Feature Classification and Related Response in a Real-time
Interactive Music System

Robert Rowe
M.I.T. Media Laboratory:
Music & Cognition Group
20 Ames St. Cambridge MA 02139
rowe@media-lab.media.mit.edu

_ Cypher is a real-time interactive music system that has two halves: a
listener and a player. The listener listens to and analyzes external musical input.
The player uses various algorithmic techniques to produce new musical output.
The two halves are each hierarchical, where higher levels correspond to longer
spans of time. The listener classifies for the player features detected in the input
and their behavior over time, and the player uses this information to produce
music in response. Collections of relations can be saved and recalled during
performance by a score orientation section which tracks human performance and
executes state changes at predetermined points in the score.

Cypher is an interactive computer program for composing and performing music.
The program has two parts : a listener and a player. The listener characterizes the
performance input of a player, which could be a human performer, another
computer program, or even Cypher itself, The player generates and plays musical -
material. Both the listener and player are hierarchical structures, in which higher
hierarchical levels correspond to longer spans of time. Let us sketch the basic
functioning of the program: attuned to some MIDI source, the listener examines
each event as it arrives, and produces a representation of it by characterizing the
features density, speed, loudness, register, duration, and chord. On this lowest
level of analysis, the program asserts that all inputs occupy one point in a
featurespace of possible input classifications. The dimensions of this conceptual
space correspond to the features extracted: one point in the featurespace, for
example, would be occupied by high, fast, loud, staccato, C major chords. Higher
levels look at the behavior of these features over time. The listener continually
analyzes incoming data, and sends messages to the player describing what it hears.
The user's task in working with Cypher is to configure the ways in which the
player will respond to those messages. The player has a number of methods of
reponse, such as playing sequences, or initiating compositional algorithms. The
most commonly used method generates output by applying transformations to the
input. These transformations embody small, simple operations such as acceleration,
inversion, delay, or transposition. Though any single operation produces a clearly

1ICMC GLASGOW 1990 PROCEEDINGS



and simply related change in the input, combinations of them result in more
complicated music. Specific sets of operations are performed on any given input
event according to connections made by the user between features and
transformations. Establishing such a connection indicates that whenever a feature is
extracted from the input, the transformation to which it is connected should be
applied to the event, and the result of the operation sent to the synthesizers.

Let us look at the listener's analysis by beginning with the lowest level. The first-
order anzilj'sis places each incoming MIDI event in a multi-dimensional
featurespa‘ée, a space framed by the following perceptual categories : register,
loudness, density, attack speed, duration, and chord quality. Using these
dimensions, the analysis identifies every input event as occupying one point in the
featurespace. The values assigned to these categories are calculated as a function of
the MIDI data associated with the input. For example, the loudness dimension is
decided by simply dividing the velocity field into loud and soft according to some
threshold. The order 2 level analyzes the output of level 1 for patterns of regularity
or irregularity. Level 2 maintains a history of recent featurespace indices. Each time
it is called, the level 2 analyier looks through the history of the eight most recent
featrespace points, and decides whether each feature classified by the point has
been behaving regularly or irregularly over that span. A feature which has remained
the same over the majority of the history is found to be regular, and one which has
changed more often than not is found to be irregular. As with the level 1 analysis,
the regularity findings are continually passed over to the player; the user can then
configure the player to respond in various ways to specific regularity findings.

The generation section of Cypher is designed to accomodate three algorithmic
styles: 1) ransformation of material coming from outside sources, 2) purely
generative algorithmic processes, and 3) performance from a library of sequences.
The most heavily used method involves the transformation of material,
accomplished through the chaining of many small, straightforward modules. The
action of these modules is cumulative: if more than one is used, they are applied
serially, with the output of one operation being passed to the input of the next.
Though the action of any module taken singly is simple and easy to follow, longer
chains of transfomations can build up material that is quite complex, though
deterministically derived from its inputs. Among the transformations already
implemented are the following: acceleration, accentuation, arpeggiation, reversal,

ICMC G1 ASGOW 1990 PROCFENINGS



chord formation, deceleration, glissando generation, inversion, crescendo,
diminuendo, transposition, etc. Level 2 generation processes are used to mutate the
transformation modules; control variables relevant to the transformation method can
be changed according to the nature of the input being reported by the listener and
the current state of the variable. For example, the accelerando module can be made
to accelerate its input more or less than it already does as a function of the speed
| feati_lrc found by the listener, and the accelerando rate currently active. The Cypher
listener listens to a player. The player can be any stream of MIDI input, including
the output of Cypher's own player. Sending the output of the generation section to
the input of the listener causes composition by introspection. Music is generated
from a controlled feedback loop: the player produces some output, which is
analyzed and characterized by the listener. The listener sends messages to the player
about what it has heard (in other words, what the player just produced), and the

player is instructed, through the connections with the analysis features, to transform
its own previous output in some way.

The basic listening model in Cypher combines the output of many small, relatively
simple agéms, following low-level features such as register, density, and loudness,
and the way these change over time. As we have seen, one important facet of their
behavior in time is their regularity, and rate of change. Others include grouping, the
way events are divided into larger structural units, and direction, whereby we
attempt to see some uniformity in the way a feature is changing which might allow
us to predict its future behavior. A simple example of finding direction would be
noticing an accelerando, or crescendo. The performance of high-level tasks, such as
chord énd key identification, or beat tracking, arises from the communication and
mutual influence of many agents on each other and on the higher-level agencies.
These high-level tasks, in turn, inform and direct each other in performing their

own computations, and in contributing to a description of the musical context as a
whole.

1AAAC AT AQCNAW 100N PROCTFENINGS



