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Novelty detection

• Find the start time (onset) 
of new events in the 
audio signal.

• Onset: single instant 
chosen to mark the start 
of the (attack) transient. 

Energy burst

Short duration

Unstability

Steady state



Applications

• Identifying regions of interest in environmental recordings

• Segmentation of word/phonemes in speech, notes in music

• First layer of rhythm analysis

• Sound manipulation and synthesis: http://www.music.mcgill.ca/~hockman/
projects/ARTMA/index.html

• Computational biology?!! http://isophonics.net/content/calcium-signal-
analyser



Difficulties

• transient extended in time

• multiple voices -> 
(a)synchronous onsets 

• ambiguous events (vibrato, 
tremolo, glissandi) 

• perceptual vs physical
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Architecture
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(peak picking)
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Time-domain

• Onsets: often characterized by an amplitude increase

• Envelope following (full-wave rectification + smoothing):

• Squaring instead of rectifying, results in the local energy:
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Time-domain



Time-domain

• We can use the derivative of energy w.r.t. time -> sharp peaks during energy 
rise

• Detectable changes in loudness are proportional to the overall loudness of 
the sound.

• Simulates the ear’s perception of loudness (Klapuri, 1999)
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Time-domain



Frequency-domain

• Impulsive noise in time -> 
wide band noise in frequency

• More noticeable in high 
frequencies.

• Linear weighting of Energy
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• We can also measure change (flux) in spectral content (Duxbury, 02).

• Use half-wave rectification to only take energy increases into account

• Use the (squared) L2 norm of the flux vector

Frequency-domain
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Spectral Flux



Phase deviation

• The change in instantaneous frequency in bin k can be used to detect onsets 
(Bello, 03)
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Phase deviation

• This function can be improved by weighting frequency bins by their 
magnitude (Dixon, 06):

• and normalized:
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Phase deviation



Complex domain

• We can combine the spectral flux and phase deviation strategies, such that:

X̂k(m) = |X̂k(m)|ej�̂k(m)

where,

|X̂k(m)| = |Xk(m� 1)|
�̂k(m) = princarg (2�k(m� 1)� �k(m� 2))

such that,
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Complex domain

• As before, we can use half-wave rectification to improve the function (Dixon, 
06):

CD(m) =

2
N

PN/2
k=0 RCDk(m)

where,

RCDk(m) =

⇢
|Xk(m)� ˆXk(m)| if |Xk(m)| � |Xk(m� 1)|
0 otherwise



Complex domain



Peak picking

• The function is post-processed to facilitate peak picking:

• Smoothing -> decrease jaggedness

• Normalization -> generalization of threshold values

• Thresholding -> eliminate spurious peaks



Peak picking

• Adaptive thresholding is a more robust choice, typically defined as: 

• where f is a function, e.g. the local mean or median, of the detection function; 
β increases the window length before the peak; and α is an offset value

• Peak picking reduces to selecting local maxima above the threshold 

�(m) = ↵+ f(m̄), m� �L  m̄  m+ L



Peak picking



Comparing detection functions
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Benchmarking
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