Linear Predictive Coding

- The problem of linear prediction is the estimation of the set of coefficients ax
from the input signal x(n). The standard solution minimizes the mean square
error:
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Linear Predictive Coding

Can be written in matrix form as:
P =1
where:

Py = o(|t — kJ)

a — ag
b = ¢(k)

which can be solved using the Levinson-Durbin recursion



Linear Predictive Coding
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Remember Cepstrum??

 Treat the log magnitude spectrum as if it were a signal -> take its ()DFT

- Measures rate of change across frequency bands (Bogert et al., 1963)

 For a real-valued signal it’s defined as:

[cw(l) — Teal(IFFT(log(\FFT(:L’)\)))J

 Followed by low-pass “liftering” in the cepstral domain



Cepstrum

 The real cepstrum can be weighted using a low-pass window of the form:

1 ifl=0,1L,
wLp(l) — 2 it1<[<
0 ifLi<lI<L-1

CLP(Z) — Cx(l) X wLp(l)

Cpp(k) = BFFT(cLp (D)

« Such that L1 < L/2, and C.p is the spectral envelope.



Cepstrum

- The spectral envelope approximation is coarser/finer depending on L1
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Cepstrum
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MFCC

- Mel-frequency Cepstral Coefficients (MFCC): variation of the linear cepstrum,
widely used in audio analysis.

- Most popular features in speech (Gold et al, 2011): due to their ability to
compactly represent the audio spectrum. Introduced to music DSP by Logan
(ISMIR, 2000). Ubiquitous in environmental sound analysis.
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MFCC

- The Mel scale is a non-linear perceptual scale of pitches judged to be
equidistant:

f
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me 7.01028 X og(+700

mel

f =700 x (6 1127.01028 — 1)

« Approx. linear f < 1kHz; logarithmic above that.

- Reference point is at f = 1kHz, which corresponds to 1000 Mel: a tone
perceived to be half as high is 500 Mel, twice as high is 2000 Mel, etc.



MFCC

- Filterbank of overlapping windows

-« Center frequencies uniformly distributed in mel scale, s.t. the center
frequency of one window: starting point of next window and end point of

previous window.
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« All windows are normalized to unity sum.



MFCC

- An efficient representation of the log-spectrum can be obtained by applying a
transform that decorrelates the Mel dB spectrum (see Rabiner and Juang, 93).

 This decorrelation is commonly approximated by means of the Discrete
Cosine Transform (DCT)

« DCT: real-valued transform, similar to the DFT. Most of its energy is
concentrated on a few low coefficients (effectively compressing the spectrum)

Xpor (k) = \/% ng(”)cos {%k (" ) %)}



MFCC

o -
~— [ o=
£ 4000 @
o o
o 2
O 2000 =
° ©
g =
%) 0
0 2000 4000
fin)
] x
. -
O [}
g €
-
@ O
§ a

o 0 MMMM:

I'I [T E T T |||[

_ll- ll] l l:Imml[ll:-:li"lllll- H : Ill”4 ] rlm-l lllll-l

0 2 4 6 8 10 12 18
MFCC




MFCC
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A reminder

- The feature vector is representing an N-long time segment, and is best
mapped in time to the center of the window

center of the window
I

I
signal s':amples

e zero-padding

- Zero-padding can be used to map the first vector to n = 0, and ensure all the
signal is analyzed

| Feature vector |~@=t=




Post-processing

- We can characterize the short-term temporal dynamics of feature coefficients
by using delta and acceleration coefficients:

y(n) —2y(n — h) +y(n — 2h)
h2

AAy =

- Normalization is often necessary/beneficial:

y — min(y)
max(y — min(y)) Ty

Y =



Post-processing

- Normalizing features across time avoids bias towards high-range features
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- Normalizing feature vectors make them more comparable to each other

« Looses dynamic change information



Summarization

- Global (song/sound) features can be obtained by summarizing frame-level
features:
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 Resulting on a single 2xP-long feature vector of means and variances.

- If not independent we measure the covariance:

cov =" (y—py)(y—py)" /M

m



Summarization

 Texture windows can be used to capture local behavior:
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Summarization

- Computing simple statistics across time ignores temporal ordering. Same
global features for:

Original signal

Re-shuffled signal

Reversed signal
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