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Periodicity detection

• Formally, a periodic signal 
is defined as:

• Detect the fundamental 
period/frequency (and 
phase)

x(t) = x(t+ T0), 8t



Applications

• At short (pitch) and long (rhythm) time 
scales:

• pitch-synchronous analysis
• voice/sound identification
• prosodic analysis
• bioacoustics
• melodic analysis
• note transcription
• beat tracking, segmentation



Difficulties

• Quasi-periodicities, temporal 
variations

• Multiple periodicities 
associated with f0

• transients and noise

• Polyphonies: information 
overlap
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Overlap
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Overview of Methods

• DFT

• Autocorrelation

• Spectral Pattern Matching

• Cepstrum

• Spectral Autocorrelation

• YIN

• Auditory model
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• Cross-product measures similarity across time 

• Cross-correlation of two real-valued signals x and y:

• Unbiased (short-term) Autocorrelation Function (ACF):

Autocorrelation
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Autocorrelation

• The short-term ACF can also be computed as:
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Autocorrelation

• This is equivalent to the following correlation:
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Pattern Matching	

• Comb filtering is a common strategy

• Any other template that realistically fits the magnitude spectrum

• Templates can be specific to sound sources 

• Matching strategies vary: correlation, likelihood, distance, etc.



Pattern Matching



• Treat the log magnitude spectrum as if it were a signal -> take its (I)DFT 

• Measures rate of change across frequency bands (Bogert et al., 1963)

• Cepstrum -> Anagram of Spectrum (same for quefrency, liftering, etc)

• For a real-valued signal is defined as:

Cepstrum

c

x

(l) = real(IFFT (log(|FFT (x)|)))



Cepstrum



Spectral ACF

• Spectral location -> sensitive to quasi-periodicities

• (Quasi-)Periodic Spectrum, Spectral ACF.

• Exploits intervalic information (more stable than locations of partials), while 
adding shift-invariance.  
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Spectral ACF



YIN

• Alternative to the ACF that uses the squared difference function 
(deCheveigne, 02):

• For (quasi-)periodic signals, this functions cancel itself at l = 0, l0 and its 
multiples. Zero-lag bias is avoided by normalizing as:
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Auditory model

Auditory filterbank

Inner hair-
cell model

Periodicity
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Auditory model

• Auditory filterbank: gammatone filters (Slaney, 93; Klapuri, 06):



Auditory model

The Equivalent Rectangular Bandwidths (ERB)

of the filters:
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Auditory model

• Beating: interference 
between sounds of 
frequencies f1 and f2 

• Fluctuation of amplitude 
envelope of frequency |f2 - 
f1| 

• The magnitude of the 
beating is determined by 
the smaller of the two 
amplitudes



• Inner hair-cell (IHC) model:

Auditory model



Auditory model

• Sub-band periodicity 
analysis using ACF

• Summing across 
channels (Summary 
ACF)

• Weighting of the 
channels changes the 
topology of the SACF



Auditory model
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Tempo

• Tempo refers to the pace of a piece of music and is usually given in beats per 
minutes (BPM).

• Global quality vs time-varying local characteristic.

• Thus, in computational terms we differentiate between tempo estimation and 
tempo (beat) tracking.

• In tracking, beats are described by both their rate and phase.

• Vast literature: see, e.g. Hainsworth, 06; or Goto, 06 for reviews.



• Novelty function (NF): remove local mean + half-wave rectify 

• Periodicity: dot multiply ACF of NF with a weighted comb filterbank

•

Tempo estimation and tracking (Davies, 05)

Rw(l) = (l/b2)e
�l2

2b2

*From Davies and Plumbley, ICASSP 2005



Tempo estimation and tracking (Davies, 05)

• Choose lag that maximizes the ACF



Tempo estimation and tracking (Davies, 05)

• Choose filter that maximizes the dot product



Tempo estimation and tracking (Davies, 05)

• Phase: dot multiply DF with shifted versions of selected comb filter



Tempo estimation and tracking (Grosche, 09)

• DFT of novelty function γ(n) for frequencies:

• Choose frequency that maximizes the magnitude spectrum at each frame

• Construct a sinusoidal kernel:

• In Grosche, 09 phase is computed as:

• Alternatively, we can find the phase that maximizes the dot product of γ(n) 
with shifted versions of the kernel, as before.
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Tempo estimation and tracking (Grosche, 09)

• tracking function: Overlap-add of optimal local kernels + half-wave rectify

*From Grosche and Mueller, WASPAA 2009



Tempo estimation and tracking (Davies, 05)
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• This lecture borrows heavily from: Emmanuel Vincent’s lecture notes on pitch 
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School: http://ismir2004.ismir.net/graduate.html)


