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Sound

• Sound is produced by a vibrating source that causes the matter around it to move.

• No sound is produced in a vacuum - Matter (air, water, earth) must be present

• The vibration of the source causes it to push/pull its neighboring particles, which in 
turn push/pull its neighbors and so on.

• Pushes increase the air pressure (compression) while pulls decrease the air pressure 
(rarefaction)

• The vibration sends a wave of pressure fluctuation through the air

Air particles 



Sound power and intensity

• A source (e.g. bell) vibrates when a force (e.g. striking hammer) is applied to it.

• The force applied and the resulting movement characterize the work performed by 
the source (W = F x Δs)

• Power (P = W/t) is the rate at which work is performed and is measured in watts.

• An omnidirectional sound source produces a 3-D longitudinal wave. The resulting 
wavefront is defined by the surface of a sphere (S = 4πr2), where r is the distance 
from the source.

Sound source

r

Wavefront

The original power is distributed on the 
surface of the wavefront.
As r increases, the power per unit area 
(intensity) decreases: I = P/S



Intensity and SPL

• The effect of sound power on its surroundings can be measured in sound pressure 
levels (SPL) - much as temperature in a room relates to the energy produced by a 
heater.

• Both intensity (Watts/area) and sound pressure (Newtons/area) are usually 
represented using decibels (dB)

• dB are based on the logarithm of the ratio between two powers, thus describing 
how they compare (dB = 10log10(P1/P2)).

• This can be applied to other measures (amplitude, SPL, voltage), as long as their 
relationship to power is taken into account.

• In the case of intensity and SPL, the denominator of the ratio is a reference value, 
defined according to the quietest sound perceivable by the average person.

• Thus by convention, 0 dB corresponds to SPL = 2x10-5 N/m2 or I = 10-12 watt/m2



Sound waves (1)

• In sound wave motion air particles do not travel, they oscillate around a point in 
space.

• The rate of this oscillation is known as the frequency (f) of the sound wave and is 
denoted in cycles per second (cps) or hertz (Hz).

• The amount of compression/rarefaction of the air is the amplitude (A) of the sound 
wave.

• The distance between consecutive peaks of compression or rarefaction is the 
wavelength of the sound wave (λ)



Sound waves (2)

• If the frequency of the oscillation is stable, then the sound wave is periodic (with 
period T, and frequency f = 1/T)

• The simplest periodic wave is a sinusoid:

T

Compressions

Rarefactions

x(t) = A · sin(2⇡ft+ ✓)



Sound waves (3)

• Phase is a temporal offset, defined in terms of a fraction (degrees) of a complete 
cycle of the periodic wave.

• The frequency defines the number of cycles per second, thus the time x frequency x 
360° returns the (unwrapped) angular phase
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Phase (1)

• In phase: cycles coincide exactly (sum duplicates amplitude)

• Out of phase: half cycles are exactly opposed (sum cancels them)
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Phase (2)

• There is a range of partial additions and cancellations in between those extremes

•  What causes phase difference? 

• The phase difference depends on the time deviation and the wave’s frequency
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Types of sounds (1)

• Sinusoids are only one possible type of sound corresponding to the simplest mode 
of vibration, producing energy at only one frequency

• Most sources are capable of vibrating in several harmonic modes at the same time, 
generating energy at different frequencies

nodes antinodes

1st harmonic

2nd harmonic

3rd harmonic
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Types of sounds (2)

• Harmonics (or Overtones or Partials) are frequency components that occur at 
integer multiples of the fundamental frequency

• Their amplitude variations determine the timbre of the sound

f

T = 1/f
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Types of sounds (3)

• Example: Square wave - only odd harmonics (even are missing). Amplitude of the 
nth harmonic = 1/n



Types of sounds (4)

• Most natural pitched sounds also present overtones which are not integer multiples 
of the fundamental.

• These are known as inharmonic partials

Harmonic Inharmonic



Types of sounds (5)

• Non-periodic sounds have no pitch and tend to have continuous spectra, e.g. a 
short pulse (narrow in time, wide in frequency)

• The most complex sound is white noise (completely random) 

• The more complex, the noisier the sound is
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Digital audio



Discrete Signal and 
Sampling

x(t)

p(t)

x̂(tn) = Q(x(t)⇥ p(t))



X(!)
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Aliasing
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Aliasing

! = 2⇡f

!k = 2⇡(fs � f)



Discrete Fourier Transform (DFT)

X(!k) ⌘
PN�1

n=0 x(tn)e
�j!ktn

x = input signal
tn = n

fs = discrete time (s), n � 0 is an integer

fs = sampling rate (Hz)
X = spectrum of x
!k = k⌦ = discrete frequency (rad/s), k � 0 is an integer
⌦ = 2⇡( fsN ) = frequency sampling interval (rad/s)
N = number of time/frequency samples

Simple form :

X(k) ⌘
PN�1

n=0 x(n)e�j2⇡nk/N



Discrete Fourier Transform (DFT)
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This can also be written as:

X(k) = hx(n), sk(n)i

Which can be formulated as a matrix multiplication:



Discrete Fourier Transform (DFT)

Real part Imaginary part
where,

sk(n) = e

j2⇡nk/N
= cos(2⇡nk/N) + jsin(2⇡nk/N)

is the set of the sampled complex sinusoids with

a whole number of periods in N samples (Smith, 2007).



Discrete Fourier Transform (DFT)

The N resulting X(k) are complex-valued vectors

XR(k) + jXI(k) such that, 8k = 0, 1, · · · , N � 1:

|X(k)| =
p

X

2
R(k) +X

2
I (k)

\X = �(k) = tan

�1 XI(k)
XR(k)

Furthermore, if x(n) is real-valued, then:

X(k) = X

⇤
(N � k)

The DFT of an audio signal is half-redundant!



Discrete Fourier Transform (DFT)

Conjugate PairsSpectrum



The IDFT and FFT

• The Inverse DFT (IDFT) is defined as:

• The DFT needs on the order of N2 operations for its computation.

• The Fast Fourier Transform (FFT) is an efficient implementation of the 
DFT, that only requires on the order of Nlog2N operations when N is a 
power of 2.

• The FFT is so fast that it can be used to efficiently perform time-domain 
operations such as convolution.

x(n) ⌘ 1

N

N�1X

k=0

X(k)ej2⇡nk/N , n = 0, 1, · · · , N � 1



Spectral Leakage

glitch

Whole number of periods Fractional number of periods

N N

Leakage



Zero padding

N-long signal Zero padded to 8xN length

Spectrum Interpolated Spectrum



Windows

• We are effectively using a 
rectangular window: w(n)

• Spectrum = convolution of X(k) 
and W(k)

• Ideal window: narrow central 
lobe; strong attenuation in 
sidebands

• Figures show Magnitude in dB:

dB(X) = 20⇥ log10(X)



Windowing



Short-Time Fourier Transform (STFT)
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Spectrogram - male speaker



Spectrogram - female speaker



Spectrogram - baby cooing



Spectrogram - violin



Spectrogram - birds by lakeside



Spectrogram - street



Spectrogram



Time vs Frequency Resolution

frequency ↑
time ↓

frequency ↓
time ↑



Instantaneous Frequency

2⇡k

N

The instantaneous frequency for frequency bin k at time

instant mh can be defined as (Arfib et al., 2003):

fi, k(m) =

1
2⇡

d�k(m)
dt =

1
2⇡

��k(m)
h/fs

where,

��k(m) = ⌦kh+ princarg[�k(m)� �k(m� 1)� ⌦kh]

and

princarg(x) = ⇡ + [(x+ ⇡)mod(�2⇡)]

wraps the phase to the (�⇡,⇡] range.



Instantaneous Frequency



Instantaneous Frequency



• Solo guitar/polyphonic examples: (1) original, (2) standard, (3) adaptive

Time Scaling

* from DAFX book, chapter 8



• The signal is approximated as a sum of time-varying sinusoidal components 
plus a residual:

Sinusoidal Modeling

x(n) ⇡
PK

k=0 ak(n)cos(�k(n)) + e(n)

where,

ak = instantaneous amplitude

�k = instantaneous phase

e(n) = residual (noise)



Peak picking + 
interpolation

•Sinusoidal components are 
peak-picked.
•Instantaneous magnitude and 
phase values are obtained by 
interpolation.
•Components are tracked over 
time



Sinusoidal Tracking



Sinusoidal Modeling

Sinusoidal model

Noise model

* from DAFX book, chapter 10



• We assume the residual to be a stochastic signal, i.e. can be described by its 
general spectral characteristics

• It is not necessary to maintain instantaneous phase or exact magnitudes.

• Hence, it can be modeled as the output of a time-varying filter driven by 
noise. 

• The filter parameters encode the general spectral characteristics of the 
residual.

• Filter design usually involves an approximation of the spectral shape using: 
channel vocoder, LPC, Cepstrum, etc (see Lecture 5).

Noise Modeling



• Example approximation using max value per frequency band

Noise Modeling



Synthesis

* from DAFX book, chapter 10



Examples

http://mtg.upf.edu/technologies/sms?p=Sound
%20examples
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