
Numerical Computing with

IEEE Floating Point Arithmetic

Michael L. Overton

With one Theorem, one Rule of Thumb,

and one hundred and one Exercises

Draft of Second Edition

With extensive updated text, two new chapters and new exercises

January 8, 2024

©Michael L. Overton 2024

Contents

1 Introduction 1

2 The Real Numbers 5

3 Computer Representation of Numbers 9

4 IEEE Floating Point Representation 17

5 Rounding 27

6 Correctly Rounded Floating Point Operations 33

7 Exceptions 43

8 Floating Point Microprocessors 51

9 Programming Languages 55

10 Floating Point in C 61

11 Cancellation 73

12 Conditioning of Problems 79

13 Stability of Algorithms 85

14 Higher Precision Computations 99

15 Lower Precision Computations 103

16 Conclusion 111

Bibliography 115

v

Accurate reckoning: The entrance into knowledge
of all existing things and all obscure secrets

— A’HMOSÈ, The Rhind Mathematical Papyrus, c. 1650 B.C.E.

I am a HAL Nine Thousand computer Production Number 3. I became
operational at the Hal Plant in Urbana, Illinois, on January 12, 1997.

The quick brown fox jumps over the lazy dog.
The rain in Spain is mainly in the plain.

Dave—are you still there?
Did you know that the square root of 10 is 3.162277660168379?

Log 10 to the base e is 0.434294481903252 . . .
correction, that is, log e to the base 10 . . .

The reciprocal of 3 is 0.333333333333333333333 . . .
2 times 2 is . . . 2 times 2 is . . .

approximately 4.101010101010101010 . . .
I seem to be having difficulty . . .

—HAL, in 2001: A Space Odyssey

Chapter 1

Introduction

Numerical computing means computing with numbers, and the subject is almost as old
as civilization itself. Ancient peoples knew techniques to carry out many numerical
tasks. Among the oldest computational records that we have is the Egyptian Rhind
Papyrus from about 1650 B.C.E. [Cha79], quoted on the previous page. Counting
stones and counting rods have been used for calculation for thousands of years; the
abacus originated as a flat surface with counting stones and was used extensively in
the ancient world long before it evolved into the device with beads on wires that was
common in Asia until recently. The abacus was the basis of calculation in Europe until
the introduction of our familiar positional decimal notation from the Middle East,
beginning in the 13th century. By the end of the 16th century, positional decimal
notation was in standard use throughout Europe, as it became widely recognized for
its computational convenience.

The next key development was the invention and tabulation of logarithms by John
Napier at the beginning of the 17th century; his idea was that time-consuming multi-
plication and especially division may be avoided by adding or subtracting logarithms,
using tabulated values. Isaac Newton laid the foundations of modern numerical com-
puting later in the 17th century, developing numerical techniques for the solution of
many mathematical problems and inventing calculus along the way. Several of New-
ton’s computational methods still bear his name. In Newton’s footsteps followed Euler,
Lagrange, Gauss, and many other great mathematicians of the 18th and 19th centuries.

The idea of using physical devices as an aid to calculation is an old one. The abacus
has already been mentioned. The slide rule was invented soon after Napier’s discovery
of logarithms, although it was not commonly used until the middle of the 19th cen-
tury. Numbers are represented on a slide rule explicitly in a logarithmic scale, and its
moving rule and cursor allow multiplication and division to be carried out easily, accu-
rate to about three decimal digits. This simple, inexpensive device was used by many
generations of engineers and remained in common use until about 1975, when it was
made obsolete by cheap electronic calculators. Mechanical calculating machines were
devised by Schickard, Pascal, and Leibnitz in the 17th century; their descendants also
remained in use until about 1975. The idea of a programmable machine that would
operate without human intervention was developed in great depth by Charles Babbage
in the 19th century, but his ideas were way ahead of his time and were mostly ignored.
During World War II, scientific laboratories had rooms full of people doing different
parts of a complicated calculation using pencil and paper, slide rules, and mechanical
calculators. At that time, the word computer referred to a person, and those group
calculations may be viewed as the early steps of parallel computing.

1

2 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

The Computer Age

The machine often described as the world’s first operating computer was the Z3, built
by the engineer Konrad Zuse in Germany in 1939–1941. The Z3 used electromechanical
switching devices and computed with binary floating point numbers, a concept to be
described in detail in subsequent chapters.1 Slightly later, and in great secrecy,
the British government developed a powerful electronic code-breaking machine, the
Colossus. The first general-purpose operational electronic computer2 is usually said to
be the ENIAC (Electronic Numerical Integrator And Computer), a decimal machine
with 18,000 vacuum tubes that was built by Eckert and Mauchly at the University
of Pennsylvania in 1943–1945. Eckert was the electronics expert and Mauchly had
the experience with extensive numerical computations. Two intellectual giants who
strongly influenced postwar computer development in England and the United States
respectively were Alan Turing, one of the founders of theoretical computer science, and
John von Neumann, the Hungarian mathematician at Princeton. Important ideas that
were advocated by von Neumann included the storage of instructions in the memory of
the computer and the use of binary rather than decimal storage and arithmetic. Other
key leaders included Maurice Wilkes and James Wilkinson in England and Herman
Goldstine in the U.S. In the late 1940s and early 1950s, it was feared that the rounding
errors inherent in floating point computing would make nontrivial calculations too
inaccurate to be useful. Wilkinson demonstrated conclusively that this was not the
case with his extensive computational experiments and innovative analysis of rounding
errors accumulated in the course of a computation. Wilkinson’s analysis was inspired
by the work of von Neumann and Goldstine and of Turing [Wil63].3 For more on
the early history of computers, see [Wil85] as well as the more recent works [Dys12]
and [Bha22, Ch. 5] for the roles of Turing and von Neumann, respectively. For a
remarkable collection of essays by a cast of stars from the early days of computing,
see [MHR80].

During the 1950s, the primary use of computers was for numerical computing in
scientific applications. In the 1960s, computers became widely used by large busi-
nesses, but their purpose was not primarily numerical; instead, the principal use of
computers became the processing of large quantities of information. Nonnumerical
information, such as character strings, was represented in the computer using binary
numbers, but the primary business applications were not numerical in nature. During
subsequent decades, computers became ever more widespread, becoming available to
medium-sized businesses in the 1970s, to many millions of small businesses and indi-
viduals during the personal computer revolution of the 1980s and 1990s, and to billions
of people all around the world with the advent of inexpensive mobile phones in the
2000s. The vast majority of these computer users do not see computing with numbers
as their primary interest; instead, they are interested in the processing of information,
such as text, images, and sound. However, manipulation of images and sound re-
quires extensive numerical computing. Most recently, the 2010s and early 2020s have
seen the astonishingly rapid rise of machine learning, which involves massive amounts

1Ideas that seem to originate with Zuse include the hidden significand bit [Knu98, p. 227], to be
discussed in Chapter 3, the use of ∞ and NaN [Kah96b], to be discussed in Chapter 7, the main
ideas of algorithmic programming languages [Wil85, p. 225], and perhaps the concept of a stored
program [Zus93, p. 44]. His autobiography [Zus93] gives an amazing account of his successful efforts
at computer design and construction amid the chaos of World War II.

2A much more limited machine was developed a little earlier in Iowa.
3In his 1970 SIAM von Neumann lecture, Wilkinson gave a historical survey of rounding error

analysis stating that the results of von Neumann and Goldstine compare much more favorably with
later work than is generally supposed [Wil71]. He also said that it was only when he had done a good
deal of error analysis himself that he came to appreciate the pioneering work of Wallace Givens.

CHAPTER 1. INTRODUCTION 3

of numerical computation and has huge impact on many aspects of our lives.

Science Today

In scientific disciplines, numerical computing is essential. Physicists use computers to
solve complicated equations modeling everything from the expansion of the universe
to the microstructure of the atom, and to test their theories against experimental
data. Chemists and biologists use computers to determine the molecular structure
of proteins. Medical researchers use computers for imaging techniques and for the
statistical analysis of experimental and clinical observations. Atmospheric scientists
use numerical computing to process huge quantities of data and to solve equations
to predict the weather. Electronics engineers design ever faster, smaller, and more
reliable computers using numerical simulation of electronic circuits. Design of cars,
airplanes and spacecraft involves extensive modeling using numerical computing.

In brief, all fields of science and engineering rely heavily on numerical comput-
ing. The traditional two branches of science are theoretical science and experimental
science. Computational science has long been described as a third branch, having a
status that is essentially equal to, perhaps even eclipsing, that of its two older sib-
lings. The availability of greatly improved computational techniques and immensely
faster computers allows the routine solution of complicated problems that would have
seemed impossible just a generation ago.

Chapter 2

The Real Numbers

The real numbers can be represented conveniently by a line. Every point on the line
corresponds to a real number, but only a few are marked in Figure 2.1. The line
stretches infinitely far in both directions, toward ∞ and −∞, which are not them-
selves numbers in the conventional sense but are included among the extended real
numbers. The integers are the numbers 0, 1,−1, 2,−2, 3,−3, We say that there
is an infinite but countable number of integers; by this we mean that every integer
would eventually appear in the list if we count for long enough, even though we can
never count all of them. The rational numbers are those that consist of a ratio of
two integers, e.g., 1/2, 2/3, 6/3; some of these, e.g., 6/3, are integers. To see that
the number of rational numbers is countable, imagine the nonzero rationals listed in
an infinite two-dimensional array as in Figure 2.2. Listing the first line and then the
second, and so on, does not work, since the first line never terminates. Instead, we
generate a list of all rational numbers diagonal by diagonal: first 0, then ±1/1; then
±2/1,±1/2; then ±3/1,±2/2,±1/3; then ±4/1,±3/2,±2/3,±1/4; etc. In this way,
every rational number (including every integer) is eventually generated. In fact, every
nonzero rational number is generated many times (e.g., 1/2 and 2/4 are the same
number). However, every rational number does have a unique representation in lowest
terms, achieved by canceling any common factor in the numerator and denominator
(thus 2/4 reduces to 1/2).

The irrational numbers are the real numbers that are not rational. Familiar exam-
ples of irrational numbers are

√
2, π, and e. The numbers

√
2 and π have been studied

for more than two thousand years. The number e, mentioned in the quote from HAL
on page vi, is the limit of (

1 +
1

n

)n

as n → ∞. Investigations leading to the definition of e began in the 17th century.

✲✛

0

1/2

1 2 3

π

4

−1/2

−1−2−3

−π

−4

Figure 2.1: The Real Line

5

6 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

1 2 3 4 . . .
1 ±1/1 ±1/2 ±1/3 ±1/4 . . .
2 ±2/1 ±2/2 ±2/3 ±2/4 . . .
3 ±3/1 ±3/2 ±3/3 ±3/4 . . .
4 ±4/1 ±4/2 ±4/3 ±4/4 . . .
.

Figure 2.2: The Nonzero Rational Numbers

Every irrational number can be defined as the limit of a sequence of rational numbers,
but there is no way of listing all the irrational numbers—the set of irrational numbers
is said to be uncountable.

Positional Number Systems

The idea of representing numbers using powers of 10 was used by many ancient peoples,
e.g., the Hebrews, the Greeks, the Romans, and the Chinese, but the positional number
system we use today was not. The Romans used a system where each power of 10
required a different symbol: X for 10, C for 100 = 102, M for 1000 = 103, etc.,
and repetition, together with additional symbols for quinary groupings, was used to
indicate how many of each power of 10 were present. For example, MDCCCCLXXXV
means 1000 + 500 + 400 + 50 + 30 + 5 = 1985. The familiar abbreviations such as
IV for 4 were not used by the Romans. The Chinese system, which is still in use, is
similar except that instead of repetition, symbols for the numbers 1 through 9 are used
to modify each power of 10. These systems allowed easy transcription of numbers to
an abacus for calculation, although they are not convenient for calculation with pencil
and paper.

Large numbers cannot be conveniently represented by such systems. The positional
notation used worldwide today requires a key idea: the representation of zero by a
symbol. As far as we know, this was first used by the Babylonians about 300 B.C.E.
Our decimal positional system was developed in India around 600 C.E. and was used
for centuries by the Arabs in the Middle East before being passed on to Europe during
the period 1200–1600—hence the name “Arabic numerals.” This decimal, or base 10,
system requires 10 symbols, representing the numbers 0 through 9. The system is
called positional (or place-value) because the meaning of the number is understood
from the position of the symbols, or digits, of the number. Zero is needed, for example,
to distinguish 601 from 61. The reason for the decimal choice is the simple biological
fact that humans have 10 fingers and thumbs. Indeed, the word digit derives from the
Latin word for finger. Other positional systems developed by ancient peoples include
the base 60 system used by the Babylonians, the vestiges of which are still seen today
in our division of the hour into 60 minutes and the minute into 60 seconds, and the
base 20 system developed by the Mayans, which was used for astronomical calculations.
The Mayans are the only people known to have invented the positional number system,
with its crucial use of a symbol for zero, independently of the Babylonians.

Decimal notation was initially used only for integers and was not used much for
fractions until the 17th century. A reluctance to use decimal fractions is still evident
in the use of quarters, eighths, sixteenths, etc., for machine tool sizes in the United
States (and, until 2001, for stock market prices).

Although decimal representation is convenient for people, it is not particularly
convenient for use on computers. The binary, or base 2, system is much more useful:
in this, every number is represented as a string of bits, each of which is either 0 or 1.

CHAPTER 2. THE REAL NUMBERS 7

The word bit is an abbreviation for binary digit; a bitstring is a string of bits. Each
bit corresponds to a different power of 2, just as each digit of a decimal number
corresponds to a different power of 10. Computer storage devices are all based on
binary representation: the basic unit is also called a bit, which may be viewed as
a single physical entity that is either “off” or “on.” Bits in computer storage are
organized in groups of 8, each called a byte. A byte can represent any of 256 = 28 (2 to
the power 8) different bitstrings, which may be viewed as representing the integers from
0 to 255. Alternatively, we may think of these 256 different bitstrings as representing
256 different characters.1 A word is 4 consecutive bytes of computer storage (i.e., 32
bits), and a double word is 8 consecutive bytes (64 bits). Because of the importance
of powers of two in organizing computer storage, traditionally a kilobyte means 210

(1024) bytes, a megabyte 220 bytes, a gigabyte 230 bytes, a terabyte 240 bytes, a
petabyte 250 bytes, and an exabyte 260 bytes. However, in other scientific contexts,
the prefixes kilo, mega, giga, tera, peta and exa generally mean 103, 106, 109, 1012, 1015

and 1018, respectively. Although 210 is only 2.4% bigger than 103, the number 260 is
more than 15% bigger than 1018, so the difference between the power of 2 and the
power of 10 conventions is becoming more significant as the numbers grow bigger.
Consequently, the terms kibibyte, exbibyte, etc., have been introduced to distinguish
210 from 103 bytes, 260 from 1018 bytes, etc. The next prefixes in the traditional
sequence are zetta and yotta, but they are not in common use — yet.

Although the binary system was not in wide use before the computer age, the
idea of representing numbers as sums of powers of 2 is far from new. It was used as
the basis for a multiplication algorithm described in the Rhind Mathematical Papyrus
[Cha79], written nearly four millennia ago (see p. vi).

Binary and Decimal Representation

Every real number has a decimal representation and a binary representation (and,
indeed, a representation in a base equal to any integer greater than 1). Instead of
representation, we sometimes use the word expansion. The representation of integers
is straightforward, requiring an expansion in nonnegative powers of the base. For
example, consider the number

(71)10 = 7× 10 + 1

and its binary equivalent

(1000111)2 = 1× 64 + 0× 32 + 0× 16 + 0× 8 + 1× 4 + 1× 2 + 1× 1. (2.1)

Nonintegral real numbers have digits (or bits) to the right of the decimal (or binary)
point; these expansions may be finite or nonterminating. For example, 11/2 has the
expansions

11

2
= (5.5)10 = 5× 1 + 5× 1

10

and
11

2
= (101.1)2 = 1× 4 + 0× 2 + 1× 1 + 1× 1

2
. (2.2)

Both of these expansions terminate. However, the number 1/10, which obviously has
the finite decimal representation (0.1)10, does not have a finite binary representation.

1The ASCII encoding scheme defines standard character interpretations for the first 128 of these
bitstrings; Unicode is an extension that initially allowed up to 216 two-byte characters, but has
now been extended beyond this limitation, allowing encoding of virtually all written languages in the
world — as well as many emojis.

8 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Instead, it has the nonterminating expansion

1

10
= (0.0001100110011 . . .)2 =

1

16
+

1

32
+

0

64
+

0

128
+

1

256
+

1

512
+

0

1024
+ · · · . (2.3)

Note that this representation, although nonterminating, is repeating. The fraction 1/3
has nonterminating expansions in both binary and decimal:

1

3
= (0.333 . . .)10 = (0.010101 . . .)2.

Rational numbers always have either finite or repeating expansions. For example,

1

7
= (0.142857142857 . . .)10.

In fact, any finite expansion can also be expressed as a repeating expansion. For
example, 1/10 can be expressed as

1

10
= (0.0999 . . .)10.

However, we will use the finite expansion when it exists.
Irrational numbers always have nonterminating, nonrepeating expansions. For

example,

√
2 = (1.414213 . . .)10, π = (3.141592 . . .)10, e = (2.71828182845 . . .)10.

The first 10 digits of e may suggest that its representation is repeating, but it is not.

Exercise 2.1 Conversion of integers from binary representation to decimal is straight-
forward, because we are so familiar with the decimal representations of the powers of 2.
Devise (or look up) a systematic method to convert the decimal representation of an
integer to binary. Which do you find more convenient: determining the bits from left
to right, or from right to left? Both methods are acceptable, but once you get the idea,
one of them is easier to use systematically than the other. Test your choice on some
examples and convert the binary results back to decimal as a check. Does your method
extend to convert a finite decimal representation of a nonintegral rational number,
such as 0.1, to its binary representation?

When working with binary numbers, it’s convenient to use the more compact
hexadecimal notation (base 16), with the symbols 0,. . . ,9,A,. . . ,F representing the
bitstrings 0000 through 1111.

Chapter 3

Computer Representation of
Numbers

What is the best way to represent numbers on the computer? Let us start by con-
sidering integers. Typically, integers are stored using a 32-bit word, so we confine
our attention to this case. If we were concerned only with nonnegative integers, the
representation would be easy: a bitstring specifying the binary representation of the
integer. For example, the integer 71 (see (2.1)) would be stored as

00000000000000000000000001000111 .

The nonnegative integers that we can represent in this way range from 0 (a bitstring
of 32 zeros) to 232 − 1 (a bitstring of 32 ones). The number 232 is too big, since its
binary representation consists of a one followed by 32 zeros.

Signed Integers via 2’s Complement

In fact, we need to be able to represent negative integers in addition to positive
integers and 0. The most obvious idea is sign-and-modulus: use one of the 32 bits
to represent the sign, and use the remaining 31 bits to store the magnitude of the
integer, which may then range from 0 to 231 − 1. However, nearly all machines use
a more clever representation called 2’s complement.1 A nonnegative integer x, where
0 ≤ x ≤ 231− 1, is stored as the binary representation of x, but a negative integer −y,
where 1 ≤ y ≤ 231, is stored as the binary representation of the positive integer

232 − y. (3.1)

For example, the integer −71 is stored as

11111111111111111111111110111001 .

In order to see that this is correct, let us add the 2’s complement representations for
71 and −71 together:

(00000000000000000000000001000111)2
+ (11111111111111111111111110111001)2
= (100000000000000000000000000000000)2.

1There is a third system called 1’s complement, where a negative integer −y is stored as the binary
representation of 232 − y− 1. This system was used by some supercomputers in the 1960s and 1970s
but is now obsolete.

9

10 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Adding in binary by hand is like adding in decimal. Proceed bitwise right to left;
when 1 and 1 are added together, the result is 10 (base 2), so the resulting bit is set to
0 and the 1 is carried over to the next bit to the left. The sum of the representations
for 71 and for −71 is thus the bitstring for 232, as required by the definition (3.1).
The bit in the leftmost position of the sum cannot be stored in the 32-bit word and is
called an overflow bit. If it is discarded, the result is 0—exactly what we want for the
result of 71 + (−71). This is the motivation for the 2’s complement representation.

Exercise 3.1 Using a 32-bit word, how many different integers can be represented by
(a) sign and modulus; (b) 2’s complement? Express the answer using powers of 2. For
which of these two systems is the representation for zero unique?

Exercise 3.2 Suppose we wish to store integers using only a 16-bit half-word (2 bytes).
This is called a short integer format. What is the range of integers that can be stored
using 2’s complement? Express the answer using powers of 2 and also translate the
numbers into decimal notation.

Exercise 3.3 Using an 8-bit format for simplicity, give the 2’s complement repre-
sentation for the following integers: 1, 10, 100, −1, −10, and −100. Verify that
addition of a negative number to its positive counterpart yields zero, as required, when
the overflow bit is discarded.

Exercise 3.4 Show that if an integer x between −231 and 231−1 is represented using
2’s complement in a 32-bit word, the leftmost bit is 1 if x is negative and 0 if x is
positive or 0.

Exercise 3.5 An easy way to convert the representation of a nonnegative integer x
to the 2’s complement representation for −x begins by changing all 0 bits to 1s and
all 1 bits to 0s. One more step is necessary to complete the process; what is it, and
why?

All computers provide hardware instructions for adding integers. If two positive
integers are added together, the result may give an integer greater than or equal to
231. In this case, we say that integer overflow occurs. One would hope that this
leads to an informative error message for the user, but whether or not this happens
depends on the programming language and compiler being used. In some cases, the
overflow bits may be discarded and the programmer must be careful to prevent this
from happening.2 The same problem may occur if two negative integers are added
together, giving a negative integer with magnitude greater than 231.

On the other hand, if two integers with opposite sign are added together, integer
overflow cannot occur, although an overflow bit may arise when the 2’s complement
bitstrings are added together. Consider the operation

x+ (−y),

where
0 ≤ x ≤ 231 − 1 and 1 ≤ y ≤ 231.

Clearly, it is possible to store the desired result x − y without integer overflow. The
result may be positive, negative, or zero, depending on whether x > y, x = y, or
x < y. Now let us see what happens if we add the 2’s complement representations for

2The IEEE floating point standard, to be introduced in the next chapter, says nothing about
requirements for integer arithmetic.

CHAPTER 3. COMPUTER REPRESENTATION OF NUMBERS 11

x and −y, i.e., the bitstrings for the nonnegative numbers x and 232 − y. We obtain
the bitstring for

x+ (232 − y) = 232 + (x− y) = 232 − (y − x).

If x ≥ y, the leftmost bit of the result is an overflow bit, corresponding to the power
232, but this bit can be discarded, giving the correct result x− y. If x < y, the result
fits in 32 bits with no overflow bit, so we have the desired result in this case too, as
it represents the negative value −(y − x) in 2’s complement.

This demonstrates an important property of 2’s complement representation: no
special hardware is needed for integer subtraction. The addition hardware can be
used once the negative number −y has been represented using 2’s complement.

Exercise 3.6 Show the details for the integer sums 50 + (−100), 100 + (−50), and
50 + 50, using an 8-bit format.

Besides addition, the other standard hardware operations on integer operands are
multiplication and division. Consider two positive integers x and y, both of which are
less than 232, so both can be stored in a 32-bit format. The product x × y must be
less than 264, so it could always be stored in a 64-bit double word, but we normally
want to store the result in the same 32-bit format, and this is possible only if x × y
is less than 232, i.e., the leading 32 bits of the 64-bit product x × y are zero. If not,
integer overflow occurs. On the other hand, again assuming x and y are positive 32-bit
integers, the integer division operation x/y always yields an integer quotient that fits
in the same format, provided that we discard any remainder. Integer division by zero
normally leads to program termination and an error message for the user.

Exercise 3.7 Given an example of two 3-bit binary numbers x and y whose product
is 6 bits with no leading zeros.

Exercise 3.8 (D. Goldberg) Besides division by zero, is there any other division op-
eration that could result in integer overflow?

Fixed Point

Now let us turn to the representation of nonintegral real numbers. Rational numbers
could be represented by pairs of integers, the numerator and denominator. This has the
advantage of accuracy but the disadvantage of being very inconvenient for arithmetic.
Instead, for most numerical computing purposes, real numbers, whether rational or
irrational, are approximately stored using the binary representation of the number.
There are two standard methods, called fixed point and floating point.

In fixed point representation, the computer word may be viewed as divided into
three fields: one 1-bit field for the sign of the number, one field of bits for the binary
representation of the number before the binary point, and one field of bits for the
binary representation after the binary point. For example, in a 32-bit word with field
widths of 15 and 16, respectively, the number 11/2 (see (2.2)) would be stored as

0 000000000000101 1000000000000000 ,

while the number 1/10 (see (2.3)) would be approximately stored as

0 000000000000000 0001100110011001 .

The fixed point system is severely limited by the size of the numbers it can store. In
the example just given, only numbers ranging in size from (exactly) 2−16 to (slightly
less than) 215 could be stored. This limitation motivates the use of floating point
representation.

12 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Floating Point

Floating point representation is based on exponential (or scientific) notation. In expo-
nential notation, a nonzero real number x is expressed in decimal as

x = ±S × 10E, where 1 ≤ S < 10,

and E is an integer. The numbers S and E are called the significand3 and the exponent,
respectively. For example, the exponential representation of 365.25 is 3.6525 × 102,
and the exponential representation of 0.00036525 is 3.6525× 10−4. It is always pos-
sible to satisfy the requirement that 1 ≤ S < 10, as S can be obtained from x by
repeatedly multiplying or dividing by 10, decrementing or incrementing the exponent
E accordingly. We can imagine that the decimal point floats to the position immedi-
ately after the first nonzero digit in the decimal expansion of the number—hence the
name floating point.

For representation on the computer, we prefer base 2 to base 10, so we write a
nonzero number x in the form

x = ±S × 2E , where 1 ≤ S < 2. (3.2)

Consequently, the binary expansion of the significand is

S = (b0.b1b2b3 . . .)2 with b0 = 1. (3.3)

For example, the number 11/2 is expressed as

11

2
= (1.011)2 × 22. (3.4)

Now it is the binary point that floats to the position after the first nonzero bit in the
binary expansion of x, changing the exponent E accordingly. Of course, this is not
possible if the number x is zero, but at present we are considering only the nonzero
case. Since b0 is 1, we may write

S = (1.b1b2b3 . . .)2.

The bits following the binary point are called the fractional part of the significand. We
say that (3.2), (3.3) is the normalized representation of x, and the process of obtaining
it is called normalization.

To store normalized numbers, we divide the computer word into three fields to
represent the sign, the exponent E, and the significand S, respectively. A 32-bit word
could be divided into fields as follows: 1 bit for the sign, 8 bits for the exponent, and
23 bits for the significand. The sign bit is 0 for positive numbers and 1 for negative
numbers. Since the exponent field is 8 bits, it can be used to represent exponents E
between −128 and 127 (for example, using 2’s complement, though this is not the way
it is normally done). The 23 significand bits can be used to store the first 23 bits after
the binary point in the binary expansion of S, namely, b1, . . . , b23. It is not necessary
to store b0, since we know it has the value 1: we say that b0 is a hidden bit. Of course,
it might not be possible to store the number x with such a scheme, either because E is
outside the permissible range −128 to 127 or because the bits b24, b25, . . . in the binary
expansion of S are not all zero. A real number is called a floating point number if it
can be stored exactly on the computer using the given floating point representation

3An older term for significand, but one that is still often used, is mantissa.

CHAPTER 3. COMPUTER REPRESENTATION OF NUMBERS 13

scheme. If a number x is not a floating point number, it must be rounded before it
can be stored on the computer. This will be discussed later.

Using this idea, the number 11/2 (see (3.4)) would be stored as

0 ebits(2) 01100000000000000000000 ,

and the number

71 = (1.000111)2 × 26

would be stored as

0 ebits(6) 00011100000000000000000 .

For now, the bits in the exponent field are not shown explicitly, but written in the
functional form “ebits(E)”; we will give details in the next chapter. Since the bitstring
stored in the significand field is actually the fractional part of the significand, we also
refer to this field as the fraction field. Given a string of bits in the fraction field, it is
necessary to imagine that “1.” appears in front of the string to obtain the significand.

In this scheme, if x is exactly a power of 2, so that the significand is the number
1.0, the bits stored in the fraction field are all 0 (since b0 is not stored). For example,

1 = (1.000 . . .)2 × 20

would be stored as

0 ebits(0) 00000000000000000000000

and the number

1024 = (1.000 . . .)2 × 210

would be stored as

0 ebits(10) 00000000000000000000000 .

Now consider the much larger number

271 = (1.000 . . .)2 × 271.

This integer is much too large to store in a 32-bit word using the integer format
discussed earlier. However, there is no difficulty representing it in floating point,
using the representation

0 ebits(71) 00000000000000000000000 .

Exercise 3.9 What is the largest floating point number in this system, assuming the
significand field can store only the bits b1 . . . b23 and the exponent is limited by −128 ≤
E ≤ 127? Don’t forget that the hidden bit, b0, is 1.

Exercise 3.10 What is the smallest positive floating point number in this system?
Don’t forget that the hidden bit, b0, is 1.

Exercise 3.11 What is the smallest positive integer that is not exactly representable
as a floating point number in this system?

14 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Exercise 3.12 Suppose we change (3.2) so that the bounds on the significand are
1
2 ≤ S < 1, change (3.3) to

S = (0.b1b2b3b4 . . .)2, with b1 = 1,

and change our floating point system so that the significand field stores only the bits
b2, . . . , b24, with the exponent limited by −128 ≤ E ≤ 127 as before. What is the
largest floating point number in this system? What is the smallest positive floating
point number in this system (remember that b1 = 1)? What is the smallest positive
integer that is not exactly representable as a floating point number in this system?

If a number x does not have a finite binary expansion, we must terminate its
expansion somewhere. For example, consider the number

1/10 = (0.0001100110011 . . .)2.

If we truncate this to 23 bits after the binary point, we obtain

(0.00011001100110011001100)2.

However, if we then normalize this to obtain

(1.1001100110011001100)2× 2−4,

so that there is a 1 before the binary point, we find that we now have only 19 correct
bits after the binary point. This leads to the unnecessarily inaccurate representation

0 ebits(−4) 10011001100110011000000 ,

with the last 4 bits set to 0000 instead of 1100. Clearly, this is not a good idea. It is
preferable to first normalize and then truncate, so that we retain 23 correct bits after
the binary point:

0 ebits(−4) 10011001100110011001100 .

This way all the available bits are used. Note that it might be better to round the
final bit up to 1. We will discuss this later.

Precision, Machine Epsilon, and Ulp

The precision of the floating point system is the number of bits in the significand
(including the hidden bit). We denote the precision by p. In the system just described,
p = 24 (23 stored bits in the fractional part of the significand and 1 leading hidden
bit). Any normalized floating point number with precision p can be expressed as

x = ±(1.b1b2 . . . bp−2bp−1)2 × 2E. (3.5)

The smallest such x that is greater than 1 is

(1.00 . . . 01)2 = 1 + 2−(p−1).

We give a special name, machine epsilon,4 to the gap between this number and the
number 1, and we write this as

ǫmch = (0.00 . . .01)2 = 2−(p−1). (3.6)

4We follow Higham [Hig02] in our definitions of ǫmch and ulp. Higham also uses the term unit

roundoff to mean ǫmch/2, that is, half the gap between 1 and the next larger floating point number;
some authors call this the machine epsilon.

CHAPTER 3. COMPUTER REPRESENTATION OF NUMBERS 15

More generally, for a floating point number x given by (3.5) we define

ulp(x) = (0.00 . . .01)2 × 2E = 2−(p−1) × 2E = ǫmch × 2E . (3.7)

Ulp is short for unit in the last place. If x > 0, then ulp(x) is the gap between x and
the next larger floating point number. If x < 0, ulp(x) is the gap between x and the
next smaller floating point number (larger in absolute value). Note that ulp(1) = ǫmch.

Exercise 3.13 Let the precision p = 24, so ǫmch = 2−23. Determine ulp(x) for x
having the following values: 0.25, 2, 3, 4, 10, 100, 1030. Give your answer as a power
of 2; do not convert this to decimal.

The Special Number Zero

So far, we have discussed only nonzero numbers. The number zero is special. It cannot
be normalized, since all the bits in its representation are zero. Thus, it cannot be
represented using the scheme described so far. A pattern of all zeros in the significand
field represents the significand 1.0, not 0.0, since the bit b0= 1 is hidden. There are
two ways to address this difficulty. The first, which was used by most floating point
implementations until about 1975, is to give up the idea of a hidden bit and instead
insist that the leading bit b0 in the binary representation of a nonzero number must
be stored explicitly, even though it is always 1. In this way, the number zero can be
represented by a significand that has all zero bits. This approach effectively reduces
the precision of the system by one bit because, to make room for b0, we must give
up storing the final bit (b23 in the system described above). The second approach is
to use a special string in the exponent field to signal that the number is zero. This
reduces by one the number of possible exponents E that are allowed for representing
nonzero numbers. This is the approach taken by the IEEE standard, to be discussed
in the next chapter. In either case, there is the question of what to do about the sign
of zero. Traditionally, this was ignored, but we shall see a different approach in the
next chapter.

The Toy Number System

It is quite instructive to suppose that the computer word size is much smaller than 32
bits and work out in detail what all the possible floating point numbers are in such a
case. Suppose that all numbers have the form

±(b0.b1b2)2 × 2E ,

with b0 stored explicitly and all nonzero numbers required to be normalized. Thus,
b0 is allowed to be zero only if b1 and b2 are also zero, indicating that the number
represented is zero. Suppose also that the only possible values for the exponent E are
−1, 0, and 1. We shall call this system the toy floating point number system. The set
of toy floating point numbers is shown in Figure 3.1.

The precision of the toy system is p = 3. The largest number is (1.11)2 × 21 =
(3.5)10, and the smallest positive number is (1.00)2 × 2−1 = (0.5)10. Since the next
floating point number bigger than 1 is 1.25, machine epsilon for the toy system is
ǫmch = 0.25. Note that the gap between consecutive floating point numbers becomes
smaller as the magnitudes of the numbers themselves get smaller, and bigger as the
magnitudes get bigger. Specifically, consider the positive floating point numbers with
E = 0: these are the numbers 1, 1.25, 1.5, and 1.75. For each of these numbers,
say x, the gap between x and the next larger floating point number, i.e., ulp(x), is
machine epsilon, ǫmch = 0.25. For the positive floating point numbers x with E = 1,

16 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

the gap is twice as big, i.e., ulp(x) = 2ǫmch, and for those x with E = −1, the gap is
ulp(x) = 1

2 ǫmch. Summarizing, the gap between a positive toy floating point number
x = (b0.b1b2)2 × 2E and the next bigger toy floating point number is

ulp(x) = ǫmch × 2E ,

as already noted in (3.7).
Another important observation to make about Figure 3.1 is that the gaps between

zero and ±0.5 are much greater than the gaps between numbers ranging from ±0.5
to ±1. We shall show in the next chapter how these gaps can be filled in with the
introduction of subnormal numbers.

Exercise 3.14 Suppose we add another bit to the toy number system, allowing signif-
icands of the form b0.b1b2b3, with b0 stored explicitly as before and all nonzero numbers
required to be normalized. The restrictions on the exponent are unchanged. Mark the
new numbers on a copy of Figure 3.1.

Fixed Point versus Floating Point

Some of the early computers used fixed point representation and some used floating
point. Von Neumann was initially skeptical of floating point and promoted the use of
fixed point representation. He was well aware that the range limitations of fixed point
would be too severe to be practical, but he believed that the necessary scaling by a
power of 2 should be done by the programmer, not the machine; he argued that bits
were too precious to be wasted on storing an exponent when they could be used to
extend the precision of the significand [Kah97]. Wilkinson experimented extensively
with a compromise system called block floating point, where an automatic scale factor
is maintained for a vector, i.e., for a block of many numbers, instead of one scale
factor per number. This means that only the largest number (in absolute value) in
the vector is sure to be normalized; if a vector contains numbers with widely varying
magnitudes, those with smaller magnitudes are stored much less accurately. By the
late 1950s it was apparent that the floating point system is far more versatile and
efficient than fixed point or block floating point.5

Knuth [Knu98, pp. 196, 225] attributes the origins of floating point notation to
the Babylonians. In their base 60 number system, zero was never used at the end of
a number, and hence a power of 60 was always implicit. The Babylonians, like von
Neumann, did not explicitly store their exponents.

5However, technology is always subject to change. In Higham’s forward to the 2023 sixtieth
anniversary reprint of Wilkinson’s 1963 classic book [Wil23], he writes “Although floating-point
arithmetic dominates today’s computational landscape, fixed-point arithmetic is widely used in digital
signal processing and block floating-point arithmetic is enjoying renewed interest in machine learning.”

✲✛

0 1 2 3−1−2−3

Figure 3.1: The Toy Floating Point Numbers

Chapter 4

IEEE Floating Point
Representation

Floating point computation was in standard use by the mid 1950s. During the sub-
sequent two decades, each computer manufacturer developed its own floating point
system, leading to much inconsistency in how one program might behave on different
machines. For example, although most machines developed during this period used
binary floating point systems roughly similar to the one described in the previous
chapter, the IBM 360/370 series, which dominated computing during the 1960s and
1970s, used a hexadecimal system (base 16). On these machines, the significand is
stored using 24 bits, to be interpreted as 6 hexadecimal digits, leaving 1 bit for the
sign and 7 bits for the exponent (representing a power of 16). Normalization requires
only that the first hexadecimal digit be nonzero; consequently, the significand could
have up to 3 leading zero bits. Therefore, the accuracy of the significands ranges from
21 to 24 bits; some numbers (such as 1/10; see (2.3)) are represented less accurately
than on a binary machine. One motivation for this design was to reduce the bit shift-
ing required during floating point add and subtract operations. Another benefit is
that the hexadecimal base allows a much greater range of normalized floating point
numbers than a binary system permits.

In addition to inconsistencies of representation, there were also many inconsis-
tencies in the properties of floating point arithmetic. See Chapter 6 for examples
of difficulties that could arise unexpectedly on some machines. Consequently, it was
very difficult to write portable software that would work properly on all machines.
Programmers needed to be aware of various difficulties that might arise on different
machines and attempt to forestall them.

A Historic Collaboration: IEEE p754

In an extraordinary cooperation between academic computer scientists and micropro-
cessor chip designers, a standard for binary floating point representation and arith-
metic was developed in the late 1970s and early 1980s and, most importantly, was
followed carefully by the microprocessor industry. As this was the beginning of the
personal computer revolution, the impact was enormous. The scientists who wrote the
standard did so under the auspices of the Institute for Electrical and Electronics En-
gineers in a working group known as IEEE p754.1 The academic computer scientists

1 IEEE is pronounced “I triple E.” The IEEE official terminology was P754, but we follow the
usage p754 in [Kah10, Sev98].

17

18 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

on the committee were led by William Kahan of the University of California at Berke-
ley; industrial participants included representatives from Apple, Digital Equipment
Corporation (DEC), Intel, Hewlett-Packard, Motorola, and National Semiconductor.
Kahan’s interest in the project had been sparked originally by the efforts of John
Palmer, of Intel, to ensure that Intel’s new 8087 chip would have the best possible
floating point arithmetic. An early document that included many of the ideas adopted
by the standard was written in 1978–1979 by Kahan, Coonen, and Stone; see [Cod81].
Kahan was awarded the 1989 Turing Prize by the Association of Computing Machinery
for his work in leading IEEE p754.

In [Sev98], Kahan recalled: “It was remarkable that so many hardware people
there, knowing how difficult p754 would be, agreed that it should benefit the commu-
nity at large. If it encouraged the production of floating-point software and eased the
development of reliable software, it would help create a larger market for everyone’s
hardware. This degree of altruism was so astonishing that MATLAB’s creator Cleve
Moler used to advise foreign visitors not to miss the country’s two most awesome
spectacles: the Grand Canyon, and meetings of IEEE p754.”

The IEEE standard for binary floating point arithmetic was published in 1985,
when it became known officially as IEEE 754-1985 [IEE85]. In 1989, it received
international endorsement as IEC 559, later designated ISO/IEC 60559. A second
IEEE floating point standard, for radix-independent floating point arithmetic, IEEE
854-1987 [IEE87], was adopted in 1987. The second standard was motivated by the ex-
istence of decimal, rather than binary, floating point machines, particularly hand-held
calculators, and set requirements for both binary and decimal floating point arith-
metic in a common framework. The demands for binary arithmetic imposed by IEEE
854 are consistent with those previously established by IEEE 754. A substantial revi-
sion of IEEE 754, which discusses both binary and decimal floating point arithmetic
and supersedes both earlier standards, was published in 2008 [IEE08]. Superficially,
the 2008 revision looks very different from the 1985 version because it was completely
rewritten with much new nomenclature, but the most important requirements and rec-
ommendations of the 1985 version remain unchanged.2 Features introduced in 2008
include support for a fused multiply-add operation and the standardization of some
additional floating point formats, along with new requirements and recommendations
for programming language standards. Another revision was published in 2019, pri-
marily making minor clarifications and changes [IEE19, Hou19]. Both revisions were
subsequently endorsed as revisions of ISO/IEC 60559. In this book, we discuss only
binary floating point, not decimal floating point, and when we write “the IEEE stan-
dard,” we mean IEEE 754, sometimes distinguishing between the 1985, 2008 and 2019
versions. The term “IEEE arithmetic” is used to mean floating point arithmetic that
is in compliance with the IEEE standard. As IEEE standards must be renewed
every ten years to remain active, plans are already under way for the next revision of
IEEE 754, expected in 2029.

In 2023, the IEEE honored the floating point standard with a milestone plaque
proposed by Jerome Coonen and installed at the University of California, Berkeley. See
the documentation in the milestone proposal [IEE23] as well as many other references
given there for more on the history of the standard.

IEEE Floating Point Essentials

The IEEE standard has three very important requirements:

2All versions of the standard use the word “shall” to mean is required to and “should” to mean is

recommended to.

CHAPTER 4. IEEE FLOATING POINT REPRESENTATION 19

• consistent representation of floating point numbers by all machines adopting the
standard (discussed in this chapter);

• correctly rounded floating point operations, using various rounding modes (see
Chapters 5 and 6);

• consistent treatment of exceptional situations such as division by zero (see Chap-
ter 7).

In the basic IEEE formats, the leading bit of a normalized number is hidden, as
described in the previous chapter. Thus, a special representation is needed for storing
zero. However, zero is not the only number for which the IEEE standard has a special
representation. Another special number, not used on older machines, is ∞. This
allows the possibility of dividing a positive number by zero and storing a sensible
mathematical result, namely ∞, instead of terminating with an overflow message.
This turns out to be very useful, as we shall see later, although one must be careful
about what is meant by such a result. One question that immediately arises is: what
about −∞? It turns out to be convenient to have representations for −∞ as well as∞,
and for −0 as well as 0. We will give more details in Chapter 7, but note for now that
−0 and 0 are two different representations for the same number zero, while −∞ and
∞ represent two very different numbers. Another special value is NaN, which stands
for “Not a Number” and is accordingly not a number at all, but an error pattern. This
too will be discussed later. All of these special values, as well as others representing
subnormal numbers, are represented through the use of two specific bit patterns (all
zeros and all ones) in the exponent field.

The Single Format (binary32)

There are two widely used basic floating point formats, single (binary32) and double
(binary64).3 Single format numbers use a 32-bit word and their representations are
summarized in Table 4.1. Let us discuss these in some detail. The first bit, denoted
±, refers to the sign of the number, a zero bit being used to represent a positive sign.
The next 8 bits, denoted a1a2a3 . . . a8, comprise the exponent field, and the last 23
bits, denoted b1b2 . . . b23, give the fractional part of the significand. The first line in
Table 4.1 shows that the representation for zero requires a special zero bitstring for
the exponent field as well as a zero bitstring for the fraction field, i.e.,

± 00000000 00000000000000000000000 .

No other line in the table can be used to represent the number zero, for all lines except
the first and the last represent normalized4 numbers, with an initial bit equal to 1;
this is the one that is hidden. In the case of the first line of the table, the hidden bit
is 0, not 1. The 2−126 in the first line is confusing at first sight, but let us ignore that
for the moment since (0.000 . . .0)2×2−126 is certainly one way to write the number 0.
In the case when the exponent field has a zero bitstring but the fraction field has a
nonzero bitstring, the number represented is said to be subnormal.5 Let us briefly

3The names single format and double format were used in the 1985 version of the standard; these
were replaced by the names binary32 and binary64 in the 2008 revision. They are also often known
as single precision, float32 or fp32, and double precision, float64 or fp64, respectively. The original
names single and double remain widely used so they are the terms we mostly use.

4The word normalized was used in the 1985 version of IEEE 754. The word normal replaced it in
IEEE 854 and in the 2008 version of IEEE 754, but we prefer normalized, partly because its usage
long predates the IEEE standard, and partly because the word normal has so many meanings in
other contexts.

5The word denormalized was used in the 1985 version of IEEE 754. The word subnormal replaced
it in IEEE 854 and in the 2008 version of IEEE 754.

20 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Table 4.1: IEEE Single Format (binary32)

± a1a2a3 . . . a8 b1b2b3 . . . b23

If exponent bitstring a1 . . . a8 is Then numerical value represented is

(00000000)2 = (0)10 ±(0.b1b2b3 . . . b23)2 × 2−126

(00000001)2 = (1)10 ±(1.b1b2b3 . . . b23)2 × 2−126

(00000010)2 = (2)10 ±(1.b1b2b3 . . . b23)2 × 2−125

(00000011)2 = (3)10 ±(1.b1b2b3 . . . b23)2 × 2−124

↓ ↓
(01111111)2 = (127)10 ±(1.b1b2b3 . . . b23)2 × 20

(10000000)2 = (128)10 ±(1.b1b2b3 . . . b23)2 × 21

↓ ↓
(11111100)2 = (252)10 ±(1.b1b2b3 . . . b23)2 × 2125

(11111101)2 = (253)10 ±(1.b1b2b3 . . . b23)2 × 2126

(11111110)2 = (254)10 ±(1.b1b2b3 . . . b23)2 × 2127

(11111111)2 = (255)10 ±∞ if b1 = · · · = b23 = 0, NaN otherwise

postpone the discussion of subnormal numbers and go on to the other lines of the
table.

All the lines of Table 4.1 except the first and the last refer to the normalized
numbers, i.e., all the floating point numbers that are not special in some way. Note
especially the relationship between the exponent bitstring a1a2a3 . . . a8 and the actual
exponent E. We see that the exponent representation does not use either the sign-
and-modulus or the 2’s complement integer representation discussed in the previous
chapter, but something called biased representation : the bitstring that is stored is
the binary representation of E + 127. The number 127, which is added to the desired
exponent E, is called the exponent bias. For example, the number 1 = (1.000 . . .0)2×20
is stored as

0 01111111 00000000000000000000000 .

Here the exponent bitstring is the binary representation for 0 + 127 and the fraction
bitstring is the binary representation for 0 (the fractional part of 1.0). The number
11/2 = (1.011)2 × 22 is stored as

0 10000001 01100000000000000000000 .

The number 1/10 = (1.100110011 . . .)2 × 2−4 has a nonterminating binary expansion.
If we truncate this to fit the significand field size, we find that 1/10 is stored as

0 01111011 10011001100110011001100 .

We shall see other rounding options in the next chapter.
The range of exponent field bitstrings (also known as the biased exponents) for

normalized numbers is 00000001 to 11111110 (the decimal numbers 1 through 254),
representing actual exponents (also known as unbiased exponents) from Emin = −126
to Emax = 127. Note that Emax is also the exponent bias, and that Emin = −Emax+1.
The smallest positive normalized number that can be stored is represented by

0 00000001 00000000000000000000000 ,

CHAPTER 4. IEEE FLOATING POINT REPRESENTATION 21

✲✛

0 1 2 3−1−2−3

Figure 4.1: The Toy System Including Subnormal Numbers

and we denote this by

Nmin = (1.000 . . .0)2 × 2−126 = 2−126 ≈ 1.2× 10−38. (4.1)

The largest normalized number (equivalently, the largest finite number) is represented
by

0 11111110 11111111111111111111111 ,

and we denote this by

Nmax = (1.111 . . .1)2 × 2127 = (2 − 2−23)× 2127 ≈ 2128 ≈ 3.4× 1038. (4.2)

The last line of Table 4.1 shows that an exponent bitstring consisting of all 1s is
a special pattern used to represent ±∞ or NaN, depending on the fraction bitstring.
We will discuss these in Chapter 7.

Subnormals

Finally, let us return to the first line of Table 4.1. The idea here is as follows:
although 2−126 is the smallest normalized number that can be represented, we can use
the combination of the special zero exponent bitstring and a nonzero fraction bitstring
to represent smaller numbers called subnormal numbers. For example, 2−127, which
is the same as (0.1)2 × 2−126, is represented as

0 00000000 10000000000000000000000 ,

while 2−149 = (0.0000 . . .01)2 × 2−126 (with 22 zero bits after the binary point) is
stored as

0 00000000 00000000000000000000001 .

This is the smallest positive number that can be stored, which we denote by Smin.
Now we see the reason for the 2−126 in the first line of the table. It allows us to
represent numbers in the range immediately below the smallest positive normalized
number. Subnormal numbers cannot be normalized, since normalization would result
in an exponent that does not fit in the field.

Let us return to our example of the toy system with a tiny word size, illustrated
in Figure 3.1, and see how the inclusion of subnormal numbers changes it. We get six
extra numbers: ±(0.11)2×2−1 = ±3/8, ±(0.10)2×2−1 = ±1/4, and ±(0.01)2×2−1 =
±1/8; these are shown in Figure 4.1. Note that the gaps between zero and ±0.5 are
evenly filled in by the subnormal numbers, using the same spacing as that between the
numbers in the range ±0.5 to ±1.

The number of possible nonzeros in the significand field of a subnormal number
depends on its magnitude. Specifically, the accuracy to which it can approximate a

22 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

number drops as the size of the subnormal number decreases. Thus (1/10)× 2−123 =
(0.11001100 . . .)2 × 2−126 is truncated to

0 00000000 11001100110011001100110 ,

while (1/10)× 2−135 = (0.11001100 . . .)2 × 2−138 is truncated to

0 00000000 00000000000011001100110 .

Exercise 4.1 Determine the IEEE single format floating point representation for the
following numbers: 2, 30, 31, 32, 33, 23/4, (23/4)×2100, (23/4)×2−100, and (23/4)×
2−135. Truncating the significand as in the 1/10 example, do the same for the numbers
1/5 = (1/10) × 2, 1024/5 = (1/10) × 211, and (1/10) × 2−140, using (2.3) to avoid
decimal-to-binary conversions.

Exercise 4.2 What is the gap between 2 and the first IEEE single format number
larger than 2? What is the gap between 1024 and the first IEEE single format number
larger than 1024?

Exercise 4.3 Give an algorithm that, given two IEEE single format floating point
numbers x and y, determines whether x is less than, equal to, or greater than y, by
comparing their representations bitwise from left to right, stopping as soon as the first
differing bit is encountered. Assume that neither x nor y is ±0, ±∞ , or NaN. The fact
that such a comparison can be done easily motivates biased exponent representation.
It also justifies referring to the left end of the representation as the “most significant”
end.

Exercise 4.4 This extends Exercise 3.14, which considered the toy number system
with one additional bit in the significand. Mark the subnormal numbers in this system
on the modified copy of Figure 3.1 that you used to answer Exercise 3.14.

The Double Format (binary64)

The single format is not adequate for many applications, either because higher preci-
sion is desired or (less often) because a greater exponent range is needed. A second
IEEE basic format is double (binary64), which uses a 64-bit double word. Details
are shown in Table 4.2. The ideas are the same as before; only the field widths and
exponent bias are different. Now there are 11 bits for the exponent field, the exponent
bias is 1023, and the exponents range from Emin = −1022 to Emax = 1023, while the
number of bits in the fraction field is 52. Numbers with no finite binary expansion,
such as 1/10 or π, are represented more accurately with the double format than they
are with the single format. The smallest positive normalized double format number is

Nmin = 2−1022 ≈ 2.2× 10−308 (4.3)

and the largest is
Nmax = (2 − 2−52)× 21023 ≈ 1.8× 10308. (4.4)

Other IEEE Formats

The 1985 IEEE standard recommended support for an extended format, with, assum-
ing that the double format is supported, the extended format having at least 15 bits

CHAPTER 4. IEEE FLOATING POINT REPRESENTATION 23

Table 4.2: IEEE Double Format (binary64)

± a1a2a3 . . . a11 b1b2b3 . . . b52

If exponent bitstring is a1 . . . a11 Then numerical value represented is

(00000000000)2 = (0)10 ±(0.b1b2b3 . . . b52)2 × 2−1022

(00000000001)2 = (1)10 ±(1.b1b2b3 . . . b52)2 × 2−1022

(00000000010)2 = (2)10 ±(1.b1b2b3 . . . b52)2 × 2−1021

(00000000011)2 = (3)10 ±(1.b1b2b3 . . . b52)2 × 2−1020

↓ ↓
(01111111111)2 = (1023)10 ±(1.b1b2b3 . . . b52)2 × 20

(10000000000)2 = (1024)10 ±(1.b1b2b3 . . . b52)2 × 21

↓ ↓
(11111111100)2 = (2044)10 ±(1.b1b2b3 . . . b52)2 × 21021

(11111111101)2 = (2045)10 ±(1.b1b2b3 . . . b52)2 × 21022

(11111111110)2 = (2046)10 ±(1.b1b2b3 . . . b52)2 × 21023

(11111111111)2 = (2047)10 ±∞ if b1 = · · · = b52 = 0, NaN otherwise

available for the exponent and at least 63 bits for the fractional part of the significand.
The Intel x87 microprocessors, to be discussed in Chapter 8, implement arithmetic
with an extended format in hardware, using 80-bit floating point registers, with 1 bit
for the sign, 15 bits for the exponent, and 64 bits for the significand. The leading
bit of a normalized or subnormal number is not hidden as it is in the single and dou-
ble formats but is explicitly stored. The purpose of the extended format is to allow
computations to be carried out with higher precision in the registers before a result is
stored to a double format location in memory.

The 2008 version of the standard introduced a third basic format, binary128, also
known as quadruple precision. Its exponent field width is 15 bits and its fraction field
is 112 bits, so the significand has 113 bits including the hidden bit. An implementation
of the standard is required to support at least one of the three basic formats (binary32,
binary64 or binary128). However, at present, very few machines support binary128 in
hardware. The standard continues to recommend that an extended precision format
be supported in addition to the widest basic format supported, but this advice is
generally not followed by recent microprocessors, as discussed in Chapter 8.

For any format, let w denote the width of the exponent field in bits, namely 8 for
the single format, 11 for the double format and 15 for the quadruple format. For all
these formats, the largest exponent Emax is related to the exponent width w by a
simple formula,

Emax = 2w−1 − 1. (4.5)

Thus, Emax is 127, 1023 or 16383, respectively, for the single, double and quadruple
formats. Also, it is always the case that the exponent bias equals Emax and that
Emin = −Emax + 1 = −2w−1 + 2. This then immediately implies that the smallest
biased exponent, which is the number stored in the exponent field, is Emin+Emax = 1,
and the largest biased exponent is 2Emax = 2w − 2, with a bitstring of all ones except
a zero in the last position.

The 2008 version of the standard also introduced specifications for several inter-
change formats: binary16 (sometimes known as half precision), binary256 (sometimes

24 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Format single double quadruple

(binary32) (binary64) (binary128)

k 32 64 128

p 24 53 113

ǫmch = 2−(p−1)
≈ 1.2× 10−7

≈ 2.2× 10−16
≈ 1.9 × 10−34

w = k − p 8 11 15

Emax = 2w−1
− 1 127 1023 16383

Emin = −2w−1 + 2 −126 −1022 −16382

bias = Emax 127 1023 16383

Nmax = 2Emax

(

2− 2−(p−1)
)

≈ 3.4× 1038 ≈ 1.8× 10308 ≈ 1.2× 104932

Nmin = 2Emin
≈ 1.2× 10−38

≈ 2.2× 10−308
≈ 3.4× 10−4932

Smin = 2Emin−(p−1)
≈ 1.4× 10−45

≈ 4.9× 10−324
≈ 6.5× 10−4966

Table 4.3: Parameters for the three IEEE basic formats recommended by the 2008
floating point standard: total bit width k, precision p, machine epsilon ǫmch, exponent
bit width w, maximum exponent, minimum exponent, exponent bias, maximum nor-
malized number, minimum positive normalized number, minimum positive subnormal
number.

known as octuple precision), and, more generally, binary-k where k is any multiple of
32 that is larger than 128. Equation (4.5) holds for these too. The exponent width w
is only 5 for the half precision format, so Emax = 15 and Emin = −14. For the wider
formats, a rather complicated formula was given for the exponent width w in terms
of the total bit width k, but this formula holds only for k ≥ 64. The purpose of the
interchange formats is to standardize the widths for the exponent and significand fields
in these formats, facilitating the exchange of data between machines, even if they do
not support arithmetic operations using these formats. The first edition of this book,
published in 2001, speculated that 256-bit floating point would become standard even-
tually, but this has not happened yet. In fact, the trend is now clearly in the opposite
direction, with 128-bit formats being rarely used and 16-bit floating point formats
becoming common, as we discuss in Chapter 15. However, other techniques for effi-
cient high precision computation, including “double-double” and “quad-double”, are
described in Chapter 14.

Precision and Machine Epsilon of the IEEE Formats

Recall from the previous chapter that we use the notation p (precision) to denote the
number of bits in the significand and ǫmch (machine epsilon) to mean the gap between
1 and the next larger floating point number. The precision of the IEEE single format is
p = 24 (including the hidden bit); for the double format it is p = 53 (again, including
the hidden bit). 6 The precision of the Intel extended format is p = 64, since it has
no hidden bit. The first single format number larger than 1 is 1 + 2−23, and the first
double format number larger than 1 is 1+2−52. With the Intel extended format, since
there is no hidden bit, 1 + 2−64 cannot be stored exactly; the first extended format
number larger than 1 is 1+2−63. The precision of binary128 is p = 113, including the
hidden bit. In all cases, the machine epsilon ǫmch is 2−(p−1).

As earlier, let k denote the format’s total bit width, that is 32, 64 or 128 respectively
for the three IEEE basic formats, and let w be the number of bits in the exponent field.
Then the number of stored bits in the fractional part of the significand is k−w−1 (the

6

CHAPTER 4. IEEE FLOATING POINT REPRESENTATION 25

total number of bits minus the number needed for the exponent and the sign). Hence,
we have, for the single, double and quadruple formats, but not the Intel extended
format, that the precision is

p = (k − w − 1) + 1 = k − w,

where the −1 subtracts the sign bit and the +1 adds the hidden bit.
All the relevant parameters for the three IEEE basic formats (including binary128

but not the Intel extended format) are summarized in Table 4.3.

Significant Digits

It is often stated that IEEE single precision floating point numbers have approximately
7 significant decimal digits and that double precision numbers have approximately 16
significant decimal digits. The rationale for this can be seen in Table 4.3: for single
precision, the machine epsilon ǫmch = 2−23 is about 10−7, while for double precision,
ǫmch = 2−52 is about 10−16. We deliberately use the word approximately here, because
defining significant digits is problematic. For example, to how many decimal digits
does

3.1415927

approximate
π = 3.141592653 . . .?

We might say 7, since the first 7 digits of both numbers are the same, or we might say
8, since if we round π to the nearest 8 digit decimal number, we get the same number
3.1415927. See [Hig02, Ch. 1] for a discussion of the difficulties involved in using
definitions like these to define “significant digits.” We will discuss this issue further in
the next chapter.

Big and Little Endian

Modern computers address memory by bytes. A 32-bit word consists of 4 consecutive
bytes with addresses, say, B1, . . . , B4, where B4 = B1 + 3. Suppose we store a single
format floating point number in this word. We know from Table 4.1 that a single
format number has the bit format

σa1a2a3 . . . a8b1b2b3 . . . b23,

where σ is the sign bit. This corresponds to 4 bytes, of which the “most significant”
(see Exercise 4.3) is the byte

σa1a2a3a4a5a6a7.

Let us ask the question: is this most significant byte stored in byte B1 or byte B4?
Surprisingly, it turns out that the answer depends on the machine. Addressing systems
for which the answer is B1 are called Big Endian (the first byte B1 stores the “big
end” of the floating point word). Addressing systems for which the answer is B4 are
called Little Endian (the first byte B1 stores the “little end,” i.e., the least significant
byte, of the floating point word). Historically, IBM machines used Big Endian
addressing, while Intel used Little Endian, but many modern machines can operate
in either mode. The fact that different machines use different schemes means that
care must be taken when passing data from one machine to another. The addressing
schemes were given the names Big and Little Endian by Danny Cohen, in a whimsical
reference to Gulliver’s Travels, where the issue is which end of a boiled egg should be
opened [HP95, Chapter 3.4].

Chapter 5

Rounding

We saw in the previous chapter that the finite IEEE floating point numbers can all be
expressed in the form

±(b0.b1b2 . . . bp−1)2 × 2E,

where p is the precision of the floating point system with, for normalized numbers,
b0 = 1 and Emin ≤ E ≤ Emax and, for subnormal numbers and zero, b0 = 0 and E =
Emin. We denoted the largest normalized number by Nmax and the smallest positive
normalized number by Nmin. There are also two infinite floating point numbers, ±∞.

Let x be any real number. Let us define x− to be the floating point number closest
to x that is less than or equal to x, and define x+ to be the floating point number
closest to x that is greater than or equal to x. Note that if x > Nmax, then x+ = +∞
and x− = Nmax. Also, if 0 < x < Nmin, then x+ is either a positive subnormal or Nmin

and x− is either a positive subnormal or +0. Likewise, if x < −Nmax, then x− = −∞
and x+ = −Nmin, and if −Nmin < x < 0, then x− is either a negative subnormal or
−Nmin, and x+ is either a negative subnormal or −0. Note that, if x− or x+ is zero,
its sign is chosen to be the same as the sign of x. Also note that, according to the
definition, if x is a floating point number then x− = x+ = x.

We say that a real number x is in the normalized range of the floating point system
if

Nmin ≤ |x| ≤ Nmax.

The numbers ±0 and ±∞ and the subnormal numbers are not in the normalized range
of the floating point system, although they are all valid floating point numbers. Let
x be in the normalized range, with x not a floating point number, and write x in the
normalized form

x = ±(1.b1b2 . . . bp−1bpbp+1 . . .)2 × 2E, (5.1)

with Emin ≤ E ≤ Emax. We first consider the case x > 0. Then the closest floating
point number less than or equal to x is

x− = (1.b1b2 . . . bp−1)2 × 2E ;

i.e., x− is obtained by truncating the binary expansion of the significand, discarding
bp, bp+1, etc. Since x is not a floating point number, at least one of the discarded bits
in its expansion must be nonzero, so

x+ =
(
(1.b1b2 . . . bp−1)2 + (0.00 . . .01)2

)
× 2E =

(
x− + 2−(p−1)

)
× 2E,

27

28 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

the next floating point number bigger than x−, and therefore also the next one that
is bigger than x. So, the gap between x− and x+ is

ulp(x) = x+ − x− = 2−(p−1) × 2E = ǫmch × 2E, (5.2)

where ulp, which we introduced earlier in (3.7), means unit in the last place, and ǫmch

is, as earlier, the machine epsilon. Finding the binary expansion of x+ is a little more
complicated, since one bit must be added to the last place of the fraction field of x−;
this may involve some bit “carries” and possibly, if all the bits in the field are 1, an
increment in the exponent field. However, the largest possible exponent remains Emax,
since we assumed x < Nmax.

Now suppose x < 0, with x still in the normalized form (5.1) and x not a floating
point number. Then the situation just described is reversed. Thus x+ is obtained
by dropping bits bp, bp+1, etc., since discarding bits of a negative number makes the
number closer to zero, and therefore larger (further to the right on the real line).
However, the gap between x− and x+ is still given by (5.2).

Exercise 5.1 When x > 0 is not a floating point number, the floating point number
x+ is called the successor of x−. Although we described finding x+ as more complicated
than finding x−, this is actually easily done by treating the floating point encoding of
x− as a binary integer and adding 1 to it. By giving an example, explain why the
following, taken from [MB+18, Sec. 7.2.1.1] is true: the possible carry propagation
from the significand field to the exponent field will take care of the possible change of
exponent. (See also Exercise 4.3.)

Let us also make another definition. We say that a real number x is in the sub-
normal range of the floating point system if

0 < |x| < Nmin.

Let x be a positive number in the subnormal range, with x not a floating point number,
and write x in the subnormal form

x = (0.b1b2 . . . bp−1bpbp+1 . . .)2 × 2Emin. (5.3)

It follows that the closest floating point number less than or equal to x is

x− = (0.b1b2 . . . bp−1)2 × 2Emin,

i.e., x− is obtained by truncating the binary expansion of the significand, discarding
bp, bp+1, etc. Note that x− is zero if all of b1, . . . , bp−1 are zero. Since x is not a
floating point number, at least one of the discarded bits in its expansion is nonzero,
so

x+ =
(
(0.b1b2 . . . bp−1)2 + (0.00 . . . 01)2

)
× 2Emin =

(
x− + 2−(p−1)

)
× 2Emin.

Hence, the gap between x− and x+ is

ulp(x) = x+ − x− = 2−(p−1) × 2Emin = ǫmch × 2Emin. (5.4)

As in the normalized case, determining the binary expansion of x+ is a little more
complicated, as it may involve bit “carries” and possibly rounding up to the normal-
ized number Emin. As before, all these considerations are reversed when considering
negative numbers in the subnormal range, but (5.4) remains true.

CHAPTER 5. ROUNDING 29

Correctly Rounded Values

The IEEE standard defines the correctly rounded value of x, which we shall denote by
round(x), as follows.1 If x is a floating point number, then round(x) = x. Otherwise,
the correctly rounded value depends on which of the following four rounding modes2

is in effect:

• Round down3

round(x) = x−.

• Round up4

round(x) = x+.

• Round toward zero.
round(x) = x− if x > 0; round(x) = x+ if x < 0.

• Round to nearest.
round(x) is either x− or x+, whichever is nearer to x (unless |x| > Nmax).

In case of a tie, the one with its least significant bit equal to zero is chosen. See
below for details.

If x is positive, then round down and round toward zero have the same effect. If
x is negative, then round up and round toward zero have the same effect. In both
cases, round toward zero simply requires truncating the binary expansion.

The rounding mode that is almost always used in practice is round to nearest.
Consider x given by (5.1) again. If the first bit that cannot be stored, bp, is 0, round
to nearest rounds down to x−; on the other hand, if bp = 1 and at least one subsequent
nonzero bit is also 1, round to nearest rounds up to x+. If bp = 1 and all subsequent
bits are 0, there is a tie. The least significant bits, i.e., the (p − 1)th bits after the
binary point, of x− and x+ must be different, and the one for which this bit equals 0
is chosen to break the tie. For the motivation for this rule, see [Gol91, Theorem 5].
. When the word round is used without any mention of a rounding mode, it almost
always means round to nearest. The IEEE standard requires that the default rounding
mode be round to nearest.5

There is an exception to the round to nearest rule when x > Nmax. In this case,
round(x) is defined to be +∞, not Nmax, unless x is so close to Nmax that it would
have rounded down to Nmax even if the exponent range of the floating point system
were increased.6 From a strictly mathematical point of view, this is not consistent

1Often denoted fl(x).
2The term rounding mode was used in the 1985 version of the standard. It was replaced by

rounding direction attribute in 2008, but we prefer to use the earlier term.
3Called round toward −∞ in the 1985 standard and round toward negative in the 2008 standard.
4Called round toward +∞ in the 1985 standard and round toward positive in the 2008 standard.
5The tie-breaking rule just described for round to nearest has been in effect since the original 1985

standard, but starting with the 2008 revision, it is called roundTiesToEven, because this revision
also introduced another tie-breaking option called roundTiesToAway which, in case of a tie, returns
x+ if x > 0 and x

−
if x < 0. The primary rationale for roundTiesToAway concerns decimal, not

binary, floating point arithmetic; see [MB+18, p. 67]. The 2019 version of the standard introduced
yet another tie-breaking option called roundTiesToZero, with the opposite effect in case of a tie:
return x

−
if x > 0 and x+ if x < 0. The rationale for roundTiesToZero is completely different and

concerns new operations recommended in 2019; see Chapter 14. However, implementations of the
standard are not required to include support for either of the newer tie-breaking rules; furthermore,
roundTiesToEven must be the default behavior. Hence, in this book, we use round to nearest to
mean roundTiesToEven.

6More precisely, round(x) is defined to be Nmax if x < Nmax + ulp(Nmax)/2 and +∞ otherwise.
Note the use of the < inequality here, not ≤, because in the case of a tie, the round to even rule
would result in rounding up, not down.

30 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

with the usual definition, since x cannot be said to be closer to∞ than to Nmax. From
a practical point of view, however, the choice ∞ is important, since round to nearest
is the default rounding mode and rounding to x to Nmax may give very misleading
results if x is much larger than Nmax. Similar considerations apply when x < −Nmax.

Exercise 5.2 What are the IEEE single format binary representations for the rounded
value of 1/10 (see (2.3)), using each of the four rounding modes? What are they for
1 + 2−25 and 2130?

Exercise 5.3 Using the IEEE single format, construct an example where x− and
x+ are the same distance from x, and use the tie-breaking rule to define round(x),
assuming the round-to-nearest mode is in effect.

Exercise 5.4 Suppose that 0 < x < Nmin, but that x is not a subnormal floating point
number. We can write

x = (0.b1b2 . . . bp−1bpbp+1 . . .)2 × 2Emin,

where at least one of bp, bp+1, . . . is not zero. What is x−? Give some examples,
assuming the single format is in use (p = 24, Emin = −126).

Absolute Rounding Error and Ulp

We now define rounding error.7 Let x be a real number and define

abserr(x) = |round(x) − x|, (5.5)

the absolute rounding error associated with x. Since round(x) is always either x+ or
x−, and x− ≤ x ≤ x+, we have

|round(x)− x| < x+ − x−, (5.6)

the gap between x− and x+; it cannot equal the gap since if x is a floating point
number, abserr(x) = 0. So, if x is in the normalized range, with the form (5.1), we
have from (5.2) that

abserr(x) = |round(x) − x| < x+ − x− = ulp(x) = 2−(p−1) × 2E = ǫmch × 2E , (5.7)

regardless of the rounding mode in effect. Informally, we say that the absolute round-
ing error is less than one ulp, meaning ulp(x). When round to nearest is in effect, we
can say something stronger: the absolute rounding error is less than or equal to half
the gap between x− and x+, i.e.,

abserr(x) = |round(x)−x| ≤ 1

2
(x+−x−) =

1

2
ulp(x) = 2−p×2E =

1

2
ǫmch×2E , (5.8)

and informally, we say that the absolute rounding error is at most half an ulp.

Exercise 5.5 What is abserr(1/10) using the IEEE single format, for each of the four
rounding modes? (See Exercise 5.2.)

Exercise 5.6 Suppose that x > Nmax. What is abserr(x), for each of the four round-
ing modes? Look carefully at the definition of round(x).

Exercise 5.7 What is abserr(x) for x given in Exercise 5.4, using the rounding mode
round down?

Exercise 5.8 Suppose x is in the subnormal range, with the form (5.3). Do the
bounds (5.7) and (5.8) hold with E replaced by Emin? Why or why not?

7Often called roundoff or round-off error.

CHAPTER 5. ROUNDING 31

Relative Rounding Error, Machine Epsilon, Significant Digits

The relative rounding error associated with a nonzero number x is defined by

relerr(x) = |δ|, (5.9)

where

δ =
round(x)

x
− 1 =

round(x) − x

x
. (5.10)

Assuming that x is in the normalized range and is not a floating point number, we
have, using (5.1),

|x| > 2E . (5.11)

Therefore, for all rounding modes, the relative rounding error satisfies the bound

relerr(x) = |δ| = |round(x) − x|
|x| <

2−(p−1) × 2E

2E
= 2−(p−1) = ǫmch, (5.12)

using (5.7) and (5.11). In the case of round to nearest, we have

relerr(x) = |δ| = |round(x) − x|
|x| <

2−p × 2E

2E
= 2−p =

1

2
ǫmch, (5.13)

using (5.8) and (5.11). The same inequalities hold when x is a floating point number
in the normalized range, since then relerr(x) = abserr(x) = 0.

Exercise 5.9 Suppose x is in the subnormal range, with the form (5.3). Do the
bounds (5.12) and (5.13) hold with E = Emin? Why or why not? (See Exercise 5.8.)

Let us take logarithms (base 10) on both sides of the relative error inequality (5.12)
and multiply through by −1, giving

− log10(relerr(x)) > − log10(ǫmch). (5.14)

Although we pointed out in Chapter 4 that defining “significant digits” is problematic,
this inequality provides a convenient and well-defined way to do this. We can interpret
the left-hand side of (5.14) as the approximate number of decimal digits to which
round(x) approximates x, and the right-hand side as a lower bound on this number.
Consulting Table ??, we see that this lower bound is approximately 7 in the case of
IEEE single and approximately 16 for IEEE double. Note that since

− log10

(
1

2
ǫmch

)
= − log10(ǫmch)− log10

(
1

2

)
≈ − log10(ǫmch)− 0.3,

using (5.13) instead of (5.12) increases the lower bound only by about one-third of a
decimal digit, which has little significance.

It follows from (5.10) that

round(x) = x(1 + δ).

Combining this with (5.12) and (5.13), we have completed the proof of the following
result, which is so important that we state it as the only theorem in this book.

32 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Theorem 5.1 Let x be any real number in the normalized range of a binary floating
point system with precision p. Then

round(x) = x(1 + δ)

for some δ satisfying
|δ| < ǫmch,

where ǫmch, machine epsilon, is the gap between 1 and the next larger floating point
number, i.e.,

ǫmch = 2−(p−1).

Furthermore, if the rounding mode in effect is round to nearest,

|δ| < 1

2
ǫmch = 2−p.

Theorem 5.1 shows that, no matter how a number x in the normalized range is
stored or displayed, either in a binary format or in a converted decimal format, we may
think of its value as exact within a factor of 1+ǫmch, regardless of the rounding mode.
This means that IEEE single format numbers are accurate to within a factor of about
1 + 10−7, which we can interpret to mean that they have approximately 7 significant
decimal digits. Likewise IEEE double format numbers are accurate to within a factor
of about 1 + 10−16, which we can interpret to mean that they have approximately 16
significant decimal digits.

Let us again consider the example from the previous chapter. The number

π = 3.141592653 . . .

is represented in single precision, using round to nearest and converting to decimal, as
round(π) ≈ 3.1415927. We have

relerr(π) =
|π − round(π)|

|π| ≈ 2.783× 10−8

so
− log 10(relerr(π)) ≈ 7.555.

Hence we say that round(π) approximates π to about 7 or 8 decimal digits. As another
example, the number x = 1.99999999 is represented in single precision, using round to
nearest, by round(x) = 2 (exactly). We have

relerr(x) =
|x− round(x)|

|x| ≈ 5× 10−9

so
− log 10(relerr(x)) ≈ 8.3.

Hence we say that round(x) approximates x to about 8 decimal digits — slightly more
than in the previous example.

Exercise 5.10 Does the result established by Theorem 5.1 hold if x is in the subnormal
range of the floating point system? Why or why not?

Chapter 6

Correctly Rounded Floating
Point Operations

A key feature of the IEEE standard is that it requires correctly rounded operations,
specifically:

• correctly rounded arithmetic operations (add, subtract, multiply, divide)1

• correctly rounded remainder and square root operations

• correctly rounded format conversions.

Correctly roundedmeans rounded to fit the destination of the result, using the rounding
mode in effect. For example, if the operation is the addition of two floating point
numbers that are stored in registers, the destination for the result is normally one of
these registers (overwriting one of the operands). On the other hand, the operation
might be a store instruction, in which case the destination is a location in memory
and a format conversion may be required. Regardless of whether the destination is a
register or a memory location, its format could be any of the IEEE formats, depending
on the machine being used and the program being executed.

Correctly Rounded Arithmetic

We begin by discussing the arithmetic operations. Very often, the result of an arith-
metic operation on two floating point numbers is not a floating point number in the
destination format. This is most obviously the case for multiplication and division; for
example, 1 and 10 are both floating point numbers but we have already seen that 1/10
is not, regardless of the destination format. It is also true of addition and subtraction:
for example, 1 and 2−24 are IEEE single format numbers, but 1 + 2−24 is not.

Let x and y be floating point numbers, let +, −, ×, / denote the four standard
arithmetic operations, and let ⊕, ⊖, ⊗, ⊘ denote the corresponding operations as they
are actually implemented on the computer. Thus, x + y may not be a floating point
number, but x ⊕ y is the floating point number that is the computed approximation
of x+ y. Before the development of the IEEE standard, the results of a floating point
operation might be different on two different computers. Occasionally, the results
could be quite bizarre. Consider the following questions, where in each case we assume

1One more arithmetic operation, fused multiply-add, was introduced in the 2008 version of the
standard; we discuss this below.

33

34 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

that the destination for the result has the same format as the floating point numbers
x and y.

Question 6.1 If x is a floating point number, is the floating point product 1⊗x equal
to x?

Question 6.2 If x is a nonzero (and finite) floating point number, is the floating
point quotient x⊘ x equal to 1?

Question 6.3 If x is a floating point number, is the floating point product 0.5⊗x the
same as the floating point quotient x⊘ 2?

Question 6.4 If x and y are floating point numbers, and the floating point difference
x⊖ y is zero, does x equal y?

Normally, the answer to all these questions would be yes, but for each of Questions
6.1 through 6.3, there was a widely used computer in the 1960s or 1970s for which
the answer was no for some input x [Sev98], [Kah00], [PH97, Section 4.12]. These
anomalies cannot occur with IEEE arithmetic. As for Question 6.4, virtually all
systems developed before the standard were such that the answer could be no for
small enough values of x and y; on some systems, the answer could be no even if
x and y were both near 1 (see the discussion following equation (6.4)). With IEEE
arithmetic, the answer to Question 6.4 is always yes; see the next chapter.

When the result of a floating point operation is not a floating point number in
the destination format, the IEEE standard requires that the computed result be the
rounded value of the exact result, i.e., rounded to fit the destination format, using the
rounding mode in effect. It is worth stating this requirement carefully. The rule for
correctly rounded arithmetic is as follows: if x and y are floating point numbers, then

x⊕ y = round(x + y),

x⊖ y = round(x − y),

x⊗ y = round(x × y),

and

x⊘ y = round(x/y),

where round is the operation of rounding to the given destination format, using the
rounding mode in effect.

Exercise 6.1 Show that the IEEE rule of correctly rounded arithmetic immediately
guarantees that the answers to Questions 6.1 to 6.3 must be yes. Show further that
for two out of three of these questions, no rounding is necessary because the exact
result is always a floating point number, but that for one of the three, rounding may be
necessary in some cases; which question is this and in what cases is rounding needed?

Using Theorem 5.1, it follows that, as long as x+ y is in the normalized range,

x⊕ y = (x + y)(1 + δ),

where

|δ| < ǫmch,

CHAPTER 6. CORRECTLY ROUNDED FLOATING POINT OPERATIONS 35

machine epsilon for the destination format. This applies to all rounding modes; for
round to nearest, we have the stronger result

|δ| < 1

2
ǫmch.

For example, if the destination format is IEEE single and the rounding mode is round
to nearest, floating point addition is accurate to within a factor of 1 + 2−24, i.e., to
approximately seven decimal digits. The same holds for the other operations ⊖, ⊗,
and ⊘.

Exercise 6.2 Suppose that the destination format is IEEE single and the rounding
mode is round to nearest. What are 64⊕220, 64⊕2−20, 32⊕2−20, 16⊕2−20, 8⊕2−20?
Give your answers in binary, not decimal. What are the results if the rounding mode
is changed to round up?

Exercise 6.3 Recalling how many decimal digits correspond to the 24-bit precision of
an IEEE single format number, which of the following expressions do you think have
the value exactly 1 if the destination format is IEEE single and the rounding mode is
round to nearest: 1⊕ round(10−5), 1⊕ round(10−10), 1⊕ round(10−15)?

Exercise 6.4 What is the largest floating point number x for which 1⊕x is exactly 1,
assuming the destination format is IEEE single and the rounding mode is round to
nearest? What if the destination format is IEEE double?

It is important to note that the result of a sequence of two or more arithmetic
operations may not be the correctly rounded value of the exact result. For example,
consider the computation of (x+ y)− z, where x = 1, y = 2−25, and z = 1, assuming
the destination format for both operations is IEEE single, and with round to nearest
in effect. The numbers x, y, and z are all IEEE single format floating point numbers,
since x = z = 1.0× 20 and y = 1.0× 2−25. The exact sum of the first two numbers is

x+ y = (1.0000000000000000000000001)2.

This does not fit the single format, so it is rounded, giving

x⊕ y = 1.

The final result is therefore

(x⊕ y)⊖ z = 1⊖ 1 = 0.

However, the exact result is

(x + y)− z = 2−25,

which does fit the single format exactly. Notice that the exact result would be obtained
if the destination format for the intermediate result x + y is the IEEE double or
extended format (see Chapter 8).

Exercise 6.5 In this example, what is x ⊕ (y ⊖ z), and (x ⊖ z) ⊕ y, assuming the
destination format for all operations is IEEE single?

Exercise 6.6 Using the same example, what is (x ⊕ y) ⊖ z if the rounding mode is
round up?

36 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Exercise 6.7 Let x = 1, y = 2−15, and z = 215, stored in the single format. What
is (x ⊕ y) ⊕ z, when the destination format for both operations is the single format,
using round to nearest? What if the rounding mode is round up?

Exercise 6.8 In exact arithmetic, the addition operation is commutative, i.e.,

x+ y = y + x

for any two numbers x, y, and also associative, i.e.,

x+ (y + z) = (x+ y) + z

for any x, y, and z. Is the floating point addition operation ⊕ commutative? Is it
associative?

The availability of the rounding modes round down and round up allows a pro-
grammer to make any individual computation twice, once with each mode. The two
results define an interval that must contain the exact result. Interval arithmetic is the
name used when sequences of computations are done in this way. See Exercises 10.14,
10.15, 13.5, and 13.11.

Addition and Subtraction

Now we ask the question: How is correctly rounded arithmetic implemented? This
is surprisingly complicated. Let us consider the addition of two IEEE single format
floating point numbers x = S × 2E and y = T × 2F , assuming the destination format
for x+y is also IEEE single. If the two exponents E and F are the same, it is necessary
only to add the significands S and T . The final result is (S + T) × 2E, which then
needs further normalization if S + T is greater than or equal to 2, or less than 1. For
example, the result of adding 3 = (1.100)2 × 21 to 2 = (1.000)2 × 21 is

(1.10000000000000000000000)2 × 21

+ (1.00000000000000000000000)2 × 21

= (10.10000000000000000000000)2 × 21

Normalize : (1.01000000000000000000000)2 × 22.

However, if the two exponents E and F are different, say with E > F , the first
step in adding the two numbers is to align the significands, shifting T right E − F
positions so that the second number is no longer normalized and both numbers have
the same exponent E. The significands are then added as before. For example, adding
3 = (1.100)2 × 21 to 3/4 = (1.100)2 × 2−1 gives

(1.10000000000000000000000)2 × 21

+ (0.01100000000000000000000)2 × 21

= (1.11100000000000000000000)2 × 21.

In this case, the result does not need further normalization.

Guard Bits

Now consider adding 3 to 3× 2−23. We get

(1.10000000000000000000000)2 × 21

+ (0.00000000000000000000001|1)2 × 21

= (1.10000000000000000000001|1)2 × 21

Round Down : (1.10000000000000000000001)2 × 21

or Round Up : (1.10000000000000000000010)2 × 21.

(6.1)

CHAPTER 6. CORRECTLY ROUNDED FLOATING POINT OPERATIONS 37

This time, the sum shown in the middle line is not an IEEE single format floating
point number, since its significand has 24 bits after the binary point: the 24th is shown
beyond the vertical bar. Therefore, the sum must be correctly rounded. In the case
of rounding to nearest, there is a tie, so the result with its final bit equal to zero is
used (round up in this case).

Rounding should not take place before the result is normalized. Consider the
example of subtracting the floating point number 1+2−22+2−23 from 3, or equivalently
adding 3 and −(1 + 2−22 + 2−23). We get

(1.10000000000000000000000)2 × 21

− (0.10000000000000000000001|1)2 × 21

= (0.11111111111111111111110|1)2 × 21

Normalize : (1.11111111111111111111101)2 × 20.

(6.2)

Thus, rounding is not needed in this example.

In both examples (6.1) and (6.2), it was necessary to carry out the operation using
an extra bit, called a guard bit, shown after the vertical line following the b23 position.
Without the guard bit, the correctly rounded result would not have been obtained.

Exercise 6.9 Work out the details for the examples 1 + 2−24 and 1− 2−24. Make up
some more examples where a guard bit is required.

The following is a particularly interesting example. Consider computing x−y with
x = (1.0)2× 20 and y = (1.1111 . . .1)2× 2−1, where the fraction field for y contains 23
ones after the binary point. (Note that y is only slightly smaller than x; in fact, it is
the next floating point number smaller than x.) Aligning the significands, we obtain

(1.00000000000000000000000|)2 × 20

− (0.11111111111111111111111|1)2 × 20

= (0.00000000000000000000000|1)2 × 20

Normalize : (1.00000000000000000000000|0)2 × 2−24.

(6.3)

This is an example of cancellation, since almost all the bits in the two numbers cancel
each other. The result is (1.0)2 × 2−24, which is a floating point number. As in the
previous example, we need a guard bit to get the correct answer; indeed, without it,
we would get a completely wrong answer.

The following example shows that more than one guard bit may be necessary.
Consider computing x − y where x = 1.0 and y = (1.000 . . .01)2 × 2−25, where y has
22 zero bits between the binary point and the final 1 bit. Using 25 guard bits and
round to nearest, we get

(1.00000000000000000000000|)2 × 20

− (0.00000000000000000000000|0100000000000000000000001)2 × 20

= (0.11111111111111111111111|1011111111111111111111111)2 × 20

Normalize : (1.11111111111111111111111|0111111111111111111111110)2 × 2−1

Round : (1.11111111111111111111111)2 × 2−1.

This is the correctly rounded value of the exact sum of the numbers, but if we were

38 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

to use only two guard bits, we would get the result:

(1.00000000000000000000000|)2 × 20

− (0.00000000000000000000000|01)2 × 20

= (0.11111111111111111111111|11)2 × 20

Normalize : (1.11111111111111111111111|1)2 × 2−1

Round to Nearest : (10.00000000000000000000000)2 × 2−1

Renormalize : (1.00000000000000000000000)2 × 20.

In this scenario, normalizing and rounding results in rounding up (using the tie-
breaking rule) instead of down, giving the final result 1.0, which is not the correctly
rounded value of the exact sum. We get the same wrong answer even if we have 3, 4,
or as many as 24 guard bits in this case! Machines that implement correctly rounded
arithmetic take such possibilities into account. However, by being a little clever, the
need for 25 guard bits can be avoided. Let us repeat the same example, with two guard
bits, but with one additional bit “turned on” to indicate that at least one nonzero
extra bit was discarded when the bits of the second number, y, were shifted to the
right past the second guard bit position. The bit is called sticky because once it is
turned on, it stays on, regardless of how many bits are discarded. Now, before doing
the subtraction, we put the sticky bit in a third guard bit position. For this example,
we then get

(1.00000000000000000000000|)2 × 20

− (0.00000000000000000000000|011)2 × 20

= (0.11111111111111111111111|101)2 × 20

Normalize : (1.11111111111111111111111|01)2 × 2−1

Round to Nearest : (1.11111111111111111111111)2 × 2−1,

which is the correct answer. In general, it is necessary to use only three extra bits
to implement correctly rounded floating point addition and subtraction: two guard
bits (often called the guard and round bits) and one sticky bit [Gol95]. For a detailed
discussion, see [MB+18, Sec. 7.3].

Exercise 6.10 Consider the operation x+ y, where x = 1.0 and y = (1.000 . . .01)2×
2−24, and y has 22 zero bits between the binary point and the final 1 bit. What is the
correctly rounded result, assuming round to nearest is in use? What is computed if
only one guard bit is used? What if two guard bits are used? What if two guard bits
and a sticky bit are used?

When the IBM 360 was released in 1965, it did not have any guard bits, and it
was only after the strenuous objections of computer scientists that later versions of
the machine incorporated one hexadecimal guard digit—still not enough to guarantee
correctly rounded arithmetic. Decades later, Cray supercomputers still did not have
a guard bit. Let x = 1 and let y be the next floating point number smaller than 1,
and consider the operation x − y, as in example (6.3) above. On one Cray machine,
the computed result x⊖ y was wrong by a factor of 2, since a 1 was shifted past the
end of the second operand’s significand and discarded. This resulted in

x⊖ y = 2(x− y) instead of x⊖ y = (x− y)(1 + δ), where |δ| ≤ ǫmch. (6.4)

On another Cray machine, the second operand y was rounded before the operation
took place. This converted the second operand to the value 1.0 and gave the result
x⊖ y = 0, so that in this case the answer to Question 6.4 was no.

CHAPTER 6. CORRECTLY ROUNDED FLOATING POINT OPERATIONS 39

Multiplication and Division

Floating point multiplication and division, unlike addition and subtraction, do not
require significands to be aligned. If x = S × 2E and y = T × 2F , then

x× y = (S × T)× 2E+F ,

so there are three steps to floating point multiplication: multiply the significands,
add the exponents, and normalize and correctly round the result. Suppose x and y
are floating point numbers with precision p, including the hidden bit, and that the
destination for the result also has precision p. We can think of the significands S
and T as p-bit integers scaled by 2−(p−1), so we can think of their product as an
integer product, with S × T being a 2p-bit integer scaled by 2−2(p−1). The leading
bits of the product will never be discarded as they might be with integer multiplication
that overflows (see Chapter 3); instead, the product will be normalized and correctly
rounded to p bits, discarding the least significant bits. Of course, the exponent E+F
also needs to be taken into account in the final result. Likewise, division requires taking
the quotient of the significands and the difference of the exponents. Overall, although
floating point multiplication does not involve much more than integer multiplication, it
is still a much more complicated operation than floating point addition, and floating
point division is even more complicated — primarily because the quotient of two
integers is generally not an integer and is not truncated to an integer as would be
done with integer division, but needs to be rounded to p bits. For more details on
implementing floating point operations, see [MB+18, Ch. 7–8]. Division by zero will
be discussed in the next chapter.

In principle it is possible, by using enough space on the chip, to implement the
operations so that they are all equally fast. In practice, chip designers build the
hardware so that multiplication is approximately as fast as addition, because in many
floating point applications addition and multiplication appear together in an inner
loop.2 However, the division operation generally takes significantly longer to execute
than addition or multiplication. For an interesting figure showing typical relative
speeds of the different arithmetic operations, see [BJ+23, Fig. 1.1]. As explained
there, a key development over the past few decades is that although execution times
for arithmetic operations has decreased drastically, the time required for passing data
to and from various levels of the computer memory hierarchy has decreased much
more slowly, by a relative factor of more than 100 since the floating point standard
was first published in 1985. This fact has had major impact on computer architecture
design and algorithm design.

Exercise 6.11 Explain why the product of two single format floating point numbers
can always be stored exactly as a double format number, with no rounding error. You
need to take both the precision and the exponent range of the two formats into consid-
eration. Is this also true of the sum of two single format floating point numbers, the
difference, or the quotient?

Exercise 6.12 Assume that x = S×2E and y = T ×2F are normalized floating point
numbers, i.e., 1 ≤ |S| < 2, 1 ≤ |T | < 2, with (the binary representations of) S and
T each having p bits (including the hidden bit). Let U be the exact product of the two
significands, i.e., U = S × T .

1. What are the possibilities for the number of nonzero bits to the left of the binary
point of (the binary representation for) U? What does this tell you about how

2Although this motivation is less important than it was before the fused multiply-add operation
became available, it remains significant.

40 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

many bits it may be necessary to shift the binary point of U left or right to
normalize the result?

2. What are the possibilities for the number of nonzero bits to the right of the
binary point of U? In what cases can U be represented exactly using p bits
(including the hidden bit), and in what cases must the result be rounded to fit a
p-bit destination?

The Intel Pentium chip received a lot of bad publicity in 1994 when the fact that
it had a floating point hardware bug was exposed. An example of the bug’s effects is
that, on the original Pentium, the floating point division operation

4195835

3145727

gave a result with only about 4 correct decimal digits. The error occurred in only a
few special cases and could easily have remained undiscovered much longer than it did;
it was found by a mathematician doing experiments in number theory. Nonetheless, it
created a sensation, mainly because it turned out that Intel knew about the bug but
had not released the information. The public outcry against incorrect floating point
arithmetic depressed Intel’s stock value significantly until the company finally agreed
to replace everyone’s defective processors, not just those belonging to institutions that
Intel thought really needed correct arithmetic! It is hard to imagine a more effective
way to persuade the public that floating point accuracy is important than to inform it
that only specialists can have it. The event was particularly ironic since no company
had done more than Intel to make accurate floating point available to the masses. For
details on how the bug arose, see [Ede97]. However, quoting from [MB+18, Sec. 1.1],
[the Pentium bug] has had very positive long-term effects: most arithmetic algorithms
used by the manufacturers are now published so that everyone can check them, and
everybody understands that a particular effort must be made to build formal proofs of
the arithmetic algorithms and their implementation.

Fused Multiply-Add

Starting in 2008, the floating point standard also requires support for a fused multiply-
add operation (FMA). Given three floating point numbers a, b and c, the FMA oper-
ation computes the correctly rounded value

round(a× b + c), (6.5)

which is usually a more accurate approximation to the exact result than computing

round(round(a× b) + c). (6.6)

The FMA operation is very useful because many floating point programs include the
operation a × b + c in their inner loops. It also simplifies algorithms for correctly
rounded division and square root operations [MB+18, Ch. 4], and can be used to
increase accuracy in computations with complex numbers [MB+18, Ch. 11].

The FMA works by adding c to the 2p-bit product a × b before it is rounded.
Nonetheless, the execution time for an FMA is typically not much more than for a
multiplication or addition alone; see [MB+18, Sec. 3.4.2 and 7.5] for details.

Exercise 6.13 Find single format floating point numbers a, b, and c for which (6.5)
and (6.6) are different, assuming the destination format for each operation is IEEE
single.

CHAPTER 6. CORRECTLY ROUNDED FLOATING POINT OPERATIONS 41

Exercise 6.14 Give some examples of a, b, c for which the FMA returns NaN.

For more on how computers implement arithmetic operations, see [HP95, PH97,
Gol95] and especially [MB+18, Part III]. For a wealth of information on rounding
properties of floating point arithmetic at an advanced level, see Goldberg [Gol91] and
Kahan [Kah97, Kah96b, Kah00]..

Remainder, Square Root, and Format Conversions

In addition to requiring that the add, subtract, multiply, divide and FMA operations
be correctly rounded, the IEEE standard also requires that correctly rounded remain-
der and square root operations be provided. The remainder operation, x REM y, is
valid for finite x and nonzero y and produces r = x − y × n, where n is the integer
nearest the exact value x/y. The square root operation is valid for all nonnegative
arguments. The standard algorithm for computing square roots is often attributed
to Newton, but it was used by Heron of Alexandria 2000 years ago, and seems to have
been known to the Babylonians nearly 2000 years before Heron [MB+18, Sec 4.8.1].

Exercise 6.15 The formula for the length of the hypotenuse of a right-angled trian-
gle is

z =
√
x2 + y2,

where x and y are the lengths of the legs of the triangle. Suppose this formula is
computed using IEEE floating point arithmetic when it happens that all of x, y, and z
are integers with x2+ y2 < Nmax (e.g., 3, 4, and 5 or 5, 12, and 13). Will the floating
point result for z necessarily be an integer?

The standard also requires support for number format conversions. These fall into
several categories:

• Conversion between floating point formats. Conversion from a narrower to a
wider precision (e.g., from single to double) must be exact. Conversion from a
wider precision to a narrower one requires correct rounding, using the rounding
mode in effect.

• Conversion between floating point and integer formats. Conversion from a float-
ing point format to an integer format requires rounding to the nearest integer.
If the floating point number is already an integer, the conversion should be ex-
act unless this number does not fit the integer format. Conversion from integer
format to floating point format may require rounding (see Exercise 3.11).

• Rounding a floating point number to an integral value. This is also a required
feature, so that rounding to an integral value does not require use of an integer
format.

• Conversion from a binary floating point format to an output decimal string or
from an input decimal string to a binary floating point format. The 2008 version
of the standard recommends that, regardless of the length of the input or output
decimal string, the result should be correctly rounded using the rounding mode
in effect. Thus, if a floating point number is converted to an output format
with a specified number of decimal digits, the result should be rounded correctly
to that number of digits, and if an input decimal string of any length is con-
verted to a binary floating point format, the result should be correctly rounded
to the binary floating point format. Although implementations of IEEE arith-
metic are not required to have this strict property, the standard does specify

42 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

some requirements, too complicated to state here: see [IEE08, Sec. 5.12] and
[MB+18, Sec. 3.1.5]. The original version of the standard had less demanding
recommendations and requirements, because efficient algorithms for correctly
rounded binary to decimal and decimal to binary conversion were not known in
1985. However, efficient conversion algorithms that round correctly in all cases
are now known [Gay90]. See [MB+18, Sec. 4.9.2] for more details.

Chapter 7

Exceptions

One of the most difficult things about programming is the need to anticipate excep-
tional situations. Ideally, a program should handle exceptional data in a manner as
consistent as possible with the handling of unexceptional data. For example, a pro-
gram that reads integers from an input file and echoes them to an output file until
the end of the input file is reached should not fail just because the input file is empty.
On the other hand, if it is further required to compute the average value of the input
data, no reasonable solution is available if the input file is empty. So it is with float-
ing point arithmetic. When a reasonable response to exceptional data is possible, it
should be used.

Infinity from Division by Zero

The simplest example of an exception is division by zero. Before the IEEE standard
was devised, there were two common responses to dividing a positive number by zero.
One often used in the 1950s was to generate the largest floating point number as the
result. The rationale was that the user would notice the large number in the output
and draw the conclusion that something had gone wrong. However, this often led to
confusion: for example, the expression 1/0− 1/0 would give the result 0, so the user
might not notice that any error had taken place. Consequently, it was emphasized
in the 1960s that division by zero should lead to the interruption or termination of
the program, perhaps giving the user an informative message such as “fatal error—
division by zero.” To avoid this, the burden was on the programmer to make sure that
division by zero would never occur.1

Suppose, for example, it is desired to compute the total resistance of an electrical
circuit with two resistors connected in parallel, with resistances, respectively, R1 and
R2 ohms, as shown in Figure 7.1. The formula for the total resistance of the circuit is

T =
1

1
R1

+ 1
R2

. (7.1)

This formula makes intuitive sense: if both resistances R1 and R2 are the same value
R, then the resistance of the whole circuit is T = R/2, since the current divides
equally, with equal amounts flowing through each resistor. On the other hand, if R1 is
very much smaller than R2, the resistance of the whole circuit is somewhat less than
R1, since most of the current flows through the first resistor and avoids the second

1The author’s high school physics class did not have an electronic computer in 1970, but it had an
electromechanical caculator. Students delighted in dividing by zero, which resulted in the machine
calculating away forever until it was interrupted.

43

44 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Figure not available at present, see figure in first edition

Figure 7.1: The Parallel Resistance Circuit

one. What if R1 is zero? The answer is intuitively clear: since the first resistor offers
no resistance to the current, all the current flows through that resistor and avoids the
second one; therefore, the total resistance in the circuit is zero. The formula for T
also makes sense mathematically if we introduce the convention that 1/0 = ∞ and
1/∞ = 0. We get

T =
1

1
0 + 1

R2

=
1

∞+ 1
R2

=
1

∞ = 0.

Why, then, should a programmer writing code for the evaluation of parallel resistance
formulas have to worry about treating division by zero as an exceptional situation?
In IEEE arithmetic, the programmer is relieved of that burden. The default result
obtained by dividing a positive number x by 0 is the floating point number ∞. In the
case of the parallel resistance formula, this leads to the correct final result 1/∞ = 0.

NaN from Invalid Operation

It is true that a× 0 has the value 0 for any finite value of a. Similarly, we adopt the
convention that a/0 =∞ for any positive value of a. Multiplication with∞ also makes
sense: a×∞ has the value∞ for any positive value of a. But the expressions 0×∞ and
0/0 make no mathematical sense. An attempt to compute either of these quantities is
called an invalid operation, and the IEEE default result of such an operation is NaN
(Not a Number). Any subsequent arithmetic computation with an expression that
involves a NaN also results in a NaN. When a NaN is discovered in the output of a
program, the programmer knows something has gone wrong and can invoke debugging
tools to determine what the problem is.

Addition with ∞ makes mathematical sense. In the parallel resistance example,
we see that ∞ + 1

R2

= ∞. This is true even if R2 also happens to be zero, because
∞ +∞ = ∞. We also have a −∞ = −∞ for any finite value of a. But there is no
way to make sense of the expression ∞−∞, which therefore yields the result NaN.

These conventions can be justified mathematically by considering addition of limits.
Suppose there are two sequences xk and yk both diverging to∞, e.g., xk = 2k, yk = 2k,
for k = 1, 2, 3, . . ., or the other way around. Clearly, the sequence xk+yk also diverges
to ∞. This justifies the expression ∞ +∞ = ∞. But it is impossible to make a
statement about the limit of xk − yk, since the result depends on whether one of the
sequences diverges faster than the other. Consequently, ∞−∞ is NaN.

Exercise 7.1 What are the values of the expressions ∞/0, 0/∞, and ∞/∞? Justify
your answer.

Exercise 7.2 For what nonnegative values of a is it true that a/∞ equals zero?

Exercise 7.3 Using the 1950s convention for treatment of division by zero mentioned
above, the expression (1/0)/10000000 results in a number very much smaller than the
largest floating point number. What is the result in IEEE arithmetic?

Exercise 7.4 The formula R1R2/(R1 + R2) is equivalent to (7.1) if R1 and R2 are
both nonzero. Does it deliver the correct answer using IEEE arithmetic if R1 or R2,
or both, are zero?

CHAPTER 7. EXCEPTIONS 45

Signed Zeros and Signed Infinities

A question arises: Why should 1/0 have the value ∞ rather than −∞? This is one
motivation for the existence of the floating point number −0, so that the conventions
a/0 = ∞ and a/(−0) = −∞ may be followed, where a is a positive number. The
reverse holds if a is negative. The predicate 0 = −0 is true,2 but the predicate
∞ = −∞ is false. We are led to the conclusion that it is possible that the predicates
a = b and 1/a = 1/b have opposite values (the first true, the second false, if a = 0,
b = −0). This phenomenon is a direct consequence of the conventions for handling
infinity.

The floating point number −0 is produced by several operations, including the
unary operation −0, as well as a/∞ when a is negative, a× 0 when a is negative, and
the square root of −0, regardless of the rounding mode, as well as a−a for any finite a
when the rounding mode is round down. Programming environments typically do not
display the sign of zero by default because users rarely need to distinguish between 0
and −0. See Kahan’s wonderfully-titled paper “. . .Much Ado About Nothing’s Sign
Bit” [Kah87] for another motivation for the use of −0.

Exercise 7.5 Are there any other cases in which the predicates a = b and 1/a = 1/b
have opposite values, besides a and b being zeros of opposite sign?

Exercise 7.6 What are the values of the expressions 0/(−0), ∞/(−∞), and
−∞/(−0)?

Exercise 7.7 What is the result for the parallel resistance formula (7.1) if R1 = 1
and R2 = −0?

More about NaNs

The square root operation provides a good example of the use of NaNs. Before the
IEEE standard, an attempt to take the square root of a negative number might result
only in the printing of an error message and a positive result being returned. The user
might not notice that anything had gone wrong. Alternatively, the program might be
terminated with an error message. Under the rules of the IEEE standard, the square
root operation is invalid if its argument is negative, the default result is NaN, and the
program continues execution. Likewise, the remainder operation a REM b is invalid
if a is ±∞ or b is ±0, and the default result is NaN.

More generally, NaNs provide a very convenient way for a programmer to handle
the possibility of invalid data or other errors in many contexts. Suppose we wish to
write a program to compute a function that is not defined for some input values. By
setting the output of the function to NaN if the input is invalid or some other error
takes place during the computation of the function, the need to return special error
messages or codes is avoided. Another good use of NaNs is for initializing variables
that are not otherwise assigned initial values when they are declared. Furthermore,
the bitstring in the fraction field can, in principle at least, be used to code the origin of
the NaN. Consequently, we do not speak of a unique NaN value but of many possible
NaN values. For more about NaNs, including the distinction between “quiet” and
“signaling” NaNs, see [MB+18, Sec. 3.1.7.1].

When a and b are real numbers, one of three relational conditions holds: a = b,
a < b, or a > b. The same is true if a and b are floating point numbers in the
conventional sense, even if the values ±∞ are permitted. However, if either a or b is
a NaN none of the three conditions a = b, a < b, a > b can be said to hold (even

2Written 0 == −0 in most programming languages.

46 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

if both a and b are NaNs). Instead, a and b are said to be unordered. Consequently,
although the predicates (a ≤ b) and (not(a > b)) usually have the same value, they
have different values (the first false, the second true) if either a or b is a NaN.

A simple way to check whether a variable a is a NaN is to check whether a = a: if
the result is false, a must be a NaN. Checking whether a = NaN does not work: the
result is false regardless of the value of a.

The conversion of a binary format floating point number to an integer or decimal
representation that is too big for the format in question is an invalid operation, but
it cannot deliver a NaN since there is no floating point destination for the result.

Exercise 7.8 Extend Exercise 4.3 to the case where either x or y may be ±0, ±∞,
or NaN, and the result may be “unordered”.

Overflow

In the days before IEEE arithmetic, overflow was usually said to occur when the exact
result of a floating point operation was finite but with an absolute value that was larger
than the largest floating point number, which was a finite number in the absence of
∞. As with division by zero, the usual treatment of overflow was to set the result
to (plus or minus) the largest floating point number or to interrupt or terminate the
program. In IEEE arithmetic, if an exact result is greater than Nmax in magnitude, it
is replaced by its correctly rounded value, which might be ±∞ or ±Nmax, depending
on the exact value and the rounding mode in effect; see Chapter 5 for details. However,
the definition of the overflow exception is a little subtle.

Overflow is said to occur in IEEE arithmetic when the rounded value that is
computed is different from what it would be if its exponent E were allowed to be
sufficiently large. So, for example, if an exact result is 2Nmax, this is rounded up to
∞ if the rounding mode in effect is round to nearest or round up, but rounded down
to Nmax if round down is in effect. Nonetheless, overflow is said to occur in all three
cases, because if Emax were increased by one, the exact result would be a floating
point number. On the other hand, if an exact value x lies strictly between Nmax and
Nmax+ulp(Nmax)/2 and the rounding mode is round to nearest, the result is rounded
to Nmax without overflow occurring, since that would be the correctly rounded result
even if Emax were increased. And if an exact result lies strictly between Nmax and
than Nmax+ulp(Nmax) when the rounding mode is round down, then again the result
is rounded to Nmax without overflow occurring, since again that would be the correctly
rounded result even if Emax were increased.

Gradual Underflow

In the days before IEEE arithmetic, underflow was usually said to occur when the
exact result of an operation was nonzero but with an absolute value that was smaller
than the smallest positive floating point number, which was a normalized number in
the absence of subnormals. The usual response to underflow was flush to zero: return
the result 0. In IEEE arithmetic, if an exact result is smaller in magnitude than Nmin,
the smallest positive normalized number, it is replaced by its correctly rounded value,
which might be ±0, a subnormal number, or ±Nmin, depending on its value and the
rounding mode in effect; see Chapter 5 for details. This is known as gradual underflow,
because numbers are not rounded to ±0 unless their magnitude is less than or equal
to 2−pNmin (using round to nearest). Gradual underflow was the most controversial
part of the IEEE standard when it was introduced. Its proponents argued that its
use provides many valuable arithmetic rounding properties and significantly adds to
the reliability of floating point software (see Coonen [Coo81], Demmel [Dem84], and

CHAPTER 7. EXCEPTIONS 47

Kahan [Kah96b]); its opponents argued that arithmetic with numbers that may be
either normalized or subnormal is too complicated to justify inclusion as an operation
which will be needed only occasionally. The ensuing debate accounted for much of the
delay in the adoption of the IEEE standard in 1985 [Kah10].

Although Intel microprocessors always supported arithmetic involving subnormal
numbers in hardware, many other processors provided this support in software instead,
which, although allowed by the standard, resulted in much slower computation times.
As a consequence, many compilers offered the option of using a flush to zero option
when underflow occurs, resulting in faster computation but in violation of the require-
ments of the standard. However, two developments have taken place in more recent
years. First, the 2008 version of the standard introduced a new recommendation that
language standards provide the opportunity for users to specify an abrupt underflow
option.3 When the round to nearest rounding mode is in effect, abrupt underflow is
the same as flush to zero, preserving the sign: thus, a result between 0 and Nmin

would be rounded down to 0 and a result between −Nmin and 0 would be rounded up
to −0. However, abrupt underflow requires rounding up to Nmin when the round up
mode is in effect and the result lies between 0 and Nmin, and likewise rounding down
to −Nmin when the round down mode is in effect and the result lies between −Nmin

and 0. The second and much more important development is that many recent float-
ing point processors handle subnormal arithmetic entirely in hardware without any
performance penalty [MB+18, Sec. 8.1.2], reducing the appeal of abrupt underflow.

The motivation for gradual underflow can be summarized very simply: compare
Figure 3.1 with Figure 4.1 to see how the use of subnormal numbers fills in the rel-
atively large gaps between ±Nmin and zero. The immediate consequence is that the
worst case absolute rounding error for numbers that underflow to subnormal numbers
is the same as the worst case absolute rounding error for numbers that round to Nmin.
See a fascinating letter from Donald Knuth endorsing gradual underflow, saying that
he was originally skeptical of it “because it appears to be needlessly complicated to
gain a few bits at the end of the range.” But further thought brought him to the
opposite view, that “gradual underflow is a wonderful invention. . . The thing that I
missed was that gradual underflow adds an element of completeness to the system that
seems impossible to achieve in any other way.” See also the long footnote on [Knu98,
p. 222].4

Consider the following subtraction operation, using the IEEE single format. The
second operand is Nmin and the first operand is a little bigger:

(1.01000000000000000000000)2 × 2−126

− (1.00000000000000000000000)2 × 2−126

= (0.01000000000000000000000)2 × 2−126

Normalize : (1.00000000000000000000000)2 × 2−128.

(7.2)

The last line shows the ideal normalized representation, but this is smaller than Nmin.
Without gradual underflow, we would have to flush the result to zero, so that in this
case the answer to Question 6.4 is no. With gradual underflow, the answer 2−128 can
be stored exactly, with the subnormal representation

0 00000000 01000000000000000000000 .

This suggests that, when gradual underflow is supported, the answer to Question 6.4

3Actually, we are not aware of any current support for abrupt underflow that works correctly for
all rounding modes in either hardware or software.

4The letter is available at https://ieeemilestones.ethw.org/w/images/5/53/Knuth to delp apr1980.pdf

48 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

is always yes. This is indeed the case; see Exercise 7.12. See also a nice illustration of
this property in [MB+18, Fig. 2.1].

The standard specifies two options for how the underflow exception is to be de-
fined. The first is simply that underflow is said to occur if the exact result is nonzero
and lies strictly between ±Nmin. The second, in analogy with the rule for the overflow
exception, is that underflow is said to occur if the rounded value would lie strictly be-
tween ±Nmin even if its exponent E were allowed to be sufficiently small (see [MB+18,
Sec 2.1.3]). This distinction can be quite confusing, so we give an example using single
precision. Let x be the number

(1.11111111111111111111111)2× 2−127 = (2 − 2−23)× 2−127,

where there are 23 ones after the binary point, so x is half-way between Nmin = 2−126

and the largest subnormal number, which is

(0.11111111111111111111111)2× 2−126 = (1 − 2−23)× 2−126.

Using round to nearest with the tie-breaking rule, x rounds up to 2−126. However, if
the normalized exponent range were extended to include E = −127, then x would be
an exact normalized floating point number, so underflow (using the second definition)
is said to occur in this case. On the other hand, the number y given by

(1.111111111111111111111111)2× 2−127 = (2− 2−24)× 2−127,

where now there are 24 ones after the binary point, could not be represented exactly
even if the exponent could be reduced to −127, because 2− 2−24 requires 24 bits after
the binary point to be represented exactly. The number y rounds to 2−126 whether or
not the normalized exponent range is extended, so in this case underflow is not said
to occur according to the second definition, although it does occur according to the
first definition.

Exercise 7.9 Using round to nearest, what numbers are rounded down to zero and
what numbers are rounded up to the smallest positive subnormal number?

Exercise 7.10 Consider the operation

(y ⊖ x)⊕ x,

where the first part of the operation, y⊖x, underflows. What is the result when gradual
underflow is used? What is the result when flush to zero is used? Which gives the
exact result? (See [Cod81].)

Exercise 7.11 Suppose that x and y are floating point numbers with the property that

1

2
≤ x

y
≤ 2.

Show that the exact difference x − y is also a floating point number, so that, as a
consequence, x⊖ y = x− y, if gradual underflow is used. Show that this is not always
the case if flush to zero is used. (See [Kah96b, Ste74].)

Exercise 7.12 Prove that the answer to Question 6.4 is always yes in IEEE arith-
metic, because of gradual underflow.

Exercise 7.13 Is the worst case relative rounding error for numbers that underflow
to subnormal numbers the same as the worst case relative rounding error for numbers
that round to Nmin? Why or why not?

CHAPTER 7. EXCEPTIONS 49

Table 7.1: IEEE Default Results when Exceptions Occur

Exception Default Result

Invalid Operation NaN

Division by Zero ±∞
Overflow correctly rounded value: ±∞ or ±Nmax

Underflow correctly rounded value: ±0, ±Nmin or subnormal

Inexact correctly rounded value: could be any floating point number

The Five Exception Types

Altogether, the IEEE standard defines five kinds of exceptions: invalid operation, di-
vision by zero, overflow, underflow, and inexact, together with a default result for
each of these. All of these have now been described except the last. The inexact
exception is, in fact, not exceptional at all because it occurs every time the result of
an arithmetic operation is not a floating point number and therefore requires round-
ing. This occurs in most floating point operations, and, in particular, it occurs when
overflow takes place. However, it may or may not occur when underflow takes place,
since the correct result might be an exact subnormal number. Table 7.1 summarizes
the default results for the five exceptions.

The IEEE standard specifies that when an exception occurs it must be signaled; the
signal invokes either the default or an alternate exception handler. Default handling
means delivering the default result discussed above (see Table 7.1). But the standard
also recommends that language standards provide mechanisms for the user to invoke
an alternate exception handler.5 For example, in the case of underflow being signaled,
the result could be abrupt underflow instead of the default gradual underflow. Another
example, in the case of the divide by zero exception, would be to terminate execution
of the program, instead of delivering ±∞. See [IEE08, Sec. 8] for more details.

The standard also specifies that when an exception is signaled, the status flag
corresponding to that exception must be set, so that it is possible for a program to
determine later that the exception occurred. However, there is a caveat: in the case
of the underflow exception, the corresponding status flag is not set if the exact result
is a subnormal number, so that no rounding is required.

The appearance of a NaN in the output of a program is usually a sign that some-
thing has gone wrong. The appearance of ∞ in the output may or may not indicate
a programming error, depending on the context. When writing programs where divi-
sion by zero is a possibility, the programmer should be cautious. Operations with ∞
should not be used unless a careful analysis has ensured that they are appropriate.

The IEEE Philosophy on Exceptions

The IEEE approach to exceptions permits a very efficient and reliable approach to
programming in general, which may be summarized as: Try the easy fast way first; fix
it later if an exception occurs. For example, suppose it is desired to compute

√
x2 + y2. (7.3)

5An alternate exception handler is also known as a trap, and invoking it is also known as trapping

the exception.

50 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Even if the result is within the normalized range of the floating point system, a di-
rect implementation might result in overflow. The traditional careful implementation
would guard against overflow by scaling x and y by max(|x|, |y|) before squaring. But
with IEEE arithmetic, the direct computation may be used. The idea is to first clear
the exception status flags, then do the computation, and then check the status flags.
In the unlikely event that overflow (or underflow) has occured, the program can take
the necessary action. . For a more extensive discussion of how these ideas can be used
for many different numerical computations, see [DL94], [Hau96] and [Hig02, Sec. 27.1].
To make such ideas useful, it is essential that the IEEE standard be properly sup-
ported by both software and hardware, so that setting and testing the exception status
flags is permitted by the programming language in use and does not significantly slow
down execution of the program. However, setting and testing status flags is becom-
ing increasingly impractical, because of changes in computer architecture design, as
explained in [BJ+23, p. 206].

Hardware support for the standard is discussed in the next chapter, and program-
ming language support is discussed in the following chapter. Although support for the
standard is still far from perfect, it has steadily improved over the years. Alterna-
tives to IEEE floating point have been proposed from time to time but, up until now,
none have been very influential. For some thoughts on some of the early proposals,
see [Dem87] as well as the intriguingly-entitled post [Dem91]. More recent proposals
include unums and posits; for a detailed and balanced appraisal of these, see [Din19].
However, non-IEEE low precision formats, which are nonetheless inspired by the IEEE
formats, are becoming common and are discussed in Chapter 15.

Chapter 8

Floating Point
Microprocessors

In the early personal computer era, the two leading microprocessor manufacturers
incorporated the main ideas of the IEEE standard in their designs. These were
Intel (whose chips were used by IBM PCs and clones) and Motorola (whose 68000
series chips were used by the Apple Macintosh II and the early Sun Microsystems
workstations). Later microprocessors, such as the Sun Sparc, DEC Alpha, and IBM
RS/6000 and Power PC, also followed the standard. Even the IBM 390, the successor
to the 360/370 series, offered support for the IEEE standard as an alternative to
the long-supported hexadecimal format. We focus here on the x86 microprocessors
from Intel and AMD, since these have been and still are by far the most widely used
floating point systems in personal computers. Subsequently, we also briefly discuss
other processors.

The x86/x87 Microprocessors

Intel introduced the 8086 microprocessor in 1978. This chip included a central pro-
cessing unit (CPU) and an arithmetic-logical unit (ALU) but did not support floating
point operations. In 1980, Intel announced the 8087 and 8088 chips, which were used
in the first IBM PCs. The 8088 was a modification of the 8086. The 8087 was the
floating point coprocessor, providing a floating point unit (FPU) on a separate chip
from the 8088. The 8087 was revolutionary in a number of respects. It was unprece-
dented that so much functionality could be provided by such a small chip. Many of
the features of the IEEE standard were first implemented on the 8087. The extended
format recommended by the standard was based on the 8087 design.

The immediate successors of the 8087, the 80287 and 80387, were also coprocessors,
implemented separately from the main chip (the 80286 and 80386, respectively). How-
ever, later microprocessors in the series, namely the 80486 and the many generations
of Pentium, included the FPU on the main chip. Collectively, these are known as x86
processors with x87 FPUs. Though each new machine was faster than its predecessor,
the architecture of the Pentium x87 FPUs remained essentially the same as that of
the 8087.

The x87 floating point instructions operate primarily on data stored in eight 80-bit
floating point registers,1 each of which can accommodate an extended format floating

1These registers are organized in a logical stack, as explained in detail in Chapter 8 of the first
edition of this book.

51

52 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

point number (see Chapter 4). However, it was expected that programs would usually
store variables in memory using the single or double format. The extended precision
registers were provided with the idea that a sequence of floating point instructions,
operating on data in registers, would produce an accumulated result that is more
accurate than if the computations were done using only single or double precision.
This more accurate accumulated result would then be rounded to fit the single or
double format and stored to memory when the sequence of computations is completed,
perhaps giving the correctly rounded value of the exact result, which would be unlikely
to happen for a sequence of operations that uses the same precision as the final result.2

The standard encourages full use of the extended precision registers, but it also requires
that the user be able to lower the precision that is used in operations via setting a
precision mode.3 This may be set to any of the supported formats; for example, if
the precision mode in effect is double, the floating point computations must deliver
results that are rounded to double precision even when they are are stored in an 80-bit
register. A subtle point is that, when the precision mode is double, an intermediate
floating point value stored in the register that overflows the double format is not
stored as ±∞ and does not generate an exception, as long as it does not overflow the
extended format and the final result stored to memory does not overflow the double
format.

The x87 FPUs implement correctly rounded arithmetic, controlled by the four
possible rounding modes discussed in Chapter 5. The rounding mode and the precision
mode are set in a control word stored in a dedicated 16-bit register. There is also a
status word stored in another 16-bit register. When an exception occurs, the exception
status flag is set using a bit in the status word, and a corresponding bit in the control
word is examined to see if the default result should be delivered, or if the exception
should be trapped with control passed to an alternate exception handler.

AMD (Advanced Micro Devices) also designs and markets x86/x87microprocessors
under a licensing agreement with Intel dating back to the 1980s. According to [War94],
the licensing agreement to an outside company was a condition for IBM to agree to
use the Intel x86 processors in its early personal computers.

The instruction set for the early x86/x87 processors was called IA32 (Intel Ar-
chitecture - 32 bit, where the latter refers to the way that the computer memory is
organized and addressed). In 2001, Intel released the Itanium microprocessor that
used a new instruction set called IA64 (Intel Architecture - 64 bit). However, for a
variety of reasons, partly incompatibility with existing x86 machines, this was not suc-
cessful. In response, AMD introduced its own 64-bit architecture known as AMD64
that is compatible with earlier x86 machines. This architecture, now commonly known
as x86-64, was eventually adopted by Intel for its processors, so essentially all recent
x86 processors use the x86-64 architecture.

Recent x86 Microprocessors

In 1999, Intel introduced eight SSE 128-bit floating point registers to the x86 archi-
tecture, as an alternative to the x87 FPU. Here SSE means Streaming SIMD Exten-
sions, where SIMD stands for Single Instruction, Multiple Data. However, the 128-bit
registers do not store extended precision or quadruple precision floating point num-
bers. Instead, each 128-bit register stores four single format (binary32) floating point

2However, this “double rounding” process, first to the extended precision register, and later to
the single or double format variable in memory, may sometimes give a less accurate result than what
would be obtained without using extended precision registers. See [MB+18, Sec. 3.2] for details.

3Called rounding precision mode in the 1985 standard, and replaced by the preferredWidth at-
tribute in the 2008 standard.

CHAPTER 8. FLOATING POINT MICROPROCESSORS 53

numbers, so that one instruction can operate on four floating point numbers simulta-
neously. Later versions, starting with SSE2, support alternatively storing two double
format (binary64) numbers in each register. In 2011, Intel introduced AVX (Advanced
Vector Extensions) processors, initially with 256-bit registers that can store four dou-
ble format numbers, eight single format numbers, or 16 half precision numbers (using
the binary16 format mentioned in Chapter 4). More recent AVX machines have 512-
bit registers which can store eight double format numbers, 16 single format numbers,
or 32 half precision numbers. SSE and AVX floating point arithmetic supports all
requirements of the IEEE standard, including the FMA instruction mandated as of
2008, as well as setting of the exception flags and alternate exception handling, but
they do not support the recommended extended precision format. However, all Intel
and AMD x86 processors continue to support x87 FPUs as an alternative, using 80-
bit floating point extended precision registers, partly because there is so much legacy
code using these. The x87 FPU does not have an FMA instruction, since the x87
architecture predates FMA hardware design and the FMA requirement in the 2008
standard.

As of August 2022, according to the Top 500 list [Top22], 384 of the 500 fastest
supercomputers in the world are based on Intel x86 microprocessors and 101 are based
on AMD x86 microprocessors. Most if not all of these CPUs have multiple cores, so
they can perform many computations in parallel.

Arm Microprocessors

Arm, formerly known as ARM (Advanced RISC Machines, where RISC means Re-
duced Instruction Set Computer), dominates the market for chips used in embedded
systems, including mobile phones. Arm does not manufacture microprocessors. In-
stead, it designs CPU architectures and licenses those designs to other companies such
as Qualcomm, Apple or Samsung who incorporate them into their processors.4 Not
all Arm microprocessors use floating point, but many do, fully complying with the
IEEE standard requirements for single and double precison. Apple’s Mac computers
used Intel x86 chips from 2006 to 2020, but the most recent Macs use M1 and M2
SoCs (Systems on a Chip), which are based on Arm microprocessor designs.

GPUs

A GPU (Graphics Processing Unit) consists of a large set of specialized processors
running in parallel. Originally designed for graphics applications, including video
games, they are now also used for many other purposes. The early GPUs were not
IEEE compliant, but later GPUs using NVIDIA’s CUDA (Compute Unified Device
Architecture) use IEEE single, double and more recently half precision formats and
support most of the requirements of the IEEE standard, including access to the round-
ing modes, the FMA instruction, and default results when exceptions occur. However,
there are no exception status flags, and hence alternative exception handling is not
supported.5 More recently, other manufacturers have also built GPUs that are largely
IEEE compliant.

Summary of Hardware Support

The hardware support for the IEEE standard discussed in this chapter is summarized
in Table 8.1. It is impressive that most widely used modern microprocessors, including
Intel and AMD’s SSX and AVX machines, Arm microprocessors and Apple’s M1 and

4https://www.techspot.com/article/1989-arm-inside/]
5https://docs.nvidia.com/cuda/floating-point/index.html.

54 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Single Double Ext. All FMA Default Excep.

(binary32) (binary64) Prec. Round. Excep. Status

Modes Handl. Flags

x87 yes yes yes yes no yes yes

SSE/AVX yes yes no yes yes yes yes

Arm/M1/M2 yes yes no yes yes yes yes

CUDA GPU yes yes no yes yes yes no

Table 8.1: Some of the hardware support for the IEEE standard. Bold face indicates
features required by the 2008 and 2019 versions of the standard. Default exception
handling requirements are summarized in Table 7.1. Exception status flags are also
discussed in Chapter 7.

M2 chips, support all the main requirements of the IEEE standard, namely providing
at least one IEEE basic format, the four rounding modes, the default response to
exceptions, the FMA instruction, and setting of and access to exception status flags,
enabling alternate exception handling. Furthermore, CUDA GPUs support all of these
except the last.

However, as noted at the end of the previous chapter, many recently introduced
microprocessors are using low precision formats, mostly non-IEEE compliant. We
discuss this development in Chapter 15.

Chapter 9

Programming Languages

Programs for the first stored program electronic computers consisted of a list of ma-
chine instructions coded in binary. It was a considerable advance when assemblers
became available, so that a programmer could use mnemonic codes such as LOAD
X, instead of needing to know the binary code for the instruction to load a vari-
able from memory to a register and the physical address of the memory location.
The first widely available higher level programming language was developed at IBM
in the mid 1950s and called Fortran, for formula translation. Programmers could
write instructions such as x = (a + b)*c, and the compiler would then determine
the necessary machine language instructions to be executed. Fortran became ex-
tremely popular and is still widely used for scientific computing today. Soon after
Fortran was established, the programming language ALGOL was developed by an
international group of academic computer scientists. Although ALGOL had many
nicer programming constructs than Fortran, it never achieved the latter’s success,
mainly because Fortran was designed to be highly efficient from its inception, which
ALGOL was not.1 However, many of the innovations of ALGOL, such as the no-
tions of block structure and recursion, influenced later versions of Fortran as well
as the design of subsequent programming languages.2 One of these was C, which
was developed by Bell Labs in the 1970s, and emerged as the lingua franca of com-
puting in the 1980s. In this chapter, we briefly discuss the status of support for
IEEE arithmetic by several programming languages, specifically Fortran, C, MAT-
LAB, Java, Python and Julia, all of which are widely used for floating point compu-
tation.

Language Support for IEEE 754

To make the best use of hardware that supports the standard, a programming language
should define types that are compatible with the IEEE formats, allow control of the
rounding mode, and provide the standard-defined default results for exceptions as the
default behavior. Ideally, a programming language should also allow access to and
resetting of the exception status flags, and permit alternate exception handling. All
of these were provided soon after the publication of IEEE 754 by Apple in SANE
(Standard Apple Numerics Environment) [App88], using the Pascal and C languages,

1Wilkes wrote in [Wil98], “As an intellectual achievement, Fortran was stillborn by its very success
as a practical tool.”

2The author was fond of a variant called ALGOL W which he used in his student days at UBC
and Stanford in the 1970s. The W stood for its designer Niklaus Wirth, who went on to develop
Pascal, a language that became widely used for teaching.

55

56 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

but this did not become widely used, and its fine example was not followed by other
programming languages and systems for many years. One reason for this is that the
1985 version of the standard did not set requirements or make recommendations for
programming language support.

C and Fortran

Although they have very different histories, design philosophies and user bases, C and
Fortran have a lot in common. They are both languages that require a compiler to
compile a program before it can be executed. Although developed originally by pri-
vate organizations, for decades the languages have been standardized by national and
international committees, and free compilers are widely available. Both languages had
important standard revisions with many new features established in 1990, but neither
revision supported IEEE arithmetic, although the IEEE standard was published in
1985 and had been in preparation for years. However, thanks to the efforts of the
Numerical C Extensions Group (NCEG) and the ANSI Fortran committee X3J3, the
situation greatly improved in the late 1990s. The International Standards Organiza-
tion/International Electrotechnical Commission (ISO/IEC) revision of the C language
standard known as C99 was completed in 1999 [ISO99], and an ISO/IEC revision of
the Fortran standard known as Fortran 2003 was approved in 2003. Although neither
C99 nor Fortran 2003 required every implementation to support IEEE 754, they both
provided standardized mechanisms for accessing its features when supported by the
hardware.

C99 introduced a macro,3 __STDC_IEC_559__, which is supposed to be predefined
by implementations supporting IEEE 754. Any implementation defining this macro
must then conform with various requirements. The types float and double must use the
IEEE single and double formats, respectively, and it was recommended that type long
double fit the IEEE 80-bit extended format requirements.4 The implementation must
provide access to status flags via macro constants such as FE_DIVBYZERO, specification
of rounding modes via macros such as FE_DOWNWARD, and access to special constants via
macros such as INFINITY. Other macros with function syntax must also be provided,
such as isnan to determine if a number has a NaN value, isnormal to test if a
value is in the normalized range, and fesetround to set the rounding mode. Details
are given in Annex F of [ISO99]. Now, more than 20 years after C99 was published,
virtually all C compilers support IEEE 754 and define the STDC IEC 559 macro
accordingly, so there is almost never any need for the programmer to check whether it is
predefined.5 In the next chapter, we discuss how to write simple numerical programs
in C, also illustrating the use of some of the other macros mentioned above. For
more information on floating point in C, as well as its widely used extension C++, see
[Bee17] and [MB+18, Sec. 6.2–6.3]. For information on Fortran 2003, see [MRC18],
and for more on floating point in Fortran generally, see [Bee17, Appendix F] and
[MB+18, Sec. 6.4].

A significant change in the 2008 version of the IEEE standard was to set require-
ments and recommendations for programming language standards. Not many require-
ments were specified, the most important being that programmers should be able to
set the rounding modes, but there are many recommendations. These had no effect on

3As mentioned earlier, IEC 559 is an international name for IEEE 754.
4Since the 80-bit extended format is mostly restricted to the older x87 microprocerssors, in prac-

tice, the meaning of the type long double varies widely with different compilers, ranging from bi-

nary128 (which is not generally available in hardware) to double double (see Chapter 14) to simply
double.

5N. Beebe, private communication, 2022

CHAPTER 9. PROGRAMMING LANGUAGES 57

the C11 and C17 standard revisions, which did not make any changes to floating point
support requirements or recommendations, but they will have a significant impact on
the next C standard, currently in draft under the name C23 and expected to appear in
2024. See [MB+18, Fig. 6.1] which illustrates “the tangled normalization timeline”
of floating-point and C language standards.

C and Fortran have very different rules for how compilers are allowed to evalu-
ate arithmetic expressions: see [MB+18, Sec.6.1.1.3] for details. The availability of
the FMA on most machines also raises the question: can the compiler evaluate an
expression such as a × b + c using a single FMA operation, or may it only use the
FMA operation when it is explicitly directed to do so by a function call? The answer
depends both on the compiler and on the user who, in the case of C, has some control
over this [MB+18, Sec. 6.2.3.2]. In most cases, using the FMA whenever possible is
desirable, but see [MB+18, Sec. 6.2.3.2] for an example where using an FMA to eval-
uate the expression x2 − y2 breaks the symmetry with respect to x and y and hence
can give a positive or negative result even when x = y.6

Many widely used mathematical software libraries are available in both Fortran
and C. The most important is LAPACK (Linear Algebra PACKage) [Demmel et al],
whose routines can be used to solve many problems arising in linear algebra, such as
the solution of systems of linear equations and the computation of eigenvalues and
singular values of matrices. LAPACK is written in Fortran, was first released in 1992
and is frequently updated. LAPACK routines call the BLAS (Basic Linear Algebra
Subroutines) to efficiently implement the most basic linear algebra computations, such
as vector addition, matrix-vector multiply and matrix-matrix multiply; these can be
tuned for efficiency on different machines and are available from a variety of sources
including Intel and AMD. LAPACK superseded EISPACK and LINPACK, which were
historically important Fortran libraries for solving eigenvalue problems and systems of
linear equations respectively. There is a C interface called LAPACKE, which largely
replaces the earlier CLAPACK. It is also possible to call LAPACK and BLAS routines
from many other programming languages, including Java, Python and Julia.

MATLAB

The interactive system MATLAB, standing for Matrix Laboratory, was first developed
by Cleve Moler in the late 1970s and early 1980s as a tool for conveniently solving ma-
trix problems, by providing a simple interface to access the relevant software available
in EISPACK and LINPACK [Mol18]. The original version was written in Fortran.
Moler and others then went on to found The Mathworks and market MATLAB com-
mercially starting in 1984, rewriting the system in C, and eventually incorporating
calls to LAPACK and the BLAS. MATLAB is very popular because of its ease of use,
its convenient and accurate matrix operations, its extensive software toolboxes, and
its graphics capabilities.7 A particularly important innovation was the introduction
of the backslash (\) operator; the assignment x = A\b gives the solution of the linear
system of equations Ax = b, where A is a matrix and b is a vector. For many years,
MATLAB had only one variable type: complex matrix, which was a two-dimensional
array of real or complex numbers, with real (and if nonzero, imaginary) parts stored
using the IEEE double format, but in more recent years, other data types have been
added, including support for the IEEE single format.

MATLAB uses IEEE arithmetic with default exception handling, modified to take

6Instead of x2 −y2, an alternative is (x+y)(x−y), but the computed result can be slightly larger
than the computed result of x2, while this cannot occur for the formula x2 − y2, with or without the
FMA [Jea19, Sec. 5].

7The author has been a devoted MATLAB user for decades for all these reasons.

58 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

sensible action supporting complex numbers. So, for example, taking the square root
of a negative real number x does not generate an exception, but produces the rounded
value of

√
−x, using round-to-nearest, times the imaginary unit, denoted i. The

square root of −0 gives 0, not −0. Unlike in most programming languages, in MAT-
LAB, the user has no access to the FMA operation, although it is used by the BLAS
which MATLAB calls. MATLAB does not officially support rounding mode control.
Nonetheless, it is possible to change the rounding mode in current versions, although
there is no guarantee that this will be supported in the future, because of a variety of
technical issues, including concurrency when multithreading. To change the rounding
mode, type feature(’setround’,r), where r is one of Inf (for round up), -Inf (for
round down), 0 (for round toward zero), or ’nearest’ (or 0.5) (for round to near-
est, the default). MATLAB does not support access to the exception status flags or
alternate exception handling. Many books describe MATLAB; we recommend [?].

The plots in Chapters 11 and 12 were produced using MATLAB.

Java

The Java programming language was developed in the 1990s by Sun Microsystems,
later taken over by Oracle. The philosophy of Java is that the same program should
deliver identical answers on every machine. This is achieved by compiling Java source
code to byte code, which is then run on a Java Virtual Machine designed for the user’s
hardware.

Java was designed to follow some of the IEEE standard requirements from the
beginning. In particular, the Java primitive types float and double are required to
conform to the IEEE single and double floating point formats. Unfortunately, the
requirements of the Java language and the IEEE floating point standard have conflicts
with each other. One contradiction is that Java insists that the results of arithmetic
operations be rounded to nearest, in contrast to the IEEE requirement that four
rounding modes be supported. Java supports default exception handling, but it does
not allow access to the exception status flags or alternate exception handling. The Java
compiler is not allowed to generate an FMA instruction to implement an expression
such as a× b+ c; it must be explicitly requested by calling an FMA library routine.

A major difficulty has been that although Java programs are required to give iden-
tical output on all platforms, the IEEE floating point standard recommends, but does
not require, extended precision computation for intermediate results that are later to
be rounded to narrower formats. When this is used, the results will likely be different
– usually more accurate — than if extended precision is not used. The first version of
Java insisted that extended precision be completely disabled, but the consequence was
very slow program execution on x86/x87 machines since the floating point hardware
could not be used. Consequently, Java 1.2 introduced the strictfp (strict floating point)
keyword: if this was not specified, the x87 precision mode could be used to disable ex-
tended precision efficiently, but this nonetheless led to inconsistent behavior of codes
on different machines because of the fact that x87 extended precision computations,
even with the precision mode set to double, have a different overflow threshold than
pure double precision computations (see Chapter 8). Starting in 2001, SSE2 became
available on x86 machines, supporting both single and double precision floating point
operations, so the difficulty was eventually alleviated by specifying that x87 compu-
tations should not be used. Effective 2021, with Java 17, the strictfp keyword is no
longer recognized: all floating point computations must use IEEE single or double
precision, not extended precision.

See [MB+18, Sec. 6.5] for an extensive discussion of floating point using Java, and
see [Dar98] for early work on the subject.

CHAPTER 9. PROGRAMMING LANGUAGES 59

Python

Python first appeared in the 1990s. It has become extremely popular, and is often cho-
sen as the language for a first course in programming. Like MATLAB, Python uses an
interactive interpreter, not a compiler, but its efficiency results from using precompiled
libraries. It is open source, meaning that it is freely available for possible modification
and redistribution under certain licensing conditions, and it is maintained by a large
community of developers. It did not become widely used for numerical computing
until the introduction of SciPy and NumPy in the early 2000s. The original Python
had only one floating point type available, called float but using the double format
(binary64). However, the NumPy package offers variable types corresponding to IEEE
half, single, double and extended floating point formats, uses IEEE default exception
handling, and can access the exception status flags and implement alternate exception
handling via numpy.seterr, but it does not explicitly support setting the rounding
modes. NumPy has extensive support for linear algebra and matrix computation,
optionally using LAPACK.

Julia

Julia, announced in 2012, might be only the third successful programming language
specifically designed for numerical computing, the first two being Fortran and MAT-
LAB. Like Fortran, it is intended to have high performance, but like MATLAB, it
is designed to be easy to use, allowing code to be developed interactively before it
is compiled for fast execution. Julia supports the IEEE single and double formats
as basic types, named Float32 and Float64, and it supports IEEE default exception
handling. However, it does not explicitly support setting the rounding modes,8 does
not allow the compiler to generate an FMA instruction without an explicit call to
a library routine, and does not support access to exception status flags or alternate
exception handling. Like MATLAB, Julia supports computing with complex num-
bers very conveniently, although with somewhat different syntax. As an example,
sqrt(-1) delivers NaN, because the square root function is supposed to return a real
number when its argument is real, but sqrt(-1+0im) delivers 0.0 + 1.0im, as the
square root returns a complex number when its argument is complex; here, im denotes
the imaginary unit.9 Julia is built on many modern ideas in computer science and has
become very successful extremely rapidly. For more about Julia, see [BE+17] as well
as [Jul23].

Summary of Programming Language Support

Support for the IEEE standard by programming languages discussed in this chapter is
summarized in Table 9.1. As with hardware support, it is impressive that all languages
listed support both IEEE single and double types and support the default results when
exceptions occur, including gradual underflow. However, among these languages, full
support for the required rounding modes is, at present, limited to C and Fortran, and
support for the recommended extended precision computations and alternate error
handling using the exception status flags is limited to C, Fortran and Python. It
will be interesting to see whether the next revision of the standard reconsiders these
requirements and recommendations.

8Early versions of Julia did allow setting the rounding modes.
9A similar convention is used by NumPy.

60 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Single Double Ext. All FMA Default Excep.

(fp32) (fp64) Prec. Round. Excep. Status

Modes Handl. Flags

C yes yes yes yes yes yes yes

Fortran yes yes yes yes yes yes yes

MATLAB yes yes no no no yes no

Java yes yes no no yes yes no

Python yes yes yes no yes yes yes

Julia yes yes no no yes yes no

Table 9.1: Some of the programming language support for the IEEE standard. Bold
face indicates features that must be supported according the 2008 and 2019 versions
of the IEEE standard. A “yes” in columns 2–4 means that there is a built-in type
with the relevant precision, although in the case of extended precision, for C and
Fortran, this may not be the case for all compilers [OK?], and in the case of Python,
this is via the NumPy library [OK?]. A “yes” in the next column means the language
supports specifying any of the four rounding modes. In the next column, a “yes”
indicates that the FMA is accessible through a function call, but does not imply
that the compiler or interpreter can generate an FMA instruction without explicit
direction from the programmer. A “yes” in column 7 means that the language does
not, by default, override the default exception handling required by the standard (see
Table 7.1). A “yes” in the final column means that the programmer has access to
the exception status flags, enabling alternate exception handling; note that although
the standard requires that the hardware provide the status flags, it does not require
language standards to provide access to them.

Chapter 10

Floating Point in C

In this chapter, we discuss how to get started with floating point computation in C.
As explained in the previous chapter, the C99 language standard introduced extensive
support for IEEE floating point arithmetic in the C language, and virtually all modern
compilers support this, so we frequently refer to C99 below.

Float and Double, Input and Output

In C99, the type float refers to the IEEE floating point single format, and when we do
computations with variables of type float, we say that we are using single precision.
Here is an echo program that reads in a floating point number using the standard input
routine scanf and prints it out again using the standard output routine printf:

main () /* Program 1: Echo */

{

float x;

scanf("%f", &x);

printf("x = %f", x);

}

The second argument to the scanf statement is not the value of the variable x but
the address of x; this is the meaning of the & symbol. The address is required because
the input routine needs to know where to store the value that is read. On the other
hand, the second argument to the printf statement is the value of the variable x.
The first argument to both routines is a control string. The two standard format
codes used for specifying floating point numbers in these control strings are %f and %e.
These refer, respectively, to fixed decimal and exponential decimal formats. Actually,
%f and %e have identical effects when used with the input routine scanf, which can
process input in either a fixed decimal format (e.g., 0.666) or an exponential decimal
format (e.g., 6.66e-1, meaning 6.66 × 10−1). However, different format codes have
different effects when used with the output routine printf. The scanf routine calls
a decimal to binary conversion routine to convert the input decimal format to the
internal binary floating point representation, and the printf routine calls a binary to
decimal conversion routine to convert the floating point representation to the output
decimal format. The C99 standard recommends that both conversion routines use the
rounding mode that is in effect to correctly round the results.

Assuming Program 1 has been saved in a file and compiled, let us consider the
output when it is executed. Table 10.1 shows the output of Program 1 for various out-
put formats in the printf statement, when the input is 0.66666666666666666666 (the

61

62 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Table 10.1: Output of Program 1 for Various Output Format Codes

Format code Output

%f 0.666667

%e 6.666667e-01

%8.3f 0.667

%8.3e 6.667e-01

%21.15f 0.666666686534882

%21.15e 6.666666865348816e-01

value of 2/3 to 20 digits). The first line shows that the %f format code generates output
in a fixed decimal output, while the second line shows that %e generates exponential
notation. Neither of them echoes the input to the accuracy given originally, since it
is not possible to store the value of 2/3 to 20 accurate digits using single precision.
Instead, the input value is correctly rounded to 24 bits of precision in its significand,
which, as we discussed in Chapter 5, corresponds to approximately 7 significant dec-
imal digits. Consequently, the format codes %f and %e print, by default, 6 digits after
the decimal point, but %e shows a little more accuracy than %f since the digit before
the decimal point is nonzero. In both cases, the decimal output is rounded, using the
default round to nearest mode; this explains the final digit 7. The next two lines of
Table 10.1 show how to print the number to less precision if so desired. The 8 refers
to the total field width, and the 3 to the number of digits after the decimal point.
The last two lines show an attempt to print the number to more precision, but we see
that about half the digits have no significance. The output is the result of converting
the single precision binary representation of 2/3 to more than the number of decimal
digits that can be accurately represented by the single format. . The output would be
exactly the same if, instead of reading the value 0.66666666666666666666 for x, we set
the value of x equal to the quotient 2.0/3.0. It is important to realize that regardless
of the decimal output format, the floating point variables are always stored using the
IEEE binary formats described in Chapter 4.

Using the %f format code is not a good idea unless it is known that the numbers are
neither too small nor too large. For example, if Program 1 is run on the input 1.0e-10,
the output using %f is 0.000000, since it is not possible to print the desired value
more accurately using only 6 digits after the decimal point without using exponential
notation. Using %e we get the desired result 1.000000e-10. A useful alternative is
%g, which chooses either a fixed or an exponential display, whichever is shorter.

We can represent the value of 2/3 more accurately by declaring x to have type
double instead of float. Type double uses the IEEE floating point double format,1 and
when we do computations with variables of type double, we say that we are using
double precision. But if we simply change float x to double x in Program 1, using the
same input, we get a completely wrong answer such as -6.392091e-236 (using the
%e output format code). The problem here is that the %f in the input format code
instructs the scanf routine to store the input value in the IEEE single format at the
address given by &x; scanf does not know the type of x, only its address. When x is
printed, its value is converted to decimal assuming it is stored in the double format.
Therefore, any scanf statement that reads a double variable must use the control
format code %lf or %le (for long float or long exponential) instead of %f or %e, so that

1The name long float was used in the past but is obsolete in this context.

CHAPTER 10. FLOATING POINT IN C 63

the result is stored in the IEEE double format. Do not attempt to use %d to refer to
the double format; %d actually means integer format.

The printf control string does not need to use %lf or %le (as opposed to %f or %e)
when printing the values of double variables. This is because printf always expects
double variables, and so float variables are always automatically converted to double
values before being passed to the output routine. Therefore, since printf always
receives double arguments, it treats the control strings %e and %le exactly the same;
likewise %f and %lf, %g and %lg. However, the default, if no field width and precision
are specified, is to output the number to approximately the precision of the single
format, so we need to specify higher precision output to see more digits. In summary,
then, if we change float to double in the variable declaration, change %f to %lf in the
scanf statement, and change %e to %21.15e in the printf statement, we obtain an
output that has 15 significant digits after the decimal point.

Choice of the wrong output format code can have serious implications! A good
example is the story of a German state election in 1992. According to the rules of this
election, a minimum of 5% of the vote was required for a party to be allocated any
seats in the parliament. The evening of the election, results were announced declaring
that the Green party had received exactly 5% of the vote. After midnight it was
discovered that the Greens actually had only 4.97% of the vote. The program that
printed out the percentages showed only one place after the decimal, and had rounded
the count up to 5% [WW92].

Exercise 10.1 Supposing that the German election program was written in C, what
output format code would have led to the incorrect conclusion that the Greens had
exactly 5% of the vote? What would have been a better output format code?

Exercise 10.2 (D. Gay) The wrong answer obtained by Program 1 if float is changed
to double without any change to the scanf format depends on whether the machine
uses Big Endian or Little Endian addressing (see the end of Chapter 4). Why is this?
If you have machines of both kinds available, experiment to see what results you obtain
on each.

Two Loop Programs

Let us now consider a program with a “while loop”:

main() /* Program 2: First Loop Program */

{

int n = 0;

float x = 1;

/* Repeatedly divide x by 2 until it underflows to 0 */

while (x > 0) {

x = x/2;

n++;

printf("(2 raised to the power -%d) = %e \n", n, x);

}

}

Program 2 initializes an IEEE single format floating point variable x to 1, and then
repeatedly divides it by 2. We could, for clarity, replace 2 in the statement x = x/2

by 2.0, but this is not necessary because x has type float. (If x had type int, the

64 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

integer division operator would be used instead, giving the result 0, for example, if x
had the value 1.) The termination test is x > 0: the loop continues to execute as long
as x is positive, but terminates when x is zero. The statement n++ increments the
integer n by 1 during every pass through the loop, keeping track of how many times
it is executed. (This statement is shorthand for n = n + 1.) The printf statement
displays the values of n and x, which by construction satisfy the equation

x = 2−n

as long as the arithmetic is done exactly. The \n is the newline character, needed
so that the output is displayed one line at a time. If the arithmetic were to be done
exactly, Program 2 would run forever, but in floating point, the value of the variable
x will underflow to zero eventually. Here is the output with IEEE arithmetic:

(2 raised to the power -1) = 5.000000e-01

(2 raised to the power -2) = 2.500000e-01

(2 raised to the power -3) = 1.250000e-01

(2 raised to the power -4) = 6.250000e-02

(2 raised to the power -5) = 3.125000e-02

.... 140 lines omitted

(2 raised to the power -146) = 1.121039e-44

(2 raised to the power -147) = 5.605194e-45

(2 raised to the power -148) = 2.802597e-45

(2 raised to the power -149) = 1.401298e-45

(2 raised to the power -150) = 0.000000e+00

Here is the explanation. The variable x is reduced from its initial value of 1 to
1/2, 1/4, 1/8, etc. After the first 126 times through the loop, x has been reduced
to the smallest IEEE single normalized number, Nmin = 2−126. If there were no
subnormal numbers, x would underflow to zero after one more step through the loop.
Instead, gradual underflow (see Chapter 7) requires that the next step reduce x to the
subnormal number 2−127, which has the representation

0 00000000 10000000000000000000000 .

The next step reduces x to 2−128, with the representation

0 00000000 01000000000000000000000 .

This continues 21 more times, until x reaches 2−149, with the representation

0 00000000 00000000000000000000001 .

After one more step, we would like x to have the value 2−150, but this is not repre-
sentable in the IEEE single format. It could be rounded up to 2−149 or down to 0. In
either case, the absolute rounding error is 2−150. The default rounding mode, round
to nearest, chooses the one with the 0 final bit, namely, the number 0.

CHAPTER 10. FLOATING POINT IN C 65

Now let us consider a different loop program:

main() /* Program 3: Second Loop Program */

{

int n = 0;

float x = 1, y = 2;

/* Repeatedly divide x by 2 until y = (1 + x) rounds to 1 */

while (y > 1) {

x = x/2;

y = 1 + x;

n++;

printf("1 added to (2 raised to the power -%d) = %e \n", n, y);

}

}

In Program 3, the float variable x is again initialized to 1 and repeatedly divided
by 2, but this time the termination test is different: the loop continues as long as y is
greater than 1, where y is set to the value of 1 + x, but terminates if the value of y is
exactly 1 (or smaller). What is the output using IEEE arithmetic?

Here is the answer:

1 added to (2 raised to the power -1) = 1.500000e+00

1 added to (2 raised to the power -2) = 1.250000e+00

1 added to (2 raised to the power -3) = 1.125000e+00

1 added to (2 raised to the power -4) = 1.062500e+00

1 added to (2 raised to the power -5) = 1.031250e+00

.... 10 lines omitted

1 added to (2 raised to the power -16) = 1.000015e+00

1 added to (2 raised to the power -17) = 1.000008e+00

1 added to (2 raised to the power -18) = 1.000004e+00

1 added to (2 raised to the power -19) = 1.000002e+00

1 added to (2 raised to the power -20) = 1.000001e+00

1 added to (2 raised to the power -21) = 1.000000e+00

1 added to (2 raised to the power -22) = 1.000000e+00

1 added to (2 raised to the power -23) = 1.000000e+00

1 added to (2 raised to the power -24) = 1.000000e+00

Program 3 terminates much sooner than Program 2 does. Recall that 1+2−23 has
the exact representation

0 01111111 00000000000000000000001 .

However, even though the number 2−24 can be represented exactly using the IEEE
single format, the number 1 + 2−24 cannot. It could be rounded up to 1 + 2−23

or down to 1. As earlier, both choices are equally close, this time with an absolute
rounding error of 2−24. Again, the default rounding mode, round to nearest, chooses
the answer with the zero final bit, namely, the number 1. Consequently, the loop
terminates.

At first sight, it seems from the output that the loop should have terminated
earlier, when x reached the value 2−21. However, this is because the output format

66 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

code %e used in the printf statement does not display enough decimal digits. Six
digits after the decimal point are not quite enough. We can insist on seeing seven by
changing the printf statement to

printf("1 added to (2 raised to the power -%d) = %.7e \n", n, y);

in which case the last few lines of output become

1 added to (2 raised to the power -20) = 1.0000010e+00

1 added to (2 raised to the power -21) = 1.0000005e+00

1 added to (2 raised to the power -22) = 1.0000002e+00

1 added to (2 raised to the power -23) = 1.0000001e+00

1 added to (2 raised to the power -24) = 1.0000000e+00

We could have coded Program 3 without using the variable y, replacing it by 1 + x

in both the while loop termination test and the printf statement. However, when we
do this, we are no longer sure that the value of 1 + x will be rounded to the IEEE
single format. Indeed, on an x87 machine the value of 1 + x would then likely be
held in an extended 80-bit register. If so, the program would run through the loop
more times before it terminates. Another possibility is that a compiler might simplify
1 + x > 1 to x > 0, resulting in the same output as Program 2.

Exercise 10.3 Write a C program to store the value of 1/10 in a float variable and
then repeatedly divide the number by 2 until it is subnormal. Continue dividing by 2
until about half the precision of the number is lost. Then reverse the process, multi-
plying by 2 the same number of times you divided by 2. Display the final result. How
many significant digits does it have? Explain why this happened.

Exercise 10.4 What would happen if Programs 2 and 3 were executed using the
rounding mode round up? Make a prediction and then do the experiment.

Exercise 10.5 Write a C program to find the smallest positive integer x such that
the floating point expression

(1⊘ x)⊗ x

is not 1, using single precision. Make sure that the variable x has type float, and assign
the value of the expression 1 ⊘ x to a float variable before doing the multiplication
operation, to prevent the use of extended precision or an optimization by the compiler
from defeating your experiment. Repeat with double precision.

Exercise 10.6 Write a C program to find the smallest positive integer x such that

1⊘ (1⊘ x)

is not x, using single precision. Repeat with double precision. (See the comments in
the previous exercise.)

CHAPTER 10. FLOATING POINT IN C 67

Table 10.2: Parallel Resistance Results

R1 R2 Total resistance

1 1 5.000000e-01

1 10 9.090909e-01

1 1000 9.990010e-01

1 1.0e5 9.999900e-01

1 1.0e10 1.000000e+00

1 0.1 9.090909e-02

1 1.0e-5 9.999900e-06

1 1.0e-10 1.000000e-10

1 0 0.000000e+00

Infinity and Division by Zero

Now let us turn our attention to exceptions. Program 4 implements the parallel
resistance formula (7.1):

main() /* Program 4: Parallel Resistance Formula */

{

float r1, r2, total;

printf("Enter the two resistances \n");

scanf("%f %f", &r1, &r2); /* input the resistances of the two

resistors connected in parallel */

printf("r1 = %e r2 = %e \n", r1, r2);

total = 1 / (1/r1 + 1/r2); /* formula for total resistance */

printf("Total resistance is %e \n",total);

}

Table 10.2 summarizes the output of Program 4 for various input data. In the first
five lines, R1 is held fixed equal to 1 and R2 is increased from 1 to a large number. The
larger R2 is, the more the current tends to flow through the first resistor, and so the
closer the total resistance is to 1. With R1 fixed equal to 1, and R2 sufficiently large,
i.e., 1/R2 sufficiently small, the floating point sum of 1/R2 and 1/R1 is precisely 1
even though the exact result would be strictly greater than 1 for all finite nonnegative
values of R2. Thus, the final result (the inverse of the sum) is precisely 1, even though
the mathematical result is strictly less than 1. This is, of course, because of the limited
precision of an IEEE single format floating point number.

The last four lines of the table show what happens when R1 is fixed equal to 1
and R2 is decreased below 1. The smaller R2 is, the more the current tends to flow
through the second resistor.

The last line of the table shows that the output zero is obtained when R2 = 0. As
explained in Chapter 7, this is a sensible mathematical result, and will be obtained
using IEEE default exception handling, since 1/0 evaluates to ∞, 1 +∞ evaluates to
∞, and 1/∞ evaluates to 0. Furthermore, as explained in Chapter 9, this result will
be obtained using any compiler following the C99 standard, which is essentially every
modern compiler.

Exercise 10.7 If R1 = 1, for approximately what range of values for R2 (what powers

68 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Table 10.3: Some Standard C Math Library Functions

fabs absolute value: fabs(x) returns |x|
sqrt square root: sqrt(x) returns

√
x

exp exponential (base e): exp(x) returns ex

log logarithm (base e): log(x) returns loge(x)

log10 logarithm (base 10): log10(x) returns log10(x)

sin sine (argument given in radians)

cos cosine (argument given in radians)

atan arctangent (result in radians between −π/2 and π/2)

pow power (two arguments: pow(x,y) returns xy)

of 10) does Program 4 give a result exactly equal to 1? Try to work out the answer
before you run the program.

Exercise 10.8 How does the answer to Exercise 10.7 change if R1 = 1000: approxi-
mately what range of values for R2 give a result exactly equal to 1000? Explain your
reasoning.

Exercise 10.9 How does the answer to Exercise 10.7 change if the rounding mode is
changed to round up?

The Math Library

Very often, numerical programs need to evaluate standard mathematical functions.
The exponential function is defined by

exp(x) = ex = lim
n→∞

(
1 +

x

n

)n

. (10.1)

It maps the extended real line (including ±∞) to the nonnegative extended real num-
bers, with the convention that exp(−∞) = 0 and exp(∞) = ∞. Its inverse is the
logarithm function (base e), denoted log(x), satisfying

exp(x) = y if and only if x = log(y).

The function log(y) is defined for y ≥ 0 with the conventions that log(0) = −∞ and
log(∞) = ∞. These functions, along with many others such as the trigonometric
functions sine, cosine, etc., are provided by all C compilers as part of an associated
math library. Some of them are listed in Table 10.3. They all expect double arguments
and return double values, but they can be called with float arguments and their values
assigned to float variables; the conversions are done automatically. The C99 standard
also calls for the support of variants such as expf and expl, which expect and return
float and long double types. The C99 standard also calls for support for other math-
ematical functions not traditionally provided, including fma, the fused multiply-add
operation (with a single rounding error) described in Chapter 6. For a complete list
of math library functions reqired by C99 and the subset required by its predecessor,
the C89 standard, see [Bee17, Table 3.4].

Neither the IEEE standard nor the C99 standard prescribes the accuracy of the
math library functions (with the exception of the square root function). However,
the 2008 version of the IEEE standard does make extensive recommendations for

CHAPTER 10. FLOATING POINT IN C 69

many functions to provide correctly rounded results for all rounding modes, including
all the functions listed in Table 10.3; for more, see [IEE08, Table 9.1]. One of
the motivations for the provision of extended precision by the IEEE standard was to
allow fast accurate computation of the library functions [Hou81], but as already noted,
extended precision hardware is largely limited to the older x87 microprocessors. There
is a fundamental difficulty in computing correctly rounded values of the exponential,
logarithmic, and trigonometric functions, called the Tablemaker’s Dilemma: one might
have to compute an arbitrarily large number of correct digits before one would know
whether to round the result up or down. Nonetheless, clever algorithms can achieve
correctly rounded results by using sufficiently high precision when necessary [Mul97],
[MB+18, Ch. 10], [Bee17, Ch.10–11]. This is an active topic of current research:
very fast implementations are becoming available, such as in the ongoing CORE-
MATH project.2 However, at present, these algorithms are not routinely used by the
many different C math libraries provided by compilers and microprocessors, which are
generally not guaranteed to produce correctly results [InnZim23].

It is important to note that when we say a function f returns correctly rounded
results, this means it returns the correctly rounded value of f(x), where the input x
is a floating point number. It does not mean that it will return the correctly rounded
value of, say, f(y), where y is not a floating point number. The reason is that then f
will have to be evaluated at round(y), the correctly rounded value of y, producing the
correctly rounded value of f(round(y)), which may not be nearly the same as f(y).
This phenomenon is discussed in Chapter 12.

C99 and the 2008 IEEE standard call for the math library functions to return
infinite or NaN values when appropriate. For example, log returns −∞ when its
argument is ±0 and NaN when its argument is negative. The divide-by-zero exception
is signaled when the argument is ±0, because −∞ is considered to be the exact result;
the invalid operation exception is signaled when the argument is negative. A complete
set of special function values prescribed by the 2008 standard appears in [IEE08,
Table 9.1].

When a C program contains calls to the math library, it should have the following
line at the start of the program:

#include <math.h>

The “include file” math.h tells the C compiler about the return types and other
calling-sequence details of the functions provided in the math library. Also, when the
program is compiled, it is necessary to link the math library; the syntax for this is
system-dependent. If an error message says that the math functions cannot be found,
the math library is not properly linked.

The mathcw library designed and implemented by Beebe [Bee17] is an extensive,
portable math library with many nice features. The book that documents it has a
wealth of information about floating point computing in C as well as in many other
languages including Fortran, C++, C# and Java. The name mathcw is inspired by
the pioneering work of Cody and Waite [CW80].3

Exercise 10.10 Check to see what your C math library returns for log(±0), log(±1),
and log(±∞). Are these results what you expected?

Exercise 10.11 The domain of a function is the set of values on which it is defined,
and its range is the set of all possible values that it returns.

2https://core-math.gitlabpages.inria.fr.
3Beebe’s dedication in [Bee17] is to the three Williams: Cody, Kahan and Waite. He wrote: “They

taught us that floating point arithmetic is interesting, intricate, and worth doing right, and showed
us how to do it better.

70 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

1. What are the ranges of the sin and cos functions?

2. What values should sin(∞) and cos(∞) return? Run a program to see if your
C math library does what you expect.

3. The arcsine and arccosine functions, asin and acos, are, respectively, the inverses
of the sin and cos functions on a restricted domain. By experimenting, determine
these restricted domains, i.e., the ranges of the asin and acos functions.

4. What values should asin(x) and acos(x) return if x is outside the range of the
sin and cos functions? Run a program to test your answer.

Exercise 10.12 What is pow(x, 0) when x is nonzero? What is pow(0, x) when x
is nonzero? What is pow(0, 0)? What is the mathematical justification for these
conventions? (See [Gol91], as well as [IEE19, p. 63] for more special values prescribed
for xy.)

Exercise 10.13 It’s unlikely that HAL, quoted on p. vi, was IEEE compliant, since
the movie 2001: A Space Odyssey predated the development of the standard by nearly
two decades [Cla99]. What precision does HAL appear to be using? Does he report
correctly rounded results for the square root and log functions before Dave starts dis-
mantling his circuits? In order to answer this with certainty, you may need to use the
long double (extended precision) versions of the math library functions, namely, sqrtl,
expl, and log10l.

Exercise 10.14 As mentioned in Chapter 6, interval arithmetic means floating point
computing where, for each variable, lower and upper bounds on the exact value of the
variable are maintained. This can be implemented using the round down and round up
modes, assuming these are supported by your C compiler. Write a program to read a
sequence of positive numbers and add them together in a sum. Include an option to set
the rounding mode to any of round down, round up, and round to nearest. The round
down mode should give you a lower bound on the exact result, the round up mode should
give you an upper bound, and round to nearest should give you an intermediate result.
Use type float but print the results to double precision so you can see the rounding
effects clearly. Avoid using very simple input values (such as integers) that may not
need rounding at all. Describe the results that you obtain. To how many digits do the
three answers agree? The answer will depend on your data.

Exercise 10.15 Assuming the rounding modes are supported by your C compiler,
use the ideas of interval arithmetic (see previous exercise) to compute upper and lower
bounds on the quantity

a+ b

c+ d
,

where a, b, c, d are input values. Use float variables but print the results to double
precision so you can see the effect of rounding. Think about how to do this carefully.
Do you have to change the rounding mode dynamically, i.e., during the computation?
Be sure to try a variety of input data to fully test the program. Avoid using very simple
input values (such as integers) that may not need rounding at all.

Exercise 10.16 Avoiding overflow in a product (J. Demmel).

1. Write a C program to read a sequence of positive numbers and compute the
product. Assume that the input numbers do not overflow the IEEE single format.
The program should have the following properties:

CHAPTER 10. FLOATING POINT IN C 71

• The variables in the program should have type either float or int. Double
or extended precision variables are not permitted.

• The program should print the product of the numbers in the following non-
standard format: a floating point number F (in standard decimal exponen-
tial format), followed by the string

times 10 to the power,

followed by an integer K.

• The result should not overflow, i.e., the result should not be ∞, even if the
final value, or an intermediate value generated along the way, is bigger than
Nmax, the biggest IEEE single format floating point number.

• The program should be reasonably efficient, doing no unnecessary computa-
tion (except for comparisons) when none of the intermediate or final values
are greater than Nmax. In this case, the integer K displayed should be zero.

The way to accomplish these goals is as follows. Suppose the input consists of
two numbers, both 1.0e30, so that the product is too big to fit in the IEEE single
floating point format. With default exception handling, the result is ∞, and by
observing this result the program can divide one of the numbers by a power of 10
and try again. By choosing the power of 10 correctly (using a loop), the product
can be made small enough not to overflow the IEEE single format. In this way,
a final product is computed that requires final scaling by a certain power of 10:
this is the integer that should be output, and you can assume this is not bigger
than the biggest integer that can be stored.

An important part of the assignment is to choose a good test set to properly check
the program.

Note: When you multiply two numbers together and compare the result to ∞,
you might not get the answer you expect unless you first store the product of the
numbers in a float variable (since the registers may use the double or extended
format).

2. Extend the program so that the result does not underflow to zero regardless of
how small the intermediate and final values are.

3. Should you also avoid underflow to subnormal intermediate and final values?
Why or why not? How can this be done?

Chapter 11

Cancellation

Consider the two numbers
x = 3.141592653589793

and
y = 3.141592653585682.

The first number, x, is a 16-digit approximation to π, while the second number agrees
with π to only 12 digits. Their difference is

z = x− y = 0.000000000004111 = 4.111× 10−12. (11.1)

This difference is in the normalized range of the IEEE single format. However, if we
compute the difference z = x − y in a C program, using the single format to store
the variables x and y before doing the subtraction, and display the result to single
precision, we find that the result displayed for z is

0.000000e+00. (11.2)

The reason is simple enough. The input numbers x and y are first converted from
decimal to the single binary format; they are not exact floating point numbers, so
the decimal to binary conversion requires some rounding. Because they agree to 12
digits, both x and y round to exactly the same single format number. Thus, all bits in
their binary representation cancel when the subtraction is done; we say that we have
a complete loss of significance in the computation z = x− y.

If we use the double format to store x and y and their difference z, and if we
display the result to double precision, we find that z has the value

4.110933815582030e-12. (11.3)

This agrees with the exact answer (11.1) to about four digits, but what is the meaning
of the other digits? The answer is that the result displayed is the correctly rounded
difference of the double format representations of x and y. Although we might prefer
to see (11.1), this will not happen on a binary machine, as it would on a decimal
calculator with enough digits. It is important to realize that in this case, we may
ignore all but the first four or five digits of (11.3). The rest may be viewed as garbage,
in the sense that they do not reflect the original data x and y. We say that we have
a partial loss of significance in the computation z = x− y.

Regardless of whether the loss of significance is complete or partial, the phe-
nomenon is called cancellation. It occurs when one number is subtracted from another
number that is nearly equal to it. Equivalently, it occurs if two numbers with opposite
sign but nearly equal magnitude are added together.

73

74 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Approximating a Derivative by a Difference Quotient

An excellent illustration of cancellation is provided by the example of computing an
approximation to a derivative. Let f be a differentiable function of a single real
variable. . Suppose that we do not have a formula for f , but only a program that
evaluates f(x) for any given value x. How would we estimate the value of f ′(x), the
derivative of f at x?

By definition, f ′(x) is the slope of the line tangent to the graph of f at (x, f(x)),
i.e., the limit of the difference quotient

f(x+ h)− f(x)

h
(11.4)

as h converges to zero. This difference quotient is the slope of the line passing through
the points (x+ h, f(x+ h)) and (x, f(x)). A natural idea, then, is to evaluate (11.4)
for some “small” value of h—but how small? Setting h to zero will give us 0/0, i.e.,
NaN. Program 5 tries values of h ranging from 10−1 down to 10−20, assuming that
x = 1 and f is the sine function. Since we know that the derivative of sin(x) is cos(x),
we can evaluate this at x = 1 and compare the result to the difference quotient. The
absolute value of the difference between the two is called the error. The program uses
type double.

#include <math.h>

main() /* Program 5: Approximate a Derivative by a

Difference Quotient*/

{

int n = 1;

double x = 1.0, h = 1.0, deriv = cos(x), diffquo, error;

printf(" deriv =%13.6e \n", deriv);

printf(" h diffquo abs(deriv - diffquo) \n");

/* Let h range from 10^{-1} down to 10^{-20} */

while(n <= 20) {

h = h/10; /* h = 10^(-n) */

diffquo = (sin(x+h)-sin(x))/h; /* difference quotient */

error = fabs(deriv - diffquo);

printf("%5.1e %13.6e %13.6e \n", h, diffquo, error);

n++;

}

}

Here is the output:

deriv = 5.403023e-01

h diffquo abs(deriv - diffquo)

1.0e-01 4.973638e-01 4.293855e-02

1.0e-02 5.360860e-01 4.216325e-03

1.0e-03 5.398815e-01 4.208255e-04

1.0e-04 5.402602e-01 4.207445e-05

1.0e-05 5.402981e-01 4.207362e-06

1.0e-06 5.403019e-01 4.207468e-07

CHAPTER 11. CANCELLATION 75

1.0e-07 5.403023e-01 4.182769e-08

1.0e-08 5.403023e-01 2.969885e-09

1.0e-09 5.403024e-01 5.254127e-08

1.0e-10 5.403022e-01 5.848104e-08

1.0e-11 5.403011e-01 1.168704e-06

1.0e-12 5.403455e-01 4.324022e-05

1.0e-13 5.395684e-01 7.339159e-04

1.0e-14 5.440093e-01 3.706976e-03

1.0e-15 5.551115e-01 1.480921e-02

1.0e-16 0.000000e+00 5.403023e-01

1.0e-17 0.000000e+00 5.403023e-01

1.0e-18 0.000000e+00 5.403023e-01

1.0e-19 0.000000e+00 5.403023e-01

1.0e-20 0.000000e+00 5.403023e-01

The error (the absolute value of deriv - diffquo) is plotted as a function of h
in Figure 11.1, using a log–log scale. The results are quite interesting. Reading the
graph from right (large h) to left (small h), we see that the approximation gets better,
i.e., the error gets smaller, as h gets smaller—as we might expect—but only up to a
certain point. When h gets too small, the approximation starts to get worse! Why?

After a little thought, the reason is clear. If x = 1 and h is smaller than half of
machine epsilon (about 10−16 in the double format), then x+h, i.e., 1+h, is rounded
to 1, and so naturally the formula that is being displayed gives the result zero, since
the values sin(x + h) and sin(x) completely cancel. In other words, the final answer
has no significant digits. When h is a little bigger than machine epsilon, the values do
not completely cancel but they still partially cancel. For example, suppose that the
first 10 digits of sin(x+h) and sin(x) are the same. Then, even though sin(x+h) and
sin(x) both have about 16 significant digits, the difference has only about 6 significant
digits. Since the difference is stored as a normalized double format number, it appears
at first to have 16 significant digits, but only the first 6 are meaningful. We may
summarize the situation by saying that although using very small values of h reduces
the discretization error inherent in approximating the derivative f ′(x) by the difference
quotient (11.4), this is dominated by the much larger cancellation error inherent in
computing (11.4). On the other hand, for large h, the cancellation error is small, but
it is dominated by the large discretization error. For the function f(x) = sin(x) at
x = 1, the best choice of h is about 10−8, approximately the square root of machine
epsilon.

A closer look at the output shows that, for the larger values of h, the error drops
by approximately a factor of 10 every time h is reduced by a factor of 10—until the
cancellation error starts to take over. There is a reason for this. To explain it, we
assume that f is twice differentiable, as is the case for the sine function. Then there
exists z between x and x+ h such that

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(z), (11.5)

where f ′′(z) is the second derivative of f at z. Formula (11.5) is called a truncated

Figure not available at present, see figure in first edition

Figure 11.1: Error (Absolute Value of Derivative Minus Difference Quotient) as a
Function of h (Log–Log Scale)

76 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Taylor series. Therefore,

f(x+ h)− f(x)

h
− f ′(x) =

h

2
f ′′(z). (11.6)

This quantity is the difference between what we are computing, the difference quotient,
and what we want, the exact derivative. Its absolute value is the discretization error.
Equation (11.6) shows that if h is reduced by a factor of 10, the discretization error
also decreases by a factor of about 10 (not exactly, since the point z between x and
x + h changes when h changes). Thus, we say the discretization error is O(h). This
explains the factors of 10 observed in the table (and the corresponding straight line
of data on the right side of Figure 11.1).

The lesson to be learned here is that cancellation, which occurs when subtraction of
nearly equal values takes place, should be avoided when possible. Using the formula for
the derivative of a function is much more accurate than approximating it by difference
quotients.

The Central Difference Quotient

As long as f is smooth enough, we can construct a more accurate approximation to the
derivative of f at x by computing the slope of the line passing through (x+h, f(x+h))
and (x− h, f(x− h)), i.e.,

f(x+ h)− f(x− h)

2h
.

This is called the central difference quotient. Assume that the third derivative f ′′′

exists. For small enough h (but large enough that cancellation is not a problem),
the central difference quotient gives a more accurate approximation to the derivative
f ′(x) than the difference quotient (11.4). Here is the explanation. Truncated Taylor
series give us

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(z1) (11.7)

for some z1 between x and x+ h and

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(z2) (11.8)

for some z2 between x and x−h. Subtracting (11.8) from (11.7) and dividing through
by 2h, we get

f(x+ h)− f(x− h)

2h
− f ′(x) =

h2

12
(f ′′′(z1) + f ′′′(z2)).

This gives the discretization error for the central difference quotient. Thus, the dis-
cretization error for the central difference quotient is O(h2) instead of O(h).

Exercise 11.1 Change Program 5 to use centered differences, and observe that when
h is reduced by a factor of 10, the discretization error is reduced by a factor of about
100, confirming the O(h2) behavior. But, as before, when h becomes too small, the
cancellation error dominates and the results become useless. Approximately what h
gives the best results?

Exercise 11.2 Using a spreadsheet program such as Excel, implement the finite dif-
ference formula in a spreadsheet. Can you tell from the results what precision the
spreadsheet program is using? If necessary, use the menu options to change the output
format used.

CHAPTER 11. CANCELLATION 77

It’s important to note that the problem with cancellation has nothing to do with
the subtraction operation somehow being inaccurate. Like the other arithmetic opera-
tions, it always produces correctly rounded results in IEEE arithmetic, and in fact the
subtraction of two nearly equal numbers gives the exact result, thanks to the avail-
ability of subnormal numbers. The issue is that if x and y are nearly equal, many or
even most of the significant digits in the numbers x and y are lost when the difference
x− y is computed. For more on cancellation, see a nice discussion in [Hig02, Sec. 1.7].

Chapter 12

Conditioning of Problems

Suppose we wish to solve some problem using numerical computing. Roughly speaking,
the conditioning of the problem measures how accurately one can expect to be able to
solve it using a given floating point precision, independently of the algorithm used. We
confine our discussion to the problem of evaluating a real function of a real variable,

y = f(x),

assuming that f is differentiable and that x and f(x) are in the normalized range of
the floating point precision. Define

x̂ = round(x).

Evaluating the function f on the computer using floating point arithmetic, the best
we can hope for is to compute the value

ŷ = f(x̂).

In fact, even this is an unreasonable hope because we will not be able to evaluate f
exactly, but for simplicity, let us suppose for now that we can. Now, we know from
(5.12) in Chapter 5 that the relative rounding error satisfies the bound

|x̂− x|
|x| < ǫmch,

where ǫmch is machine epsilon (with an additional factor of 1/2 if the rounding mode
is round to nearest). It follows that

− log10

(|x̂− x|
|x|

)
> − log10(ǫmch). (12.1)

As noted in the discussion following the equivalent inequality (5.14), the left-hand side
of (12.1) approximates the number of decimal digits to which x̂ agrees with x—at
least about seven digits in the case of IEEE single precision. The question we now ask
is: To how many digits can we expect ŷ to agree with y? To find out, we must look
at the quantity

− log10

(|ŷ − y|
|y|

)
.

We have
ŷ − y

y
=

f(x̂)− f(x)

x̂− x
× x

f(x)
× x̂− x

x
. (12.2)

79

80 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

The first factor,
f(x̂)− f(x)

x̂− x
, (12.3)

approximates f ′(x), the derivative of f at x. Therefore,

|ŷ − y|
|y| ≈ κf(x) ×

|x̂− x|
|x| , (12.4)

where

κf (x) =
|x| × |f ′(x)|
|f(x)| . (12.5)

The quantity κf (x) is called the condition number of f at x. It measures approximately
how much the relative rounding error in x is magnified by evaluation of f at x. (For
a more rigorous derivation that eliminates the approximation symbol ≈, see Exercise
12.8.)

Now we are in a position to answer the question: To how many digits can we
expect ŷ to agree with y? The left-hand side of (12.4) is a relative measure of how
well ŷ approximates y. The second factor on the right-hand side of (12.4) is a relative
measure of how well x̂ approximates x. Taking logarithms (base 10) on both sides,
we get

− log10

(|ŷ − y|
|y|

)
≈ − log10

(|x̂− x|
|x|

)
− log10 (κf (x)) . (12.6)

Here the left-hand side is approximately the number of digits to which ŷ agrees with
y, and the first term on the right-hand side is approximately the number of digits to
which x̂ agrees with x, which we know from (12.1) and Table ?? is at least about
seven when IEEE single precision is in use. Consequently, we conclude with a rule of
thumb.1

Rule of Thumb 12.1 To estimate the number of digits to which ŷ = f(x̂) agrees
with y = f(x), subtract

log10 (κf (x))

from the approximate number of digits to which x̂ = round(x) agrees with x, i.e.,
7 when using IEEE single precision or 16 when using IEEE double precision (see
Table ??). Here κf(x) is the condition number of f at x, defined in (12.5), and we
assume that f is differentiable and that x and f(x) are in the normalized range of
the floating point system.

Since evaluating the condition number of f at x requires first evaluating f at x as
well as the derivative f ′(x), the condition number does not help us solve our original
problem, the evaluation of f . On the contrary, evaluating the condition number is
harder than evaluating the function. However, the condition number does give us
insight into difficulties that may arise when we evaluate f at certain values of x.

Exercise 12.1 Determine the condition numbers of the functions

g(x) =
x

10

and

h(x) = x− 10,

and discuss what values of x, if any, give large condition numbers κg(x) or κh(x).

CHAPTER 12. CONDITIONING OF PROBLEMS 81

Table 12.1: Sample Condition Numbers

f x f(x) f ′(x) κf (x) log10(κf (x))

exp 1 e e 1 0

exp 0 1 1 0 −∞
exp −1 1/e 1/e 1 0

log e 1 1/e 1 0

log 1 0 1 ∞ ∞
log 1/e −1 e 1 0

sin π 0 −1 ∞ ∞
sin π/2 1 0 0 −∞
sin 0 0 1 NaN NaN

Figure not available at present, see figure in first edition

Figure 12.1: Exponential, Logarithmic, and Sine Functions

Table 12.1 tabulates the function, derivative, and condition number of three func-
tions, the exponential, logarithmic, and sine functions, each at three different values
of x. These values are all exact. The three functions and the relevant points (x, f(x))
are shown in Figure 12.1. The derivatives of exp(x), log(x), and sin(x) are

exp(x),
1

x
, cos(x),

respectively, so the condition numbers are

κexp(x) = |x|, κlog(x) =
1

| log(x)| , κsin(x) =
|x|

| tan(x)| . (12.7)

Altogether, Table 12.1 gives nine examples. Four of these examples have condition
numbers equal to 1. In these examples, we expect that if x̂ approximates x to about
seven significant digits, then ŷ = f(x̂) should approximate y = f(x) to about seven
digits. In two examples, we see a condition number equal to 0. The problem of
evaluating f(x) in these examples is said to be infinitely well conditioned, and we
expect that ŷ should approximate y to many more digits than x̂ approximates x. On
the other hand, two other examples have condition numbers equal to∞. The problem
of evaluating f(x) in these cases is said to be infinitely ill conditioned, and we expect
that ŷ should approximate y to many fewer digits than x̂ approximates x. Finally,
there is one case in which the condition number is not defined because both x and
f(x) are zero. This is indicated by the NaN in the table. However, see Exercise 12.3.

Exercise 12.2 Construct a table like Table 12.1 to display the condition number of
the functions log10, cos, and asin, using points where they can be computed exactly, if
possible.

Exercise 12.3 The condition number of the sine function is not defined at x = 0, but
the limit of the condition number is defined as x→ 0. What is this limit? Does (12.4)
still hold if we define this limit to be the condition number?

1A rule of thumb is any method of measuring that is practical though not precise [Web96].

82 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Checking the Rule of Thumb

We used Program 6 to evaluate the math library functions exp, log, and sin near the
points x shown in Table 12.1. The values e, 1/e, π, and π/2 were input to double
accuracy and stored in the double variable xD. The values 1, 0, and −1 would have
been stored exactly, so instead we input numbers near these values. For each input
value, Program 6 computes the relevant function value in two ways. The output is
summarized in Table 12.2. The fourth column displays the double results computed by
the function when its argument is the double variable xD. The third column displays
the double results computed by the function when its argument is rounded to single
precision before being passed to the function. In both cases, the function evaluation
uses double precision and the value is displayed to 16 digits. The only difference is
the precision of the argument passed to the function.

#include <math.h>

main () /* Program 6: Function Evaluation */

{

int funcode; /* function code */

float xS; /* IEEE single */

double xD, fxS, fxD, relerr, cond; /* IEEE double */

printf("enter 1 for exp, 2 for log, 3 for sin ");

scanf("%d", &funcode);

printf("enter an input value \n");

scanf("%lf", &xD); /* read using double format */

xS = xD; /* force single format */

switch (funcode) {

case 1: fxS = exp(xS); fxD = exp(xD);

cond = fabs(xD); break;

case 2: fxS = log(xS); fxD = log(xD);

cond = fabs(1/log(xD)); break;

case 3: fxS = sin(xS); fxD = sin(xD);

cond = fabs(xD/tan(xD)); break;

}

printf("funcode %d\n", funcode);

printf("xS = %22.15e f(xS) = %22.15e \n", xS, fxS);

printf("xD = %22.15e f(xD) = %22.15e \n", xD, fxD);

/* relative error */

relerr = fabs((fxD - fxS)/fxD);

/* approximate number of digits they are in agreement */

printf("relative error = %e ", relerr);

printf("approx digits agreeing = %2.0f\n", -log10(relerr));

/* log base 10 of condition number */

printf("condition number = %e ", cond);

printf("log10 condition number = %2.0f\n", log10(cond));

}

We may view the numbers in the third column of Table 12.2 as reasonably accurate
evaluations of ŷ, the value of the function f at its rounded-to-single argument x̂. We
may view the numbers in the fourth column as reasonably accurate evaluations of the
exact value y = f(x)—at least, the rounded-to-double argument xD is much closer to
the input value x than the rounded-to-single argument xS. The column headed Agree

CHAPTER 12. CONDITIONING OF PROBLEMS 83

Table 12.2: Actual Function Evaluations: Exp, Log, and Sin

f x f(x), x rounded to single f(x), x rounded to double Agree Loss

exp 1.000001 2.718284420815846e+00 2.718284546742233e+00 7 0

exp 0.000001 1.000001000000498e+00 1.000001000000500e+00 15 −6

exp -1.000001 3.678790903344350e-01 3.678790732921851e-01 7 0

log e (double) 9.999999696321400e-01 1.000000000000000e+00 8 0

log 1.001 9.995470164405893e-04 9.995003330834232e-04 4 3

log 1.000001 9.536738616591883e-07 9.999994999180668e-07 1 6

log 1/e (double) -9.999999751283870e-01 -1.000000000000000e+00 8 0

sin π (double) -8.742278000372475e-08 1.224646799147353e-16 −9 16

sin π/2 (double) 9.999999999999990e-01 1.000000000000000e+00 15 −15

sin 0.000001 9.999999974750761e-07 9.999999999998333e-07 9 0

in Table 12.1 estimates the number of digits to which these two computations agree,
using the formula on the left-hand side of (12.6), rounded to the nearest integer. The
column headed Loss shows the log (base 10) of the condition number of the function at
xD, using (12.7) and rounding to the nearest integer. According to Rule of Thumb 12.1,
the number shown in the column headed Agree should be approximately 7 minus the
number shown in the column headed Loss. This is exactly the case for several of
the input values, e.g., the log function at x = 1.001 (where the condition number
is about 1000) and x = 1.000001 (where it is about 106). These are two of the ill-
conditioned examples. In the extremely well-conditioned cases, the exp function at
x = 10−6 (condition number 10−6) and the sine function very near π/2 (condition
number 10−15), we have, as expected, more agreement in the function values than
there is in their arguments; however, this is limited to about 15 digits, about the
most we can expect using double precision computations. In the case of the sine
function near π, which is the worst conditioned example of all (condition number
1016), the displayed agreement of −9 digits is a consequence of the division by fxD in
the computation of the log (base 10) of the relative error; if we divided by fxS instead,
we would be informed that we have 0 digits of agreement.2

Exercise 12.4 As mentioned in Chapter 4, deciding to how many digits two numbers
agree is problematic. Devise a rule that you think is reasonable and test it on the
numbers in Table 12.2. How do your answers compare with the log (base 10) of the
relative error reported in the column headed Agree?

Exercise 12.5 Modify Program 6 to evaluate the functions whose condition numbers
were displayed in Exercise 12.2, and display the results in a table like Table 12.2. Don’t
forget to use the correct formulas for the condition numbers defining the output for the
Loss column. Do the results support Rule of Thumb 12.1?

Exercise 12.6 Determine the condition number of the parallel resistance formula with
variable R1 and fixed R2 = 1, i.e., the condition number of

f(x) =
1

1
x
+ 1

.

2The reason the value of the sine function at π reported in columns 3 and 4 is not exactly zero
is that the input to sin is not exactly π, but the single or double precision approximation to π,
respectively. There is another function sinPi which, given x, returns the correctly rounded value
of sin(π × x) using a different method, so that if x = 1, sinPi returns exactly 0 [Bee17, Sec 11.7].
However, even though sinPi returns the exact answer at x = 1, the condition number of sinPi is
nonetheless ∞ at x = 1.

84 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Exercise 12.7 Suppose that g is a function that is twice differentiable. Determine
the condition number of the derivative

f(x) = g′(x)

and the condition number of the difference quotient

fh(x) =
g(x+ h)− g(x)

h

for fixed h > 0. Does the latter converge to the former as h converges to zero?

Exercise 12.8 Replace (12.4) by a more precise statement that does not use the ≈
symbol, using the truncated Taylor series (11.5) together with the assumption that f
is twice differentiable.

The notion of conditioning extends far beyond simple function evaluation to more
complicated and challenging problems. In other settings, the definition of condition
number is more subtle than (12.5). For example, suppose the problem to be solved
is to compute y = Ax, where A is a matrix and x is a vector, or to solve a system
of linear equations Ay = x for y, where A is a square nonsingular matrix and x is a
vector. If we take A to be fixed, we need to know how relative errors in the solution
vector y depend on relative errors in the data vector x, where we must introduce the
notion of a norm to quantify the magnitude of a vector. The condition number is then
defined to measure the worst case of such dependence over all data vectors x with
fixed norm; see [Dem97], [Hig02], or [TB97]. In the case of simple function evaluation
discussed in this chapter, where x is a scalar, not a vector, this crucial worst case
aspect of the condition number is not present.

Chapter 13

Stability of Algorithms

An algorithm is a well-defined computational method to solve a given class of problems.
In computer science, the study of algorithms is traditionally concerned with efficiency;
it is understood that an algorithm is supposed to get the correct answer, though
proving that this will happen is not necessarily easy. However, numerical algorithms,
which solve problems using floating point arithmetic, almost never find the exact
solution to a problem. Instead, the goal is “approximately correct” answers. These are
by no means guaranteed. Although each individual floating point operation is correctly
rounded, a poor choice of algorithm may introduce unnecessarily large rounding errors.

We saw in the previous chapter that the conditioning of a problem measures how
accurately one can expect to be able to solve it using a given floating point precision,
independently of the algorithm used. The stability of an algorithm measures how good
a job the algorithm does at solving problems to the achievable accuracy defined by
their conditioning. For whatever problem one might want to solve, some algorithms
are better than others. Those algorithms that get unnecessarily inaccurate answers
are called unstable.

We continue to confine our attention to the problem of evaluating a real function
of a real variable,

y = f(x),

assuming that f is differentiable and that x and f(x) are in the normalized range of
the floating point precision. As earlier, define

x̂ = round(x).

We commented in the previous chapter that, using floating point arithmetic, the best
we can hope for is to compute the value

ŷ = f(x̂), (13.1)

and we showed that
|ŷ − y|
|y| ≈ κf (x)

|x̂ − x|
|x| ,

where κf (x) is the condition number of f at x. However, it is generally too much to
expect an algorithm to find ŷ satisfying (13.1), and in fact this is often impossible since
f(x̂) may not be a floating point number. So, we say that an algorithm to compute
f(x) is stable if instead of ŷ it returns ỹ satisfying

|ỹ − y|
|y| ≈ κf (x)

|x̂ − x|
|x| , (13.2)

85

86 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

where, as earlier, we deliberately avoid a specific definition for the symbol ≈, meaning
approximately equal.1 For rigorous definitions of stability, see [TB97, Section III] and
[Hig02, Chapter 1]. If an algorithm to compute f(x) delivers ỹ for which the left-
hand side of (13.2) is much greater than the right-hand side, we say the algorithm is
unstable.

Compound Interest

We illustrate these concepts by considering algorithms for computing compound inter-
est. Suppose we invest a0 dollars in a bank that pays 5% interest per year, compounded
quarterly. This means that at the end of the first quarter of the year, the value of our
investment is

a1 = a0 × (1 + (.05)/4)

dollars, i.e., the original amount plus one quarter of 5% of the original amount. At the
end of the second quarter, the bank pays interest not only on the original amount a0,
but also on the interest earned in the first quarter; thus, the value of the investment
at the end of the second quarter is

a2 = a1 × (1 + (.05)/4) = a0 × (1 + (.05)/4)2

dollars. At the end of the third quarter the bank pays interest on this amount, so that
the investment is now worth

a3 = a2 × (1 + (.05)/4) = a0 × (1 + (.05)/4)3,

and at the end of the whole year the bank pays the last installment of interest on the
amount a3, so that the investment is finally worth

a4 = a3 × (1 + (.05)/4) = a0 × (1 + (.05)/4)4.

In general, if a0 dollars are invested at an interest rate x with compounding n times
per year, at the end of the year the final value is

a0 × Cn(x)

dollars, where

Cn(x) =
(
1 +

x

n

)n

.

This is the compound interest formula. It is well known that, for fixed x, the com-
pound interest formula Cn(x) has a limiting value as n → ∞, namely, exp(x), as
already displayed in (10.1). Consequently, excessively high compounding frequencies
are pointless.

Nonetheless, it is interesting to evaluate Cn(x) for various choices of n. Before
considering algorithms to do this, let us investigate the condition number of Cn(x).
From the chain rule, the derivative is

C′

n(x) = n
(
1 +

x

n

)n−1 1

n
=

Cn(x)

1 + x
n

.

Thus, for n sufficiently large compared to |x|, Cn(x) is close to being its own derivative,
which is not surprising, since the derivative of the limiting function exp(x) is itself.
Therefore, the condition number of Cn is

κCn
(x) =

|x|
|Cn(x)|

× |Cn(x)|
|1 + x

n
| =

|x|
|1 + x

n
| ,

1A more demanding definition than (13.2) known as backward stability requires that ỹ = f(x̃) for
some x̃ not necessarily equal to x or x̂, but close to x, in a relative sense, just as x̂ is.

CHAPTER 13. STABILITY OF ALGORITHMS 87

which converges to |x|, the condition number of exp(x) (see (12.7)), as n → ∞.
Consequently, the compound interest formula is a well-conditioned function even for
very large n, as long as |x| is not large.

We first state the simplest, though not the most efficient, algorithm for computing
Cn(x).

Algorithm 13.1

1. Compute z = 1 + x
n
, and set w = 1.

2. Repeatedly (n times) perform the multiplication w← w × z, and return w.

Since n may be large, the following more efficient algorithm makes use of the C
library function pow.

Algorithm 13.2

1. Compute z = 1 + x
n
.

2. Return pow(z, n).

A third algorithm makes use of the properties of the exponential and logarithmic
functions. Writing

Cn(x) = zn

and taking logarithms (base e) of both sides, we obtain

logCn(x) = n× log(z).

Therefore,
Cn(x) = exp(n× log(z)).

Algorithm 13.3

1. Compute z = 1 + x
n
.

2. Compute v = log(z) and return exp(n× v).

Program 7 implements all three algorithms in C using single precision. The output
for various n is summarized in Table 13.1. In all cases the input for x is 0.05, i.e., an
interest rate of 5%.

#include <math.h>

main () /* Program 7: Compound Interest */

{

int n,i;

float x,z,w,v;

printf("enter input values for x (float) and n (integer) \n");

scanf("%f %d", &x, &n);

z = 1 + x/n;

w = 1;

for (i=0; i<n; i++) {

w = w*z;

}

v = log(z);

printf("Alg 1: %e \n", w);

printf("Alg 2: %e \n", pow(z,n));

printf("Alg 3: %e \n", exp(n*v));

}

88 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Table 13.1: Compound Interest at 5%, Single Precision

n Algorithm 13.1 Algorithm 13.2 Algorithm 13.3

4 1.050946 1.050946 1.050946

365 1.051262 1.051262 1.051262

1000 1.051215 1.051216 1.051216

10,000 1.051331 1.051342 1.051342

100,000 1.047684 1.048839 1.048839

1,000,000 1.000000 1.000000 1.000000

The results are alarming! They look reasonable only for n = 4 (compounding
quarterly) and n = 365 (compounding daily). For n = 1000, all three algorithms give
results that are less than the result for n = 365. This is certainly not correct; we
know that compounding more often may not give much more interest, but it certainly
should not give less! We get our first clue as to what is happening when we come to
the last line in the table. When n = 1, 000, 000, the computation in step 1 of all three
algorithms,

z = 1 +
.05

1000000
,

rounds exactly to 1 using single precision. Thus, the crucial interest rate information
is completely lost, and all three algorithms return a result exactly equal to 1, as if the
interest rate had been zero. Likewise, when n = 10, 000 or n = 100, 000, some but not
all of the interest rate information is being lost in the computation of z.

On the other hand, it is clear that z is being computed correctly to about seven
digits—there is no cancellation here! So why does the loss of the subsequent digits
matter?

The heart of the matter is that all three algorithms are unstable. The rounding
error in step 1 of each algorithm has a dramatically bad effect because the condition
number of the function being computed in step 2 is much worse than the condition
number of Cn. In fact, step 2 of all three algorithms computes the same function,

Pn(z) = zn.

The derivative of Pn(z) is nz
n−1, so the condition number is

κPn
(z) =

|z × nzn−1|
|zn| = n,

which, unlike the condition number of Cn(x), grows without bound as n → ∞. For
example, when n = 100, 000, the log (base 10) of the condition number is 5, and so,
according to Rule of Thumb 12.1, although z computed in step 1 has seven significant
digits, the result computed in step 2 of Algorithms 13.1 and 13.2 has only about two
accurate digits. Thus, ill conditioning has been introduced, even though it was not
present in the original function to be computed. Consequently, the algorithms are
unstable.

Algorithm 13.3 does not avoid the instability with its use of exp and log. We
already observed in the previous chapter that log(z) has a large condition number
near z = 1, so although z is accurate to about seven digits, v = log(z) is accurate to
only about two digits when x = .05 and n = 100, 000 (see Table 12.2).

CHAPTER 13. STABILITY OF ALGORITHMS 89

Table 13.2: Compound Interest at 5%

n Algorithm 13.1 Algorithm 13.2 Algorithm 13.3 Algorithm 13.4

(double) (double) (double) (single)

4 1.050945 1.050945 1.050945 1.050945

365 1.051267 1.051267 1.051267 1.051267

1000 1.051270 1.051270 1.051270 1.051270

10,000 1.051271 1.051271 1.051271 1.051271

100,000 1.051271 1.051271 1.051271 1.051271

1,000,000 1.051271 1.051271 1.051271 1.051271

The easiest way to get more accurate answers is to change Program 7 so that
all computations are done in double precision. All we need to do is change float

to double, and change %f to %lf in the scanf statement. The results, shown in
Table 13.2, are correct to single precision accuracy because we are doing the com-
putations in double precision. Of course, the algorithms are still not stable. If n is
sufficiently large, inaccurate answers will again appear.

Exercise 13.1 For what n does the double precision version of Program 7 give poor
answers? Display the results in a table like Table 13.1.

Surprisingly, there is no obvious stable algorithm to compute the compound in-
terest formula using only the library functions pow, exp, and log. See [Gol91] for a
simple stable algorithm that uses only exp and log, but one that is clever and far from
obvious; a related discussion is given in [Hig02, Section 1.14.1]. However, there is a
Taylor series expansion of the logarithm function near one that provides exactly what
we need:

log(1 + s) = s− s2

2
+

s3

3
− s4

4
+ (13.3)

C99 provides a math library function log1p that computes this:

log1p(s) = log(1 + s).

This function is well-conditioned at and near s = 0 (see Exercise 13.2). This eliminates
the need for the addition in step 1 of Algorithm 13.3 and gives us the following stable
algorithm.

Algorithm 13.4

1. Compute u = x
n
.

2. Compute v = log1p(u), and return exp(n× v).

This is implemented in Program 8, and the results are shown in Table 13.2. The
stable algorithm gives accurate results using single precision; the unstable algorithms

90 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

give such accurate results only when double precision is used.

#include <math.h>

main () /* Program 8: Stable Algorithm for Compound Interest */

{

int n;

float x,u,v;

printf("enter input values for x (float) and n (integer) \n");

scanf("%f %d", &x, &n);

u = x/n;

v = log1p(u);

printf("Alg 4: %e \n", exp(n*v));

}

Exercise 13.2 What is condition number of the function log1p(s) as a function of
s? What is the limit of the condition number as s→ 0? See Exercise 12.3.

The function log1p, and a related function expm1 (see Exercise 13.4), are among
the many specified in [IEE08, Table 9.1] as functions that should be implemented to
provide correctly rounded results. For more details about using these functions to
compute compound interest and a related quantity, the present value of an annuity,
see [Bee17, Ch. 10.6].

Instability via Cancellation

In fact, the phenomenon of cancellation described in Chapter 11 can be completely
explained by conditioning. The condition number of the function

f(x) = x− 1

is

κf (x) =
|x|
|x− 1| ,

which is arbitrarily large for x close to 1. Consequently, an algorithm that introduces
cancellation unnecessarily is introducing ill conditioning unnecessarily and is unstable.

In Chapter 11, we discussed the idea of approximating a derivative g′(x) by a differ-
ence quotient. A working of Exercise 12.7 shows that the difference quotient has the
same condition number in the limit as h→ 0 as the derivative itself, suggesting that
approximating g′(x) by the difference quotient might be a stable algorithm. Unfortu-
nately, the first step in evaluating the difference quotient, computing g(x+ h)− g(x),
has a large condition number for small h, and hence computing the difference quotient
without the use of intermediate higher precision is unstable. Better algorithms exist
to approximate the derivative, e.g., using the central difference quotient with larger
h or still more accurate difference quotients with still larger h. Of course, using
the formula for the derivative is preferable if it is known. Furthermore, automatic
differentiation of functions is a technique that has been known for decades and has
now become widely used, especially in machine learning.

Exercise 13.3 Why is the formula

x2 − 1

x− 1

an unstable way to compute f(x) = x+ 1? For what values of x is it unstable?

CHAPTER 13. STABILITY OF ALGORITHMS 91

Exercise 13.4 Consider the function f(x) = exp(x) − 1.

1. What is the condition number of f(x)? What is the limit of the condition number
as x→ 0? See Exercise 12.3.

2. Write a C program to compute f(x) using the exp function. Is the algorithm
stable? If not, what are the values of x that cause trouble?

3. Write a C program to compute f(x) directly by calling the math library function
expm1, intended exactly for this purpose. Does it give more accurate results?

Exercise 13.5 This is an extension to Exercise 10.14. Instead of using only positive
input data, run your interval sum program to add up numbers with both positive and
negative values. Choose some of your input values so that the numbers cancel out and
the result is zero or close to zero. To how many significant digits do your three answers
(upper bound, lower bound, and intermediate) agree? Is it as many as before? Is the
difficulty that the problem of adding data with alternating signs is ill conditioned, or
that the addition algorithm is unstable? Does it help to add up the positive and negative
terms separately? Be sure to try a variety of input data to fully test the program.

Computing the Exponential Function without a Math Library

For our second example illustrating stability and instability, let us attempt to compute
the exponential function exp(x) directly, without any calls to library functions. From
(12.7), we know that exp is a well-conditioned function as long as |x| is not too large.
We use the well-known Taylor series

exp(x) = 1 + x+
x2

2!
+

x3

3!
+ · · · .

This allows us to approximately compute the limiting sum by means of a simple loop,
noting that successive terms are related by

xn

n!
=

(
xn−1

(n− 1)!

)
× x

n
.

Thus, each term is easily computed from the previous term by multiplying by x and
dividing by n. How should we terminate the loop? The simplest way would be to
continue until the new term in the sum underflows to zero, as in Program 2 (Chapter
10). A better solution is to use the idea in Program 3 (Chapter 10): the loop may be
terminated when the new term is small enough that adding it to the previous terms
does not change the sum. Program 9 implements this idea using single precision.

#include <math.h>

main() /* Program 9: Compute exp(x) from its Taylor series */

{

int n;

float x, term, oldsum, newsum;

printf("Enter x \n");

scanf("%e", &x);

n = 0;

oldsum = 0.0;

newsum = 1.0;

term = 1.0;

92 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

/* terminates when the new sum is no different from the old sum */

while (newsum !=oldsum){

oldsum = newsum;

n++;

term = (term*x)/n; /* term has the value (x^n)/(n!) */

newsum = newsum + term; /* approximates exp(x) */

printf("n = %3d term = %13.6e newsum = %13.6e \n",

n,term,newsum);

}

printf("From summing the series, exp(x)=%e \n", newsum);

printf("Using the standard function, exp(x)=%e \n", exp(x));

}

Here is the output of Program 9 for x = .05:

n = 1 term = 5.000000e-02 newsum = 1.050000e+00

n = 2 term = 1.250000e-03 newsum = 1.051250e+00

n = 3 term = 2.083333e-05 newsum = 1.051271e+00

n = 4 term = 2.604167e-07 newsum = 1.051271e+00

n = 5 term = 2.604167e-09 newsum = 1.051271e+00

From summing the series, exp(x)=1.051271e+00

Using the standard function, exp(x)=1.051271e+00

We see that the value of term printed at each step grows rapidly smaller, and
the loop terminates when term is so small that two successive values of newsum are
identical. Actually, it looks from the output that this occurs a few lines before the
loop terminates, but that is just the decimal conversion of newsum to seven digits; the
binary floating point values are different until the last line. The final value of newsum,
1.051271, agrees with the value computed by the library function exp to all digits
shown.

CHAPTER 13. STABILITY OF ALGORITHMS 93

Table 13.3: Computing the Exponential Function

x Computed by summing series Computed by call to exp(x)

10 2.202647e+04 2.202647e+04

1 2.718282e+00 2.718282e+00

.05 1.051271e+00 1.051271e+00

-1 3.678794e-01 3.678794e-01

-5 6.738423e-03 6.737947e-03

-10 -6.256183e-05 4.539993e-05

Now let us run Program 9 again for a larger value of x, say 10.0:

n = 1 term = 1.000000e+01 newsum = 1.100000e+01

n = 2 term = 5.000000e+01 newsum = 6.100000e+01

n = 3 term = 1.666667e+02 newsum = 2.276667e+02

..........4 lines omitted..........

n = 8 term = 2.480159e+03 newsum = 7.330842e+03

n = 9 term = 2.755732e+03 newsum = 1.008657e+04

n = 10 term = 2.755732e+03 newsum = 1.284231e+04

n = 11 term = 2.505211e+03 newsum = 1.534752e+04

n = 12 term = 2.087676e+03 newsum = 1.743519e+04

n = 13 term = 1.605905e+03 newsum = 1.904110e+04

n = 14 term = 1.147075e+03 newsum = 2.018817e+04

n = 15 term = 7.647164e+02 newsum = 2.095289e+04

.........13 lines omitted..........

n = 29 term = 1.130996e-02 newsum = 2.202646e+04

n = 30 term = 3.769987e-03 newsum = 2.202647e+04

n = 31 term = 1.216125e-03 newsum = 2.202647e+04

n = 32 term = 3.800390e-04 newsum = 2.202647e+04

From summing the series, exp(x)=2.202647e+04

Using the standard function, exp(x)=2.202647e+04

We find that term grows larger than its initial value before it starts to get smaller,
but it does eventually grow smaller when n > 10, and the loop eventually terminates
as before, with an answer 22026.47 that again agrees with the library function exp to
single precision.

Exercise 13.6 Termination of the loop takes place when the decimal exponents of
newsum and term differ by about 7 or 8. Why is this?

Table 13.3 shows the output of Program 9 for various values of x. The first column
shows the value computed by summing the series, and the second column shows the
result returned by the library function exp. The results agree to single precision for
x = 10, x = 1, x = 0.05, and x = −1. However, the final line of Table 13.3 shows that
the value computed by the loop for x = −10 is completely wrong! And the previous
line for x = −5 is correct to only about four digits.

94 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Let’s look at the details for x = −10.

n = 1 term = -1.000000e+01 newsum = -9.000000e+00

n = 2 term = 5.000000e+01 newsum = 4.100000e+01

..........6 lines omitted..........

n = 9 term = -2.755732e+03 newsum = -1.413145e+03

n = 10 term = 2.755732e+03 newsum = 1.342587e+03

.........34 lines omitted..........

n = 45 term = -8.359650e-12 newsum = -6.256183e-05

n = 46 term = 1.817315e-12 newsum = -6.256183e-05

From summing the series, exp(x)=-6.256183e-05

Using the standard function, exp(x)=4.539993e-05

We see that the values of term are the same as for x = 10 except that they alternate
in sign, which makes sense, since when n is odd,

(−x)n
n!

=
−(xn)

n!
.

Therefore, since the terms alternate in sign, they cancel with each other, and eventually
the value of newsum starts to get smaller. The final result is a small number; this is
to be expected, since exp(x) < 1 for x < 0. Also, the loop takes longer to terminate
than it did for x = 10, since the decimal exponents of term and newsum must differ by
about 7 or 8 and newsum is smaller than it was before. Looking at the final value for
newsum, however, we see that the answer is completely wrong, since it is not possible
for exp(x) to be negative for any value of x. What is happening?

To find out, we examine the line-by-line output of Program 9 more carefully. We
see that for x = −10, the size (i.e., absolute value) of term increases to 2.75 × 103

(for n = 10) before it starts decreasing to zero. We know that term is accurate to
at most about seven digits, since it is an IEEE single format number. Consequently,
its largest value, about 2.75 × 103, must have an absolute rounding error that is at
least about 10−4. The same error must be present in newsum, since it is obtained by
adding values of term together. As more terms are added to newsum, this error is not
reduced, even though the value of newsum continues to get smaller as the terms cancel
each other out. In fact, the final value of newsum is smaller, in absolute value, than
the error and consequently has no significant digits. The source of the difficulty is the
size of the intermediate results together with the alternating sign of the terms, which
cancel each other out, leading to a small final result even though the individual terms
are quite large. For x > 0, there is no difficulty, since all the terms are positive and no
cancellation takes place. But for x < 0, the results are meaningless for |x| sufficiently
large.

CHAPTER 13. STABILITY OF ALGORITHMS 95

Now let’s run Program 9 for x = −5:

n = 1 term = -5.000000e+00 newsum = -4.000000e+00

n = 2 term = 1.250000e+01 newsum = 8.500000e+00

n = 3 term = -2.083333e+01 newsum = -1.233333e+01

n = 4 term = 2.604167e+01 newsum = 1.370833e+01

n = 5 term = -2.604167e+01 newsum = -1.233333e+01

n = 6 term = 2.170139e+01 newsum = 9.368057e+00

.........20 lines omitted..........

n = 27 term = -6.842382e-10 newsum = 6.738423e-03

n = 28 term = 1.221854e-10 newsum = 6.738423e-03

From summing the series, exp(x)=6.738423e-03

Using the standard function, exp(x)=6.737947e-03

The final result agrees with the library function exp to a few digits, but not to full
precision. When x = −5, the difficulty is not as severe, since the size of term grows
only to 2.6 × 101 before it starts decreasing to 0. This value of term, which is again
accurate to at most about seven digits, has an absolute rounding error at least about
10−6. The final answer, which is computed to be 6.738423× 10−3, must have an error
of size at least about 10−6 and is therefore accurate to only about three digits.

Since the problem of computing exp(x) is well conditioned when |x| is not large,
the inevitable conclusion is that Program 9 implements an algorithm that is unstable
for x < 0.

How can we change Program 9 so that it is stable? The answer is simple: if x is
negative, sum the series for the positive value −x and compute the reciprocal of the
final amount, using the fact that

exp(x) =
1

exp(−x) . (13.4)

Thus we add to the end of the code

printf("One over the sum=%e \n", 1/newsum);

printf("Call to exp(-x) =%e \n", exp(-x));

and run it for x = 10 instead of x = −10. The final two lines of output are

One over the sum=4.539992e-05

Call to exp(-x) =4.539993e-05

It may seem amazing that this simple trick could work so well, but the reason it works
is that no cancellation takes place. Dividing 1 by a large number with about six or
seven significant digits results in a small number that also has about six or seven
significant digits. (See Exercise 13.7.)

This confirms that the difficulty with Program 9 was not inherent in the problem
that it solves, which is not ill conditioned. We chose an unstable algorithm that
introduced cancellation, and therefore ill conditioning, unnecessarily.

Although Program 9 works well when cancellation is avoided, it cannot be con-
cluded that summing a series until the sum is unchanged will always give such good
answers. See Exercises ??–13.13.

The library function exp uses a more clever but more complicated method, which
is both highly accurate and very fast. The purpose of this discussion has been to show

96 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

that a good answer can be obtained with a simple program, but also that a completely
wrong answer can be obtained if precautions are not taken. For much more detailed—
yet very readable—discussions of algorithms for computing the functions in the math
library, see [Mul97], [Bee17] and [MB+18].

Exercise 13.7 Determine the condition number of the function

f(x) =
1

x
.

Are there any finite, nonzero numbers x for which f has a large condition number?

Exercise 13.8 Suppose Program 9 is changed to use double precision. For what range
of values of x (approximately) does it give no significant digits, and why? Modify
Program 9 further using the formula (13.4) to correct the difficulty.

Exercise 13.9 Suppose Program 9 is changed to add the positive and negative terms
in two separate sums, and take their difference at the end. Does this improve its
stability? Why or why not?

Exercise 13.10 If |x| is large enough, overflow occurs in Program 9. If the standard
response to overflow is used, what results are generated (a) if x > 0, (b) if x < 0, and
(c) if x < 0 but the program is modified using the formula (13.4)? Explain why these
results are obtained.

Exercise 13.11 Modify Program 9 using the interval arithmetic idea. Compute lower
and upper bounds on the sum, using round down and round up. You may have to
change the termination condition in order to avoid an infinite loop; why? How well do
the lower and upper bounds agree when x = 10? How well do they agree when x = −10?
Can you also get lower and upper bounds for the result computed by the stable version
of the algorithm incorporating (13.4)? (This requires thought; see Exercise 10.15.)
Do you conclude that the rounding modes are useful for testing the stability of an
algorithm?

A working of Exercises 10.14, 10.15, 13.5, and 13.11 demonstrates both the power
and the limitations of interval arithmetic. The power is that guaranteed lower and
upper bounds on the desired solution are computed, but the limitation is that these
bounds may not be close together, especially if the problem being solved is ill con-
ditioned. It should be clear from a working of the exercises that carrying out a
complicated calculation with interval arithmetic would be very clumsy with only the
rounding modes as tools. However, software packages are available that carry out in-
terval computations automatically. INTLAB [Rum] is an efficient and powerful MAT-
LAB toolbox for interval arithmetic, which depends on the ability to set the rounding
modes in MATLAB as described in Chapter 9. For more on interval arithmetic see
[Rum10] and [Tuc11]. An IEEE standard for interval arithmetic was published in 2015
as IEEE 1788-2015.

Exercise 13.12 Write a stable modification of Program 9 that computes the function
exp(x)− 1 without any calls to the math library. Compare your answer with the result
computed by expm1 (see Exercise 13.4).

Exercise 13.13 It is well known that the series

1 +
1

4
+

1

9
+

1

16
+ · · ·

CHAPTER 13. STABILITY OF ALGORITHMS 97

converges to π2/6. Write a C program to sum this series, terminating if the sum is
unchanged by the addition of a term. How good are the results using single precision?
Using double precision? Use an integer n to control the loop but assign this to a float
variable before you square it, to avoid integer overflow.

98 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Chapter 14

Higher Precision
Computations

Although double precision (binary64) is sufficient for most problems, it may not
be adequate if a problem is extremely ill-conditioned, or many digits of accuracy are
required. Such problems arise in many different scientific applications, with black hole
physics [Kha13] being one example. A completely different kind of application arises in
computational geometry, where, for example, it may be necessary to know whether or
not a given point is inside a circle determined by three other points and high precision
computations may be needed to determine this with any certainty [She97, BF+23].
However, as noted in Chapter 4, the quadruple precision (binary128) interchange
format introduced in the 2008 version of the standard is not supported in hardware
by most current microprocessors, let alone other wider floating point formats.

Arbitrary precision systems, that is, systems with arbitrarily high precision spec-
ified by the user, have been available for many decades, but since no computer pro-
vides hardware support for this, such systems must be implemented in software. For
a detailed discussion of algorithms for both arbitrary precision integer arithmetic and
arbitrary precision floating point arithmetic, including correct rounding and other fea-
tures inspired by the IEEE standard, see the book by Brent and Zimmerman [BZ11].
As explained there, MPFR1 is a C library which extends the main ideas of the IEEE
standard to arbitrary precision arithmetic, providing correctly rounded arithmetic and
standard responses to exceptions such as 1/0 and 0/0 resulting in∞ and NaN respec-
tively. For more details see [FH+07] and [MB+18, Sec. 14.4.4]. Other packages, such
as the well known Maple and Mathematica computer algebra packages, also provide
arbitrary precision calculations but without any correct rounding guarantees. We also
mention briefly here that Advanpix2 is an efficient and easy-to-use arbitrary precision
package forMatlab. Although efficiency is a primary concern in these state-of-the-art
arbitrary precision packages, computations are necessarily substantially slower than
using standard floating point arithmetic.

Double-Double and Quad-Double

An efficient alternative to arbitrary precision uses standard floating point hardware
operations to implement floating point computation with higher than standard accu-
racy. This development has been driven partly by the widespread acceptance of the

1http://www.mpfr.org
2https://www.advanpix.com/

99

100 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

IEEE standard, ensuring correctly rounded results, and partly by the highly optimized
performance of floating point hardware operations on most microprocessors. In such
systems, a number is represented by an “unevaluated sum” of a specified number of
fixed precision floating point numbers. The most common example is a sum of two
double precision numbers, often called double-double.3 For example, suppose we have
a number x which is known to 111-bit accuracy:

x = (b0.b1 . . . b52b53 . . . b105b106 . . . b110)2 × 2E,

with b0 = 1 so x is normalized. This number can be approximated by the double-
double (h, t), where, if the bit b53 is 1 and the bit b106 is 0, then h, the “head” (or
leading precision) component is given by the normalized double format

h = (b0.b1 . . . b52)2 × 2E,

and t, the “tail” (or trailing precision) component is given by the normalized double
format

t = (b53.b54 . . . b105)2 × 2E−53.

Then h+ t is precisely x truncated to 106 bits, or equivalently, since the first omitted
bit is zero, rounded to the nearest 106-bit number. If b53 is 0, the tail t would need to
be normalized, shifting more bits of x into t until its first bit is 1. If the first omitted
bit is 1, rounding to nearest may require rounding up, redefining t and possibly also
h. We may think of the precision of a double-double as p = 106, although it is
potentially higher. For example, the number 1 + 2−1000 can be exactly represented
to 1001 bit accuracy by the double-double (h, t) with h = 1 and t = 2−1000, but if
this is then added to another double-double, it’s likely (or at least possible) that the
result will have only 106 bit accuracy. Such precision is sometimes called “wobbling”
[MB+18, p. 515], and it is somewhat reminiscent of the unpredictable precision of the
hexadecimal system used by the IBM 360 and its successors (see Chapter 8).

Arithmetic with double-doubles and extensions such as quad-doubles, each of which
is the unevaluated sum of four double format numbers, is somewhat complicated,
but some clever and efficient algorithms have been devised. These depend on sub-
calculations such as TwoSum, which returns not only the sum of two ordinary double
format numbers x and y, but also the rounding error

x+ y − (x ⊕ y) = x+ y − round(x+ y).

As long as round-to-nearest (with any tie-breaking rule) and gradual underflow are
in effect, and x⊕ y is finite and nonzero, it turns out that this quantity is an exactly
representable double format floating point number; see [RD18], where C code to im-
plement TwoSum is given. Another sub-calculation that is needed for implementing
multiplication of double-double numbers is TwoProduct, which returns not only the
product of two ordinary double format numbers x and y, but also the rounding error

x× y − (x ⊗ y) = x× y − round(x× y).

In most cases, this is also a double format floating point number, but in rare cases it
may need rounding. It’s interesting to note that TwoProduct is trivial to implement
using the fused-multiply add instruction (see Chapter 6), via

z = x⊗ y; error = FMA(x, y,−z).
3The name may bring Shakespeare’s Macbeth, Act IV, Scene 1 to mind.

CHAPTER 14. HIGHER PRECISION COMPUTATIONS 101

The correctness of this immediately follows from the fact that the FMA instruction
delivers the correctly rounded value of x×y−z. To see why TwoProduct is needed to
correctly round the product of two double-doubles (ha, ta) and (hb, tb), simply observe
that the product of the 53-bit precision heads, ha × hb, has 106 bits of precision, of
which the last 53 have the same significance as the first 53 bits of each of the products
ha × tb and hb × ta, so it is important not to neglect these when rounding ha × hb to
53 bits.

The demand for TwoSum and TwoProduct led to the only significant technical
addition to the IEEE standard in 2019, with the recommendation that language stan-
dards provide the operations augmentedAddition and augmentedMultiplication imple-
menting TwoSum and TwoProduct respectively. In connection with these operations,
the 2019 standard also recommended an alternative tie-breaking rule for rounding
called roundTiesToZero (see Chapter 4). Although this rule is not needed for imple-
mentation of double-double arithmetic, it simplifies the implementation of the new
recommended operations, and, in addition, it enables reproducible arithmetic when
summations of many numbers are implemented using parallel computing where the
order of the summations is not specified. For more details, including the long history
of extending the precision of standard floating point operations, see [RD18], [MB+18,
Chap. 14], [BJ+23, Sec. 5], and, for information on high-precision software packages,
[Bai].

The Hundred Digit Challenge

In 2002, Nick Trefethen announced the SIAM Hundred Digit Challenge, specifying
10 fiendishly difficult numerical problems and challenging his readers to solve each
to 10-digit accuracy. The competition turned out to be far more popular than Tre-
fethen expected, and 20 correct solutions were submitted. For a detailed account of
the problems and their solutions from some of the winners, including an interview
with Trefethen, see [BL+04]. As Higham writes in [Hig17]: Although high precision
arithmetic could be used in the solutions as part of a brute force attack, it turned out
to be generally not necessary. This example serves as a reminder that mathemati-
cal ingenuity in the choice of algorithm can enable a great deal to be done in double
precision arithmetic, so one should always think carefully before resorting to higher
precision arithmetic, with its attendant increase in cost.

Chapter 15

Lower Precision
Computations

Up until recently, most floating point computing used the single and double formats
(binary32 and binary64) introduced in the original IEEE 754 standard published in
1985. The 2008 revision of the standard introduced a shorter (or narrower) 16-bit for-
mat called binary16, also known as half precision, but this was called an interchange
format; the intention was not that it be used for computation. However, the rapid
rise of machine learning in the past decade, specifically deep learning using neural net-
works, involves massive amounts of numerical computing, and this has motivated the
design of microprocessors using short floating point formats for computation, saving
both time and energy at the cost of lower precision results.

16-bit Floating Point Formats

Many recent floating point microprocessors support 16-bit floating point numbers.
Intel, AMD, Arm and NVIDIA all support hardware computation using the IEEE
format binary16, now often abbreviated fp16, which uses one bit for the sign, 5 bits
for the exponent field, and 10 bits for the fractional part of the significand.1 This
means the precision is p = 11, including the hidden bit, so the machine epsilon is
2−10 ≈ 10−3, corresponding to about 3 decimal digits of accuracy (see (5.14)), but the
normalized range of the numbers is very limited, from Nmin = 2−14 to Nmax ≈ 216,
so overflow and underflow are much more frequent occurrences using binary16 than
they are using binary32. Computations with binary16 numbers became widespread in
recent years because of their use in machine learning [ND+18], but the limitations on
the range were among the challenges.

For this reason, in 2016 Google announced a new 16-bit format called bfloat16
(Brain Float16, sometimes abbreviated bf16) which, although it is not compliant with
IEEE 754, is inspired by it [Dea20]. This format has the same exponent range as
the IEEE single format (binary32), which means the bit width of the exponent field
is the same as in the single format, namely, 8 bits. However, this leaves only 7 bits
remaining for the fractional part of the significand, so the precision is p = 8, including
the hidden bit, and the machine epsilon is 2−7 ≈ 10−2. Hence, bfloat16 floating point
numbers have only about 2 decimal digits of accuracy. Some research indicates that
neural network computation is much more sensitive to the range of the exponent than

1Arm also offers a modified binary16 format that eliminates Infs and NaNs, a major violation of
the IEEE standard requirements.

103

104 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Format bfloat16 binary16

(bf16) (fp16)

p 8 11

ǫmch = 2−(p−1)
≈ 7.8× 10−3

≈ 9.8× 10−4

w = 16− p 8 5

Emax = 2w−1
− 1 127 15

Emin = −2w−1 + 2 −126 −14

bias = Emax 127 15

Nmax = 2Emax

(

2− 2−(p−1)
)

≈ 3.4× 1038 ≈ 6.6× 104

Nmin = 2Emin
≈ 1.2× 10−38

≈ 6.1× 10−5

Smin = 2Emin−(p−1)
≈ 9.2× 10−41

∗ ≈ 6.0× 10−8

Table 15.1: Parameters for the two16-bit floating point formats that are widely used
at present: precision p, machine epsilon ǫmch, exponent bit width w, maximum ex-
ponent, minimum exponent, exponent bias, maximum normalized number, minimum
positive normalized number, minimum positive subnormal number. The asterisk (*)
indicates that implementations of bfloat16 often do not support subnormals. Note
that the formulas for the various parameters are all consistent with those shown in
Table 4.3.

the width of the significand [WK19]. An advantage of the bfloat16 format is that con-
verting it to the IEEE single format is trivial (just append 16 zeros to the significand),
and rounding IEEE single to bfloat16 is also a simple operation, with no overflow or
underflow in almost all cases. Many microprocessors now support bfloat16 format in
addition to binary16. Early implementations do not support subnormal numbers and
therefore flush underflowed values to zero. However, in principle, subnormal arith-
metic could be supported. Parameters for bfloat16 and binary16 are summarized in
Table 15.1. The term half precision does not apply to bfloat16 since the precision of
this format, 8, is much less than half of 24, the precision of the single format.

Exercise 15.1 Explain why the product of two binary16 format floating point numbers
can always be stored exactly as a single format (binary32) number, with no rounding
error. You need to take both the precision and the exponent range of the two formats
into consideration. Is this also true of the product of two bfloat16 numbers? (See
Exercise 6.11.)

8-bit Floating Point Formats

Because of the widespread successful use of 16-bit floating point formats in machine
learning, there is now a lot of interest in 8-bit floating point formats, sometimes called
quarter precision, although their precision varies and is generally less than a quarter of
24, the precision of the single format. A new IEEE working group, known as P3109,
was established in 2021 to standardize these formats and has recently released an
interim report on its work.2 The report recommends that several formats be defined,
namely binary8p3, binary8p4 and binary8p5, with precisions 3, 4 and 5 respectively,
and hence exponent bit widths of 5, 4 and 3 respectively. Its recommendations, while

2See https://sagroups.ieee.org/P3109wgpublic/. Although the official scope of the commit-
tee is Arithmetic Formats for Machine Learning, almost all its discussions so far have focused
on 8-bit formats, as bfloat16 has become a de facto 16-bit standard format in addition to bi-

nary16. The author is a member of this working group. The interim report is available from
https://github.com/P3109/Public/tree/main/Shared%20Reports.

CHAPTER 15. LOWER PRECISION COMPUTATIONS 105

Format binary8p3 binary8p4 binary8p5

p 3 4 5

ǫmch = 2−(p−1) 0.25 0.125 .0625

w = 8− p 5 4 3

Emax = 2w−1
− 1 15 7 3

Emin = −2w−1 + 1 −15 −7 −3

bias = 2w−1 16 8 4

Nmax = 2Emax

(

2− 2−(p−2)
)

49152 224 15

Nmin = 2Emin
≈ 3.1× 10−5

≈ 7.8× 10−3
≈ 1.3× 10−1

Smin = 2Emin−(p−1)
≈ 7.6× 10−6

≈ 9.8× 10−4
≈ 7.8× 10−3

Table 15.2: Parameters for three 8-bit floating point formats recommended by the
P3109 interim report: precision p, exponent bit width w, maximum exponent, mini-
mum exponent, exponent bias, maximum normalized number, minimum positive nor-
malized number, minimum positive subnormal number. Notice the different formulas
for Emin, bias and Nmax compared to those given in Table 4.3 for the three basic
formats in the 2019 IEEE standard and in Table 15.1 for the commonly used 16-bit
formats.

Value Bit String

−∞ 11111111

NaN 10000000

0 00000000

∞ 01111111

Table 15.3: Four special values for the recommended 8-bit formats. The bit string
representations are the same regardless of the precision p.

based on the IEEE 754 formats, introduce some significant departures from them. The
primary change is that because there are only 256 distinct 8-bit strings, it is proposed
to reduce the number of representations for the number zero from two to one, with a
positive sign, and also to reduce the number of NaN formats to just one. This is done
by using the usual representation for −0, namely the bitstring 100 . . .0 (sign bit one,
exponent and significand bits all zero), to denote NaN. Representations for subnormal
numbers in the usual way are included, and representations for ±∞ are also endorsed,
but using a modified representation, with an exponent bit string a1 . . . aw = 11 . . .1
as usual, but a significand bit string b1 . . . bp−1 = 11 . . .1 instead of 10 . . .0. The
elimination of −0 and the reduction of the number of NaNs to just one frees up
2p−1 − 1 representations for positive numbers, namely with a1a2 . . . aw = 11 . . . 1 and
b1b2 . . . bp−1 free to be anything except all ones. It also frees up the same number of
representations for negative numbers. These patterns are used to represent the largest
finite numbers in magnitude. Noting that there is a lack of symmetry in the IEEE 754
formats in the sense that Emax = 2w−1− 1 but Emin = −2w−1+2, it is recommended
that for the 8-bit format representation, Emax remains equal to 2w−1 − 1 but Emin is
changed to to −2w−1 +1. This is accomplished by setting the exponent bias to 2w−1,
so that the largest biased exponent is 2w−1 − 1 + 2w−1 = 2w − 1 (the largest integer
that can be represented with w bits), instead of the IEEE 754 value 2w − 2, while the
smallest biased exponent is −2w−1+1+2w−1 = 1, as it is for IEEE 754 formats. This
discussion is summarized in Table 15.2.

106 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

It follows that the recommended 8-bit format floating point representations have
just four special values, namely 0, −∞, ∞ and NaN. Their bitstring representations
are given in Table 15.3. A nice property is that these bitstrings are exactly the same for
all precisions p. All 252 other bitstrings represent distinct, finite, nonzero normalized
or subnormal numbers (a different set for each choice of p).

These formats can be extended more generally to binary8pp, where in principle
the precision p might be any integer from 1 to 7, should there be a demand for this.
It is instructive to consider two extreme cases. In the case p = 1, so w = 7, there
would be no fractional significand bits, so all nonzero finite numbers would be powers
of two, the largest finite number would need to have a smaller biased exponent than
the exponent field in the representation for∞ (as with the usual 754 formats), and the
formulas for Emax, Emin and bias would become 63, −62 and 63 respectively. Hence,
the numbers represented would be ±2−62,±2−61, . . . ,±263, as well as 0,±∞ and NaN.
In the case p = 7, so w = 1, the formulas given in Table 15.2 give Emax = Emin = 0,
so all normalized and subnormal numbers would have the exponent 0. Hence, the
format would become essentially a scaled sign-and-magnitude integer format, with
subnormal values ±1/64, . . . ,±63/64 and normalized values ±64/64, . . . ,±127/64, as
well as 0,±∞ and NaN. The cases p = 0 and p = 8 are excluded. Setting p = 0
would mean no significand bits, not even a hidden bit. Setting p = 8 would mean no
exponent bits, so all numbers would need to be subnormal in order to represent zero,
which somewhat suprisingly results in the same set of possible values as p = 7.

The choice of names for 8-bit format floating point has led to the suggestion that
binary16 and bfloat16 formats be renamed binary16p11 and binary16p8, respectively,
as well as the possibility of other choices for p in the future.

Another major change from IEEE arithmetic being recommended by the P3109
working group is an option for saturation arithmetic, likely the default, where, when
overflow occurs, the result is set to ±Nmax instead of ±∞. The argument in favor of
this is that because the 8-bit formats have such a limited exponent range, overflow
will be a frequent occurrence and that, at least in the context of machine learning,
computations may give more useful results using the saturation option. Gradual un-
derflow using subnormal numbers is recommended as usual. However, overflow and
underflow can sometimes be avoided by carefully scaling the input data to the various
computations required for machine learning [PZ+23]. In a way, this is a return to von
Neumann’s way of thinking in the 1940s (see Chapter 3): bits are too precious to use
for floating point exponents when this can be avoided by careful programming.

Exercise 15.2 Which of the formats binary8p3, binary8p4 and binary8p5 have the
property that the product x × y, where x and y are numbers in this format, can be
stored in the binary16 format without rounding? What about bfloat16? Remember to
take account of both the precision and the exponent range of the format. (See Exercises
6.11 and 15.1.)

Mixed Precision

Mixed precision computations use two or more precisions together. As noted in
[Hig17], like so many ideas, this goes back to Wilkinson in the early days of float-
ing point, but in the two decades following the publication of the IEEE standard in
1985, when computing was dominated by x87 microprocessors, there was little in-
centive to use single precision in preference to double, or a mix of both, since all
computations used the same 80-bit extended precision registers. However, this began
to change with Intel’s introduction of SSE and SSE2, which could carry out single
precision computations twice as fast as double, motivating the use of single precision,

CHAPTER 15. LOWER PRECISION COMPUTATIONS 107

or mixed single and double, in preference to double precision only. More recently,
because of the massive computational demands of machine learning and the resulting
use of lower precision formats, mixed precision computations have moved to center
stage.

Although deep learning methods for machine learning require a lot of computation,
many of the operations needed are simple and can be performed in parallel on multiple
data. A fundamental building block is the computation of inner products (or dot
products, or scalar products) of vectors. Let us write two vectors, or one-dimensional
arrays of numbers, as

a = [a1 a2 . . . an] and b = [b1 b2 . . . bn],

where n is an integer and ai, bi, i = 1, . . . , n, are floating point numbers. Then the
inner product of a and b is defined as

a · b = a1 × b1 + a2 × b2 + · · ·+ an × bn.

We know from Chapter 6 that if each ai and bi, i = 1, . . . , n, has precision p, that
is, has a significand with p bits including the hidden bit, then the exact product
ai × bi has a significand with at most 2p nonzero bits, as the significands of ai and
bi are essentially scaled integers with p bits. Mixed precision inner products treat
each product ai × bi as a precision p product, but, instead of rounding the result to
p bits as a floating point multiplication would usually do, all 2p bits of the product
are saved in a format with a higher precision q, where q ≥ 2p. Then all the products
are accumulated (added together) using precision q, giving a precision q result for the
inner product a · b.

Among other places, inner products are used in a matrix multiplication operation.
Let us write two matrices, or two-dimensional arrays of numbers, as

A =

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

 and B =

b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...

bn1 bn2 . . . bnn

 .

Then the matrix product A ·B is defined as the n× n matrix whose (i, j) entry is the
inner product of the ith row of A and the jth column of B.

Matrix multiplication is so fundamental in deep learning algorithms that many
specialized microprocessors have recently been designed and built to carry it out effi-
ciently using mixed precision. These new processors are sometimes known as tensor
cores (made by NVIDIA) or tensor processing units (TPUs, made by Google); a ten-
sor is a generalization of a matrix to a k-dimensional array of numbers with k > 2.
NVIDIA’s tensor cores use binary16 and binary32 formats (p = 11 and q = 24 in
the notation used in the previous paragraph), while Google’s TPUs use bfloat16 and
binary32 formats (p = 8 and q = 24). The basic matrix-multiply-plus-addition mixed
precision operation which can be carried out by these machines,

D = A ·B + C,

where A and B are matrices with precision p, C is a matrix with higher precision
q ≥ 2p, and the resulting matrix D also has precision q, is called a block FMA in
[BH+22]. Details of rounding and other properties of these machines are not publicly
available, but an experimental investigation of the properties of NVIDIA’s tensor

108 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

cores is given in [FH+21]. Tensor cores and TPUs are much more efficient, in terms
of both time and power consumption, than they would be if they were built entirely
using single precision. More recently, machine learning algorithms are using mixed
precision computations where the lower precision uses an 8-bit format (typically with
p between 3 and 5, as in Table 15.2), and the higher precision uses either binary16
(q = 11) or bfloat16 (q = 8) (although p = 5 and q = 8 would not satisfy the inequality
q ≥ 2p). See [MS+22], [NJ+22] for more details.

Speaking of the FMA, it is worth noting here that a correctly rounded mixed-
precision FMA (for floating point numbers, not matrices) was introduced in 2011 in
[BD+11]. Suppose that floating point numbers a and b have precision p, and recall that
the fused multiply-add operation first computes the product a× b, whose significand
has length 2p, and then adds c to this before rounding to the destination format. If
this also has precision p, then many of the bits of a× b are lost in this process. The
mixed-precision FMA instead retains all bits of a × b in a format with precision q,
with q ≥ 2p. This also allows the third operand c to have the same higher precision
q, and then the addition of a × b and c can be done using precision q. See [MB+18,
Sec. 7.8.2–7.8.4] for details.

Stochastic Rounding

The idea of stochastic rounding is that instead of rounding deterministically as dic-
tated by the rounding mode in effect, the choice of whether to round a non-exact
result up or down is made randomly. This is an old idea that has long been out of
favor, as is evident by the fact that it is not mentioned by any version of the IEEE
standard. However, with the advent of much lower precision floating point formats, it
is becoming apparent that stochastic rounding may play an important role, and some
microprocessors are now providing it as a hardware operation. Suppose that the exact
result of an operation is x which is not a floating point number, so we must decide
whether to round down to x− or up to x+. One variant of stochastic rounding chooses
each with 50% probability, but a variant with better properties sets

round(x) =

{
x− with probability (x+ − x)/(x+ − x−),

x+ with probability (x− x−)/(x+ − x−).

One of the motivations for stochastic rounding is as follows. Consider an infinite
sum (or series) such as

1 +
1

2
+

1

3
+

1

4
+ · · ·

It is well known that this sum does not converge to a finite value, but that it diverges
to ∞. However, if we write a program to compute it using floating point arithmetic,
using round to nearest, then for sufficiently large n the term 1/n will be so small that
adding it to the previous terms does not change the result, and the same will be true
as n continues to increase, so we will always obtain convergence to a finite value. We
say that the computation stagnates. On the other hand, using stochastic rounding,
even adding very small terms to the previous terms must round up eventually.

Another motivation for stochastic rounding is illustrated by again considering the
computation of the vector inner product a · b. The standard rounding error analysis
using round to nearest, due to Wilkinson, states that the worst-case rounding error
at the end of the computation is, roughly speaking, of the order of nǫmch, where
n is the length of the vectors. When we use double precision, with ǫmch ≈ 10−16,
then nǫmch is much less than one for n as large as 1010 or more. However, with the
rapid recent improvements in technology, it is now common for n to be much larger

CHAPTER 15. LOWER PRECISION COMPUTATIONS 109

than in previous years, and if at the same time, we use lower precision, say binary16
with ǫmch ≈ 10−3, we typically find that nǫmch is much bigger than one making the
standard rounding error analysis useless. One way to compensate for this is to make a
probabilistic analysis, which, even continuing to use round to nearest, can be expected
to reduce the factor of n to

√
n. However, this is difficult to make rigorous. Using

stochastic rounding, however, such a result can be shown to be true with a relatively
straightforward analysis. See [CF+22] for more details.

Outlook for Low Precision Computing

Low precision floating point computing has become widespread very rapidly, as a
consequence of the dramatic growth of machine learning. The use of 8-bit floating
point, not even seriously contemplated 10 years ago, is already widespread, and it is
not clear whether the P3109 working group will have the same kind of standardizing
effect that p754 did nearly 40 years ago. Even 4-bit floating point is being used by
some researchers [SW+20]. The stated rationale for introducing short floating point
formats has been that they will be used primarily for applications in machine learning,
where the argument is made that high or even modest accuracy in not generally needed
[Dea20], but now that these machines are starting to become generally available at
low cost, there is little doubt that they will be used in other applications too. The
impact of this dramatic change in floating point hardware remains to be seen.

Chapter 16

Conclusion

Here is a summary of some of the most important ideas in this book.
• Floating point representation of numbers is ubiquitous in numerical computing,

since fixed point numbers have very restricted ranges. Floating point uses exponential
notation, storing a sign, an exponent, and a significand in each floating point word.
• The range of possible values for IEEE single format floating point numbers is

from tiny (approximately 10−38) to huge (approximately 1038). In addition, there are
the corresponding range of negative numbers, the subnormal numbers, and the special
numbers ±0 and ±∞. NaN is used for the result of invalid operations. Double format
numbers have a much greater finite range.
• Floating point numbers are inherently accurate only to a certain number of bits

or digits. The precision p is the number of bits in the significand, including the hidden
bit, which is not stored. In the case of the IEEE single format (binary32), numbers
have precision p = 24, corresponding to approximately 7 significant decimal digits,
and in the case of the double format (binary64), precision p = 53, corresponding to
approximately 16 significant decimal digits. Theorem 5.1 says that, when precision p
is in use, the rounded value of a number x satisfies

round(x) = x(1 + δ), where |δ| < 2−(p−1),

with |δ| < 2−p when the rounding mode is round to nearest (the default choice).
The quantity |δ| is called the relative rounding error and its size depends only on
the precision p of the floating point system and not on the size of x. The absolute
rounding error |x − round(x)| does depend on the size of x, since the gap between
floating point numbers is larger for larger numbers. These results apply to normalized
numbers. Subnormal numbers are less accurate. Because of its greater precision, the
double format is generally preferred for most scientific computing applications.
• One floating point arithmetic operation is required, under the rules of the IEEE

standard, to give the exact result rounded correctly using the relevant rounding mode
and precision. Such a result is by definition accurate to 24 bits (about 7 digits)
when the destination format is IEEE single, and to 53 bits (about 16 digits) when
the destination format is IEEE double, unless the number is subnormal. Exceptional
cases may yield a result equal to ±∞ or NaN.
• A sequence of floating point operations generally does not give correctly rounded

exact results. Furthermore, one cannot expect the results to be accurate to 7 significant
digits (or 16 digits when the double format is in use). Accuracy of computations is
limited by the condition number of the problem being solved. Rule of Thumb 12.1
says that the number of significant digits in the computed results can be expected to

111

112 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

be, at best, about 7 minus the base 10 logarithm of the condition number using the
single format (or 16 minus the base 10 logarithm of the condition number if the double
format is in use).

• A stable algorithm is one that solves a problem to approximately the accuracy
predicted by Rule of Thumb 12.1. A poor choice of algorithm may give much worse
results; in this case the algorithm is said to be unstable. This may happen because
of cancellation or, more generally, because of intermediate steps that introduce ill
conditioning.

For diving deeper into many technical aspects of floating point technology, see the
recent survey paper [BJ+23] and the comprehensive treatise [MB+18].

Numerical Algorithms and Numerical Analysis

In this book, we have not even begun to discuss algorithms for the solution of nontrivial
numerical problems, nor the analysis that underlies them. Many fine books, old and
new, contain a wealth of information on these most classical of scientific subjects.
Numerical algorithms and analysis form such a fundamental part of computer science
and applied mathematics that Knuth, in the preface to his celebrated multivolume
series The Art of Computer Programming, commented that his subject might be called
“nonnumerical analysis” [Knu68]. He felt this was too negative, so he suggested instead
“analysis of algorithms,” a name that stuck.

We cannot list more than a tiny fraction of the many books on numerical algorithms
and analysis, but we mention a few favorite books. Two good general undergrad-
uate texts are [AG11] and [SM03], respectively oriented primarily towards computer
science and mathematics students. For linear algebra, see [Dem97, Hig02, TB97]. For
differential equations, see [TBD18]. For optimization, see [BV04] and [NW06].

Numerical analysis is, according to Trefethen [Tre97, p. 323], the study of algo-
rithms for the problems of continuous mathematics—not just the study of rounding
errors. We completely agree. As Trefethen says, “The central mission of numerical
analysis is to compute quantities that are typically uncomputable, from an analyti-
cal point of view, and do it with lightning speed.” Floating point computing is the
workhorse that makes this possible.

Reliability Is Paramount

There is one thing that is even more important than lightning speed, and that is
reliability. This applies to all kinds of computing and is an issue that receives an
enormous amount of attention; a common refrain is: bugs are everywhere.

As Kahan says, speed should not be confused with throughput [Kah00]. Fast pro-
grams that break down occasionally and therefore require a lot of user interaction may
be less useful than highly reliable, slower programs. Floating point hardware opera-
tions have become both very fast and, thanks in large part to the IEEE standard, very
reliable. Although the computer industry has, by and large, been hugely supportive of
the IEEE standard, it is not clear how long this will be the case. One concern is the
recent proliferation of nonstandard half and even quarter-precision microprocessors,
largely inspired by the massive computing requirements of machine learning.

We conclude by noting that catastrophic system failures because of difficulties
arising from careless floating point programming sometimes happen in the real world.
Perhaps the most dramatic example is the error that triggered the destruction of
Ariane 5, the European Space Agency’s billion-dollar rocket, in June 1996. Thirty-
seven seconds after liftoff, a program tried to convert the rocket’s horizontal velocity
from a double format to a short integer format. The number in question was easily

CHAPTER 16. CONCLUSION 113

within the normalized range of the double floating point format, but was too big for
the 16-bit short integer format. When the invalid operation occurred, the program,
instead of taking some appropriate action, shut down the entire guidance system and
the rocket self-destructed [Inq96].

In the modern world, many critical matters are dependent on complex computer
programs, from air traffic control systems to heart machines. Many of these codes
depend, in one way or another, on floating point computing.

114 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Bibliography

[App88] Apple Numerics Manual. Addison-Wesley, Reading, MA, Menlo Park, CA,
second edition, 1988.

[AG11] U. M. Ascher and C. Greif. A First Course in Numerical Methods. SIAM,
Philadelphia, 2011.

[Bai] D.H. Bailey. High-precision software directory.
https://www.davidhbailey.com/dhbsoftware/.

[BD+11] N. Brunie, F. de Dinechin and B. de Dinechin. A mixed-precision fused
multiply and add. 2011 Conference Record of the Forty Fifth Asilomar Con-
ference on Signals, Systems and Computers (ASILOMAR), Pacific Grove,
CA, USA, 2011, pp. 165-169. doi: 10.1109/ACSSC.2011.6189977.

[BF+23] T. Bartels, V. Fisikopoulos and M. Weiser. Fast floating-point filters
for robust predicates. BIT Numerical Mathematics (2023) 63, 31 pp.
https://doi.org/10.1007/s10543-023-00975-x

[Bee17] N. Beebe. The Mathematical-Function Computation Handbook, Springer,
2017.

[BE+17] J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah. Julia: A Fresh Approach
to Numerical Computing, SIAM Review 59, pp. 65–98, 2017.

[Bha22] A. Bhattacharya. The Man from the Future: The Visionary Life of John
von Neumann, Norton, 2022.

[BH+22] P. Blanchard, N.J. Higham, F. Lopez, T. Mary, S.Pranesh. Mixed precision
block fused multiply-add: Error analysis and application to GPU tensor
cores. SIAM Journal on Scientific Computing 42 (3), pp. C124–C141, 2020.

[BH+02] D. H. Bailey, Y. Hida, X.S. Li and B. Thompson.
ARPREC: An arbitrary precision computation package, 2002.
http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf

[BJ+23] S. Boldo, C.-P. Jeannerod, G. Melquiond and J.-M. Muller. Floating-point
arithmetic. Acta Numerica (2023), pp. 203–290.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[BZ11] R.P Brent and P. Zimmerman. Modern Computer Arithmetic, Cambridge
University Press, 2011.

115

116 BIBLIOGRAPHY

[Cha79] A. B. Chace. The Rhind Mathematical Papyrus. National Council of
Teachers of Mathematics, Reston, VA, 1979. The cited quote is from
Volume 1, pp. 48–49.

[Cla99] Arthur C. Clarke. 2001: A Space Odyssey. New American Library, Penguin
Putnam, New York, 1999. Based on a screenplay by Stanley Kubrick and
Arthur C. Clarke, 1968.

[CW80] W. J. Cody, Jr. and W. Waite, Software Manual for the Elementary Func-
tions. Prentice-Hall, 1980.

[Cod81] W. J. Cody. Analysis of proposals for the floating-point standard.
Computer, 14(3):63–69, 1981.

[Coo81] J. T. Coonen. Underflow and the denormalized numbers. Computer,
14(3):75–87, 1981.

[CF+22] M. Croci, M. Fasi, N. J. Higham, T. Mary and M. Mikaitis. Stochastic
rounding: implementation, error analysis and applications. Roy. Soc. Open
Sci. 9: 211631. https://doi.org/10.1098/rsos.211631

[Dar98] J.D. Darcy. Borneo: adding IEEE 754 support to Java, M.S. thesis, Uni-
versity of California, 1998. http://www.jddarcy.org/Borneo/borneo.pdf

[Dea20] J. Dean. The deep learning revolution and its implications for computer ar-
chitecture and chip design. In 2020 IEEE International Solid-State Circuits
Conference (ISSCC), IEEE, pp. 8–14. arXiv:1911.05289

[Dem84] J. W. Demmel. Underflow and the reliability of numerical software.
SIAM J. Sci. Stat. Comput., 5:887–919, 1984.

[Dem87] J. W. Demmel. On error analysis in arithmetic with varying relative preci-
sion. In 8th Symposium on Computer Arithmetic (ARITH-8), 1987.

[Dem91] J. W. Demmel. On the odor of IEEE arithmetic. NA Digest, 91(39)
Sept. 29, 1991. http://www.netlib.org/na-digest-html/91/v91n39.html#15

[Dem97] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia,
1997.

[Din19] F. de Dinechin, L. Forget, J.-M. Muller and Y. Uguen. Posits: the good,
the bad and the ugly. Conference for Next Generation Arithmetic 2019,
DOI:10.1145/3316279.3316285.

[Dys12] G. Dyson. Turing’s Cathedral: The Origins of the Digital Universe, Pan-
theon, 2012.

[DL94] J. W. Demmel and X. Li. Faster numerical algorithms via exception
handling. IEEE Trans. Comput., 43:983–992, 1994.

[Ede97] A. Edelman. The mathematics of the Pentium division bug.
SIAM Review, 39:54–67, 1997.

[Ede94] A. Edelman. When is x ∗ (1/x) 6= 1?, 1994.
http://www-math.mit.edu/~edelman

BIBLIOGRAPHY 117

[BL+04] F. Bornemann, D. Laurie, S. Wagon and J. Waldvogel. The SIAM
100-Digit Challenge: A Study in High-Accuracy Numerical Comput-
ing. With a foreword by D.H. Bailey. SIAM, 2004. https://epubs-siam-
org/doi/book/10.1137/1.9780898717969

[FH+21] M. Fasi, N.J. Higham, M. Mikaitis, S. Pranesh S. 2021. Numerical behavior
of NVIDIA tensor cores. Peer J. Comput. Sci. 7:e330 DOI 10.7717/peerj-
cs.330

[FH+07] L. Fousse, G. Hanrot, V. Lefèvre, P. Pelissier and P. Zimmermann. MPFR:
A multiple-precision binary floating-point library with correct rounding
ACM Transactions on Mathematical Software, 33 (2), Article 13, 2007.
https://doi.org/10.1145/1236463.1236468

[Gay90] D. M. Gay. Correctly rounded binary-decimal and decimal-binary con-
versions. Technical report, 1990, AT&T Bell Labs Numerical Analysis
Manuscript 90-10. http://www.ampl.com/ampl/REFS/rounding.ps.gz

[Gol91] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computer Surveys, 23:5–48, 1991.

[Gol95] D. Goldberg. Computer Arithmetic. Kaufmann, San Mateo, CA, second
edition, 1995. Appendix in [HP95].

[Hau96] J. Hauser. Handling floating-point exceptions in numeric programs. ACM
Transactions on Programming Languages and Systems, Vol. 18, No. 2,
March 1996, pp. 139–174.

[HP95] J. L. Hennessy and D. L. Patterson. Computer Architecture: A Quantita-
tive Approach. Kaufmann, San Mateo, CA, second edition, 1995. (Need to
update to later edition.)

[HH00] D. J. Higham and N. J. Higham. MATLAB Guide. SIAM, Philadelphia,
third edition, 2017.

[Hig02] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, second edition, 2002.

[Hig17] N.J. Higham. A multiprecision world. SIAM News, 2017.
https://sinews.siam.org/Details-Page/a-multiprecision-world

[HM22] N.J. Higham and T. Mary. Mixed precision algorithms in numerical linear
algebra. Acta Numerica 31: 347–414, 2022.

[Hou81] D. Hough. Applications of the proposed IEEE 754 standard for floating-
point arithmetic. Computer, 14(3):70–74, 1981.

[Hou19] David G. Hough. The IEEE Standard 754: One for the History Books.
ACM Signum Newsletter, 14:13-21, 2019.
https://ieeemilestones.ethw.org/w/images/f/f2/Hough one for the history books.pdf

[IEE85] IEEE 754-1985 - IEEE Standard for Binary Floating-Point Arith-
metic, 1985. Reprinted in SIGPLAN Notices 22(2):9–25, 1987.
https://ieeexplore.ieee.org/document/30711

118 BIBLIOGRAPHY

[IEE87] IEEE 854-1987 - IEEE Standard for Radix-Independent Floating-Point
Arithmetic, 1987. https://ieeexplore.ieee.org/document/27840

[IEE08] IEEE 754-2008 - IEEE Standard for Floating-Point Arithmetic, 2008.
https://ieeexplore.ieee.org/document/4610935

[IEE19] IEEE 754-2019 - IEEE Standard for Floating-Point Arithmetic, 2019.
https://ieeexplore.ieee.org/document/8766229

[IEE23] Milestones: IEEE Standard 754 for Float-
ing Point Arithmetic. (J. Coonen, proposer)
https://ieeemilestones.ethw.org/Milestones:IEEE Standard 754 for Floating Point Arithmetic

[InnZim23] V. Innocente and P. Zimmermann. Accuracy of mathematical func-
tions in single, double, extended double and quadruple precision.
https://inria.hal.science/hal-03141101.

[Inq96] Inquiry board traces Ariane 5 failure to overflow error. SIAM News, 29(8),
Oct. 1996, pp. 1, 12, 13.
http://www.siam.org/siamnews/general/ariane.htm

[ISO99] ISO/IEC 9899:1999 Standard for the C programming language (C99), 1999.
http://www.iso.ch/. January 1999 draft available at
http://anubis.dkuug.dk/JTC1/SC22/WG14/www/docs/n869/

[Jav] Java Numerics. http://math.nist.gov/javanumerics/

[Jea19] C.-P. Jeannerod. The relative accuracy of (x+y)*(x-y). J. Comput. Appl.
Math. 369. https://doi.org/10.1016/j.cam.2019.112613

[Jul23] https://julialang.org/.

[Kah87] W. Kahan. Branch cuts for complex elementary functions or much ado
about nothing’s sign bit. The State of the Art in Numerical Analysis, pp.
165–188. Clarendon Press (1987).

[Kah96a] W. Kahan. The baleful effect of computer benchmarks upon applied
mathematics, physics and chemistry, 1996.
http://www.cs.berkeley.edu/~wkahan/ieee754status/baleful.ps

[Kah96b] W. Kahan. Lecture notes on the status of IEEE standard 754 for binary
floating-point arithmetic, 1996.
http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps

[Kah97] W. Kahan. The John von Neumann lecture at the SIAM 45th annual
meeting, 1997.
http://www.cs.berkeley.edu/~wkahan/SIAMjvnl.ps

[Kah98] W. Kahan and J.D. Darcy. How Java’s floating-point hurts everyone every-
where, 1998. http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf

[Kah00] W. Kahan. Ruminations on the design of floating-point arithmetic, 2000.
http://www.cs.nyu.edu/cs/faculty/overton/book/docs/KahanTalk.pdf

BIBLIOGRAPHY 119

[Kah10] W. Kahan. Pete’s unsung contribution to IEEE stan-
dard 754 for binary floating-point: A talk at a confer-
ence to celebrate G.W. “Pete” Stewart’s 70th Birthday, 2010.
https://people.eecs.berkeley.edu/ wkahan/19July10.pdf

[Kha13] G. Khanna. High-precision numerical simulations on a CUDA
GPU: Kerr black hole tails. J. Sci. Comput. 56, 366–380, 2013.
https://doi.org/10.1007/s10915-012-9679-3

[Knu68] D. E. Knuth. The Art of Computer Programming, Volume 1:
Fundamental Algorithms. Addison-Wesley, Reading, MA, 1968.

[Knu98] D. E. Knuth. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Addison-Wesley, Reading, MA, third edition,
1998.

[MS+22] P. Micikevicius, D. Stosic et al. FP8 formats for deep learning.
arXiv:2209.05433, 2022.

[MRC18] M. Metcalf, J. Reid and M. Cohen. Modern Fortran Explained, Incorpo-
rating Fortran 2018. Oxford University Press, Oxford, 2018.

[MHR80] N. Metropolis, J. Howlett, and G.-C. Rota, editors. A History of Computing
in the Twentieth Century. Academic Press, New York, 1980.

[Mol18] C.B. Moler. A brief history of MATLAB.
https://www.mathworks.com/company/newsletters/articles/a-brief-
history-of-matlab.html).

[Mul97] J.-M. Muller. Elementary Functions: Algorithms and Implementation.
Birkhaüser, Boston, Basel, Berlin, second edition, 2005.

[MB+18] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V.
Lefévre, G. Melquiond, N. Revol, S. Torres. Handbook of Floating-Point
Arithmetic. Birkhäuser (Springer group), second edition, 2018.

[ND+18] S. Narang, G. Diamos, E. Elsen, P. Micikevicius, J. Alben, D. Garcia,
B.Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, H.Wu. Mixed preci-
sion training. arXiv:1710.03740v3

[NJ+22] B. Noune, P. Jones, D. Justus, D. Masters, and C. Luschi. 8-bit numerical
formats for deep neural networks. arXiv:2206.02915, 2022.

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York,
second edition, 2006.

[PZ+23] S.P. Perez, Y. Zhang, J. Briggs, C. Blake, J. Levy-Kramer, P. Balanca, C.
Luschi, S. Barlow, A. Fitzgibbon. Training and inference of large language
models using 8-bit floating point. arXiv:2309.17224, 2023.

[PH97] D. L. Patterson and J. L. Hennessy. Computer Organization and Design: the
Hardware/Software Interface. Kaufmann, San Mateo, CA, second edition,
1997. (Need to update edition and merge with earlier entry.)

[RD18] J. Riedy and J. Demmel. Augmented arithmetic operations proposed for
IEEE-754 2018. 25th IEEE Symposium on Computer Arithmetic (ARITH
2018). https://ieeexplore.ieee.org/document/8464813

120 BIBLIOGRAPHY

[Rob95] E. S. Roberts. The Art and Science of C. Addison-Wesley, Reading, MA,
Menlo Park, CA, 1995.

[Rum] S. M. Rump. INTLAB: Interval Laboratory, a MATLAB toolbox for interval
arithmetic. http://www.ti3.tu-harburg.de/rump/intlab/

[Rum10] S. Rump. Verification Methods: Rigorous results using floating-point arith-
metic, Acta Numerica, pp. 287-449, Cambridge University Press, 2010.

[SW+20] X. Sun, N. Wang et al. Ultra-low precision 4-bit training of deep neural
networks. NeurIPS 2020.

[Sev98] C. Severance. An interview with the old man of floating-point:
Reminiscences elicited from William Kahan, 1998.
http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html
A condensed version appeared in Computer, 31:114–115, 1998.

[She97] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast
robust geometric predicates. Discrete Comput. Geom., 18(3):305–363,
1997.

[Ste74] P. Sterbenz, Floating Point Computation, Prentice-Hall, Englewood Cliffs,
NJ, 1974.

[SM03] E. Süli and D. Mayers. An Introduction to Numerical Analysis. Cambridge
University Press (2003).

[TBD18] L. N. Trefethen, A. Birkisson and T. A. Driscoll. Exploring ODEs. SIAM,
Philadelphia, 2018.

[TB97] L. N. Trefethen and D. Bau, III. Numerical Linear Algebra. SIAM,
Philadelphia, 1997.

[Top22] Top 500 list, 2022. https://en.wikipedia.org/wiki/TOP500

[Tre97] L. N. Trefethen. The definition of numerical analysis. In [TB97],
pp. 321–327.

[Tuc11] W. Tucker. Validated Numerics: A Short Introduction to Rigorous Compu-
tations. Princeton University Press, 2011.

[WK19] S. Wang and P. Kanwar. BFloat16: The secret to high performance on
cloud TPUs, 2019. https: //cloud.google.com/blog/products/aimachine-
learning/bfloat16-the-secretto-high-performance-on-cloud-tpus/.

[War94] F. Warshofsky. The Patent Wars: The Battle to Own the World’s Technol-
ogy. Wiley, 1994. Reviewed in the Harvard Journal of Law & Technology
Volume 9, Number 1 Winter 1996,
http://jolt.law.harvard.edu/articles/pdf/v09/09HarvJLTech219.pdf.

[Web96] Webster’s New World College Dictionary. Macmillan, New York, 1996.

[Wil63] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall,
1963.

[Wil23] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Society for In-
dustrial and Applied Mathematics (SIAM), Philadelphia, PA, 2023. With
a foreword by Nicholas J. Higham.

BIBLIOGRAPHY 121

[Wil71] J. H. Wilkinson. Modern Error Analysis. SIAM Review 13, pp. 548–568,
1971.

[Wil85] M. R. Williams. A History of Computing Technology. Prentice-Hall,
Englewood Cliffs, NJ, 1985.

[Wil98] M. V. Wilkes. A revisionist account of early language development.
Computer, 31:22–26, 1998.

[WW92] D. Weber-Wulff. Rounding error changes parliament makeup. The Risks
Digest, 13(37), 1992. http://catless.ncl.ac.uk/Risks/13.37.html#subj4

[Zus93] K. Zuse. The Computer—My Life. Springer-Verlag, Berlin, New York, 1993.

	Introduction
	The Real Numbers
	Computer Representation of Numbers
	IEEE Floating Point Representation
	Rounding
	Correctly Rounded Floating Point Operations
	Exceptions
	Floating Point Microprocessors
	Programming Languages
	Floating Point in C
	Cancellation
	Conditioning of Problems
	Stability of Algorithms
	Higher Precision Computations
	Lower Precision Computations
	Conclusion
	Bibliography

