
Sound Classification

Juan Pablo Bello
EL9173 Selected Topics in Signal Processing: Audio Content Analysis
NYU Poly

Classification

• It is the process by which we automatically assign an individual item to one of
a number of categories or classes, based on its characteristics.

• In our case:

• (1) the items are audio signals (e.g. sounds, tracks, excerpts);

• (2) their characteristics are the features we extract from them (MFCC,
chroma, centroid);

• (3) the classes (e.g. speakers, instruments, phones, sound environment) fit
the problem definition

• The complexity lies in finding an appropriate relationship between features
and classes

Example

• 200 sounds of 2 different kinds (red and blue); 2 features extracted per sound

• The 200 items in the 2-D feature space

Example

• Boundary that optimizes performance -> risk of overfitting (excessive
complexity, poor predictive power)

Example

• Generalization -> Able to correctly classify novel input

Example

Classification of audio signals

• A number of relevant tasks:

• Source Identification

• Automatic Speech Recognition

• Automatic Music Transcription

• Labeling/Classification/Tagging

• Music/Speech/Environmental Sound Segmentation

• Sentiment/Emotion Recognition

• Common machine learning techniques applied in related fields (e.g. image,
natural language processing)

An audio classifier

• Feature extraction: (1) feature
computation; (2) summarization

• Pre-processing: (1)
normalization; (2) feature
selection

• Classification: (1) use sample
data to estimate boundaries,
distributions or class-
membership; (2) classify new
data based on these
estimations

Feature vector 1 Feature vector 2

Classification

Model

Feature set (recap)

• Feature extraction is necessary as audio signals carry too much redundant
and/or irrelevant information

• They can be estimated on a frame by frame basis or within segments, sounds
or tracks.

• Many possible features: spectral, temporal, pitch-based, etc.

• A good feature set is a must for classification

• What should we look for in a feature set?

Feature set (what to look for?)

• A few issues of feature design/choice:

• Can be robustly estimated from available audio (e.g. spectral envelope vs
onset rise times in polyphonies)

• Relevant to classification task (e.g. MFCC vs chroma for source ID) -> noisy
features make classification more difficult!

• Feature set should be as invariant as possible to changes within the natural
class’ range

Feature set (what to look for?)

• We expect variability within sound classes

• For example: trumpet sounds change considerably between, e.g. different
loudness levels, pitches, instruments, playing style or recording conditions

• Classes are never fully described by a point in the feature space but by the
distribution of a sample population

Features and training

• Class models must be learned on many sounds to properly account for
between/within class variations

• The natural range of features must be well represented on the sample
population

• Failure to do so leads to overfitting: training data only covers a sub-region of
its natural range and class models are inadequate for new data.

Feature set (what to look for?)

• Low(er) dimensional feature space -> Classification becomes more difficult as
the dimensionality of the feature space increases.

• As free from redundancies (strongly correlated features) as possible

• Discriminative power: good features result in separation between classes and
grouping within classes

Feature distribution

• Remember the histograms of our example. They describe the behavior of
features across our sample population.

• It is desirable to parameterize this behavior

• A Normal or Gaussian distribution is a bell-shaped probability density function
defined by two parameters, its mean (μ) and variance (σ2):

N (xl;µ,�) =
1

�

p
2⇡

e

� (x
l

�µ)2

2�2

Feature distribution

µ =
1

L

LX

l=1

xl

�

2 =
1

L

LX

l=1

(xl � µ)2

• In D-dimensions, the distribution becomes an ellipsoid defined by a D-
dimensional mean vector and a DxD covariance matrix:

Feature distribution

C(x, y) =
1

L

LX

l=1

(x
l

� µ

x

)(y
l

� µ

y

)

• Cx is a square symmetric DxD matrix: diagonal components are the feature
variances; off-diagonal terms are their co-variances

• High covariance between features shows as a narrow ellipsoid (high
redundancy)

Feature distribution

*from Shlens, 2009

• To avoid bias towards features with wider range, we can normalize all to have
zero mean and unit variance:

Data normalization

€

σ =1

€

µ = 0

x̂ = (x� µ)/�

• Complementarily we can minimize redundancies by applying Principal
Component Analysis (PCA)

• Let us assume that there is a linear transformation A, such that:

• Where xl are the D-dimensional feature vectors (after mean removal) such
that: Cx = XXT/L

PCA

Y = AX

2

64
a1 · x1 · · · a1 · xL

...
. . .

...
aD · x1 · · · aD · xL

3

75 =

2

6664

a1

a2
...

aD

3

7775
⇥
x1 x2 · · · xL

⇤

PCA

• What do we want from Y:

• Decorrelated: All off-diagonal elements of Cy should be zero

• Rank-ordered: according to variance

• Unit variance

• A -> orthonormal matrix; rows = principal components of X

PCA

• How to choose A?

• Any symmetric matrix (such as Cx) is diagonalized by an orthogonal matrix E
of its eigenvectors

• For a linear transformation Z, an eigenvector ei is any non-zero vector that
satisfies:

• Where λi is a scalar known as the eigenvalue

• PCA chooses A = ET, a matrix where each row is an eigenvector of Cx

C
y

=
1

L
Y Y T =

1

L
(AX)(AX)T = A

✓
1

L
XXT

◆
AT = AC

x

AT

Zei = �iei

PCA

• In MATLAB:

From http://www.snl.salk.edu/~shlens/pub/notes/pca.pdf

Dimensionality reduction

• Furthermore, PCA can be used to reduce the number of features:

• Since A is ordered according to eigenvalue λi from high to low

• We can then use an MxD subset of this reordered matrix for PCA, such that
the result corresponds to an approximation using the M most relevant feature
vectors

• This is equivalent to projecting the data into the few directions that maximize
variance

• We do not need to choose between correlating (redundant) features, PCA
chooses for us.

• Can be used,e.g., to visualize high-dimensional spaces

Discrimination

• Let us define:

Sw =
KX

k=1

(Lk/L)Ck

Sb =
KX

k=1

(Lk/L)(µk � µ)(µk � µ)T

Proportion of occurrences of class k in the sample

Within-class scatter matrix Covariance matrix for class k

Between-class scatter matrix

global mean

Mean of class k

Discrimination

• Trace{U} is the sum of all diagonal elements of U, s.t.:

• Trace{Sw} measures average variance of features across all classes

• Trace{Sb} measures average distance between class means and global mean
across all classes

• The discriminative power of a feature set can be measured as:

• High when samples from a class are well clustered around their mean (small
trace{Sw}), and/or when different classes are well separated (large trace{Sb}).

J0 =
trace{Sb}
trace{Sw}

Feature selection

• But how to select an optimal subset of M features from our D-dimensional
space that maximizes class separability?

• We can try all possible M-long feature combinations and select the one that
maximizes J0 (or any other class separability measure)

• In practice this is unfeasible as there are too many possible combinations

• We need either a technique to scan through a subset of possible
combinations, or a transformation that re-arranges features according to their
discriminative properties

Feature selection

• Sequential backward selection (SBS):

1. Start with F = D features.

2. For each combination of F-1 features (inc. chosen F) compute J0

3. Select the combination that maximizes J0

4. Repeat steps 2 and 3 until F = M

• Good for eliminating bad features; nothing guarantees that the optimal (F-1)-
dimensional vector has to originate from the optimal F-dimensional one.

• Nesting: once a feature has been discarded it cannot be reconsidered

Feature selection

• Sequential forward selection (SFS):

1. Select the individual feature (F = 1) that maximizes J0

2. Create all combinations of F+1 features including the previous
winner and compute J0

3. Select the combination that maximizes J0

4. Repeat steps 2 and 3 until F = M

• Nesting: once a feature has been selected it cannot be discarded

LDA

• An alternative way to select features with high discriminative power is to use
linear discriminant analysis (LDA)

• LDA is similar to PCA, but the eigenanalysis is performed on the matrix Sw-1Sb
instead of Cx

• Like in PCA, the transformation matrix A is re-ordered according to the
eigenvalues λi from high to low

• Then we can use only the top M rows of A, where M < rank of Sw-1Sb

• LDA projects the data into a few directions maximizing class separability

Classification

• We have:

• A taxonomy of classes

• A representative sample of the signals to be classified

• An optimal set of features

• Goals:

• Learn class models from the data

• Classify new instances using these models

• Strategies:

• Supervised: models learned by example

• Unsupervised: models are uncovered from unlabeled data

Instance-based learning

• Simple classification can be performed by measuring the distance between
instances.

• Nearest-neighbor classification:

• Measures distance between new sample and all samples in the training set

• Selects the class of the closest training sample

• k-nearest neighbors (k-NN) classifier:

• Measures distance between new sample and all samples in the training set

• Identifies the k nearest neighbors

• Selects the class that was more often picked.

Instance-based learning

• In both these cases, training is reduced to storing the labeled training
instances for comparison

• Known as “lazy” or “memory-based” learning.

• All computations are performed during classification

• Complexity increases with number of training instances.

• Alternatively, we can store only a few class prototypes/models (e.g. class
centroids)

Instance-based learning

• We need to choose k to avoid overfitting, e.g., k = √L where L is the number
of training samples

• Works well for well-separated classes; and an appropriate combination of
distance metric and feature pre-processing

Instance-based learning

• The effect of standardization (from Peltonen’s MSc thesis, 2001)

Instance-based learning

• Mahalanobis distance: considers the underlying distribution

d(x,y) =
q

(x� y)TC�1(x� y)

Probability

• Let us assume that the observations X and classes Y are random variables

*From Bishop’s Machine Learning book, 2007

Probability

L = total number of blue dots

ci = number of dots in column i
rj = number of dots in row j
nij = number of dots in cell ij

P (X,Y) = P (Y,X) =

nij

L

P (X) =

ci
L =

P
j P (X,Y)

P (Y |X) =

nij

ci

P (X,Y) =

nij

L =

nij

ci
ci
L = P (Y |X)P (X)

Joint Probability

Marginal Probability

Conditional Probability

Symmetry rule

Sum rule

Product rule

Probability

• Thus we can derive Bayes’ theorem as:

P (classi|x) =
P (x|classi)P (classi)

P (x)

Posterior: probability of
class i given an
observation x

Likelihood: Probability
of observation x, given

class i

Prior: Probability
of class i

Marginal Likelihood: Normalizing constant (same for
all classes) that ensures posterior adds to 1

P (x) =
X

i

P (x|classi)P (classi)

Probabilistic Classifiers

• Classification: finding the class with the highest probability given the
observation x

• Find i that maximizes the posterior probability P(classi|x) -> Maximum A
Posteriori (MAP)

• Since P(x) is the same for all classes, this is equivalent to:

• From the training data we can learn the likelihood P(x|classi) and the prior
P(classi)

argmax

i
[P (x|classi)P (classi)]

Gaussian Mixture Model

• We can model (parameterize) the likelihood using a Gaussian Mixture Model
(GMM) -> the weighted sum of K multidimensional Gaussian distributions:

• Where wik are the mixing weights and:

P (x|classi) =
KX

k=1

wikN (x;µik, Cik)

N (x;µ,C
x

) =
1

(2⇡)D/2|C
x

|1/2
e�

1
2 (x�µ)TC

x

�1(x�µ)

Gaussian Mixture Model

• 1-D GMM (Heittola, 2004)

• With a sufficiently large K a GMM can approximate any distribution
• However, increasing K increases the complexity of the model and

compromises its ability to generalize

Gaussian Mixture Model

• The model is parametric, consisting of K weights, mean vectors and
covariance matrices for every class.

• If features are decorrelated, then we can use diagonal covariance matrices,
thus considerably reducing the number of parameters to be estimated
(common approximation)

• Parameters can be estimated using the Expectation-Maximization (EM)
algorithm (Dempster et al, 1977).

• EM is an iterative algorithm whose objective is to find the set of parameters
that maximizes the likelihood.

K-means

• Dataset: L observations of a D-dimensional variable x

• Goal: find the partition into K clusters, each represented by a prototype μk,
that minimizes the distortion:

• where the “responsibility” function rlk = 1 if the lth observation is assigned to
cluster k, 0 otherwise

• We don’t know the optimal rlk and μk

J =
LX

l=1

KX

k=1

rlkkxl � µkk22

K-means

1. Choose initial values for μk

2. E (expectation)-step: keeping μk fixed, minimize J with respect to rlk

3. M (maximization)-step: keeping rlk fixed, minimize J with respect to μk

4. repeat 2 and 3 until J or the parameters stop changing

µk =

P
l rlkxlP
l rlk

rlk =

⇢
1 if k = argmink kxl � µkk22
0 otherwise

K-means

select k
random

centers

assign to

cluster

recalculate

centers repeat end

*from http://www.autonlab.org/tutorials/kmeans11.pdf

K-means

• Many possible improvements (see, e.g. Dan Pelleg and Andrew Moore’s work)

• does not always converge to the optimal solution -> run k-means multiple
times with different random initializations

• sensitive to initial centers -> start with random datapoint as center; next
center is farthest datapoint from closest center

• sensitive to choice of K -> find the K that minimizes the Schwarz criterion
(see Moore’s tutorial):

LX

l

kx(k)
l � µkk22 + �(DK)logL

EM Algorithm

• GMM: each cluster corresponds to a weighted Gaussian

• Soft responsibility function: conditional probability of belonging to Gaussian k
given observation xl

• Goal: find the parameters that maximize

�lk =
wkN (xl;µk,Ck)PK
j=1 wjN (xl;µj ,Cj)

log{p(X|µ,C,w)} =

LX

l=1

log

(
KX

k=1

wkN (xl;µk,Ck)

)

EM Algorithm

1. Initialize μk, Ck and wk

2. E-step: evaluate responsibilities ϒlk using current parameters

3. M-step: re-estimate parameters using current responsibilities

4. repeat 2 and 3 until the log likelihood or the parameters stop changing

µnew
k =

P
l �lkxlP
l �lk

C

new
k =

P
l �lk(xl � µnew

k)(xl � µnew
k)TP

l �lk

wnew
k =

P
l �lk
L

EM Algorithm

*From Bishop’s Machine Learning book, 2007

EM Algorithm

• EM is both more expensive and slower to converge than K-means

• Common trick: run K-means to initialize EM

• Find cluster centers (means)

• Compute sample covariances of the found clusters

• Mixing weights -> fraction of L assigned to each cluster

MAP Classification

• After learning the likelihood and the prior during training, we can classify new
instances based on MAP classification:

argmax

i
[P (x|classi)P (classi)]

References

• This lecture borrows heavily from Emmanuel Vincent’s lecture notes on instrument
classification (QMUL - Music Analysis and Synthesis) and from Anssi Klapuri’s
lecture notes on Audio Signal Classification (ISMIR 2004 Graduate School: http://
ismir2004.ismir.net/graduate.html)

• Bishop, C.M. Pattern Recognition and Machine Learning. Springer (2007)

• Duda, R.O., Hart, P.E. and Stork, D.G. Pattern Classification (2nd Ed). John Wiley &
Sons (2000)

• Witten, I. and Frank, E. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann (2005)

• Shlens, J. A Tutorial on Principal Component Analysis, Version 3.01 (2009): http://
www.snl.salk.edu/~shlens/pca.pdf

• Moore, A. Statistical Data Mining Tutorials: http://www.autonlab.org/tutorials/

