbolic level
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splits off from the symbolic one. In this brief review, we will look at how systems
receiving inputs of raw audio are different from or convergent with those built on
symbolic inputs.

Digital Audio Platforms for Interactive Music

A wide range of platforms for analyzing and rendering digital audio interactively on
personal computers have arisen. Miller Puckette’s open source Pd environment is itself
a primary reference for the development of MSP (Puckette et al., 1998). A phenomenal
outpouring of open source digital audio applications is listed on Sourceforge
(sourceforge.net) and other repositories. Beyond the fervor of commercial and
individual developers, which has led to such influential packages as ChucK (Wang &
Cook, 2003), SuperCollider (McCartney, 2002), and the CLAM library (Amatriain
et al., 2002), there have been several efforts to standardize digital audio rendering
protocols: The Open Sound Control standard (OSC) is one of the most direct
approaches to resolving the networking and representational limitations of MIDI
(Wright & Freed, 1997). Other platforms have been shaped by international standards
organizations, or by their connection to existing languages. Two of these are the
Structured Audio Orchestra Language (SAOL) (Vercoe et al., 1998) and JSyn (Burk,
1998).

Given this extensive range of choices, composers may be forgiven for hesitating
over which way to turn. The author’s solution has been to develop a personal library
of audio sampling, synthesis, and effects routines in C++-. While starting anew with
such a project inevitably entails reinventing several wheels, it facilitates coordination
with an existing control layer (Rowe, 2001) and seems the most expressive way to
develop new ideas: a set of personal effects.

As we have already seen, a wealth of well-established languages and programming
environments exist for coding interactive music applications. Why then produce one
more? I have produced my own libraries not because I think I have better ideas for
managing these issues than do the many computer scientists who have looked at it
from a much more fundamental perspective. In any case, the library I use has not
been developed entirely from scratch, or in a void: I often consult open source
projects in designing particular functions, and am in the process of preparing the
Personal FX library for open source distribution as well.

There are several reasons for this choice, which range from the compositional to
the utilitarian: (1) a lifetime of experience with programming interactive systems at a
low level, which makes it easier for me to work in a language like C++ than it is to
learn someone else’s formalisms; (2) concomitant with that experience, the
conviction that design and implementation of every aspect of the computer program
for a given piece of music becomes, for me, part of the composition of that piece; (3)
a desire to minimize the impact of version changes imposed by others on the
maintenance of the software needed to perform my music; and (4) a preference for a
very lightweight, easily maintained body of code that does exactly what I need for a
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given composition and no more. Further, having virtually all of the software for a
given compositional project available in C++ source code greatly simplifies the
process of exhuming old works for new performances. Those parts of the system that
are subject to changes in the underlying operating system (audio I/O and file
handling) are completely localized into two files, which typically are the only things
that need updating when a work is revived five or ten years after its most recent
performance.

Without going into a long exposition of every part of the Personal FX library, a
brief outline of its operation is in order here. A Unit stores some number of channels
of audio, and has an optional pointer to an input Unit. At each call from the
operating system for a new batch of samples, all allocated Units are executed in order,
starting from sound-generation modules (microphones, sound file readers, synthesis
routines), through various forms of mixing and effects processing, and finally out to
the operating system’s output buffers. The most fundamental class in the system,
then, does little more than provide a standard way of receiving and storing samples.

Making simple sound-processing objects from the Unit base class, then, becomes
primarily a matter of defining a routine that will take an input sample, process it, and
return an output sample.

double Allpass::Sample (double inSample)

{
// read delayed sample
double temp=delayLine[ current] ;
// add (input sample * gain) to (delayed sample * gain)
delayLine[ current] =gain * temp 4+ inGain * inSample;
// calculate output
double output=temp - gain * delayLine[ current] ;

// update delay line pointer
if (+4current >= bufferlLength)

current=0;

return output;

More involved effects-processing classes can be easily constructed by combining
lower-level units. In the example below, the ‘Dinosaur’ effect is created by allocating
two delay lines that feed into two pitch shifters. Delay times and pitch shift amounts
are independently variable for the two channels.

Dinosaur: :Dinosaur (void)

{

numChans=kStereo;
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for (int 1=0; i<kStereo; i++)

{
delay [ i] =new DelayLine (200L + (long) (133*1));
delay[ i] =>TurnOn () ;

pShift [ i] =new PitchShift;

pShift [ i] -=>SetInputUnit (delayl i]);
int downer=-1 - i;

pShift [ i] ->SetSemitones (downer) ;
pShift[ i] =>TurnOn (1.0) ;

When a new buffer of samples is called for by the operating system, ‘Dinosaur’ adds
each input sample to a gain-shifted previous output to provide dampened feedback,
runs the result of that through the delay line, and changes the pitch. The whole thing
produces an effect that takes the input sound and seems to melt it down into nothing,
as feedback through a downward-biased pitch shifter will do.

for (i=0; i<kStereo; i++)
{
double* in=inputUnit->OutputSamples (i)
for (§=0; j<bufferSize; j++)
{
double changeme = 1in[ j] + (outputSamples[ i][ j] * 0.33);
double temp = delay[ i] ->Sample (changeme) ;
outputSamples[ i][ j] =pShift[ i] ->Sample (temp) ;

There is nothing particularly special going on here—indeed, that is the point.
For a great deal of interactive signal processing, quite simple and straightforward
techniques are all that is required. Beyond the nuts and bolts of audio processing,
other parts of the library handle the invocation of various processes at the
indicated moments in the musical score, provide hooks into control-level
compositional algorithms, and take care of the scheduling of program state
changes over time.

A ‘score’ in this sense refers to a combination of traditional music notation and
cadenzas—opportunities for improvisation within the scope of a particular piece.
During notated sections, the relationship between the computer output and the
human performance will stay relatively constant from performance to performance.
During the improvisations, the computer listener attempts to discern structure in the
human performance such that it can add meaningful material during the cadenza
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itself. The structures it can ‘hear’ make possible a set of family resemblances between
improvisations—as the human player makes use of consistent gestures or material,
the computer will find that continuity and react in similar ways from one rendition to
the next.

Analysis Techniques for Live Interaction

The discussion so far has centered on those platforms that are available for realizing
real-time interactive algorithms, followed by an exposition of my effects-processing
library and a simple example of how it is used. Now we will turn to the input analysis
phase of such systems, and consider how we might derive musically meaningful
information from an input of raw audio samples.

At first blush, one would think that taking audio signals as the only input
representation would be simply an enhancement of earlier, symbolic techniques.
After all, we can just find all the notes in the audio and be right back where we were
with a MIDI score. Unfortunately, the reality is not so simple. A long period of
research has led to some success in automatic music transcription (Klapuri & Davy,
2006), but the intensive computation required to transcribe raw audio, particularly of
polyphonic material, moves these techniques well outside the realm of what is
possible in the context of interactive performance.

Further, it is not at all clear that what happens in a human brain when listening to
music is the formation of some intermediate representation that is equivalent to the
notes of a MIDI score (Scheirer, 2000). Certainly we do recognize melodic, harmonic,
and rhythmic changes, and we are able to learn to notate heard music with a relatively
high degree of proficiency—that is what ear-training class is all about, after all. But
the fact that it requires, for most students, years of training to be able to convert by
ear a relatively straightforward four-part harmony played slowly on a single
instrument into a reasonable facsimile of the score that was played would indicate
that such audio-to-score transfers come with difficulty even for humans, if they ever
come at all (Hainsworth, 2004).

There is a large body of research concerned with describing the musical content of
audio signals for various purposes, including genre identification, mood estimation,
and more—indeed, such work forms the core of the field of Music Information
Retrieval (MIR) (Aucouturier & Pachet, 2004). Indeed, much of this article is
concerned with how to best adapt MIR research to interactive performance. My point
here is that there is no straightforward way to take an arbitrary audio signal and
transform that into the equivalent of a MIDI representation in real time, thereby
allowing the front end of first-wave interactive systems to be replaced with a
microphone instead of some MIDI-compatible musical instrument. Moreover, it is
not clear that the most effective output from an audio front end would be the
equivalent of a MIDI score in any case.

It would be wonderful to know what intermediate representations the brain
actually does use in recognizing melodic, harmonic, rhythmic, and timbral patterns
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in music, and then to program those representations in our software. As there exist
many competing and partial accounts of what those representations might be
(Deutsch, 1990; Lerdahl, 2001; Narmour, 1992), we are left to use those tools we have
as best we can. Luckily, there is a wide range of techniques to choose from that have
varying levels of success for various purposes. The challenge from a compositional
standpoint is to choose those techniques that best produce information able to
inform a given piece of music or performance situation in a meaningful way. In fact,
we may consider the choice of analyses and their interpretation as something of a
compositional choice in itself.

Tristan Jehan argues for a similar approach in his dissertation, Creating Music by
Listening: ‘Analysis and synthesis of musical audio can share a minimal data
representation of the signal, acquired through a uniform approach based on
perceptual listening and learning’ (Jehan, 2005, p. 24). Jehan’s thesis is about
elaborating and implementing a perceptual model that is used both to characterize
incoming audio streams and to direct resynthesis techniques for fashioning an
output in response. Much of Jehan’s analysis work has become available online
through a company he co-founded called the Echo Nest, and results from that
engine are finding their way into several other analytical systems (Corthaut et al.,
2008).

Jehan’s work points to the central issue facing audio analysis in the context of
interactive performance: how can we approximate the mental representations of
music formed by human listeners from an examination of an audio stream? That is
the broadest possible statement of the objective—any particular musical composition
may require the generation of representations much more limited than the whole of
human musical cognition. Given a composition-specific orientation, there is much
that can be done and has been done already—for a thorough review, see Collins,
2006. Within the limited scope of this discussion, let us examine a few representative
examples.

Segmentation

One of the most important problems we face, and often one of the earliest, is how to
meaningfully segment the audio stream as it arrives. We often want to know where
the perceptual boundaries are in an incoming audio stream, such that we can identify
objects or events within that stream, characterize them, and react to them
appropriately. We might extend the notion of segmentation to include many of
the fundamental building blocks of a symbolic representation of music: beat tracking
(Ellis, 2007), chord recognition (Chew & Chen, 2004), pattern recognition
(Shmulevich et al., 2001), and so forth.

Recent work in real-time music analysis has been applied to this question as it
pertains to interactive composition and performance (Brossier et al., 2004). The
authors review a number of methods for identifying note onsets, including
measures of high-frequency content, spectral difference, and phase deviation.
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Any of these measures is followed by a peak-picking phase, which examines the
analysis output and identifies those transients that will best qualify as a segment
boundary.

In my own work I have used the simple high-frequency content method (Masri,
1996) to detect note onsets in a composition for harp and interactive music system,
Moon on one side, Sun on the other, premiered at the 2007 International Computer
Music Conference by Sofia Asuncion Claro. The heart of the calculation is shown in
the code fragment from the Personal FX library below:

for (i=0; i< ampSpecBuf.count (); i++)
{

sample t amp=_ ampSpecBuf] i] ;

hfc += (amp*amp) * 1i;

After taking a short-term Fourier transform, we simply take the square of the
energy in each bin and multiply by the bin number. Then this high-frequency
content measure is compared to a threshold, and a note onset is posited when the
threshold is passed in a positive direction after a given time duration has passed
since the previous onset (to eliminate multiple positives around a single attack).
These onsets were used in various ways to influence responses in the work. One
of the most important was an ongoing measure of onset density (onsets per
second) that was used to control such aspects of the output as sample selection
and the variation of parameters in a granular synthesis process that was reading
from prerecorded sound files of the harp part.

Treating onset density in this way is similar to a density feature I used earlier in
more symbolically, MIDI-oriented work, particularly in my program Cypher (Rowe,
1993). Seen this way, onset detection and a related density estimation begin to
bridge the levels between sub-symbolic and symbolic systems. The main analytic
difference between the audio-based onset density estimate and the Cypher density
feature is that MIDI Note On commands were much more reliable indicators of
note onsets. The compositional difference between the two has to do with how they
can be used: in my MIDI work, I often employed what I called transformative
operations on the input representation (Rowe, 1993). That is, because the signal
arriving from a human player already consisted of notes identified by pitch,
dynamic, and duration, the response of the program could be formed from
manipulations of those parameters. In audio-level work, because much less is
known about the pitch, dynamic, duration and even grouping of frequencies found
in the input signal, the compositional expression of the output tends toward effects
processing of the signal as a whole, rather than transformations based on
collections of discrete ‘notes’. Another compositional example uses an analysis of
the frequency content of an incoming signal to guide various spectral components
to different locations in a spatialization process (Torchia & Lippe, 2004).
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Timbral Variation as a Control Signal

The idea behind adaptive audio effects is that analyses of an audio stream can be
used as control signals for other processes (Verfaille et al., 2006). This research
area can be seen as directly related to the algorithmic approaches emphasized in
this article: analysis techniques are used to derive various forms of musically or
perceptually meaningful signals from an incoming audio data stream, and the
derived signals are then used to drive some compositional or sound-processing
algorithm in response.

A recent audio effects plug-in developed by Sourcetone, LLC, provides a platform
for using audio analyses adaptively through a visualization and control generation
tool called Optic (Figure 1). Four standard audio analysis processes are available: zero
crossing rate (a simple measure of the ‘noisiness’ of the signal); RMS amplitude (a
common expression of the physical amplitude of the signal); spectral centroid (the
‘center of gravity’ of the spectral content of a signal, showing brightness); and spectral
flatness (a measure of how evenly energy is distributed across the spectral bands).
Any of the four measures may be selected, and the red line on the interface will
display the corresponding value. To use the measures adaptively, the user may direct
the output from any of the analyses through MIDI to a receiving application—the
host application for the plug-in itself, or any other program able to receive MIDI
signals via the widely supported ReWire standard. Once the MIDI version of the
analysis has arrived at the target application, the user can map this information onto
a performance or editing scenario in any way he or she sees fit: spectral centroid
could be used to control the modulation index of a frequency modulation patch in
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Figure 1 Sourcetone Optic plug-in.
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Max/MSP, for example, or the RMS amplitude could be used to adjust the gain in
Peak. Finally, the user can launch a standalone version of the plug-in that will accept
an audio file as input and deliver an output file of time-stamped analysis files,
giving a sample-synchronous record of the full-resolution analysis values for the
entire file.

Clearly such analysis signals can be used to control many aspects of compositional
algorithms, effects processing, spatialization, and sound synthesis. A sub-symbolic
description (in the case of these particular features) can be mapped onto a full range
of output manipulations. Again we see the levels split: audio analysis guides output
processing, but in such a way that the interaction follows low-level spectral variations,
rather than higher-level musical constructs.

Conclusion

Interactive music systems rely on finding musically relevant information in a stream
of data produced by a human musician. In many of their early implementations, such
systems were built on the relatively high-level but constricted MIDI representation.
Current systems are more likely to reference an audio signal, and use analysis
techniques from various sources, importantly including the field of music
information retrieval, to characterize the content on several levels. Both approaches
have strengths and weaknesses: symbolic systems afford a ready pathway to high-level
descriptions of musical content, but are limited by their dislocation from the pure
sound to which they correspond. Sub-symbolic systems are rich in spectral
information, but deliver fewer high-level objects for manipulation. As audio-based
systems develop, we are seeing a growing convergence between the two approaches as
better content descriptions evolve. Given the state of the art, the choice and
implementation of analysis methods and the mapping of their output onto
compositional, synthesis, and effects algorithms may well be considered as part of
the compositional act itself. We may never return to all the same constructs as those
that existed in purely symbolic systems, but the hybrids now emerging provide fertile
new ground for compositional design.
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