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Tonality

• Most western music is based on the tonality system.

• Tonality: arranges sounds according to pitch relationships into inter-
dependent spatial and temporal structures.

• Characterizing chords, keys, melody, motifs and even form, largely depends 
on understanding these structures.

• Harmony: vertical (synchronous) pitch structures

• Melody: horizontal (sequential) pitch structures



Pitch perception

• The pitch helix is a representation of pitch 
relationships that places tones in the surface 
of a cylinder (Shepard, 2001)

• Models the special relationship that exists 
between octave intervals.

• The model is a function of 2-dimensions:

• Height: naturally organizes pitches from low 
to high

• Chroma: represents the inherent circularity of 
pitch organization



• Chroma describes the angle of pitch rotation as it traverses the helix
• Two octave-related pitches will share the same angle in the chroma circle: a 

relation that is not captured by a linear pitch scale (or even Mel).

• For the analysis of western tonal music we quantize this angle into 12 
positions or pitch classes.

Chroma



Independence of chroma from height

• Shepard tones: mix of sinusoids with octave-separated frequencies, and a 
bell-shaped spectral shape

• Scales of these tones create the illusion of constantly rising/falling



Chroma features

• aka Pitch Class Profiles (PCP): distribution of the signal’s energy across a 
predefined set of pitch classes (chroma).

• Popular feature in music DSP: introduced by Fujishima (ICMC, 99) and 
Wakefield (SPIE, 99). Extensively used for chord, key recognition, 
segmentation, synchronization, fingerprinting, etc. 

• Many strategies for its computation: Log-frequency filterbanks in the time and 
frequency-domain, CQ-transform, SMS, phase vocoder. 

Log-freq 
filterbank FoldingDFTaudio PCP



Chroma features

• Center frequencies linear in log2 scale

fc(klf ) = fmin ⇥ 2
klf
�

fmin = minimum frequency of the analysis (Hz)

klf = integer filter index 2 [0, (� ⇥ Z)� 1]

� = bins per octave

Z = number of octaves



• Filterbank of overlapping windows 

• Center frequency of one window: starting point of next window and end point 
of previous window.

• All windows are normalized to unity sum.

Chroma features



Chroma features



Chroma features

• The chroma is computed by summing the log-frequency magnitude spectrum 
across octaves

• The resulting sequence of chroma vectors is known as chromagram

Cf (b) =
PZ�1

z=0 |Xlf (b+ z�)|

Xlf = log-frequency spectrum

z = integer octave index 2 [0, Z � 1]

Z = number of octaves

b = integer pitch class (chroma) index 2 [0,� � 1]

� = bins per octave



Chroma limitations
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Improving Chroma

• Filterbank:     
each harmonic 
contributes to f0 
with a weight

Gomez (2006)

si�1, s < 1



Improving Chroma

• Chroma Energy Normalized Statistics (CENS, Müller 2007)



• Chroma DCT-Reduced log Pitch (CRP, Müller and Ewert 2010)

Improving Chroma



• Beat synchronous (Bartsch and Wakefield, 2001)

Improving Chroma



Key detection

• Subjective ratings of fit for tones within a key context (Krumhansl and Kessler, 
1982)



Key detection

• Gomez’s key finding algorithm (2006)

Key 
Templates Similarity

Average

Max

chroma features

key



Key detection

• Templates: combine 
tonic, sub-dominant 
and dominant triads 
per key + harmonic 
info

• Similarity: Correlation 
between average 
chroma and template



Key detection

• Templates: combine 
tonic, sub-dominant 
and dominant triads 
per key + harmonic 
info

• Similarity: Correlation 
between average 
chroma and template



Chord recognition

• Template matching approach pioneered by Fujishima (ICMC, 1999), and used 
by, e.g., Harte and Sandler (AES, 05), Oudre et al (TSALP, 2011).

LPF Matchingchroma 
features

templates

Max chordsLPF



Chord recognition

• Simple binary templates



Chord recognition: distance/fitness

• Measures how well the templates fit each frame of the chromagram (we 
select, e.g. the template that maximizes the dot product at each frame)
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Chord recognition
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Chord recognition: pre-filtering
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Chord recognition
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Chord recognition: pre-filtering
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Chord recognition: post-filtering

• The fitness matrix is also filtered before peak picking (e.g. via moving mean or 
median filters or, preferably, using the Viterbi algorithm) 
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Chord recognition
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• Chords: hidden states of a process (sj); Chroma features: observable result of 
that process (yt). One state per observation.

• States and observations are connected by the emission probability: observing 
a chroma vector at frame t given chord i

• Next chord occurrence depends only on the current chord (Markov process)

• Goal: to find the most likely sequence of chords that results on the current 
chromagram - > Viterbi algorithm

Viterbi algorithm
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• States(sj): a finite set of J chords (e.g. 24 major/minor triads)

• Observations (yt): chromagram

• Initial (prior) probability (πj): same value for all chords

• P(yt | sj): positive fitness/matching values, normalized to sum to unity

• Matrix of transition probabilities between states (aij)

Viterbi algorithm
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Viterbi algorithm
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Initialization:

V1,j = log[(P (y1|sj)] + log[⇡j ]

then for t = 2 : T ,

Vt,j = maxi {Vt�1,i + log[aij ] + log[(P (yt|sj)]} , i 2 [1, J ]

path(t� 1, j) = ı̂, the i that maximizes the sum.

Finally,

ˆ

path = path(t, argmaxi(VT,i)), 8t 2 [1, T ]



Chord recognition
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Chord ID: Post-filtering

• Computation of transition probabilities (aij) from: music knowledge, annotated 
data, random. 

• Separately adjusting the self-transition probability via a transition penalty P:
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log(â) =

(
log(aij)� log(P ) for i 6= j

log(aij) for i = j



Chord recognition: post-filtering

• Enforcing strong self-transitions (regardless of the rest!):
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Chord recognition: Pattern Matching
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Chord recognition: Pattern Matching
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Perfect fifths 

Major thirds 

Minor thirds 

Tonnetz

• The Tonnetz is a pitch space defined by the network of relationships between 
musical pitches in just intonation (Euler, 1739) 

• Close harmonic relations are modeled as short distances on an infinite 
Euclidian plane



Tonnetz

• Chords become geometric structures on the plane, keys are defined by 
regions in the harmonic network

Major triad 

Minor triad 

Augmented 

Diminished 

Major 7th chord 



Tonnetz

• Introducing Enharmonic and Octave Equivalence reduces the set of all notes 
to 12 pitch classes and wraps the plane into a hypertorus.

• The 6D interior space of the hypertorus can be seen as three 2D circles: of 
fifths, major thirds and minor thirds. Chords can be described by their 6D 
centroids in this space (Harte and Gasser, 2006).



Tonnetz

• Harte and Gasser’s tonal centroid of a chroma vector can be computed as: 

TC(d) =
1P

b |Cf (b)|

��1X

b=0

�(d, b)Cf (b)

� = [�0,�1 · · ·���1]

�b =

2
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