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Classification

- It is the process by which we automatically assign an individual item to one of
a number of categories or classes, based on its characteristics.

* In our case:
* (1) the items are audio signals (e.g. sounds, tracks, excerpts);

* (2) their characteristics are the features we extract from them (MFCC,
chroma, centroid);

- (3) the classes (e.g. speakers, instruments, phones, sound environment) fit
the problem definition

- The complexity lies in finding an appropriate relationship between features
and classes



Example

- 200 sounds of 2 different kinds (red and blue); 2 features extracted per sound

Feature 1
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Example

- The 200 items in the 2-D feature space

Feature 2
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Example

- Boundary that optimizes performance -> risk of overfitting (excessive

complexity, poor predictive power)
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Example

+ Generalization -> Able to correctly classify novel input

Feature 2
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Classification of audio signals

« A number of relevant tasks:
 Source ldentification
« Automatic Speech Recognition
« Automatic Music Transcription
- Labeling/Classification/Tagging
« Music/Speech/Environmental Sound Segmentation

« Sentiment/Emotion Recognition

- Common machine learning techniques applied in related fields (e.g. image,
natural language processing)



An audio classifier

- Feature extraction: (1) feature

computation; (2) summarization | ,

- Pre-processing: (1) Feature vector 1 Feature vector 2

normalization; (2) feature l/\ Jl L Jl
selection
/\/\/\/\ N\ /\’\/\ —a

- Classification: (1) use sample ﬂ'
data to estimate boundaries, .o
distributions or class- 0 o° e
membership; (2) classify new Q o E> Classification
data based on these 5 ° 0\%)
estimations ° Jo




Feature set (recap)

 Feature extraction is necessary as audio signals carry too much redundant
and/or irrelevant information

- They can be estimated on a frame by frame basis or within segments, sounds
or tracks.

- Many possible features: spectral, temporal, pitch-based, etc.
« A good feature set is a must for classification

« What should we look for in a feature set?



Feature set (what to look for?)

- A few issues of feature design/choice:

- Can be robustly estimated from available audio (e.g. spectral envelope vs
onset rise times in polyphonies)

« Relevant to classification task (e.g. MFCC vs chroma for source ID) -> noisy
features make classification more difficult!

 Feature set should be as invariant as possible to changes within the natural
class’ range



Feature set (what to look for?)

« We expect variability within sound classes

« For example: trumpet sounds change considerably between, e.g. different
loudness levels, pitches, instruments, playing style or recording conditions

trumpet piano trumpet mezzo—forte trumpet forte
0 0 0
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- Classes are never fully described by a point in the feature space but by the
distribution of a sample population



Features and training

 Class models must be learned on many sounds to properly account for
between/within class variations

- The natural range of features must be well represented on the sample
population
training set

feature 2
feature 2

feature 1 feature 1

- Failure to do so leads to overfitting: training data only covers a sub-region of
its natural range and class models are inadequate for new data.




Feature set (what to look for?)

- Low(er) dimensional feature space -> Classification becomes more difficult as
the dimensionality of the feature space increases.

— Centrowd
— R

- As free from redundancies (strongly correlated features) as possible

- Discriminative power: good features result in separation between classes and
grouping within classes



Feature distribution

- Remember the histograms of our example. They describe the behavior of
features across our sample population.

Feature 2
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Feature distribution

- A Normal or Gaussian distribution is a bell-shaped probability density function
defined by two parameters, its mean (u) and variance (6°):
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Feature distribution

- In D-dimensions, the distribution becomes an ellipsoid defined by a D-
dimensional mean vector and a DxD covariance matrix:




Feature distribution

« Cx is a square symmetric DxD matrix: diagonal components are the feature
variances; off-diagonal terms are their co-variances
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- High covariance between features shows as a narrow ellipsoid (high
redundancy)



Data normalization

- To avoid bias towards features with wider range, we can normalize all to have
zero mean and unit variance:
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PCA

- Complementarily we can minimize redundancies by applying Principal
Component Analysis (PCA)

- Let us assume that there is a linear transformation A, such that:

Y =AX
- - _al_
al.Xl o o al.XL
a2
= | . [Xl X2 XL]
aD.Xl o o aD.XL
e — aD

- Where x; are the D-dimensional feature vectors (after mean removal) such
that: Cx = XXT/L



PCA

- What do we want from Y:
 Decorrelated: All off-diagonal elements of Cy should be zero
« Rank-ordered: according to variance

 Unit variance

« A -> orthonormal matrix; rows = principal components of X

\e'y e,



PCA

« How to choose A?

1 1
C, = EYYT: -

(AX)(AX)' = A (%XXT> Al = AC, A*

« Any symmetric matrix (such as Cy) is diagonalized by an orthogonal matrix E
of its eigenvectors

* For a linear transformation Z, an eigenvector e is any non-zero vector that
satisfies:
Zei — )\iei

- Where A is a scalar known as the eigenvalue

« PCA chooses A = ET, a matrix where each row is an eigenvector of Cx



PCA

 In MATLAB:

function [signals,PC,V] = pcal (data) % calculate the covariance matrix

PCAl: Perform PCA using covariance. covariance = 1 / (N-1) * data * data’;
data - MxN matrix of input data
(M dimensions, N trials)

o\@

o\@

% find the eigenvectors and eigenvalues

o\@

% signals - MxN matrix of projected data [PC, V] = eig(covariance);

% PC - each column is a PC

% V - Mxl matrix of variances % extract diagonal of matrix as vector
V = diag(V);

[M,N] = size(data);
% sort the variances in decreasing order

% subtract off the mean for each dimension [junk, rindices] = sort(-1*V);

mn = mean(data,?2); V = V(rindices);

data = data - repmat (mn,1,N); PC = PC(:,rindices);

% project the original data set
signals = PC’ * data;

From http://www.snl.salk.edu/~shlens/pub/notes/pca.pdf



Dimensionality reduction

« Furthermore, PCA can be used to reduce the number of features:
- Since A is ordered according to eigenvalue Ai from high to low

- We can then use an MxD subset of this reordered matrix for PCA, such that
the result corresponds to an approximation using the M most relevant feature
vectors

 This is equivalent to projecting the data into the few directions that maximize
variance

- We do not need to choose between correlating (redundant) features, PCA
chooses for us.

- Can be used,e.qg., to visualize high-dimensional spaces



Discrimination

* Let us define:

Proportion of occurrences of class k in the sample

Ky

Sw=> (L /L)Ck

',kl

Wrthrn cIass scatter matrix

Covariance matrix for class k

K

giobal mean
- T

Sy = D (Lie/ L)tk — 1) (s = 1)

— =1

Between class scatter matrix

| I\/Iean of class k




Discrimination

« Trace{U} is the sum of all diagonal elements of U, s.t.:
- Trace{Sw} measures average variance of features across all classes

« Trace{Sp} measures average distance between class means and global mean
across all classes

- The discriminative power of a feature set can be measured as:

 trace{ S}
 trace{S,}

Jo

- High when samples from a class are well clustered around their mean (small
trace{Sw}), and/or when different classes are well separated (large trace{Ss}).



Feature selection

- But how to select an optimal subset of M features from our D-dimensional
space that maximizes class separability?

- We can try all possible M-long feature combinations and select the one that
maximizes Jo (or any other class separability measure)

- In practice this is unfeasible as there are too many possible combinations

- We need either a technique to scan through a subset of possible
combinations, or a transformation that re-arranges features according to their
discriminative properties



Feature selection

« Sequential backward selection (SBS):
1. Start with F = D features.
2. For each combination of F-1 features (inc. chosen F) compute Jo
3. Select the combination that maximizes Jo

4. Repeat steps 2 and 3 until F = M

- Good for eliminating bad features; nothing guarantees that the optimal (F-1)-
dimensional vector has to originate from the optimal F-dimensional one.

 Nesting: once a feature has been discarded it cannot be reconsidered



Feature selection

- Sequential forward selection (SFS):
1. Select the individual feature (F = 1) that maximizes Jo

2. Create all combinations of F+1 features including the previous
winner and compute Jo

3. Select the combination that maximizes Jo

4. Repeat steps 2 and 3 until F =M

* Nesting: once a feature has been selected it cannot be discarded



LDA

 An alternative way to select features with high discriminative power is to use
linear discriminant analysis (LDA)

 LDA is similar to PCA, but the eigenanalysis is performed on the matrix Sw'Sp
instead of Cx

- Like in PCA, the transformation matrix A is re-ordered according to the
eigenvalues A from high to low

» Then we can use only the top M rows of A, where M < rank of Sy'Sp

 LDA projects the data into a few directions maximizing class separability



Classification

* We have:
- A taxonomy of classes
A representative sample of the signals to be classified
« An optimal set of features
« Goals:
 Learn class models from the data
+ Classify new instances using these models
- Strategies:
« Supervised: models learned by example

« Unsupervised: models are uncovered from unlabeled data



Instance-based learning

- Simple classification can be performed by measuring the distance between
instances.

« Nearest-neighbor classification:
- Measures distance between new sample and all samples in the training set

- Selects the class of the closest training sample

 k-nearest neighbors (k-NN) classifier:

- Measures distance between new sample and all samples in the training set

- Identifies the k nearest neighbors

- Selects the class that was more often picked.



Instance-based learning

In both these cases, training is reduced to storing the labeled training
instances for comparison

Known as “lazy” or “memory-based” learning.

All computations are performed during classification

Complexity increases with number of training instances.

- Alternatively, we can store only a few class prototypes/models (e.g. class
centroids)



Instance-based learning

- We need to choose k to avoid overfitting, e.g., k = \/L where L is the number
of training samples

feature 2

feature 2

feature 1 feature 1

- Works well for well-separated classes; and an appropriate combination of
distance metric and feature pre-processing



Instance-based learning

» The effect of standardization (from Peltonen’s MSc thesis, 2001)
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Instance-based learning

- Mahalanobis distance: considers the underlying distribution

d(x,y) = /(x — y)TC}(x — y)

K-NN Cassiher, k=1

K=NN classiher, k=1

Eucidean distarce metric, axes are scaled Mahalanobis distance metric, faaturs space is transformed
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Probability

* Let us assume that the observations X and classes Y are random variables
pIX.Y) p(Y)

pX) pXIY =1)

X

*From Bishop’s Machine Learning book, 2007



Probability

L = total number of blue dots
¢; = number of dots in column ¢
r; = number of dots in row j
n;; = number of dots in cell 77

Joint Probability | { P(X,Y) = P(Y, X) = %2 } Symmetry rule
Marginal Probability | { P(X) = f@ Zj P(X,Y) } Sumrule
(
(

Conditional Probability | { P(Y | X) =

P(X,Y) =2 = Mic = p(Y|X)P(X)

Product rule



Probability

« Thus we can derive Bayes’ theorem as:

Posterior: probability of | Likelinood: Probability
. classigiven an of observation x, given
}! observation x M class i

P(|class;) P(class;) ) | Eriox: Probabilty
P(class;|z) = |

of class |
P(x)

v

- Marginal Likelihood: Normalizing constant (séme for
‘ all classes) that ensures posterior adds to 1
l ZP x|class; ) P(class;)




Probabilistic Classifiers

Classification: finding the class with the highest probability given the
observation x

Find i that maximizes the posterior probability P(classi|x) -> Maximum A
Posteriori (MAP)

Since P(x) is the same for all classes, this is equivalent to:

argmaX[P (z|class;) P(class;)]

From the training data we can learn the likelihood P(x|classi) and the prior
P(class)



Gaussian Mixture Model

« We can model (parameterize) the likelihood using a Gaussian Mixture Model
(GMM) -> the weighted sum of K multidimensional Gaussian distributions:

K
P(z|class;) = Z wikN (5 ik, Cik)
k=1

* Where wik are the mixing weights and:

1 _1l(x— TCx—l x—
N Co) = s 20O v



Gaussian Mixture Model

- 1-D GMM (Heittola, 2004)

4

’{> / summary density
W

single Gaussians  mixture weights

- With a sufficiently large K a GMM can approximate any distribution

- However, increasing K increases the complexity of the model and
compromises its ability to generalize



Gaussian Mixture Model

- The model is parametric, consisting of K weights, mean vectors and
covariance matrices for every class.

- If features are decorrelated, then we can use diagonal covariance matrices,
thus considerably reducing the number of parameters to be estimated
(common approximation)

- Parameters can be estimated using the Expectation-Maximization (EM)
algorithm (Dempster et al, 1977).

- EM is an iterative algorithm whose objective is to find the set of parameters
that maximizes the likelihood.



K-means

« Dataset: L observations of a D-dimensional variable x

- Goal: find the partition into K clusters, each represented by a prototype Lk,
that minimizes the distortion:

2

J = riel|xr — g5

L
4
=1

1L

[ k

- where the “responsibility” function rk = 1 if the I'" observation is assigned to
cluster k, O otherwise

- We don’t know the optimal rk and pk



K-means

1. Choose initial values for pk

2. E (expectation)-step: keeping pk fixed, minimize J with respect to ri

B 1 if k= argmin, ||x; — /3
* 71 0 otherwise

3. M (maximization)-step: keeping ri fixed, minimize J with respect to px

D TIEX

Ui =
21 Tk

4. repeat 2 and 3 until J or the parameters stop changing




K-means

assign to
cluster

end

*from http://www.autonlab.org/tutorials/kmeansi 1.pdf




K-means

- Many possible improvements (see, e.g. Dan Pelleg and Andrew Moore’s work)

+ does not always converge to the optimal solution -> run k-means multiple
times with different random initializations

+ sensitive to initial centers -> start with random datapoint as center; next
center is farthest datapoint from closest center

« sensitive to choice of K -> find the K that minimizes the Schwarz criterion
(see Moore’s tutorial):

ST %™ — w3+ A(DE)logL



EM Algorithm

« GMM: each cluster corresponds to a weighted Gaussian

- Soft responsibility function: conditional probability of belonging to Gaussian k

given observation x|
UJkN(Xl; HE Ck)
K
Zj:l ij(XZS tj, Cj)

- Goal: find the parameters that maximize

Yik =

\

L (K
log{p(X|u,C,w)} = log 4 > wiN(xi; pk, Cic) ¢
=1 \ k=1 J




EM Algorithm

1. Initialize pk, Ck and wk
2. E-step: evaluate responsibilities Yk using current parameters

3. M-step: re-estimate parameters using current responsibilities

e 2ATRXL w2k
Zz Yik & L

>y Yok (X1 — ™) (0 — ™)

Zl Yik

4. repeat 2 and 3 until the log likelihood or the parameters stop changing

new __
C." =



EM Algorithm

-2
-2 0 (a) -2 0 (b 2 -2 0 (c) 2
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*From Bishop’s Machine Learning book, 2007



EM Algorithm

« EM is both more expensive and slower to converge than K-means

« Common trick: run K-means to initialize EM

 Find cluster centers (means)

- Compute sample covariances of the found clusters

- Mixing weights -> fraction of L assigned to each cluster



MAP Classification

- After learning the likelihood and the prior during training, we can classify new
instances based on MAP classification:

argmaX[P (z|class;) P(class;)]

feature 2
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