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BOOTSTRAP WITH CLUSTER-DEPENDENCE IN TWO OR MORE
DIMENSIONS

KONRAD MENZEL
Department of Economics, New York University

We propose a bootstrap procedure for data that may exhibit cluster-dependence
in two or more dimensions. The asymptotic distribution of the sample mean or other
statistics may be non-Gaussian if observations are dependent but uncorrelated within
clusters. We show that there exists no procedure for estimating the limiting distribu-
tion of the sample mean under two-way clustering that achieves uniform consistency.
However, we propose bootstrap procedures that achieve adaptivity with respect to dif-
ferent uniformity criteria. Important cases and extensions discussed in the paper in-
clude regression inference, U- and V-statistics, subgraph counts for network data, and
non-exhaustive samples of matched data.

KEYWORDS: Multi-way cluster-dependence, wild bootstrap, U-statistics, network
data.

1. INTRODUCTION

WE CONSIDER INFERENCE based on a random array (Yit) that is indexed by two dimen-
sions, where the indices i= 1� � � � �N (and t = 1� � � � �T , respectively) correspond to units
(“clusters”) that are sampled independently at random from an infinite population, but
we allow for otherwise unrestricted dependence within each row Yi· := (Yi1� � � � �YiT ), and
within each column Y·t := (Y1t � � � � �YNt). There are various contexts in which a researcher
may encounter data with cluster-dependence along multiple dimensions:

EXAMPLE 1.1—Cluster-Dependence: Cross-sectional data may be organized among
multiple dimensions, for example, a worker simultaneously pertains to a certain geo-
graphic labor market, industry, and occupation. Dependence within any of these groups
may result, for example, from common economic shocks, or other group-level variables;
see Moulton (1990). Cameron, Gelbach, and Miller (2011) gave a more comprehensive
account of settings in empirical practice for which cluster-dependence may result from
sampling or other design decisions.

EXAMPLE 1.2—Static Panels, Difference-in-Differences: One interpretation of this
setup is a panel in which cross-sectional units are observed over time, and the outcome
of interest is subject to both common aggregate shocks that are serially independent and
unit-level heterogeneity.1 Two-way heterogeneity of this form is a characteristic feature
of classical difference-in-differences designs that aim to control for temporal shocks as
well as unobserved heterogeneity. Our framework does not restrict the number of dis-
tinct shocks, or how they may interact in a generative model for the outcome variable
Yit .
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EXAMPLE 1.3—Matched Data: For matched samples between different groups of units
i = 1� � � � �N and t = 1� � � � � T , respectively, Yit measures an outcome at the level of the
match. This setup includes test scores for a random sample of students and teachers, or
wages (marginal product of labor) for a random sample of workers and firms. In such a
setting, we often observe Yit only for a subset of the possible dyads (i� t) (non-exhaustively
matched samples). We discuss an adaptation of our bootstrap method to non-exhaustively
matched data in Appendix C in the Supplemental Material (Menzel (2021)).

There are settings in which the number of dimensions along which an array (Yi1���iD)may
be dependent could be greater than two. Our main framework can also be extended to
cases in which the indices of the array pertain to the same units in each dimension, that is,
the array may consist of random variables Yi1���iD with id = 1� � � � �N for each d = 1� � � � �D.
In that case, we refer to the data as D-adic (dyadic if D= 2).

EXAMPLE 1.4—V- and U-Statistics: We can view V-statistics and U-statistics (see, e.g.,
van der Vaart (1998) for definitions and a summary of classical asymptotic results) as
special cases of our framework for D-adic data. For an i.i.d. random sample X1� � � � �XN ,
a V-statistic of degree D with a symmetric kernel h(x1� � � � � xD) is defined as

V = 1
ND

∑
i1���iD

h(Xi1� � � � �XiD)�

which is equal to theD-fold sample average ȲN�D := 1
ND

∑
i1���iD

Yi1���iD for the observations

Yi1���iD := h(Xi1� � � � �XiD)�

The kernel h(·) is called degenerate if E[h(x�X2� � � � �XD)] is constant. The asymptotic
behavior of ȲN�D depends crucially on whether the kernel is degenerate, which is a feature
of the unknown distribution of Xi. The corresponding U-statistic is

U =
(
N
D

)−1 ∑
i1<i2<···<iD

h(Xi1� � � � �XiD)=
(
N
D

)−1 ∑
i1���iD

wi1���iDh(Xi1� � � � �XiD)�

where wi1���iD = l{i1 < i2 < · · ·< iD}. Hence U-statistics can be viewed as a special case of
a mean for a non-exhaustively matched sample.

EXAMPLE 1.5—Network Data: The general framework can be applied to subgraph
counts or graph (homomorphism) densities in networks. Suppose that for a network with
N nodes, we observe the N ×N adjacency matrix GN with entries Gij corresponding to
indicators whether that network includes a directed edge from i to j, where it is usually
assumed that Gii = 0 for all i (no self-links). Following the approach in Lovasz (2012),
Bickel, Chen, and Levina (2011), and Bhattacharya and Bickel (2015), we can regard
GN as a sample from an unlabeled infinite graph. For example, to evaluate the extent
of clustering/triadic closure in the network, we can consider triad-level subgraph counts
Tr := 6

N(N−1)(N−2)

∑
i<j<k Yijk�r for r = 2�3 where Yijk�2 =GijGik and Yijk�3 =GijGikGjk, so

that Yijk�3 = 0 whenever i, j, k are not distinct, and Yijk�2 = 0 if i= j or i= k. With degree
heterogeneity across nodes, entries Yijk�r exhibit dependence across each dimension of
the array. This problem is a special case of the D-adic averages, which is discussed in the
Supplemental Material.
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Other prominent applications allowing for—not necessarily additive—dependence
across several dimensions from e-commerce, biogenetics, and crop science are cited in
Owen (2007).

1.1. Problem Description

Our main results concern the problem of bootstrapping the distribution of the sample
average

ȲNT := 1
NT

N∑
i=1

T∑
t=1

Yit�

The bootstrap procedure we propose in this paper is adaptive to features of the joint
distribution of the random array, and approximations are as N and T grow large at the
same rate. In particular, we aim to approximate the asymptotic distribution regardless of
whether, or what type of, cluster-dependence is present. This is meant to reflect empirical
practice, where the researcher aims for conclusions to be robust with respect to cluster-
dependence, but without a presumption that such dependence is in fact present.

The leading case of bootstrapping the sample average already reflects the main new
technical challenges arising from multi-way cluster-dependence. We also consider a num-
ber of additional practically relevant extensions and generalizations. For one, the proce-
dure can be easily adapted for statistics that are asymptotically linear (i.e., that can be
approximated via influence functions), or differentiable functions of ȲNT . It is also con-
ceptually straightforward to extend the procedure to settings with clustering along more
than two dimensions, or D-adic data where the random array corresponds to group-level
outcomes for any subset of D out of the full set of N units included in the sample. An-
other practically important extension concerns the case in which the variable Yit is only
observed for a subset of the pairs {(i� t) : i = 1� � � � �N� t = 1� � � � �T } (non-exhaustively
matched samples). For greater clarity, the paper focuses on the leading case of cluster-
dependence in two dimensions, and these generalizations are discussed in Appendix C in
the Supplemental Material.

Generally speaking, we need to distinguish three scenarios regarding the large-sample
distribution of the mean: in the absence of cluster-dependence, elements of the array
(Yit) are mutually independent, and under regularity conditions a CLT at the (NT)−1/2

rate applies. When elements are correlated within clusters, the convergence rate of the
mean is determined by the number of relevant clusters instead. Finally, in non-separable
models of heterogeneity, elements within a cluster may be dependent even if they are un-
correlated. In that last case, which is specific to clustering in two or more dimensions, the
asymptotic behavior of the sample mean is generally non-standard, and the conventional
estimator of its asymptotic variance is not consistent. To frame ideas, we next give two
stylized examples to illustrate the difference between these three cases.

EXAMPLE 1.6—Additive Factor Model: To shape ideas, consider first the case where
clustering results from an additive model with cluster-level effects

Yit = μ+ αi + γt + εit�
where μ is fixed and αi, γt , εit are zero-mean, i.i.d. random variables for i= 1� � � � �N and
t = 1� � � � � T with bounded second moments, and N = T . From a standard central limit
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theorem, we find that in the non-degenerate case with Var(αi) > 0 or Var(γt) > 0, the
sample distribution

√
N
(
ȲNT −E[Yit]

) d→N
(
0�Var(αi)+ Var(γt)

)
�

whereas in the degenerate case of no clustering, Var(αi)= Var(γt)= 0,
√

NT
(
ȲNT −E[Yit]

) d→N
(
0�Var(εit)

)
�

where
d→ denotes convergence in distribution.

If the marginal distributions of these three factors were known, we could simulate from
the joint distribution of (Yit)i=1�����Nt=1�����T by sampling the individual components at ran-
dom. A bootstrap procedure would replace these unknown distributions with consistent
estimates. If the distribution of αi is not known, an intuitively appealing estimator of αi is

α̂i := 1
T

T∑
t=1

(Yit − ȲNT)= αi + 1
T

T∑
t=1

(εit − ε̄NT)�

where ε̄NT = 1
NT

∑N

i=1

∑T

t=1 εit . Similarly, we can estimate γ̂t := 1
N

∑N

i=1(Yit − ȲNT)= γt +
1
N

∑N

i=1(εit − ε̄NT), and ε̂it := Yit − ȲNT − α̂i − γ̂t . We can then estimate the marginal dis-
tributions of αi, γt , εit with the empirical distributions of α̂i, γ̂t , and ε̂it , respectively.

We could then form a bootstrap sample Y ∗
it := ȲNT +α∗

i +γ∗
t +ε∗

it by drawing from these
estimators for the marginal distributions of αi, γt , εit , and obtain Ȳ ∗

NT := 1
NT

∑N

i=1

∑T

t=1Y
∗
it .

We can also verify that the conditional variances of the bootstrap distribution given the
sample,

1
N

N∑
i=1

(
α̂i − 1

N

N∑
j=1

α̂j

)2

−
[

Var(αi)+ Var(εit)
T

]
p→ 0�

1
T

T∑
t=1

(
γ̂t − 1

N

T∑
s=1

γ̂t

)2

−
[

Var(γt)+ Var(εit)
N

]
p→ 0�

Hence, in the non-degenerate case with Var(αi) > 0 or Var(γt) > 0, the bootstrap distri-
bution

√
N
(
Ȳ ∗

NT − ȲNT

) d→N
(
0�Var(αi)+ Var(γt)

)
converges to the same limit as the sampling distribution, so that estimation error in α̂i
does not affect the asymptotic variance. However, in the degenerate case of no clustering,
Var(αi)= Var(γt)= 0, the bootstrap distribution

√
NT

(
Ȳ ∗
NT − ȲNT

) d→N
(
0�3 Var(εit)

)
asymptotically overestimates the variance of the sampling distribution, so that this naive
bootstrap procedure is inconsistent in the degenerate case.2

2Adaptations of the nonparametric bootstrap combining i.i.d. draws of columns and rows of the array
(Yit)i=1�����Nt=1�����T have been found to have similar problems; see McCullagh (2000) and Owen (2007).
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As the next example illustrates, the non-separable case has added complications from
the fact that αi, γt may interact. However, in either case, the potential complications with
the bootstrap stem entirely from the degenerate case.

EXAMPLE 1.7—Non-Gaussian Limit Distribution: For an example of non-separable
heterogeneity, let

Yit = αiγt + εit�
where αi, γt , εit are independently distributed, with E[εit] = 0, Var(αi) = σ2

α, Var(γt) =
σ2
γ , and Var(εit)= σ2

ε .
If, in addition, E[αi] = E[γt] = 0, a multivariate CLT and the continuous mapping the-

orem imply

√
NTȲNT = 1√

NT

N∑
i=1

T∑
t=1

(αiγt + εit)

=
(

1√
N

N∑
i=1

αi

)(
1√
T

T∑
t=1

γt

)
+ 1√

NT

N∑
i=1

T∑
t=1

εit

d→ σασγZ1Z2 + σεZ3�

where Z1, Z2, Z3 are independent standard normal random variables. Since the prod-
uct of two independent normal random variables is not normally distributed,

√
NTȲNT is

not asymptotically normal.3 Note also that if instead E[αi] �= 0 or E[γt] �= 0, the statistic
remains asymptotically normal at the slower

√
T (

√
N , respectively) rate.

Non-separable heterogeneity can therefore generate dependence in second or higher
moments that may contribute to the limting distribution even in the absence of correla-
tion within clusters. Since the limiting distribution need not be Gaussian for these settings,
plug-in asymptotic inference based on the normal distribution is not valid. We show below
that this type of dependence in fact precludes uniformity in estimating the limiting distri-
bution of ȲNT . It can also be seen immediately from this example that this non-standard
behavior could not be generated by a model of clustering in a single dimension, but is
distinctive of the (less well-understood) case of cluster-dependence in two or more di-
mensions.

1.2. Contribution

This paper develops a theory for multi-way dependent data and proposes an inference
procedure that is adaptive to the dependence structure, that is, we aim to approximate
the asymptotic distribution under any form of cluster-dependence. In our view, this type
of adaptivity is crucial for common empirical practice, where the researcher aims for in-
ference to be robust with respect to cluster-dependence, but without a presumption that
such dependence is in fact present. Therefore, a comprehensive analysis of the asymptotic
distribution of the sample mean with multi-way clustering is needed which pays particular

3Since Z1Z2 = 1
4 (Z1 +Z2)

2 − 1
4 (Z1 −Z2)

2, where Cov(Z1 +Z2�Z1 −Z2)= Var(Z1)− Var(Z2)= 0. Hence,
Z1Z2 = 1

2 (W1 −W2), whereW1,W2 are independent chi-squared random variables with one degree of freedom.
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attention to scenarios in which observations may be uncorrelated within each cluster. We
provide a comparison of the theoretical (large-sample) properties of our bootstrap pro-
cedure to those of alternative inference methods, including Gaussian “plug-in” inference,
subsampling, and the “pigeonhole” bootstrap proposed by Owen (2007). We also provide
simulation evidence for the most relevant cases.

To our knowledge, this analysis is new to the literature, and this paper is the first to
point out that even the limiting distribution for the sample average may be nonstandard
in these settings. We also find that the default estimator for the asymptotic variance of the
sample mean (a special case of the estimator proposed by Cameron, Gelbach, and Miller
(2011)) is inconsistent due to the within-cluster dependence in second moments of Yit . In
order to determine what types of adaptivity and uniformity we may hope to achieve, we
also establish a novel impossibility result: we find that there can be no estimator of the
asymptotic distribution of the sample mean that is uniformly consistent. Instead, we pro-
vide alternative procedures—one that is pointwise consistent, and another conservative
procedure that controls asymptotic size or coverage uniformly over the parameter space.
As a special case, these results apply to the problem of U- and V-statistics with kernel of
unknown order of degeneracy.

Interestingly, both results (nonstandard asymptotic distribution and impossibility of
uniform consistency in estimating that limit) require dependence in two or more dimen-
sions and have no counterparts for the conventional case when observations are clustered
in at most one dimension. The problem can be thought of as inference where a relevant
nuisance parameter may be on, or close to, the boundary of the parameter space, result-
ing in a discontinuity in the pointwise asymptotic limiting distribution (see Andrews (2000,
2001), Andrews and Guggenberger (2009, 2010)). Our analysis benefits from theoretical
insights and techniques developed for that abstract problem.

1.3. Relation to the Literature

The classical nonparametric bootstrap by Efron (1979) (see also Hall (1992), and
Horowitz (2000) for an exposition) can be adapted to data that are cluster-dependent
in one dimension in a straightforward manner. However, with clustering in multiple di-
mensions, the problem of resampling is fundamentally different from the case of indepen-
dent clusters, since the structure of the data no longer implies finite or weak dependence
across units. In fact, McCullagh (2000) showed that there exists no scheme for resam-
pling the raw data directly that is consistent for multi-way clustered data.4 Our proce-
dure combines features of the nonparametric bootstrap with those of the wild bootstrap
(Wu (1986) and Liu (1988)) to achieve (pointwise) consistency in each case, as well as
a conservative modification that results in uniformly valid asymptotic inference. We also
establish refinements for cases in which the limiting behavior of the statistic is standard.
We find that the problem of multi-way clustering has a natural connection to the theory
of U- and V-statistics. For U- and V-statistics, Bretagnolle (1983) and Arcones and Giné
(1992) proposed separate bootstrap procedures for the non-degenerate and degenerate
case, but neither procedure is adaptive. In their analysis of weighted average derivatives
under small bandwidth asymptotics, Cattaneo, Crump, and Jansson (2014) showed how to

4McCullagh (2000)’s argument goes as follows: there is no consistent estimator for the variance of the
sample mean that is a nonnegative quadratic function of the observations Yit . In particular, the bootstrapped
variance from any resampling scheme that draws directly from the original values of the variable of interest
is a function of this type, and therefore such a bootstrap scheme cannot be consistent. We propose a hybrid
scheme that does not fall under his narrower definition of the bootstrap.
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adapt a naive bootstrap procedure to handle cases when the second-order U-statistic from
a Hoeffding decomposition contributes to the asymptotic distribution. A recent paper by
Graham (2020) gives asymptotic results for dyadic data, showing that the non-Gaussian
contribution may be asymptotically negligible under sparse asymptotics.

Asymptotic standard errors with multi-way clustering have been proposed by Cameron,
Gelbach, and Miller (2011), and can be used for “plug-in” asymptotic inference in the
Gaussian limiting case—see also Cameron and Miller (2014), Aronow, Samii, and As-
senova (2015), and Tabord-Meehan (2019) for the case of dyadic data. A more recent
paper by MacKinnon, Nielsen, and Webb (2021) gives a condition on cluster sizes that
is sufficient for asymptotic normality and consistency of these standard errors, and pro-
poses a bootstrap method for that setting. We show in the Supplemental Material that
the “pigeonhole” bootstrap proposed by Owen (2007) is asymptotically valid under non-
trivial clustering in means, but conservative in the absence of clustering, and not guar-
anteed to achieve uniformity. A recent paper by Davezies, D’Haultfœuille, and Guyon-
varch (2021) derives asymptotic properties for the pigeonhole bootstrap process for the
non-degenerate case. Subsample bootstraps, including the method by Bhattacharya and
Bickel (2015) for network data, adapt quite naturally to features of the data-generating
process and are particularly attractive when evaluation of the statistic over the full sample
is computationally very costly. The Supplemental Material also establishes that, for two-
way cluster-dependent data, subsampling is consistent pointwise, but not uniformly, and
only at a slower rate than bootstrap alternatives.

1.4. Notation and Overview

Throughout the paper, we use P to denote the joint distribution of the array (Yit)i�t ,
and denote drifting data-generating processes (DGP) indexed by N , T with PNT . The
bootstrap distribution for (Y ∗

it ) given the realizations (Yit : i = 1� � � � �N; t = 1� � � � �T ) is
denoted P

∗
NT . We denote expected values under these respective distributions using E,

ENT , and E
∗
NT , respectively.

In the remainder of the paper, we first establish a representation for the array (Yit)
which is then used to motivate a bootstrap procedure. Formal results regarding consis-
tency and refinements for that bootstrap procedure are given in Section 4, and we illus-
trate its performance using Monte Carlo simulations. Regression inference is discussed
in Section 6. The Supplemental Material Menzel (2021) provides additional asymptotic
results for Gaussian asymptotics, the pigeonhole bootstrap, and subsampling as well as
several generalizations of the main procedure.

2. REPRESENTATION

We first consider the problem of inference on the sample mean. Here, we assume
that the sample Yit for i = 1� � � � �N and t = 1� � � � �T is embedded into a dissociated
row and column exchangeable array: a separately exchangeable array is an infinite array
(Yit)i�t such that, for any integers Ñ , T̃ and permutations π1 : {1� � � � � Ñ} → {1� � � � � Ñ}
and π2 : {1� � � � � T̃ } → {1� � � � � T̃ }, we have

(Yπ1(i)π2(t))i�t
d= (Yit)i�t�

where “ d=” denotes equality in distribution. Such an array is called dissociated (see Al-
dous (1981)) if, for any N0�T0 ≥ 1, (Yit)

i=N0�t=T0
i=1�t=1 is independent of (Yit)i>N0�t>T0 . For
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dyadic data, we later consider dissociated, jointly exchangeable arrays (Yij)i�j satisfying
(Yπ(i)π(j))i�j

d= (Yij)i�j for any permutation π on {1� � � � � Ñ}, and for which in addition
(Yij)

N0
i�j=1 is independent of (Yij)i�j>N0 .

We can interpret this assumption as stating that rows (and columns, respectively) corre-
spond to units that are drawn independently from a common population, where we then
observe the joint outcome for every row-column pair (or a subset of those pairs in the
case of non-exhaustively matched samples). To make this more concrete, we can revisit
the applications outlined in Examples 1.2–1.5:

• For difference-in-differences designs or matched data, this framework requires the
units corresponding to either dimension of the sample (e.g., students and teachers,
or ethnic groups and geographic districts) to represent independent draws from a
common, infinite population.

• If for non-exhaustively matched data we may only observe joint outcomes for a pos-
sibly self-selected subset of unit pairs, the resulting sample may still be embedded
into a (jointly or separately) exchangeable array if sample selection is also (jointly or
separately) exchangeable.

• For U- and V-statistics, the kernel Yi1���iD := h(Xi1� � � � �XiD) evaluated at i.i.d. obser-
vations X1� � � � �XN forms a dissociated, jointly exchangeable array.

For network data, the graph is typically regarded as “unlabeled,” that is, node identi-
fiers do not carry any significance for the statistical model, implying finite exchangeabil-
ity. Joint (“infinite”) exchangeability can be justified by regarding the sampled graph as a
subgraph of an infinite graph.5 Similarly, joint exchangeability results from network for-
mation models that treat nodes as independent draws from a common superpopulation if
the subgraph event encoded by Yi1���iD is fully determined by heterogeneity at the level of
the polyad (i1� � � � � iD).6

By Proposition 3.3 in Aldous (1981), any dissociated separately exchangeable array can
be represented as

Yit = f (αi�γt� εit) (2.1)

for some function f (·), where α1� � � � �αN , γ1� � � � � γT , and ε11� � � � � εNT are mutually inde-
pendent, uniformly distributed random variables.7 Similar representations are available
to arrays that are jointly or separately exchangeable in more than two dimensions; see
Hoover (1979) and Section 7 in Kallenberg (2005).

As an important caveat, note that separate exchangeability generally does not allow
for general serial or spatial dependence among the units in either dimension. By way of
comparison, the main assumption in Cameron, Gelbach, and Miller (2011) requires that
Cov(Yit�Yjs) = 0 whenever i �= j and s �= t, which allows for some forms of dependence
that are not covered by our theory. For instance, the model in Example 1.6 continues to
satisfy their assumption if εit (but not αi or γt) are serially dependent in either dimension.
Nevertheless, the negative results in this paper do also apply under that weaker condition.

5See, for example, Lovasz (2012), Bickel and Chen (2009).
6This is in general not the case in models of strategic link formation (see, e.g., Leung (2019) and Menzel

(2015)), which require a different approach.
7To be precise, Aldous (1981)’s result implies that there exists an array (Y ∗

it := f (αi�γt� εit)) such that (Y ∗
it )

d=
(Yit).
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2.1. Projection

We next show that the array (Yit)i�t permits a decomposition of the form

Yit = b+ ai + gt +wit� E[wit |ai� gt] = 0

where ai and gt are mean-zero and mutually independent, so that the joint distribution
of Yit can then be described in terms of the respective marginal distributions of ai and
gt , and the conditional distribution of wit given ai, gt . Such a representation is immediate
for the leading example of the additive factor model in Example 1.6, and we now show
that it is in fact without loss of generality for arrays exhibiting dependence in two or more
dimensions.

We can expand Yit according to

Yit = E[Yit] + (E[Yit |αi] −E[Yit]
)+ (E[Yit |γt] −E[Yit]

)
+(E[Yit |αi�γt] −E[Yit |αi] −E[Yit |γt] +E[Yit]

)+ (Yit −E[Yit |αi�γt]
)

=: b+ ai + gt + vit + eit� (2.2)

where we define eit = Yit − E[Yit |αi�γt], ai := E[Yi1|αi] − E[Yi1], gt = E[Y1t |γt] − E[Y1t],
vit = E[Yit |αi�γt] − E[Yit |αi] − E[Yit |γt] + E[Yit], b = E[Yit], and we assume throughout
that the relevant conditional expectations are well-defined. Since temporal and cross-
sectional units were drawn independently, a1� � � � � aN and g1� � � � � gT are independent of
each other. Also by construction, E[eit |ai� gt� vit] = 0 and E[vit |ai] = E[vit |gt] = 0. In par-
ticular, the terms eit� (ai� gt), vit are uncorrelated.

Given this representation, we can rewrite the sample mean as

ȲNT = b+ āN + ḡT + v̄NT + ēNT�

where āN := 1
N

∑N

i=1 ai, ḡT := 1
T

∑T

t=1 gt , v̄NT := 1
NT

∑T

t=1

∑N

i=1 vit , and ēNT := 1
NT ×∑T

t=1

∑N

i=1 eit . We also denote the unconditional variances of the projections with σ2
a :=

Var(ai), σ2
g := Var(gt), σ2

v := Var(vit), and σ2
e := Var(eit), respectively. We also let

wit := vit + eit and denote its variance by σ2
w = Var(wit).

Throughout the remainder of the paper, we are going to maintain the following condi-
tions on the distribution of the random array:

ASSUMPTION 2.1—Integrability: (a) Let Yit = f (αi�γt� εit), where (αi)i, (γt)t , and
(εit)i�t are random arrays whose elements are i.i.d. draws from the uniform distribution
on the interval [0�1]. (b) The random variables ai/σa, gt/σg, vit/σv, and eit/σe are well-
defined and have bounded moments up to the order 4 + δ for some δ > 0 whenever the
respective variances σ2

a , σ2
g , σ2

v , σ2
e are nonzero. (c) We have σ2

a + σ2
g > 0 or σ2

v + σ2
e > 0.

2.2. Low-Rank Approximation

To understand the large-sample properties of the sample mean, it is instructive to in-
terpret the row/column projection

v̄NT ≡ 1
NT

T∑
t=1

N∑
i=1

(
E[Yit |αi�γt] −E[Yit |αi] −E[Yit |γt] +E[Yit]

)=: 1
NT

T∑
t=1

N∑
i=1

v(αi�γt)
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as a generalized (two-sample) U-statistic with a kernel v(α�γ) evaluated at the samples
α1� � � � �αN and γ1� � � � � γT , respectively.

The asymptotic behavior of degenerate and non-degenerate generalized U-statistics is
well-understood (see Serfling (1980) for a summary of classical results). The problem of
characterizing the distribution of ȲNT differs from that classical problem in two major
aspects: for one, we also need to account for the presence of the projection error eit .
Furthermore, the factors αi, γt are not observable data, but implicitly defined by Aldous’s
(1981) construction. Nevertheless, these differences do not preclude us from applying
general insights and techniques for U-statistics to the present problem.

Specifically, we find that we can approximate the sample and bootstrap distributions of
the statistic by a function of sample averages of independent random variables. Define

v(α�γ) := E[Yit |αi = α�γt = γ] −E[Yit |αi = α] −E[Yit |γt = γ] +E[Yit]�
Under Assumption 2.1, the integral operator

S(u)(g)=
∫
v(a�g)u(a)Fα(da)

and its adjoint

S∗(u)(a)=
∫
v(a�g)u(g)Fγ(dg)

are both compact, where Fα, Fγ are the marginal distributions corresponding to the joint
Fαγ of αi, γt , which are independent draws from the uniform distribution under the
Aldous–Hoover representation in (2.1).

Hence, the spectral representation theorem permits the low-rank approximation

v(α�γ)=
∞∑
k=1

ckφk(α)ψk(γ) (2.3)

under the L2(Fαγ) norm on the space of smooth functions of (α�γ) ∈ [0�1]2. Here, (ck)k≥1

is a sequence of singular values with lim |ck| → 0, and (φk(·))k≥1 and (ψk(·))k≥1 are or-
thonormal bases for L2([0�1]�Fα) and L2([0�1]�Fγ), respectively. Since by construction
E[v(a�γt)] = E[v(αi� g)] = 0 for each a�g ∈ [0�1], without loss of generality we can take
E[φk(αi)] = E[ψk(γt)] = 0 for each k= 1�2� � � � . Since the basis functions are orthonor-
mal and αi and γt independent, it follows that, for any K < ∞, the covariance matrix
of (φ1(αi)�ψ1(γt)� � � � �φK(αi)�ψK(γt)) is the 2K-dimensional identity matrix. However,
(φ1(αi)� � � � �φK(αi)) may be correlated with ai, and (ψ1(γt)� � � � �ψK(γt)) may be corre-
lated with gt . Specifically, for k= 1�2� � � � we denote

σak := Cov
(
ai�φk(αi)

)
and σgk := Cov

(
gt�ψk(γt)

)
�

Given this representation, we can write

1
NT

N∑
i=1

T∑
t=1

v(αi�γt)=
∞∑
k=1

ck

(
1
N

N∑
i=1

φk(αi)

)(
1
T

T∑
t=1

ψk(γt)

)
�

so that the second-order projection term can also be represented as a function of count-
ably many sample averages of i.i.d., mean-zero random variables. The limiting distribution
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of this term is not Gaussian, but can be represented as a linear combination of indepen-
dent chi-squared random variables; see, for example, Serfling (1980). Distributions of this
type are known as Wiener (or Gaussian) chaos.

We find that pointwise consistency of the bootstrap does not require any additional
conditions on the conditional expectation function v(α�γ) beyond Assumption 2.1. For
the uniform consistency results which include the case in which the asymptotically non-
Gaussian component is of first order, we need to restrict the eigenfunctions and coeffi-
cients in the spectral representation (2.3).

ASSUMPTION 2.2: The function v(α�γ) := E[Yit |αi = α�γt = γ] − E[Yit |αi = α] −
E[Yit |γt = γ] +E[Yit] admits a spectral representation

v(α�γ)=
∞∑
k=1

ckφk(α)ψk(γ)

under the L2(Fαγ) norm, where (φk(α)) and (ψk(γ)) are orthonormal and orthogonal to
ai, gt . Furthermore, (a) the singular values are uniformly bounded by a square summable
null sequence c̄k that is ck ≤ c̄k for each k = 1�2� � � � , where

∑∞
k=1 c

2
k <∞. (b) The first

three moments of the eigenfunctions φk(αi) and ψk(γt) are bounded by a constant B > 0
for each k= 1�2� � � � .

Imposing common bounds on moments and singular values restricts the set of joint dis-
tributions F for the array to a uniformity class, where the sequence c := (c̄k)k≥0 controls
the magnitude of the error from a finite-dimensional approximation to v(α�γ), where we
truncate the expansion in (2.3) after a finite number of summands k = 1� � � � �K. Com-
parable high-level conditions on spectral approximations are commonly used to define
uniformity classes in nonparametric estimation of operators; see, for example, Hall and
Horowitz (2005) and Carrasco, Florens, and Renault (2007).

3. BOOTSTRAP PROCEDURE

The previous discussion shows that the rate of convergence and the limiting distribution
of the sample mean ȲNT −E[Yit] depend crucially on the different scale parameters intro-
duced above. For example, if observations are independent across rows and columns, then√

NT(ȲNT − E[Yit]) d→ N(0�σ2
e ). If N = T and within-cluster covariances are bounded

away from zero in at least one dimension, then
√
N(ȲNT −E[Yit]) d→N(0�σ2

a +σ2
g). Our

aim is to obtain a bootstrap procedure that is adaptive for both degenerate and non-
degenerate cases.

For the bootstrap procedure, we can estimate the terms of the orthogonal projection in
(2.2) with their sample analogs

âi := 1
T

T∑
t=1

Yit − ȲNT � ĝt := 1
N

N∑
i=1

Yit − ȲNT � and ŵit := Yit − âi − ĝt − ȲNT �

For the performance of the bootstrap, it is crucial at what rate(s) estimators for the dif-
ferent model components are consistent depending on the extent of clustering in the true
DGP. Most importantly, the variance of the projection terms âi and ĝt is σ2

a + σ2
w/T and

σ2
g + σ2

w/N , respectively, so that the “convolution error” depending on σ2
w dominates in
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the degenerate case. In order to correct for that contribution of the row/column averages
of wit , we would therefore want to shrink the scale of the distribution of âi, ĝt by the
variance ratios

λa = Tσ2
a

Tσ2
a + σ2

w

and λg = Nσ2
g

Nσ2
g + σ2

w

�

In the bootstrap procedure, we replace the unknown variances with consistent estimators
in (3.1) to obtain alternative estimators for λa and λg.

To obtain the component variances, we let

ŝ2
a := 1

N − 1

n∑
i=1

(âi − ȲNT)
2� ŝ2

g := 1
T − 1

T∑
t=1

(ĝt − ȲNT)
2�

ŝ2
w := 1

NT −N − T
N∑
i=1

T∑
t=1

(Yit − âi − ĝt − ȲNT)
2�

and form the estimators

σ̂2
a = max

{
0� ŝ2

a − 1
T
ŝ2
w

}
� σ̂2

g = max
{

0� ŝ2
g − 1

N
ŝ2
w

}
� and σ̂2

w := ŝ2
w� (3.1)

We find in Lemma A.1 below that the variances σ2
a and σ2

g cannot always be estimated
at a sufficiently fast rate. One of the versions of the bootstrap procedure proposed here
therefore uses a consistent pre-test for the presence of cluster dependence in the first
moment. To that end, we define the model selectors

D̂a(κ) := l
{
Tσ̂2

a ≥ κ} and D̂g(κ) := l
{
Nσ̂2

g ≥ κ}
for any given value of κ≥ 0. For appropriately chosen sequences κa, κg, we then let

λ̂a := D̂a(κa)T σ̂
2
a

D̂a(κa)T σ̂
2
a + σ̂2

w

and λ̂g := D̂g(κg)Nσ̂
2
g

D̂g(κg)Nσ̂
2
g + σ̂2

w

�

and estimate the asymptotic variance of the sample mean with

Ŝ2
NT�sel := D̂a(κa)T σ̂

2
a + D̂g(κg)Nσ̂

2
g + σ̂2

w� (3.2)

In the Supplemental Material, we compare this estimator to a “default” estimator for the
asymptotic variance without a pre-test, defined as

Ŝ2
NT�def := T ŝ2

a +Nŝ2
g − ŝ2

w�

Note that up to a degree of freedom correction, Ŝ2
NT�def is the variance estimator from

Cameron, Gelbach, and Miller (2011) for the special case of the sample mean.8

8The possible failure of the classical bootstrap when parameters of the asymptotic distribution are near
or on the boundary of the parameter space was first demonstrated by Andrews (2000) who also proposed
model selection for pointwise consistent inference. The pitfalls of post-selection inference have now been well-
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For the leading case of exhaustive sampling with cluster dependence in two dimensions,
we then propose the following resampling algorithm to estimate the sampling distribu-
tion:

(a) For the bth bootstrap iteration, draw a∗
i�b := âk∗

b
(i) and g∗

t�b := ĝs∗
b
(t), where k∗

b(i)
and s∗b(t) are i.i.d. draws from the discrete uniform distribution on the index sets
{1� � � � �N} and {1� � � � �T }, respectively.

(b) Generate w∗
it�b := ω1i�bω2t�bŵk∗

b
(i)s∗

b
(t), where ω1i�b, ω2t�b are i.i.d. random variables

with E[ω·] = 0, E[ω2
· ] = E[ω3

· ] = 1.

(c) Generate a bootstrap sample of draws Y ∗
it�b = ȲNT +

√
λ̂aa

∗
i�b +

√
λ̂gg

∗
t�b +w∗

it�b and

obtain the bootstrapped statistic Ȳ ∗
NT�b := 1

NT

∑N

i=1

∑T

t=1Y
∗
it�b.

(d) We repeat this procedure to obtain a sample of B replications and approximate
the conditional distribution of Ȳ ∗

NT given the sample with the empirical distribution
over the bootstrap draws Ȳ ∗

NT�1� � � � � Ȳ
∗
NT�B.

For the pivotal bootstrap, the last step uses instead the empirical distribution of the stu-
dentized bootstrap draws to approximate the distribution of

√
NT(Ȳ ∗

NT − ȲNT)/Ŝ
∗
NT�sel,

where Ŝ∗
NT�sel is the bootstrap analog of the variance estimator ŜNT�sel. Typical choices for

the distribution of the multiplier variables ω1i�b, ω2t�b in step (b) are the Gamma distribu-
tion (with shape parameter 4 and scale parameter equal to 1

2 ) or the two-point specifica-
tion proposed by Mammen (1992).

We distinguish two versions of this bootstrap procedure:

DEFINITION 3.1—Bootstrap Procedures:
• (BS-N) The bootstrap without model selection applies steps (a)–(d) where we set κa =
κg = 0.

• (BS-S) The bootstrap with model selection follows steps (a)–(d) where we set κa, κg
according to increasing sequences κg�κa → ∞ such that κa/T → 0 and κg/N → 0.

• (BS-C) The conservative bootstrap applies steps (a)–(d) where, for increasing se-
quences κg�κa → ∞ such that κa/T → 0 and κg/N → 0, we set q̂a := max{Tσ̂2

a�κa},
q̂g := max{Nσ̂2

g �κg}, and

λ̂a := q̂a

q̂a + σ̂2
w

q̂a

T σ̂2
a

� λ̂g := q̂g

q̂g + σ̂2
w

q̂g

Nσ̂2
g

�

We find below that the bootstrap with model selection is consistent pointwise in σ2
a , σ2

g ,
σ2
w, and the bootstrap without model selection is uniformly consistent as long as the limit-

ing distribution is Gaussian. The conservative bootstrap is consistent in the nondegerate
case σ2

a + σ2
g > 0, but asymptotically conservative for the degenerate cases in a sense to

be made more precise below. It is the only procedure discussed in this paper that is guar-
anteed to have uniform size control over the entire parameter space.

documented; in particular, consistent model selection typically leads to failure of uniformity in asymptotic
approximations—see Leeb and Pötscher (2005). We show that in the present case, this challenge is not an
artifact of the approach taken in this paper. Rather, uniformly consistent estimation of the limiting distribution
is not possible, neither using the bootstrap nor any alternative method, so our proposals include a procedure
that achieves uniformity but is conservative.
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4. THEORETICAL PROPERTIES

In this section, we establish large-sample properties for this bootstrap procedure. The
limiting behavior of the sample mean ȲNT −E[Yit] is in part determined by the variances
of the components of the decomposition in (2.2). Since the rate of convergence of the
sample mean depends on the component variances, we define the adaptive rate rNT by

r−2
NT :=N−1σ2

a + T−1σ2
g + (NT)−1σ2

w ≡ Var(ȲNT)�

where the last equality follows since the components in the decomposition (2.2) are un-
correlated. We maintain throughout that either σ2

g + σ2
a > 0 or σ2

w > 0, and that N and T
grow at the same rate as we take limits.

4.1. Asymptotic Distribution of ȲNT

We now characterize the asymptotic distribution of the sample mean. To analyze which
properties are uniform with respect to the joint distribution of (Yit), we also need to
consider limits along any drifting sequences for the parameters σ2

a , σ2
g , σ2

e , σ2
v . We then

parameterize the limiting distribution with the respective limits of normalized sequences

qa�NT := r2
NTN

−1σ2
a� qg�NT := r2

NTT
−1σ2

g �

qe�NT := r2
NT(NT)−1σ2

e � qv�NT := r2
NT(NT)−1σ2

v � (4.1)

qak�NT := r2
NTN

−1σak� qgk�NT := r2
NTT

−1σgk�

for k= 1�2� � � � . We also let �NT := rNT(NT)−1/2. From the definition of rNT , it follows that
the local parameters qa�NT , qg�NT , qe�NT , qv�NT ∈ [0�1] and qa�NT + qg�NT + qe�NT + qv�N = 1.
We stack these sequences as the vector

qNT := (qe�NT� qa�NT� qg�NT� qa1�NT� qg1�NT� qa2�NT� qg2�NT� � � � � )�

Similarly, we represent the singular values for the spectral decomposition (2.3) for
ENT[Yit |αi�γt] and E[Yit |αi�γt] with cNT := (c1�NT � c2�NT � � � � ) ∈ �2 and c := (c1� c2� � � � ) ∈
�2, respectively.

We can summarize asymptotic properties for the various procedures in terms of these
parameter sequences, where for convergent sequences qNT , cNT , �NT , we denote the lim-
its qa := limN�T qa�NT , qg := limN�T qg�NT , qe := limN�T qe�NT , and qv := limN�T qv�NT . The
limiting distribution along such a sequence will therefore depend on the parameters
q := limN�T qNT , c := limN�T cNT , and � := limN�T �NT .9

For any fixed values of the local parameters q, c, and � ∈ [0�1], we define the law

L0(q� c��) := (√qeZe + √
qaZ

a + √
qgZ

g
)+�V � (4.2)

where Ze�Zφ
1 �Z

ψ
1 �Z

φ
2 �Z

ψ
2 � � � � are i.i.d. standard normal random variables,

V :=
∞∑
k=1

ckZ
ψ
kZ

φ
k

9We show that without loss of generality it is sufficient to focus on convergent parameter sequences in light
of arguments by Andrews and Guggenberger (2010).
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with the coefficients ck potentially varying along the limiting sequence, and Za, Zg

are standard normal random variables with Cov(Za�Zφ
k ) = qak/

√
qa, Cov(Zg�Zψ

k ) =
qgk/

√
qg, Cov(Za�Zg)= Cov(Za�Zψ

k )= Cov(Zg�Zφ
k )= 0 for all k= 1�2� � � � .

We can now give the limit for the sampling distribution of ȲNT :

THEOREM 4.1—CLT for Sampling Distribution: Suppose that Assumption 2.1 holds.
Then (a) along any convergent sequence qNT → q and fixed c = (c1� c2� � � � ), we have∥∥PNT

(
rNT

(
ȲNT −E[Yit]

))−L0(q� c��)
∥∥

∞ → 0�

where � := limN�T �NT , ‖ · ‖∞ denotes the Kolmogorov metric, and the limiting distribution
L0(q� c��) is continuous. (b) If, in addition, Assumption 2.2 holds, then the conclusion of
(a) also holds under drifting sequences cNT → c.

See the Appendix for a proof. Note that convergence in part (a) is pointwise with re-
spect to the conditional mean function E[Yit |αi = α�γt = γ], whereas part (b) gives uni-
form convergence within the class of distributions satisfying Assumption 2.2.

4.2. Estimability of the Asymptotic Distribution

The asymptotic properties of the bootstrap depend crucially on our ability to estimate
the variances of the individual projection components at respective rates that are fast
enough to ensure convergence of λ̂a and λ̂g to λa and λg, respectively. Lemma A.1 in the
Appendix establishes that the component variances σ2

a , σ2
g , σ2

w can be estimated consis-
tently, but not always at a sufficiently fast rate along certain parameter sequences. We
can in fact establish the stronger negative result that there exists no estimator for the
asymptotic distribution that achieves consistency uniformly over the space of distributions
satisfying the main assumptions of this paper.

In order to state that impossibility result formally, we first introduce some additional
notation. From the Aldous–Hoover representation, the distribution of (Yit) can be iden-
tified with the function f (α�γ�ε) in (2.1). We also let F denote the class of functions
f (α�γ�ε) corresponding to distributions of (Yit) satisfying Assumptions 2.1 and 2.2 for
i.i.d. uniform draws αi, γt , εit . We then use Pf�NT(·) to denote probabilities for events
concerning an array of size N , T generated according to f , and Varf (·) for the corre-
sponding variances. Furthermore, we use the notation qNT(f ) := (qe�NT(f )�qa�NT(f )� � � � � )
for the vector of normalized variances from (4.1) given variances σ2

e (f ) := Varf (eit),
σ2
a(f ) := Varf (ai), etc., and define �NT(f ) and the singular values cNT(f ) in an analogous

manner. We then have the following result:

PROPOSITION 4.1—Estimability of Asymptotic Distribution: Let L̂NT denote an arbi-
trary estimator for L0 based on an array of size N , T from the unknown distribution. Then
there exists δ > 0 such that

lim inf
N�T→∞

sup
f∈F

Pf�NT

(∥∥L̂NT −L0

(
qNT(f )� cNT(f )��NT(f )

)∥∥
∞ > δ

)
> 0�

Recall that Theorem 4.1 showed that the sample mean converges to a continuous limit-
ing distribution L0(q� c��) along sequences fNT ∈ F with proper limits for qNT , cNT . This
result therefore states that we cannot estimate the asymptotic distribution uniformly con-
sistently even when the problem is otherwise well-behaved.
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The proof for this impossibility result can be found in the Appendix and is based on
the following counterexample: consider the model Yit = αiγt , where αi, γt are mutually
independent, with i.i.d. factors αi ∼ N(0�1), γt ∼ N(μγ�1). Clearly, this model satisfies
Assumption 2.1, so that Theorem 4.1 implies convergence to a limiting distribution of
the form (4.2). For this model, ai := E[Yit |αi] = αiμγ , gt := E[Yit |γt] = γtE[αi] ≡ 0, and
vit = αi(γt − μγ), so that σ2

a = μ2
γ and σ2

v = 1. Clearly, μγ cannot be estimated from the
original data at a rate faster than T−1/2, which is the fastest possible rate at which μγ
could be estimated from observing γ1� � � � � γT directly. Hence, no test can consistently
distinguish the model μγ = 0 resulting in an asymptotic variance equal to σ2

v from a drift-
ing sequence μ̃T�γ := T−1/2mγ which results in an asymptotic variance equal to m2

γ + σ2
v .

Since the variance of the sampling distribution converges along either sequence to σ2
v

andm2
γ +σ2

v , respectively, it follows that it cannot be consistently estimated. The proof of
Proposition 4.1 shows that this impossibility result holds not only with respect to moments
of the distribution, but also in terms of weak convergence.

4.3. Bootstrap Consistency

We now turn to the asymptotic properties of the bootstrap described in Section 3, where
we consider both a non-pivotal version, and a pivotal version based on the studentized
sample mean. Specifically, consider the estimator of the asymptotic variance of the sample
mean, ŜNT�sel defined in (3.2) and its bootstrap analog

Ŝ2∗
NT�sel := D̂a(κa)T σ̂

2∗
a + D̂g(κg)Nσ̂

2∗
g + σ̂2∗

w �

where we hold the selectors D̂a(κa), D̂g(κg) fixed at their sample values, and κa, κg are
chosen according to whether the bootstrap is implemented with or without model selec-
tion.

The non-pivotal bootstrap approximates the distribution of the sample mean rNT(ȲNT −
E[Yit]) with the distribution of its bootstrap analog, rNT(Ȳ

∗
NT − ȲNT). The pivotal bootstrap

approximates the distribution of the studentized sample mean (NT)1/2Ŝ−1
NT�sel(ȲNT −E[Yit])

with the distribution of its bootstrap analog, (NT)1/2(Ŝ∗
NT�sel)

−1(Ȳ ∗
NT − ȲNT). Corollary A.1

in the Appendix establishes that the estimator ŜNT�sel is pointwise consistent for sequences
of κa, κg increasing to infinity at a sufficiently slow rate, and its analog for κa = κg = 0
is uniformly consistent for qv = 0. Similarly, we can use Lemma A.1 in the Appendix to
establish pointwise consistency of λ̂a and λ̂g for the bootstrap with model selection (and
uniform consistency given qv = 0 for the bootstrap without model selection).

Combining this with the sample CLT (Theorem 4.1) and a bootstrap CLT (Lemma A.2
in the Appendix), we then obtain consistency results of the form∥∥P∗

NT

(
rNT

(
Ȳ ∗

NT − ȲNT

))− PNT

(
rNT

(
ȲNT −E[Yit]

))∥∥
∞

a�s�→ 0 (4.3)

and its pivotal analog∥∥∥∥P∗
NT

(√
NT

Ȳ ∗
NT − ȲNT

Ŝ∗
NT�sel

)
− PNT

(√
NT

ȲNT −E[Yit]
ŜNT�sel

)∥∥∥∥
∞

a�s�→ 0 (4.4)

for the bootstrap procedures with and without model selection. The conservative boot-
strap generally overestimates the scale of the sampling distribution for the degenerate
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case, where we obtain a convergence result of the form

∥∥P∗
NT

(
rNT

(
Ȳ ∗

NT − ȲNT

))−L0(q̄� c��)
∥∥

∞
p→ 0 (4.5)

and the pivotal version of the conservative bootstrap

∥∥∥∥P∗
NT

(√
NT

Ȳ ∗
NT − ȲNT

Ŝ∗
NT�sel

)
−L0(q̄� c��)

∥∥∥∥
∞

p→ 0� (4.6)

Here, q̄ = (qe� q̄a� q̄g�0�0� � � � ), and q̄a := max{κa/T�qa} and q̄g := max{κg/N�qg}, which
increase as N�T → ∞.

THEOREM 4.2—Bootstrap Consistency: Suppose that Assumption 2.1 holds. Then (a)
the bootstrap with model selection satisfies (4.3) and (4.4) pointwise for any fixed σ2

a , σ2
g , σ2

e ,
σ2
v . (b) The bootstrap without model selection satisfies (4.3) and (4.4) uniformly if qv = 0.

(c) The conservative bootstrap satisfies (4.5) and (4.6) uniformly over the entire parameter
space.

See the Appendix for a proof. Relating these results to the three alternative criteria
stated at the beginning of this section, part (a) states that the bootstrap with model selec-
tion is pointwise valid asymptotically, which corresponds to our first criterion. The lack
of uniformity of (BS-S) is not unique to this problem, but has generally been noted for
inference procedures involving model selection (see Leeb and Pötscher (2005)). Accord-
ing to part (b), the bootstrap without model selection is valid uniformly with respect to
clustering in means, but is inconsistent if qv > 0, so that it is asymptotically valid according
to our second criterion. The conservative bootstrap is uniformly valid without any qualifi-
cations; however, in degenerate cases (qe + qv > 0), the scale of the estimated asymptotic
distribution diverges at a rate κa/T + κg/N .10 Comparing the respective limits for the
conservative bootstrap and the sampling distribution (see Theorem 4.1), L0(q̄� c��) is
a mean-preserving spread of L0(q� c��), where both distributions are symmetric about
zero. In particular, estimates of percentiles from the conservative bootstrap are biased
outwards (i.e., away from zero) in those cases, so that commonly used one- or two-sided
hypothesis tests or confidence sets based on these estimated percentiles are asymptotically
conservative.

REMARK 4.1—U- and V-Statistics: Note that these results also apply to generalized
(two-sample) U-statistics, which constitute a special case of our setup with σ2

e = 0. Specif-
ically, the impossibility result in Proposition 4.1 implies that if the order of degeneracy of
the kernel is unknown, it is not possible to estimate the distribution of a two-sample U-
statistic uniformly consistently. The bootstrap procedure in this paper is pointwise adap-
tive with respect to the order of degeneracy of the kernel of the V-statistic. Analogous
conclusions for standard (one-sample) U- and V-statistics with a kernel function of order
D can be obtained using an adaptation of our bootstrap procedure to D-adic data; see
Appendix C in the Supplemental Material for a discussion.

10For the choice of κa, κg implemented for the simulation study, κa/T + κg/N 
 log(T)+ log(N).
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4.4. Refinements

We next consider refinements in the approximation to the distribution of the studen-
tized mean. We find that the bootstrap approximation provides pointwise refinements for
studentized mean in the non-degenerate case σ2

a + σ2
g > 0. It is also important to note

that refinements can in general not be obtained for certain special cases. For one, if the
“Wiener chaos” term remains relevant in the limiting distribution L(q� c��), that is, for
� > 0, the studentized mean is not asymptotically pivotal. Rather, the asymptotic dis-
tribution generally depends on relative weights of the Gaussian component Z, and the
spectral coefficients c defining the Wiener chaos component V . Hence, we cannot expect
the bootstrap to provide refinements for this case.

Furthermore, elementary moment calculations reveal that

E
[
â3
i

]= E
[
a3
i

]+ 2
T
E
[
aiw

2
it

]+ 1
T 2E

[
w3
it

]
�

where the cross-term E[aiw2
it] is generally nonzero unless E[w2

it |ai] and ai are uncorre-
lated. Hence, under drifting sequences for the second and third moments of ai, the sec-
ond and third terms on the right-hand side of that expression may be of the same order
as the leading term, in which case the bootstrap distribution does not match the third
moment of ai under the sampling distribution. Hence, we can in general not obtain a re-
finement along drifting sequences even when �= 0 and the limiting distribution is Gaus-
sian. Hence, we restrict our attention to the non-degenerate case with a Gaussian limiting
distribution.

We establish refinements using now standard results on Edgeworth expansions, most
importantly Theorem 5.2 in Hall (1992). To this end, we impose fairly stringent moment
conditions and Cramér’s condition on the characteristic functions of the marginal distri-
butions of ai and gt : A random vector X with support on R

d is said to satisfy Cramér’s
condition if

lim sup
‖t‖→∞

∣∣E[exp
{
it ′X

}]∣∣< 1� (4.7)

where i= √−1. This condition is met whenever X has a non-degenerate, absolutely con-
tinuous component (see, e.g., Hall (1992), pp. 65–67). We can then state the following
result:

PROPOSITION 4.2—Refinements: Suppose that Assumption 2.1 holds for any 0< δ<∞,
and that in addition the distributions of ai and gt satisfy Cramér’s condition (4.7). Then, if
σ2
a + σ2

g ≥ C for some C > 0, we have

∥∥∥∥P∗
NT

(√
NT

Ȳ ∗
NT − ȲNT

Ŝ∗
NT�sel

)
− PNT

(√
NT

ȲNT −E[Yit]
ŜNT�sel

)∥∥∥∥
∞

=OP
(
r−2

NT ∨ (NT)−1/2
)

for all three versions of the bootstrap, (BS-S), (BS-N), and (BS-C).

See the Appendix for a proof. In the non-degenerate case, the limiting distribution
is dominated by the components ai, gt . Since these are i.i.d. draws from their respec-
tive distributions, we can rely on arguments from Chapter 5 in Hall (1992) for the non-
parametric bootstrap with i.i.d. data, after ensuring that the contribution of vit + eit van-
ishes at a sufficiently fast rate. The assumption that all moments of the distribution are
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bounded is stronger than needed but commonly assumed in the literature (see, e.g., An-
drews (2002)). In general, the Edgeworth expansion of the sampling distribution only
requires four bounded moments; however, the order of bounded moments needed for
the Edgeworth expansion of the bootstrap distribution is more involved and, while finite,
not stated explicitly in Theorem 5.2 in Hall (1992).

5. SIMULATION STUDY

We now present simulation results to demonstrate the performance of the bootstrap
procedure for inference regarding the sample mean, where we consider balanced and un-
balanced designs with additively separable and non-separable cluster effects. Particular
attention is given to the degenerate cases of uncorrelated observations, and drifting se-
quences. We report simulation results for each of the bootstrap approaches proposed in
Sections 3 and 6:

• (BS-S) inference based on the bootstrap with model selection,
• (BS-N) inference based on the bootstrap without model selection,
• (BS-C) inference based on the conservative bootstrap.

In addition, we consider the following alternative inference approaches:
• (GAU) “plug-in” Gaussian inference using a two-way clustering robust estimator for

the asymptotic variance of ȲNT ,
• (PGH) inference based on the pigeonhole bootstrap estimate for the asymptotic dis-

tribution of rNTȲNT , and
• (SUB) inference based on the subsampling estimate for the asymptotic distribution

of rNTȲNT .
See Appendix B in the Supplemental Material for a precise definition and theoretical
results. Our simulation designs also consider the following alternative implementations
for these procedures:

• (REG) inference based on the asymptotic distribution of the mean, rNTȲNT ,
• (PIV) inference based on the asymptotic distribution of the studentized mean, where

we use tNT := (NT)1/2Ŝ−1
NT�selȲNT for BS-N and PGH, and tNT := (NT)1/2Ŝ−1

NT�selȲNT for
BS-S and BS-C,

• (SYM) symmetric inference based on the asymptotic distribution of the absolute
value of the studentized mean, |tNT |.

According to our theoretical results in Sections 4, 6, and Appendix B in the Supplemental
Material, each of these inference procedures is asymptotically valid in the non-degenerate
cases, while the pivotal and symmetric bootstrap (PIV and SYM, respectively) provide
refinements over their non-pivotal analogs (REG), subsampling, or Gaussian asymptotic
inference. It also follows from standard arguments (see, e.g., Horowitz (2000)) that theo-
retical refinements from SYM are of a higher order than those obtained for PIV.

5.1. Additively Separable Designs

For the first set of results, we generate a two-way clustered array according to the addi-
tively separable design

yit = σaαi + σgγt + σeεit�
where γt , εit are i.i.d. standard normal. We generated αi = (ζi − μα)/τα for logζi ∼
N(0�1), where μα = E[ζi], and τ2

α = Var(αi) were obtained using analytic formulae for
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the moments of the log-normal distribution. In particular, the distribution of αi is skewed
to the right.

Our simulation designs vary the relative importance of the three factors through the
choice of σa, σg, σe. Design 1 (non-degenerate case) chooses σ2

a = 0�5, σ2
g = 0�1, and

σ2
e = 0�2. Design 2 considers the drifting sequence σ2

a = 5/T , σ2
g = 1/N , and σ2

e = 0�2.
Design 3 (degenerate case) sets σ2

a = σ2
g = 0 and σ2

e = 0�2. For each design in this sec-
tion, simulation results were obtained from 10,000 simulated samples with bootstrap dis-
tributions approximated using 2000 bootstrap draws. All rejection rates are reported as
percentages.

Results for the balanced case are given in Tables I and II and largely support our theo-
retical claims. In particular, for all procedures, rejection rates approach the nominal 0�05
significance level as N and T grow. The only exception to this is the pointwise consistent
bootstrap (BS-S) under the drifting sequences in Design 2, much in line with the general
concerns about post-selection inference in Leeb and Pötscher (2005). In particular, the
results are consistent with the bootstrap without model selection being uniformly valid
regarding clustering in means. For Design 1, the pivotal and symmetric versions of the
different bootstrap procedures show marked improvements over their standard versions
or Gaussian asymptotic inference, which is consistent with asymptotic refinements estab-
lished in Theorem 4.2. The conservative bootstrap is consistent in the non-degerate case,
but conservative under the degenerate Designs 2 and 3. Also, the pigeonhole bootstrap is
consistent in its pivotal version across all designs, but the non-pivotal version is conserva-
tive in the degenerate case.

The improvements in coverage rates from asymptotic refinements are more pro-
nounced for one-sided than two-sided rejection rates in Table II. We can see from the
simulation results that the respective biases in estimating percentiles in the lower and up-
per tails of the distribution via GAU have opposite signs, so that these biases partially

TABLE I

BALANCED SEPARABLE CASE: FALSE REJECTION RATES FOR TWO-SIDED TESTS OF THE NULL E[Yit] = 0 AT
THE 5 PERCENT SIGNIFICANCE LEVELa

N T

GAU BS-S BS-N BS-C PGH SUB

REG REG PIV SYM REG PIV SYM PIV REG PIV REG

Design 1
10 10 8�62 10�15 7�17 6�08 10�12 7�27 6�12 7�13 8�88 7�20 14�13
20 20 6�82 7�63 6�65 5�49 7�50 6�57 5�61 6�61 7�03 6�70 9�49
50 50 6�26 6�56 6�22 5�42 6�54 6�21 5�46 6�21 6�38 6�26 7�88
100 100 5�58 5�79 5�63 5�13 5�82 5�58 5�06 5�67 5�76 5�55 6�81

Design 2
10 10 8�58 9�52 6�36 6�04 8�38 6�55 6�30 2�21 3�57 5�90 10�44
20 20 8�25 8�82 7�04 6�86 7�22 6�09 6�19 2�65 2�60 5�85 8�24
50 50 7�54 7�78 6�89 6�74 5�77 5�33 5�23 2�39 2�03 5�16 6�98
100 100 6�70 7�02 6�26 6�41 4�83 4�50 4�60 1�90 1�60 4�55 6�36

Design 3
10 10 5�19 4�64 2�94 2�87 2�97 5�92 5�89 0�01 0�29 2�84 5�26
20 20 5�99 5�40 4�67 4�61 3�29 6�22 6�14 0�00 0�12 3�23 5�28
50 50 5�16 4�98 4�77 4�61 3�35 5�94 5�99 0�00 0�11 3�35 4�83
100 100 5�17 5�04 4�99 4�94 3�79 5�73 5�74 0�00 0�10 3�82 5�08

aDesign 1: σ2
a = 0�5, σ2

g = 0�1, σ2
e = 0�2; Design 2: σ2

a = 0�5/T , σ2
g = 0�1/N , σ2

e = 0�2; Design 3: σ2
a = σ2

g = 0, σ2
e = 0�2.
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TABLE II

BALANCED SEPARABLE CASE: FALSE REJECTION RATES FOR ONE-SIDED TESTS OF THE NULL E[Yit] ≤ 0
(LEFT HALF OF THE PANEL) AND E[Yit] ≥ 0 (RIGHT HALF OF THE PANEL) AT THE 5 PERCENT SIGNIFICANCE

LEVELa

GAU BS-S BS-N BS-C PGH SUBS GAU BS-S BS-N BS-C PGH SUB

REG PIV PIV PIV PIV REG REG PIV PIV PIV PIV REG

Design 1
10 10 10�38 7�68 7�75 7�70 7�85 14�01 3�40 3�86 3�74 3�76 3�77 5�31
20 20 8�51 6�62 6�47 6�58 6�55 10�95 3�13 4�18 4�24 4�19 4�13 3�22
50 50 7�58 6�01 5�89 5�93 5�94 9�78 3�80 5�31 5�23 5�22 5�22 3�27
100 100 6�88 5�47 5�43 5�61 5�50 8�87 3�85 4�84 4�86 4�86 4�91 3�28

Design 2
10 10 9�24 7�45 7�63 3�05 7�30 10�12 4�59 4�43 4�65 2�54 4�30 5�68
20 20 8�82 7�58 6�77 3�46 6�64 8�49 4�67 5�22 4�86 3�02 4�74 4�46
50 50 8�24 7�36 6�00 3�33 6�03 7�88 4�60 5�19 4�31 2�72 4�43 4�19
100 100 7�49 6�82 5�40 2�50 5�44 7�18 5�22 5�81 4�67 2�39 4�62 4�90

Design 3
10 10 4�82 3�14 4�87 0�04 3�09 4�56 5�16 3�35 5�49 0�04 3�52 5�14
20 20 5�23 4�30 5�06 0�00 3�41 4�68 5�47 4�60 5�40 0�01 3�69 4�97
50 50 5�21 4�79 5�26 0�00 3�78 4�84 5�40 4�98 5�47 0�00 3�81 5�13
100 100 5�18 4�98 5�54 0�00 4�26 5�04 4�70 4�58 5�07 0�00 3�80 4�58

aDesign 1: σ2
a = 0�5, σ2

g = 0�1, σ2
e = 0�2; Design 2: σ2

a = 0�5/T , σ2
g = 0�1/N , σ2

e = 0�2; Design 3: σ2
a = σ2

g = 0, σ2
e = 0�2.

offset each other for two-sided tests. Design 2 considers drifting sequences of DGPs for
which Theorem 4.2 does not predict refinements. For Design 3, our theoretical results
do not imply refinements for PIV or SYM since for that specification, yit = σεεit is i.i.d.
Gaussian.

We also simulate the absolute error in rejection probabilities based on GAU, SUB, and
BS-S (pivotal and non-pivotal) at all percentiles for Design 1. Specifically, we estimate the
percentiles of the sampling distribution for each simulated sample using either method,
and simulate the frequency at which the t-statistic for the sample exceeds each percentile.
Figure 1 reports the absolute difference between the simulated and nominal rejection
frequencies. We find that for all three methods, the absolute discrepancy between nom-
inal and simulated rejection rates decreases as N and T grow across all percentiles. The
non-pivotal bootstrap does not exhibit a clear improvement relative to plug-in asymptotic
approximation, whereas rejection rates based on the pivotal bootstrap for the studentized
mean are consistently closer to nominal levels.

We next assess the importance of balance in the relative sizes of N and T , as well
as the relative importance of clustering in either dimension. In particular, we first con-
sider balanced designs T = N where we set σa = 0�5, σg = 0�1, and σe = 0�1. We then
consider unbalanced designs where we let N = 10�20�50�100 vary while holding T = 20
fixed; see Table III for simulation results. While the bootstrap is not asymptotically valid
if T remains fixed, results are broadly in line with those for the balanced case for the
corresponding sample size. Overall, these results are again consistent with theoretical
predictions on asymptotic validity and refinements.
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FIGURE 1.—Balanced separable case: Absolute error in estimated c.d.f., plotted against nominal percentiles.
Plots are based on Design 1: σ2

a = 1, σ2
g = 0�2, σ2

e = 1.

TABLE III

UNBALANCED SEPARABLE CASE: FALSE REJECTION RATES FOR TWO-SIDED TESTS OF THE NULL E[Yit] = 0
AT THE 5 PERCENT SIGNIFICANCE LEVELa

N T

GAU BS-S BS-N BS-C PGH SUB

REG REG PIV SYM REG PIV SYM PIV REG PIV REG

Design 1
10 20 9�76 11�18 8�53 6�68 11�14 8�71 6�76 8�62 10�40 8�76 14�47
20 20 7�21 8�02 7�16 5�79 7�95 7�11 5�76 7�17 7�25 7�11 9�75
50 20 5�57 5�98 5�16 4�95 5�96 5�17 4�96 5�30 5�65 5�27 7�31
100 20 5�73 6�03 5�29 5�22 6�17 5�24 5�06 5�36 5�81 5�29 7�10

Design 2
10 20 5�79 5�12 3�90 3�98 3�32 6�17 6�19 0�00 0�28 3�33 5�14
20 20 5�66 5�10 4�43 4�41 3�03 5�79 5�77 0�00 0�11 3�08 4�80
50 20 6�06 5�70 5�13 5�12 3�48 6�37 6�31 0�00 0�12 3�49 5�38
100 20 5�90 5�37 5�02 5�07 3�65 6�14 6�17 0�00 0�13 3�88 5�22

aDesign 1: σ2
a = 0�5, σ2

g = 0�1, σ2
e = 0�2; Design 2: σ2

a = σ2
g = 0, σ2

e = 0�2.
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5.2. Nonseparable Designs

Finally, we simulate a model with non-separable cluster effects, where we specify

yit = (αi +μα)(γt +μγ)−μαμγ + εit
for i.i.d. standard normal random variables αi, γt , and εit . We consider one non-
degenerate design with μα = μγ = 1 (Design 1), and an alternative design with μα = μγ =
0 for which yit is not clustered in means (Design 3), as well as a design with drifting se-
quences (Design 2); see Table IV for simulation results. Since 2.5th and 97.5th percentiles
the Wiener chaos distribution resulting from this design differ only slightly from those of
the standard normal, we also report false rejection rates for tests at the 1 percent nom-
inal level. For an easier interpretation of the simulation results for non-Gaussian limits,
we also report the theoretical limits of coverage probabilities, N = ∞ and T = ∞, in a
separate row.

The pointwise consistent procedures (bootstrap with model selection and subsampling)
should do well under Designs 1 and 3, where subsampling is consistent at a much slower
rate than the bootstrap. Since none of the inference procedures is uniformly consistent,
we should expect all of these to perform poorly under Design 2. However, given our
theoretical results, the conservative bootstrap is the only procedure that is guaranteed to
be conservative across all designs.

We find that in the non-degenerate case μα �= 0 or μγ �= 0, the bootstrap produces
results that are comparable to the separable case. According to our theoretical results, all
procedures are asymptotically valid, whereas PIV and SYM should produce refinements,
which is consistent with the first set of simulation results.

For the degenerate case, μα = μγ = 0, theory predicts that Gaussian inference is not
asymptotically valid even when a consistent estimator of the asymptotic variance is used.
We find that indeed, for the plug-in asymptotic approximation based on the Gaussian dis-
tribution, rejection rates appear to converge to a value that is different from the nominal
level, and based on the theoretical properties, bias in rejection rates should be expected
to persist for arbitrarily large sample sizes. We do report simulated rejection rates for
the corresponding limiting distribution (rows with N = T = ∞) which show that, for the
simulation designs considered here, the asymptotic size distortions remain modest in mag-
nitude, but actual rejection rates are above nominal size even in the limit for tests at the
5 percent and 1 percent level.

The bootstrap with model selection and subsampling are pointwise consistent (see De-
signs 1 and 3), but yield invalid inference under the drifting sequences in Design 2. The
conservative bootstrap is consistent in the non-degenerate case (Design 1), but conser-
vative under the other scenarios. Theoretical results do not indicate that the bootstrap
without model selection or the pigeonhole bootstrap should be necessarily conservative
in the degenerate cases (Designs 2 and 3), but the simulation results nevertheless show
that rejection rates are essentially zero. Also, since the studentized mean is not asymp-
totically pivotal under Designs 2 and 3, theory also does not predict refinements for the
pivotal or symmetric versions of either bootstrap procedure. This is reflected in the simu-
lation results, showing no systematic difference between the alternative implementations
of each bootstrap.

As for the separable case, we also simulate the absolute error in rejection probabili-
ties based on the Gaussian, subsampling, and bootstrap estimates with model selection
(pivotal and non-pivotal) at all percentiles for the degenerate case in Design 3, which are
shown in Figure 2. These results support the theoretical predictions that Gaussian plug-in
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TABLE IV

NON-SEPARABLE CASE: FALSE REJECTION RATES FOR TWO-SIDED TESTS OF THE NULL E[Yit] = 0 AT A
NOMINAL LEVEL OF 1 PERCENTa

N T

GAU BS-S BS-N BS-C PGH SUB

REG REG PIV SYM REG PIV SYM PIV REG PIV REG

Design 1 (tests at 5 percent nominal size)
10 10 8�18 9�80 4�90 3�74 9�77 4�88 3�80 4�85 9�90 4�56 15�28
20 20 6�50 7�26 4�76 4�62 7�06 4�83 4�52 4�79 7�24 4�68 9�35
50 50 5�19 5�34 4�71 4�60 5�53 4�81 4�52 4�78 5�55 4�61 6�50
100 100 5�17 5�38 4�97 4�96 5�26 4�92 4�92 4�84 5�41 5�00 6�18
∞ ∞ 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00

Design 2 (tests at 5 percent nominal size)
10 10 7�83 9�48 4�99 4�03 8�12 4�25 3�61 3�67 9�94 1�80 16�15
20 20 6�22 6�78 4�77 4�36 5�66 4�00 3�69 3�10 7�01 1�25 9�74
50 50 6�01 6�25 5�41 5�30 4�59 4�00 3�81 3�24 6�01 1�25 7�90
100 100 5�39 5�54 5�12 5�07 3�77 3�50 3�57 2�47 5�25 0�98 6�33

Design 3 (tests at 5 percent nominal size)
10 10 7�41 6�38 3�18 3�12 0�21 0�09 0�05 0�04 0�66 0�00 6�69
20 20 6�71 5�21 3�55 3�53 0�05 0�03 0�03 0�01 0�26 0�00 5�02
50 50 5�87 4�56 3�98 4�03 0�04 0�03 0�02 0�02 0�14 0�00 4�55
100 100 6�36 4�95 4�40 4�43 0�02 0�03 0�01 0�00 0�13 0�00 4�89
∞ ∞ 6�5 5�00 5�00 5�00 0�00 0�00 0�00 0�00 0�00 0�00 5�00

Design 1 (tests at 1 percent nominal size)
10 10 2�86 3�91 1�45 0�75 3�92 1�42 0�79 1�37 4�00 1�19 9�79
20 20 1�67 2�29 0�96 0�72 2�21 1�02 0�76 0�99 2�14 0�91 4�04
50 50 1�12 1�22 0�83 0�83 1�18 0�75 0�83 0�85 1�29 0�89 1�71
100 100 1�09 1�16 0�91 0�94 1�20 0�93 0�89 0�96 1�18 0�94 1�44
∞ ∞ 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00

Design 2 (tests at 1 percent nominal size)
10 10 2�01 2�98 0�96 0�56 2�20 0�63 0�30 0�58 4�14 0�14 9�57
20 20 1�29 1�58 0�76 0�57 1�05 0�51 0�45 0�49 2�30 0�05 3�27
50 50 0�92 0�97 0�75 0�60 0�75 0�58 0�51 0�47 1�69 0�04 1�37
100 100 0�91 0�90 0�68 0�65 0�37 0�31 0�27 0�19 1�19 0�01 0�47

Design 3 (tests at 1 percent nominal size)
10 10 4�01 1�78 0�80 0�84 0�02 0�00 0�00 0�00 0�16 0�00 2�67
20 20 2�67 0�85 0�55 0�53 0�00 0�00 0�00 0�00 0�04 0�00 1�00
50 50 2�86 0�71 0�67 0�62 0�00 0�00 0�00 0�00 0�01 0�00 0�80
100 100 2�64 0�81 0�75 0�69 0�00 0�00 0�00 0�00 0�00 0�00 0�79
∞ ∞ 3�2 1�00 1�00 1�00 0�000 0�000 0�000 0�000 0�000 0�000 1�00

aDesign 1: σ2
a = 0�2, σ2

g = 0�2, σ2
e = 0�2, μa = 1, and μg = 0; Design 2: σ2

a = 0�2, σ2
g = 0�2, σ2

e = 0�2, μa = 1/
√
T , and μg = 0;

Design 3: σ2
a = 0�2, σ2

g = 0�2, σ2
e = 0 and μa = μg = 0. the First Two Panels Are for Tests at a Nominal Level of 5 Percent; the Bottom

Panel Are at 1 Percent.

inference is inconsistent for the degenerate nonseparable case, and that subsampling is
consistent although at a slower rate than the bootstrap (pivotal or not) with model selec-
tion. Also, the theory does not imply asymptotic refinements for the pivotal bootstrap in
this setting, so we should not expect the pivotal bootstrap to perform systematically better
than its non-pivotal version.
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FIGURE 2.—Nonseparable case: Absolute error in estimated c.d.f., plotted against nominal percentiles. Plots
are based on Design 2: σ2

a = 0�5, σ2
g = 0�5, σ2

e = 0�1, and μa = μg = 0.

6. INFERENCE IN REGRESSION MODELS

As an important application, we next discuss inference in a regression model with a
scalar dependent variable yit and k regressors xit ∈ R

k for i = 1� � � � �N and t = 1� � � � � T ,
allowing for two-way dependence in residuals. Stacking observations, we also denote y :=
(y11� y21� � � � � yNT)

′ and X := (x11�x21� � � � �xNT)
′. For the linear projection model

yit = x′
itβ+ uit� E[xituit] = 0� (6.1)

we then consider random-design inference regarding the coefficient β based on the least
squares (LS) estimator11

β̂LS := (X′X
)−1

X′y = β+ (X′X
)−1

(
1

NT

N∑
i=1

T∑
t=1

xituit

)
�

11As in the case of i.i.d. observations, fixed-design inference (i.e., inference conditional on X) would require
the stronger assumption that the linear regression function is correctly specified, E[uit |X] = 0, and rely on
conditional exchangeability considerations. If xit has finite support, Lemma 3.3 in Crane and Towsner (2018)
can be used to obtain a conditional Aldous–Hoover representation of uit .
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To nest this regression model into our framework, we will assume that the products
(xituit)i�t also constitute a dissociated, separately exchangeable array. This yields the
Aldous–Hoover representation

zit := xituit = f (αi�γt� εit)�
where αi, γt , εit are i.i.d., and can without loss of generality be assumed to follow a uniform
distribution. We can therefore find an orthogonal decomposition of zit that is analogous
to that for Yit in the unconditional case. Specifically, we denote

ai := E[xituit |αi]� gt := E[xituit |γt]�
vit := E[xituit |αi�γt] − ai − gt �

eit := xituit −E[xituit |αi�γt]�
with components ai = (ai1� � � � � aik)

′, gt = (gt1� � � � � gtk)
′, vit = (vit1� � � � � vitk)

′, and eit =
(eit1� � � � � eitk)

′. We also denote the unconditional component variances with σ2
al, σ

2
gl, σ

2
vl,

σ2
el and let

wit := xituit − ai − gt = vit + eit �

so that

xituit = ai + gt + wit �

and σ2
wl := Var(witl)= σ2

vl + σ2
el.

Given the least squares residuals ûit := yit−x′
itβ̂LS, we can construct an empirical analog

of that decomposition, where

Oai := 1
T

T∑
t=1

xit ûit �

Ogt := 1
N

N∑
i=1

xit ûit � and

Owit := xit ûit −Oai −Ogt �

For each l = 1� � � � �k, we also let λ̂al := D̂al(κa)T σ̂
2
al

D̂al(κa)T σ̂
2
al+σ̂2

wl
and λ̂gl := D̂gl(κg)Nσ̂

2
gl

D̂gl(κg)Nσ̂
2
gl+σ̂2

wl
for the boot-

strap with or without model selection, where σ̂2
al, σ̂

2
gl, σ̂

2
wl, and D̂al(·), D̂gl(·) are defined in

an analogous fashion as in Section 3.
We can then implement the bootstrap algorithm from Section 3 as follows:
(a) For the bth bootstrap iteration, draw a∗

i�b := Oak∗
b
(i) and g∗

t�b := Ogs∗
b
(t), where k∗

b(i)
and s∗b(t) are i.i.d. draws from the discrete uniform distribution on the index sets
{1� � � � �N} and {1� � � � � T }, respectively.

(b) Generate w∗
it�b := ω1i�bω2t�bOwk∗

b
(i)s∗

b
(t), where ω1i�b, ω2t�b are i.i.d. random variables

with E[ω·] = 0, E[ω2
· ] = E[ω3

· ] = 1.
(c) Simulate values of z∗

it�b = (z∗
it1�b� � � � � z

∗
itk�b)

′, where the lth component is given by

z∗
itl�b :=

√
λ̂ala

∗
il�b +

√
λ̂glg

∗
tl�b +w∗

itl�b�
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(d) We then compute

β̂
∗
LS�b := β̂LS + (X′X

)−1

(
1

NT

N∑
i=1

T∑
t=1

z∗
it�b

)

for each bootstrap sample.
We can then approximate the asymptotic distribution of rNT(β̂LS −β) with the simulated
distribution of rNT(β̂

∗
LS�b − β̂LS).12 As for the sample mean, this bootstrap procedure can

be implemented in three different variants: with model selection (BS-S), with no model
selection (BS-N), and a conservative bootstrap (BS-C) using the alternative choices for
the regularization parameters κa, κg given in Definition 3.1. For asymptotic results on the
bootstrap for regression models, we make the following assumptions:

ASSUMPTION 6.1—Regression: Assume the regression model in (6.1), where xituit =
f (αi�γt� εit) and αi, γt , εit are i.i.d. uniform on [0�1]. Furthermore, (a) the matrix X
has full column rank. (b) For each l = 1� � � � �k and some δ > 0, the (4 + δ)th abso-
lute moments of xitl are bounded, and the (4 + δ)th conditional moments of each com-
ponent ail/

√
Var(ail|X), gtl/

√
Var(gtl|X), vitl/√Var(vitl|X), and eitl/

√
Var(eitl|X) given X

are bounded whenever the conditional variance of either component is strictly positive.
(c) The unconditional variances satisfy Var(ail)+ Var(gtl) > 0 or Var(witl) > 0 for each
l = 1� � � � �k. (d) For each component of zit = xituit , there exists a spectral representation
satisfying Assumption 2.2.

The asymptotic properties of the bootstrap under alternative choices for λ̂al, λ̂gl are
then analogous to the case of the sample mean:

PROPOSITION 6.1—Regression Inference: Suppose that Assumption 6.1 holds. Then (a)
the estimator β̂LS is consistent at the rNT rate. (b) The bootstrap with model selection satisfies
(4.3) and (4.4) pointwise as σ2

al, σ
2
gl, σ

2
el, σ

2
vl are held fixed for all l = 1� � � � �k; the bootstrap

without model selection satisfies satisfies (4.3) and (4.4) uniformly if qvl = 0 for each l =
1� � � � �k. (c) The conservative bootstrap satisfies (4.5) and (4.6) uniformly over the entire
parameter space.

Since (zit) is a separately exchangeable array, this result follows from applying Theo-
rems 4.1 and 4.2 to Yit := c′zit for a vector c ∈ R

k. Specifically, Assumption 6.1 implies
Assumptions 2.1 and 2.2 for any linear combination of that form. The conclusion then
follows from the continuous mapping theorem together with the Cramér–Wold device.

One interesting question is whether the distribution of xit is such that the asymptotic
distribution of the LS estimator is guaranteed to be Gaussian regardless of dependence
in uit . Here it is possible to use Theorem 1 in de Jong (1990) to obtain sufficient condition
for conditional asymptotic normality of bilinear forms Vk := Z′

1kXZ2k of random vectors
Z1k, Z2k given the matrix X. For example, using calculations analogous to those for the

12In principle, the analogous procedure could be applied to the studentized estimator rNTOV−1/2
LS (β̂LS − β),

where we let OVLS denote a two-way cluster-robust estimator of the asymptotic variance covariance matrix of
β̂LS. However, for expositional clarity we state our formal results for the non-studentized least squares estima-
tor instead.
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term Ẑe�∗
NT in the proof of Theorem A.2, it is possible to verify that under the condi-

tions of this paper, Vk is asymptotically Gaussian if ẍit , ẍjs are mean-independent for any
(j� s) �= (i� t). For difference-in-differences designs with a regressor xit1 := l{t ≥ Ti} for a
unit-specific intervention date Ti, or when xit := x(ξi�ζ t) are a non-additive function of
row- and column-level attributes ξi and ζ t , respectively, these conditions need not hold in
general.

6.1. Simulation Study

We now illustrate the performance of the bootstrap for regression inference in a brief
Monte Carlo study. For all simulation designs, we consider a regression model

yit = β0 +β1xit + uit�
where we generate uit according to

uit = (μa + σaαi)(μg + σgγt)�

and αi�γt
iid∼ N(0�1). As for the non-separable design for the sample mean, this design

produces non-degenerate distributions of ai and gt if μg �= 0 or μa �= 0, and a non-
Gaussian limiting distribution in the degenerate case, μa = μg = 0. For the main results,
we generate xit according to

xit = l{t ≥ Ti}�
where Ti are i.i.d. discrete uniform on {1� � � � �T }. This setup is supposed to mimic
difference-in-differences designs for which we do not expect a Gaussian limiting distri-
bution. We also report results for other distributions for xit .

Our simulation designs vary with regard to the choice of μa and μg. Design 1 (non-
degenerate case) chooses μa = 5 and μg = 0; Design 2 considers the drifting sequence
μa = 5/

√
T and μ2

g = 0. Design 3 (degenerate case) sets μa = μg = 0. Throughout, we set
σ2
a = σ2

g = 0�2. For each design, we vary sample size between N = T ∈ {20�50�100�200}.
Simulation results were obtained from 10,000 simulated samples with bootstrap distribu-
tions approximated using 2000 bootstrap draws. We compare the following procedures
based on the least-squares estimator: Gaussian inference (GAU-LS), pivotal bootstrap
with model selection (PIV-LS), symmetric bootstrap with model selection (SYM-LS), and
the conservative bootstrap (CONS-LS).

We first consider the “difference-in-differences” scenario, xit = l{t ≥ Ti}. Table V re-
ports rejection rates for a test of H0 : β1 = 0 at the 5 percent significance level under the
null hypothesis H0 : β = 0 (left four columns) and under a local alternative at the

√
N

rate,H1 : β= 0�1/
√
N . As in the case of the sample mean, procedures based on LS under

the drifting sequences scenario in Design 2 do not show any signs of improvement as sam-
ple size grows. Furthermore, Gaussian inference should not be expected to work in the
degenerate case, and the results do indeed show that the size of the tests based on Gaus-
sian asymptotics remains above the nominal level even for large samples. Under the local
alternative, we find that all procedures have non-trivial power under each of the three
designs and all except for the conservative bootstrap are consistent in the degenerate and
near-degenerate Designs 2 and 3.

Finally, we compare different simulation designs for the distribution of xit , where for
the first design xit := l{t ≥ Ti} is generated to mimic a “difference-in-differences” design;
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TABLE V

REJECTION RATES FOR TWO-SIDED TESTS OF H0 : β1 = 0 AT A NOMINAL LEVEL OF 5 PERCENT UNDER THE
NULL AND A LOCAL ALTERNATIVEa

N T

H0 : β= 0 H1 : β= 0�1/
√
N

GAU PIV SYM CONS GAU PIV SYM CONS

Design 1 (tests at 5 percent nominal size)
10 10 7�92 5�50 5�47 5�05 18�12 13�54 14�02 12�32
20 20 5�95 4�91 4�96 4�79 14�38 11�96 12�66 11�64
50 50 5�67 5�24 5�19 4�97 13�22 12�18 12�64 11�66
100 100 5�06 4�76 4�74 4�71 12�94 12�18 12�84 12�16
200 200 5�14 5�20 5�20 5�12 14�88 14�26 14�84 14�26

Design 2 (tests at 5 percent nominal size)
10 10 10�18 8�06 8�02 2�64 71�34 67�66 68�34 29�88
20 20 8�21 7�67 7�49 0�60 92�80 92�70 93�08 29�64
50 50 11�37 11�23 11�33 0�27 99�86 99�84 99�88 32�60
100 100 17�04 16�30 16�54 0�32 100�00 100�00 100�00 33�70
200 200 21�06 20�45 20�38 0�19 100�00 100�00 100�00 32�80

Design 3 (tests at 5 percent nominal size)
10 10 9�73 5�38 5�28 0�15 99�90 99�85 99�85 15�60
20 20 7�74 5�33 5�39 0�01 99�95 99�95 99�95 12�70
50 50 6�53 5�07 5�13 0�01 100�00 100�00 100�00 12�35
100 100 6�15 5�03 5�02 0�00 100�00 100�00 100�00 10�50
200 200 6�14 5�11 5�20 0�00 100�00 100�00 100�00 11�40

aDesign 1: σ2
a = 0�2, σ2

g = 0�2 and μa = 5, μg = 0; Design 2: σ2
a = 0�2, σ2

g = 0�2 and μa = 5/
√
T , μg = 0. Design 3: σ2

a = 0�2,

σ2
g = 0�2 and μa = μg = 0

a second design looks at a regressor xit that is i.i.d. across rows and columns. The third de-
sign considers regressors that are derived from attributes pertaining to the unit represent-
ing a row or a column of the array, where we choose xit := (1 − 2l{Ui ≥ 0�5})(1 − 2l{Vt ≥
0�5}) where Ui�Vt

iid∼U[0�1] (“dyadic regressors”). Generated regressors of this kind are
common in matched, dyadic, or network data, where, for example, the distance between
a country pair (with geographic coordinates as country-level attributes) explains trade
flows in a gravity model, or an indicator whether a group of individuals share a discrete
homophilous attribute (such as gender, age, or race) shifts the probability of friendship
links or a clique among those individuals.

We only consider the degenerate design for uit with μa = μg = 0 for this analysis. The
theory predicts that the distribution of the LS coefficients should be Gaussian only under
the second design with i.i.d. regressors, whereas for the other two designs we should see a
non-Gaussian limiting distribution. Table VI reports null rejection rates for a t-test ofH0 :
β1 = 0 at the nominal 5 percent significance level. The results by and large confirm the
theoretical predictions, where for the second design all three procedures achieve coverage
near the nominal level, whereas in the other two designs the bootstrap remains consistent,
but Gaussian tests over-reject even for large samples with N = T = 100.

7. CONCLUSION

There has been great applied interest in robust inference that allows for multi-way de-
pendence. In this paper, we provide a theoretical basis for that type of dependence, where



2172 KONRAD MENZEL

TABLE VI

FALSE REJECTION RATES FOR TWO-SIDED TESTS OF THE NULL β1 = 0 AT A NOMINAL LEVEL OF 5 PERCENT
FOR DIFFERENT DESIGNS FOR DRAWING xit

a

N T

H0 : β= 0

GAU PIV SYM CONS

Difference in differences
10 10 10�260 5�430 5�560 0�190
20 20 7�870 5�220 5�260 0�020
50 50 6�880 5�440 5�470 0�000
100 100 5�940 4�980 4�900 0�000

i.i.d. regressors
10 10 9�840 5�570 5�400 0�940
20 20 6�720 4�950 5�040 0�850
50 50 5�500 4�970 4�960 0�440
100 100 5�160 5�070 5�060 0�580

Dyadic attributes
10 10 11�340 5�430 5�300 4�040
20 20 8�110 5�010 4�850 0�480
50 50 7�930 5�560 5�500 1�250
100 100 6�950 4�940 5�040 0�240

aIn all designs, σ2
a = 0�2, σ2

g = 0�2, and μa = μg = 0.

we focus on an interpretation of the problem in which rows and columns correspond to
units that are drawn independently from their respective distributions. We find that the
asymptotic distribution of a sample average for an array of random variables that exhibits
multi-way cluster dependence is not necessarily Gaussian, but may be nonstandard. Fur-
thermore, there exists no uniformly adaptive procedure for estimating that asymptotic
distribution.

One important practical limitation of our results is that our theory covers scenarios in
which the fundamental units forming the multi-way array are drawn independently. While
the negative results continue to apply for any more general setting that nests separate or
joint exchangeability as a special case, the inference approach and the theory justifying it
are not valid if those units are dependent. Most importantly, we are not aware of a suit-
able generalization of the Aldous–Hoover representation (2.1) that would allow for serial
dependence among rows or columns of the array. Potential adaptations of the bootstrap
procedure in this paper to accommodate scenarios of that type are beyond the scope of
this paper and are left for future research.

APPENDIX A: PROOFS

Proof of Theorem 4.1

Recall that the projection in (2.2) was given in terms of the variables

eit = Yit −E[Yit |αi�γt]� ai = E[Yit |αi] −E[Yit]� gt = E[Yit |γt] −E[Yit]�
and

vit = E[Yit |αi�γt] −E[Yit |αi] −E[Yit |γt] +E[Yit] =
∞∑
k=1

ckψk(γt)φk(αi)�
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where we rewrite vit in terms of the low-rank representation in (2.3). Also let

Ẑa
N := rNT

N

N∑
i=1

ai� Ẑ
g
T := rNT

T

T∑
t=1

gt� and Ẑe
NT := rNT

NT

N∑
i=1

T∑
t=1

eit�

and

Ẑφ
Nk := 1√

N

N∑
i=1

φk(αi)� Ẑψ
Tk := 1√

T

T∑
t=1

ψk(γt)�

for k= 1�2� � � � . By independence of αi and γt , Ẑa
N and Ẑg

T are uncorrelated. Since αi and
γt are independent, Ẑφ

Nk and Ẑψ

Tk′ are uncorrelated for any pair k, k′. Also by orthogonality
of the basis functions, Ẑφ

Nk and Ẑφ

Nk′ (Ẑψ
Tk and Ẑψ

Tk′ , respectively) are uncorrelated for any
k �= k′. Finally, by mean-independence of eit and αi, γt , the pairwise covariance between
Ẑe

NT and each component of Ẑφ
Nk, Ẑψ

Tk, Ẑa
N , Ẑg

T is zero.

CENTRAL LIMIT THEOREM: We next establish a central limit theorem for the stacked sam-
ple moments

ẐNT�K := (Ẑe
NT� Ẑ

a
N� Ẑ

g
T � Ẑ

φ
N1� Ẑ

ψ
T1� � � � � Ẑ

φ
NK� Ẑ

ψ
TK

)
�

If a component of qNT converges to zero, the corresponding component of ẐNT�K converges
in probability to zero. We can therefore w.l.o.g. focus on the case in which the limit for each
component qNT is strictly positive. We then consider the process

ŴNT�K := (q−1/2
NT�eẐ

e
NT� q

−1/2
a�NTẐ

a
N�q

−1/2
g�NTẐ

g
T � Ẑ

φ
N1� Ẑ

ψ
T1� � � � � Ẑ

φ
NK� Ẑ

ψ
TK

)′
=: (Ŵ e

NT� Ŵ
a
N� Ŵ

g
T � Ŵ

φ
N1� Ŵ

ψ
T1� � � � � Ŵ

φ
NK� Ŵ

ψ
TK

)′
�

To apply a martingale CLT, we choose the filtration

FNT�s := σ
({α1� � � � �αν(s)� γ1� � � � � γτ(s)� ε11� � � � � εν(s)T }

)
�

Here we assume w.l.o.g. that T ≤N and let τ(s)= s and ν(s) := �Ns
T

�, where �a� denotes the
largest integer smaller than or equal to a. While bothN and T grow to infinity, we do not need
to constrain the relative rates at which N , T grow under the asymptotic experiment.

We then seek to apply the CLT in Theorem 2.3 in McLeish (1974) to the martingale

M̂NT�s := E[ŴNT�K|FNT�s]�
with increments

X̂NT�s := E[ŴNT�K|FNT�s] −E[ŴNT�K|FNT�s−1]�
Note that this CLT for martingale difference arrays allows for a triangular arrays where
the row-wise distributions for the increments X̂NT�s may change as N , T increase, and
does not constrain the filtrations FNT�s across N , T .

We next characterize the components of this martingale difference array X̂NT�s =
(X̂e

NT�s� X̂
a
N�s� X̂

g
T�s� � � � � X̂

φ
NK�s� X̂

ψ
TK�s). Since ai = E[Yit |αi] − E[Yit] is αi-measurable and
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α1� � � � �αN are independent, we have

X̂a
N�s =

rNT

N
√
qa�NT

ν(s)∑
i=ν(s−1)+1

ai = 1√
N

ν(s)∑
i=ν(s−1)+1

ai

σa
�

Similarly,

X̂
g
T�s = 1√

T

τ(s)∑
t=τ(s−1)+1

gt

σg
�

X̂φ
NK�s = 1√

N

ν(s)∑
i=ν(s−1)+1

φk(αi)�

X̂ψ
TK�s = 1√

T

τ(s)∑
t=τ(s−1)+1

ψk(γt)�

Moreover,

X̂e
NT�s = 1√

NTσe

ν(s)∑
i=ν(s−1)+1

{
τ(s)∑
t=1

eit +
T∑

t=τ(s)+1

E[eit |αi� εit]
}

+ 1√
NTσe

ν(s−1)∑
i=1

τ(s)∑
t=τ(s−1)+1

(
eit −E[eit |αi� εit]

)
�

Since, by Assumption 2.1, the first four moments of each component of X̂NT�s are
bounded, it follows that

T∑
s=1

(
a′X̂NT�s

)2 p→
T∑
s=1

a′ Var(X̂NT�s)a= a′a

for any a ∈R
K+3, and furthermore, we have the Lyapunov condition

lim
N�T

1
‖a‖3

2

T∑
s=1

E
[(
a′X̂NT�s

)3]→ 0�

which implies Condition (b) in Theorem 2.3 in McLeish (1974). It therefore follows from
that theorem and the Cramér–Wold device that rNTŴNT is asymptotically Gaussian, and
therefore

ẐNT�K
d→N(0�Q)�

where Q is a (2K+ 3)× (2K+ 3)matrix whose first three diagonal entries are qe, qa, and
qg, and the remaining 2K diagonal entries are equal to 1. For k = 1�2� � � � , the entries
of Q corresponding to covariances between ai and φk(αi) equal qak, and the covariances
between gt and ψk(γt) are equal to qgk. All other off-diagonal entries of Q are zero.
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Truncating the expansion (2.3) at K <∞, we define

rNT

(
ȲNT�K −E[Yit]

)= Ẑa
N + Ẑg

T + Ẑe
NT +�NT

K∑
k=1

ckẐ
φ
NkẐ

ψ
Tk�

From the previous steps, it then follows that

rNT

(
ȲNT�K −E[Yit�K]) d→ √

qaZa + √
qgZg + √

qeZe +�VK
along each converging sequence, where

VK :=
K∑
k=1

ckZ
ψ
kZ

φ
k

with the coefficients ck potentially varying along the limiting sequence, and Ze�Z
φ
1 �Z

ψ
1 �

� � � �Zφ
K�Z

ψ
K are i.i.d. standard normal random variables, and Za, Zg are standard normal

random variables with Cov(Za�Zφ
k )= qak/

√
qa, Cov(Zg�Zψ

k )= qgk/
√
qg, Cov(Za�Zg)=

Cov(Za�Zψ
k )= Cov(Zg�Zφ

k )= 0 for all k= 1�2� � � � .

TRUNCATION ERROR: Moreover, we can show that the approximation error with re-
spect to the distribution of rNT(ȲNT −E[Yit]) from the truncation at K <∞ can be made
arbitrarily small by choosingK sufficiently large. Specifically, if we consider the truncation
remainder,

RK�NT :=
∞∑

k=K+1

ckẐ
φ
NkẐ

ψ
Tk�

By Assumption 2.1, there exists Bv <∞ such that σ2
v ≤ Bv. This implies that

∞∑
k=1

c2
k =

∞∑
k=1

c2
kE
[
φk(αi)

]2]E[ψk(γt)2
]= E

[( ∞∑
k=1

ckφk(αi)ψk(γt)

)2]
= E

[
v2
it

]≤ Bv�
where the first and second step use orthonormality of the basis functions, and indepen-
dence of αi, γt .

For any δ > 0, we can therefore choose K <∞ such that

∞∑
k=K+1

c2
k ≤ δ2�

It then follows that for the truncation remainder,

E

[( ∞∑
k=K+1

ckẐ
φ
NkẐ

ψ
Tk

)2]
=

∞∑
k=K+1

E
[(
ckẐ

φ
NkẐ

ψ
Tk

)2]

=
∞∑

k=K+1

c2
kE
[(
Ẑφ

Nk

)2]
E
[(
Ẑψ

Tk

)2]= ∞∑
k=K+1

c2
k ≤ δ2�
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where the first step uses orthogonality of the basis functions and independence of αi, γt ,
the second step uses independence of αi, γt , and the third step follows from the normal-
ization of the second moments of the basis functions.

For any η > 0, we can therefore use Chebyshev’s inequality to bound the probability
P(|RK�NT |> η) ≤ δ2

K

η2 , where δ can be made arbitrarily small by choosing K ≡K(δ) large
enough. Since the limiting distribution is continuous as shown below, L can also be ap-
proximated arbitrarily well as K is chosen at a suitably large value. Note furthermore that
the magnitude of the approximation error can be controlled uniformly under Assump-
tion 2.2.

CONTINUITY OF LIMIT DISTRIBUTION: To establish claims (a) and (b), it remains to
show that the limit distribution is continuous. First, notice that we can verify using the
convolution formula that, for any continuously distributed W1 with p.d.f. f1 and an ar-
bitrary random variable W2 that is independent of W1, the sum W1 + W2 also follows a
continuous distribution with p.d.f. fW1+W2(s) = E[fW1(s − W2)]. It is therefore sufficient
to show that we can write the limiting distribution is that of a random variable which is
a sum of independently distributed components, at least one of which has a continuous
distribution.

We can then turn to the limiting distribution in (4.2),

L0(q� c��) := (√qeZe + √
qaZ

a + √
qgZ

g
)+� ∞∑

k=1

ckZ
ψ
kZ

φ
k �

We have by construction that qa + qg + qv + qe = 1, so that at least one of qa, qg, qv,
qe must be strictly positive, where Assumption 2.1 guarantees that rNT > 0 so that these
are in fact well-defined. If qe > 0, then

√
qeZ

e is continuously distributed, where Ze is
independent of Za, Zg, and V , so that the conclusion immediately follows. If qv + qe = 0,
the limiting distribution simplifies to

√
qaZ

a + √
qgZ

g with qa + qg = 1 and Za and Zg

both continuously distributed and independent of each other.

It therefore remains to consider the case qa+qg > 0 and qv > 0: If qv > 0, we must have
that �|ck|> 0 for at least one value of k ≥ 1. Since Za, Zg, Zφ

k , Zψ
k are jointly Gaussian,

we can write Za = β1Z
φ
k + Zφ

⊥�k and Zg = β2Z
ψ
k + Zψ

⊥�k, where Zφ
k , Zφ

⊥�k, Zψ
k , Zψ

k�⊥ are
independent. We can then write

√
qaZ

a + √
qgZ

g +�ckZϕ
kZ

ψ
k = √

qaZ
φ
k�⊥ + √

qgZ
ψ
k�⊥ + (β2

√
qg +Zφ

k

)(
β1

√
qa +�ckZψ

k

)
−β1β2

√
qaqg�

Since β2
√
qg + Zφ

k and β1
√
q
a
+ �ckZ

ψ are independent and continuously distributed,
then so is their product, using the formula for the density of the product of two indepen-
dent random variables. Since these random variables are independent of Zφ

⊥�k, Zψ
k�⊥, Ze,

and Zφ
k′ , Zψ

k′ for any k′ �= k, we obtain the desired conclusion. Q.E.D.

In order to prove Theorem 4.2, we first establish rates of consistency for the estima-
tors for the respective variances of the projection components, σ̂2

a , σ̂2
g , σ̂2

w introduced in
Section 3.
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LEMMA A.1: Suppose Assumption 2.1 holds. Then (a)

σ̂2
a − σ2

a = OP
(
N−1/2

(
σa + T−1/2σe

)2 + T−1σ2
v

)
�

σ̂2
g − σ2

g = OP
(
T−1/2

(
σg +N−1/2σe

)2 +N−1σ2
v

)
�

σ̂2
w − σ2

w = OP
(
(NT)−1/2σ2

e + (N−1/2 + T−1/2
)
σ2
v

)
�

(b) There exist no estimators for σ2
a , σ2

g , and σ2
w that converge at rates faster than those given

in (a). Specifically, σ2
a cannot be estimated at a rate faster than T−1 even when σ2

a = 0.

This lemma implies in particular that the estimators σ̂2
a , σ̂2

g , and σ̂2
w are rate-optimal.

Together with the continuous mapping theorem, this lemma implies directly that λ̂NT with
model selection is pointwise consistent. λ̂NT without model selection is uniformly consis-
tent if qv = 0, and inconsistent if qv > 0.

PROOF OF LEMMA A.1: For part (a), let ŝ2
a := 1

N−1

∑N

i=1 â
2
i , ŝ

2
g := 1

T−1

∑T

t=1 ĝ
2
t , and ŝ2

w :=
1

NT−N−T
∑M

i=1

∑T

t=1 ŵ
2
it be the empirical variances of the projection terms âi, ĝt , ŵit .

We can also verify that N
N−1 VarNT(âi) = σ2

a + σ2
w/T , T

T−1 VarNT(ĝt) = σ2
g + σ2

w/N , and
NT

NT−N−T VarNT(ŵit)= σ2
w.

Consider first the term ŝ2
a: We can write

â2
i =
(
ai + 1

T

T∑
t=1

wit

)2

=
(
ai + 1

T

T∑
t=1

eit

)2

+ 2

(
ai + 1

T

T∑
t=1

eit

)
1
T

T∑
t=1

vit +
(

1
T

T∑
t=1

vit

)2

�

Hence we have that

ŝ2
a −
(
σ2
a + 1

T
σ2
w

)
= 1
N

N∑
i=1

{(
ai + 1

T

T∑
t=1

eit

)2

−
(
σ2
a + 1

T
σ2
e

)}

+ 1
N

N∑
i=1

(
ai + 1

T

T∑
t=1

eit

)
1
T

T∑
t=1

vit + 1
N

N∑
i=1

{(
1
T

T∑
t=1

vit

)2

− 1
T
σ2
v

}

=:A1 +A2 +A3�

By independence of the rank variables αi, γt , εit in the Aldous–Hoover representation
and a martingale CLT, we have that

A1 =OP
(
N−1/2

(
σa + T−1/2σe

)2)
as N → ∞. Next, consider the term A3 where we can write

1
N

n∑
i=1

(
1
T

T∑
t=1

vit

)2

= 1
N

N∑
i=1

(
1
T

T∑
t=1

∞∑
k=1

ckφikψtk

)2

= 1
N

N∑
i=1

∑
k�k′
ckck′φikφik′

(
T∑
t=1

ψtk

)(
T∑
t=1

ψtk′

)
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=
∑
k�k′
ckck′

(
1
N

N∑
i=1

φikφik′

)(
T∑
t=1

ψtk

)(
T∑
t=1

ψtk′

)

=: 1
T

∑
k�k′

(
l
{
k= k′}+ 1√

N
Ẑφφ
Nkk′

)
Ẑψ

TkẐ
ψ

Tk′ � (A.1)

Here, Ẑφφ
Nkk′ = 1√

N

∑N

i=1(φikφik′ −E[φikφik′ ]), where E[φikφik′ ] equals 1 if k= k′ and zero
otherwise. In particular, it follows that

A3 =OP
(
T−1σ2

v

)
as N and T grow large. By similar calculations, we find that

A2 =
∞∑
k=1

ck

(
1
N

N∑
i=1

(
ai + 1

T

T∑
t=1

eit

)
φik

)(
1
T

T∑
t=1

ψtk

)

= OP
(
N−1/2

(
σa + T−1/2σe

)
T−1/2σv

)
�

noting that, by construction, E[aiφik] = 0 for each k = 1�2� � � � . Aggregating the contri-
butions of the individual terms A1, A2, A3, we then obtain

ŝ2
a −
(
σ2
a + 1

T
σ2
w

)
=OP

(
N−1/2

(
σa + T−1/2σe

)2 + T−1σ2
v

)
�

Similarly, we find that

ŝ2
g −
(
σ2
g + 1

N
σ2
w

)
=OP

(
T−1/2

(
σg +N−1/2σe

)+N−1σ2
v

)
�

Next, note that

σ̂2
w = 1

NT

N∑
i=1

T∑
t=1

(
v2
it + 2viteit + e2

it

)
�

From calculations analogous to (A.1), we also find that

1
NT

N∑
i=1

T∑
t=1

v2
it =Op

(
N−1/2 + T−1/2

)
�

Hence,

σ̂2
w − σ2

w =OP
(
(NT)−1/2σ2

e + (T−1/2 +N−1/2
)
σ2
v

)
�

The rates asserted in the lemma then follow directly from the definitions of the variance
estimators σ̂2

a := max{0� ŝ2
a − 1

T
ŝ2
w}, σ̂2

g := max{0� ŝ2
g − 1

N
σ̂2
w}.

For a proof of part (b), note first that it is sufficient to find a specific family of distribu-
tions under which that rate cannot be improved upon. Specifically, consider the model

Yit = αiγt + εit�
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where αi, γt , εit are independent, αi ∼N(μa�1), γt ∼N(μg�1) for some μa�μg ≥ 0, and
εit ∼N(0�σ2

ε).
To establish the rate for the contribution of terms depending on σ2

v to that bound,
consider the case σ2

ε = 0 and μa = 0. For this model, ai := E[Yit |αi] = αiμg and vit =
αi(γt −μg), so that σ2

a = μ2
g and σ2

v = 1. Clearly, μg cannot be estimated from the original
data at a better rate than from directly observing (αi)Ni=1 and (γt)Tt=1. Furthermore, since
γ1� � � � � γT are i.i.d., there exists no consistent test for the problem H0 : μg = 0 against
H1 : μg = T−1/2mg for any arbitrary mg > 0. Since under H0, σ2

a = 0, whereas under H1,
σ2
a = T−1m2

g, there can be no estimator for σ2
a that is consistent at a rate faster than T−1σ2

v .
The respective contributions of terms depending on σ2

a , σ2
g , and σ2

e to the rate bound
follow immediately from standard arguments for the case of i.i.d. data, which can simi-
larly be cast in terms of pairwise testing problems between drifting DGP sequences. Fi-
nally, consistent estimation of σ2

a under all DGPs permitted by our framework requires
simultaneously solving these pairwise testing problems that gave us the respective rate
contributions depending on σ2

a , σ2
g , σ2

e , and σ2
v . Hence, an upper bound is given by the

slowest of these rates, which establishes the claim for the rate of consistent estimation
of σ2

a . The respective upper bounds on the rate for estimating σ2
g and σ2

w follow from
analogous arguments. Q.E.D.

From the previous result, it follows that the variance estimator Ŝ2
NT�sel is pointwise con-

sistent:

COROLLARY A.1—Consistency of Ŝ2
NT�sel: Suppose that Assumption 2.1 holds. Then for

the variance estimator with model selection,∣∣∣∣ r
2
NT Ŝ

2
NT�sel

NT
− 1
∣∣∣∣ p→ 0

pointwise for any values of σ2
a , σ2

g , σ2
v , σ2

e . For the variance estimator without model selection,
convergence is uniform if qv = 0, but the estimator is inconsistent for qv > 0.

Noting that Var(rNT(ȲNT − E[Yit]))= 1, this corollary is an immediate consequence of
the convergence rates in Lemma A.1. In particular, if σ2

a = 0, Lemma A.1(a) implies
that Tσ̂2

a = Op(1), so that for any divergent sequence κa → ∞, Tσ̂2
a < κa with prob-

ability approaching 1, in which case D̂a(κa) = 0. On the other hand, if σ2
a > 0, then

σ̂2
a = σ2

a +Op(N−1/2). Hence, for the estimator with model selection, D̂a(κa)= 1 for any
sequence κa such that κa/T → 0. By the same reasoning, the selector D̂g(κg) = 0 with
probability approaching 1 if σ2

g = 0, and D̂g(κg) = 1 with probability approaching 1 if
σ2
g > 0. The conclusions regarding estimation without model convergence are immediate

given Lemma A.1.

Proof of Proposition 4.1

Consider again the model Yit = αiγt , with αi ∼ N(0�1), γt ∼ N(μg�1), where we let
μg := T−1/2mg. Note that this model satisfies Assumptions 2.1 and 2.2, so that this coun-
terexample is not ruled out by the conditions for the main results in this paper. Then for
any finite N , T ,

√
NTȲNT

d= (mg +Zg)Za� where Za�Zg
iid∼N(0�1)�
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In particular, taking limits along the drifting sequence for μg, the right-hand side expres-
sion is also the asymptotic distribution of the sample mean.

By inspection, the c.d.f. at certain quantiles of the asymptotic distribution for mg =
0 is different from that for any mg �= 0. Furthermore, by the same argument as in the
proof for part (b) of Lemma A.1, for any m̃g �= 0 there is no consistent test between the
alternatives mg = m̃g from mg = 0. However, a uniformly consistent estimator for the
asymptotic distribution would provide such a consistent test, a contradiction. Q.E.D.

Bootstrap Distribution

In order to obtain the limit of the bootstrap distribution, we introduce some additional
notation: for any array (ξit), we let the operator E∗

NT[ξit |αi] := 1
T

∑T

t=1 ξit denote the row-
wise average for the T observations in the ith row, E∗

NT[ξit |γt] := 1
N

∑N

i=1 ξit the column-
wise average for the N observations in the tth column, and E

∗
NT[ξit] := 1

NT

∑N

i=1

∑T

t=1 ξit
the pooled average over all NT observations. We also decompose ŵit = v̂it + êit with

êit = eit −E
∗
NT[eit |αi] −E

∗
NT[eit |γt] +E

∗
NT[eit]�

v̂it = v(αi�γt)=
∞∑
k=1

ckψk(γt)φk(αi)�

Given that notation, we define the localized second moments of the projection terms,

q∗
a�NT := r2

NTN
−1
E

∗
NT

[
â2
i

]= r2
NT

1
N2

N∑
i=1

â2
i � q∗

g�NT := r2
NTT

−1
E

∗
NT

[
ĝ2
t

]= rNT
1
T 2

T∑
t=1

ĝ2
t �

q∗
e�NT := r2

NT(NT)−1
E

∗
NT

[
ê2
it

]
� q∗

v�NT := r2
NT(NT)−1

E
∗
NT

[
v̂2
it

]
�

q∗
ak�NT := r2

NTN
−1
E

∗
NT

[
âiφk(αi)

]
� q∗

gk�NT := r2
NTT

−1
E

∗
NT

[
ĝtψk(γt)

]
�

for k= 1�2� � � � . We then also write

q∗
NT := (q∗

e�NT� q
∗
a�NT� q

∗
g�NT�0�0� � � �

)
and cNT := (c1�NT� c2�NT� � � � ), where we take the sequences cNT and q∗

NT to be elements of
�2.

We first consider convergence for a truncated version of the spectral representation for
the sample mean in (2.3) at some fixed integer K, 0<K <∞,

Ȳ ∗
NT�K := E

∗
NT[Yit] +√λa 1

N

N∑
i=1

âj(i) +
√
λg

1
T

T∑
t=1

ĝs(t) + 1
NT

N∑
i=1

T∑
t=1

ω1iω2t êj(i)s(t)

+ 1√
NT

K∑
k=1

ck

[
1√
N

N∑
i=1

ω1i

(
φk(αj(i))−E

∗
NT

[
φk(αj(i))

])]

×
[

1√
T

T∑
t=1

ω2t

(
ψk(γs(t))−E

∗
NT

[
ψk(γs(t))

])]
� (A.2)
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which is obtained by truncating the bootstrap analog of (2.3). This can be expressed in
terms of the truncated bootstrap process

Ẑ∗
NT�K := (Ẑe�∗

NT� Ẑ
a�∗
N � Ẑ

g�∗
T Ẑ

φ�∗
N1 � Ẑ

ψ�∗
T1 � � � � � Ẑ

φ�∗
NK � Ẑ

ψ�∗
TK

)′
�

where we let

Ẑa�∗
NT := rNT

N

N∑
i=1

âj(i)� Ẑ
g�∗
NT := rNT

T

T∑
t=1

ĝs(t)� Ẑe�∗
NT := rNT

NT

N∑
i=1

T∑
t=1

ω1iω2t êj(i)s(t)�

and

Ẑφ�∗
Nk := 1√

N

N∑
i=1

ω1i

(
φk(αj(i))−E

∗
NT

[
φk(αj(i))

])
�

Ẑψ�∗
Tk := 1√

T

T∑
t=1

ω2t

(
ψk(γs(t))−E

∗
NT

[
ψk(γs(t))

])
�

for k= 1� � � � �K.
To characterize the asymptotic distribution of Ȳ ∗

NT�K , we let c̃NT�K ∈ �2 denote the trun-
cated version of the vector cNT = (c1�NT� c2�NT� � � � ) of spectral coefficients in (2.3), where
the first K components of c̃NT�K coincide with the first K components of cNT , and all re-
maining coordinates are set to zero. We also define the distribution

L∗(c�q���λ) :=√λaqaZa +√λgqgZg +�
∞∑
k=1

ckZ
φ
k Z

ψ
k + √

qeZ
e�

where λ := (λa�λg), Ze�Zφ
1 �Z

ψ
1 �Z

φ
2 �Z

ψ
2 � � � � are i.i.d. standard normal random variables,

and Za, Zg are random variables with a standard normal marginal distribution and co-
variances Cov(Za�Zφ

k )= qak/
√
qa and Cov(Zg�Zψ

k )= qgk/
√
qg.

LEMMA A.2—Bootstrap CLT: Consider the bootstrap with shrinkage parameters λNT =
(λa�NT�λg�NT) and suppose that Assumption 2.1 holds. Then, for any fixed K <∞, we have
that ∥∥P∗

NT

(
rNT

(
Ȳ ∗

NT�K − ȲNT

))−L∗(c̃NT�K�q∗
NT���λNT

)∥∥
∞

p→ 0�

PROOF: First we consider the contribution of the term

Ẑe�∗
NT := rNT

NT

N∑
i=1

T∑
t=1

ω1iω2t êit �

Notice that, holding ê11� � � � � êNT fixed, this sum is a bilinear form in ω1 := (ω11� � � � �ω1N)
′

and ω2 := (ω21� � � � �ω2T )
′. Theorem 1 in de Jong (1990) then gives sufficient conditions

for asymptotic normality of Ẑe�∗
NT conditional on ê11� � � � � êNT and α1� � � � �αN�γ1� � � � � γT .

Specifically, we need to verify that the standardized fourth central moment, E[(Ẑe�∗
NT)

4]/
E[(Ẑe�∗

NT)
2]2 → 3 almost surely, noting that E[Ẑe�∗

NT ] = 0.
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Multiplying out, the fourth power of this sum is given by

(
r−1

NTẐ
e�∗
NT

)4 = 1
(NT)4

N∑
i1����i4=1

T∑
t1�����t4=1

ω1i1ω1i2ω1i3ω1i4ω2t1ω2t2ω2t3ω2t4 êi1t1 êi2t2 êi3t3 êi4t4 �

Since ω1i, ω2t are i.i.d. and mean zero, any terms in which one or more indices in
{i1� � � � � i4� t1� � � � � t4} appear as an odd number of multiples have zero expectations. When
all indices appear as an even number of multiples, there are four possibilities, where for
i1 �= i2, t1 �= t2 we have E[ω2

1i1
ω2

1i2
ω2

2t1
ω2

2t2
] = μ4

2 (type 1), E[ω4
1i1
ω2

2t1
ω2

2t2
] = μ2

2μ4 (type 2),
E[ω2

1i1
ω2

1i2
ω4

2t1
] = μ2

2μ4 (type 3), and E[ω4
1i1
ω4

2t1
] = μ4

2 (type 4), and μ2 := E[ω2] = 1 and
μ4 := E[ω4]<∞.

Moreover, since ei�t and ej�s are mean-independent whenever (i� t) �= (j� s), we have that
E[ei1t1ei2t2ei3t3ei4t4] = 0 whenever at least one index pair in {(i1� t1)� (i2� t2)� (i3� t3)� (i4� t4)}
appears exactly once. Hence, the average of êi1t1 êi2t2 êi3t3 êi4t4 over all tuplets in which
the index (is� ts) appears exactly once converges to zero almost surely by a strong
law of large numbers. Hence, the contribution of terms in which any index pair in
{(i1� t1)� (i2� t2)� (i3� t3)� (i4� t4)} appears an odd number of times is asymptotically negli-
gible.

There are 6N(N − 1)T(T − 1) terms of type 1 such that all index pairs appear an even
number of times, 6NT(T − 1) such terms of type 2, 6N(N − 1)T terms of type 3, and NT
terms of type 4. Since the expectations E[e2

i1t1
e2
i2t2

] =: σ4
e and E[e4

i1t1
] are strictly positive

and bounded by assumption regardless of the overlap between indices, the terms of types
2, 3, and 4 are asymptotically negligible.

Hence, as N�T → ∞,

E
[(
r−1

NTẐ
e�∗
NT

)4]= 6N(N − 1)T(T − 1)
(NT)4 E

[
e2
i1t1
e2
i2t2

]+ o(1)
= 3
(NT)2σ

4
e + o(1)�

where the remainder term o(1) vanishes almost surely. From similar arguments, we can
confirm that

E
[(
r−1

NTẐ
e�∗
NT

)2]= 1
NT

σ2
e + o(1)�

so that

E
[(
Ẑe�∗

NT

)4]
E
[(
Ẑe�∗

NT

)2] = 3 + o(1)�

as desired. Given the assumptions of this theorem, it then follows from Theorem 1 in de
Jong (1990) that Ẑe�∗

NT →N(0� qe) conditional on ê11� � � � � êNT and α1� � � � �αN�γ1� � � � � γT .
For the contribution of the remaining terms, note that a∗

i , g
∗
t are i.i.d. draws from the

empirical distribution of âi, ĝt , and ω1i, ω2t are i.i.d. draws from the auxiliary distribu-
tion for the (Wild bootstrap) multiplier. In particular, if we let φ∗

1ik := ω1i(φk(αj(i)) −
E

∗
NT[φk(αj(i))]) and ψ∗

2tk :=ω2t(ψk(γs(t))−E
∗
NT[ψk(αs(t))]), then the random vectors ζ∗

i :=
(a∗

i �φ
∗
1i1� � � � �φ

∗
1iK)

′ and ξ∗
t := (g∗

t �ψ
∗
2t1� � � � �ψ

∗
2tK) are i.i.d. conditional on the respective

empirical distributions of âi and ĝt .



BOOTSTRAP WITH CLUSTER-DEPENDENCE 2183

By Assumption 2.1, the third conditional moments of âi, ĝt and (ωiφk(αi)�ωtψk(γt))k≥1

given (Yit : i = 1� � � � �N� t = 1� � � � �T ) are almost surely bounded, so that from the same
argument as in the proof of Theorem 1 in Liu (1988), the Berry–Eséen theorem implies a
CLT for the bootstrap processes 1√

N

∑N

i=1 ζ
∗
i and 1√

T

∑T

t=1 ξ
∗
t . Since these components are

independent by construction, it follows that∥∥P∗
NT

(
Ẑ∗

NT�K

)−N(0�Q∗
NT�K

)∥∥
∞ = oP(1)

conditional on (Yit) almost surely. Here, Q∗
NT�K is a (2K + 3)× (2K + 3) diagonal matrix

whose first three diagonal entries are q∗
e�NT , q∗

a�NT , and q∗
g�NT , and the remaining 2K diag-

onal entries converge almost surely to 1. All other off-diagonal entries of Q∗
NT�K converge

almost surely to zero.
Finally, we can rewrite (A.2) and obtain

rNT
(
Ȳ ∗
NT�K − ȲNT

) := Ẑa�∗
N + Ẑg�∗

T + Ẑe�∗
NT +�NT

K∑
k=1

ckẐ
φ�∗
Nk Ẑ

ψ�∗
Tk �

Note that this is a Lipschitz transformation of the components of Ẑ∗
NT�K with Lipschitz

constant less than or equal to 1. It then follows from the joint CLT and a continuous
mapping theorem for the bootstrap (see, e.g., Proposition 10.7 in Kosorok (2008)) that∥∥P∗

NT

(
Ȳ ∗

NT�K

)−L∗(c̃NT�K�q∗
NT���λNT

)∥∥
∞ = oP(1)�

establishing the claim. Q.E.D.

Proof of Theorem 4.2

For bootstrap consistency, it suffices to verify whether the limiting distributions of
the sampling distribution rNT(ȲNT − E[Yit]) and the limit of the bootstrap distribution
rNT(Ȳ

∗
NT −ȲNT) given the sample coincide. In what follows, we first consider the asymptotic

distribution of the truncated representation of the bootstrapped mean Ȳ ∗
NT�K defined in

(A.2) and let c̃NT�K ∈ �2 denote the truncated version of the vector cNT = (c1�NT� c2�NT� � � � )
of spectral coefficients in (2.3), where the first K components of c̃NT�K coincide with the
first K components of cNT , and all remaining coordinates are set to zero.

For pointwise consistency of the bootstrap with model selection, note first that the local
parameter with both qa +qg > 0 and qv > 0 can only be achieved at drifting sequences, so
that this case is irrelevant for pointwise convergence. In particular, we can without loss of
generality set qak = qgk = 0 for each k= 1�2� � � � . By Lemma A.1(a), q∗

NT�K − qNT�K
p→ 0 so

that q∗
NT�K − q

p→ 0 along any converging sequence qNT�K → q, and λ̂a, λ̂g are consistent
for λa, λg whenever either qa + qg = 0 or qv = 0, where convergence is pointwise.

Furthermore, the limit law L is continuous with respect to the parameters (QcNT�K�q�
��λ): Following the continuity argument in the proof of Theorem 4.1, the limit law
L∗(QcNT�K�q���λ) is a weighted sum of independent, continuously distributed random
variables,

S∗
K := a1W1 + a2W2 + · · · + aK+3WK+3

which depends on the parameters (QcNT�K�q���λ) only through the coefficients a1� � � � �
aK+3, which are in turn square roots or products of those parameters. Furthermore, as



2184 KONRAD MENZEL

K→ ∞, the variance of S∗
K converges to 1 so that

∑∞
k=1 a

2
k = 1. Therefore, at least one of

the coefficients a1� � � � � aK+3 has to be strictly positive, w.l.o.g. a1 > 0. The c.d.f. of S∗
K is

then given by

FS(z)=
∫
FW1

⎛
⎜⎜⎜⎜⎜⎝
z−

K+3∑
k=2

akwk

a1

⎞
⎟⎟⎟⎟⎟⎠ fW2(w2)dw2 � � � fWK+3(wK+3)dwK+3�

with FWk(·), fWk(·) denoting the c.d.f. and p.d.f. ofWk. SinceW1 is continuously distributed
and a1 > 0 by assumption, the c.d.f. FS(·) varies continuously in a1� � � � � aK+3, so that
L∗(QcNT�K�q���λ) is indeed continuous in these parameters with respect to the KS metric.

Hence, together with the continuous mapping theorem, Lemma A.2 implies that∥∥P∗
NT

(
rNT

(
Ȳ ∗

NT�K − ȲNT

))−L∗(c̃NT�K�q���λNT)
∥∥

∞
p→ 0�

We can then use an approximation argument analogous to that in the proof of Theorem
4.1 to conclude that the distribution of the truncated version Ȳ ∗

NT�K of the bootstrap mean
can be made to approximate arbitrarily closely to that of Ȳ ∗

NT by choosingK large enough,
so that ∥∥P∗

NT

(
rNT

(
Ȳ ∗

NT − ȲNT

))− P
∗
NT

(
rNT

(
Ȳ ∗

NT�K − ȲNT

))∥∥
∞ = oP(1)

and ∥∥L∗(c̃NT�K�q���λNT)−L∗(cNT�q���λNT)
∥∥

∞ = oP(1)�
Hence, pointwise convergence for the bootstrap with model selection follows from Theo-
rem 4.1 and Lemma A.2 together with continuity of L∗(c̃NT�K�q���λ) in q, and the trian-
gle inequality. The analogous result for the pivotal bootstrap follows from Corollary A.1
together with the continuous mapping theorem.

For uniform consistency of the bootstrap without model selection, we first consider
convergent drifting sequences qNT , cNT with limits q and c, respectively. We also let

q̄NT := (qe�NT� qa�NT + qe�NT + qv�NT� qg�NT + qe�NT + qv�NT�0�0� � � � )�

Lemma A.1(a) implies that q∗
NT − q̄NT converges in probability to zero, and λ̂a, λ̂g are

consistent for λa and λg along such a sequence whenever qv = 0. Convergence for the
bootstrap without model selection along the convergent sequence qNT then follows from
the same arguments as for the pointwise case, noting that under Assumption 2.2(b), the
approximation error in (2.3) from truncation atK <∞ can be controlled uniformly under
drifting sequences for cNT .

The conservative bootstrap is identical to the bootstrap with model selection ex-
cept in the event D̂a(κa) = 0 or D̂g(κg) = 0. For D̂a(κa) = 0, we have by inspection

that
√

λ̂a
Nκa

∑N

i=1 a
∗
i�b

d→ N(0�1), and for D̂g(κg) = 0, we have
√

λ̂g

Tκg

∑T

t=1 g
∗
t�b

d→ N(0�1),

whereas the other components of the bootstrap distribution coincide with their analogs
for the bootstrap with model selection.

This establishes the claims of the theorem under any convergent sequences qNT , cNT . To
conclude the proof, it remains to show that it is in fact sufficient for uniformity to consider
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convergent subsequences for which the appropriately normalized parameters converge to
proper limits. Here we can adapt an argument from the proof of Theorem 1 in Andrews
and Guggenberger (2010), noting that the limiting sequences for the truncated version
spectral representation ȲNT�K and its bootstrap analog Ȳ ∗

NT�K in the proofs of Theorem 4.1
and Lemma A.2 are both indexed by finite-dimensional subvectors of c and q. Since qa +
qg +qv+qe = 1, such a subvector of q can only take values in a compact set, and the norm
‖c̃NT�K‖2 ≤∑K

k=1 c̄
2
k <∞ by Assumption 2.2. Hence, such a convergent subsequence for

these subvectors can be extracted from (qNT� cNT) by the Bolzano–Weierstrass theorem,
and the truncation error can then be made arbitrarily small by choosing K large enough.

Q.E.D.

Proof of Proposition 4.2

We can establish the refinements of this bootstrap procedure by establishing separate
Edgeworth expansions for the sampling and bootstrap distributions, using Theorems 2.2
and 5.1 of Hall (1992), and then showing that the first three cumulants of the bootstrap
distribution converge almost surely to those of the sampling distribution.

Since by assumption σ2
a + σ2

g are bounded away from zero, the rate rNT is no faster
than min{N−1/2�T−1/2}. We therefore first focus on the contribution of Ẑa�∗

N + Ẑ
g�∗
T , and

then show that the contribution of the remaining terms is at most of the order (NT)−1/2.
Furthermore, according to our results in Lemma A.1, we have that λa

p→ 1 and λg
p→ 1

whenever σ2
a ≥ C > 0, and σ2

g ≥ C > 0, respectively. In what follows, we assume without
loss of generality that both σ2

a and σ2
g are bounded away from zero.

Edgeworth Expansions

To obtain an Edgeworth expansion for the studentized version of Ẑa�∗
N + Ẑg�∗

T , it suffices
to notice that a1� � � � � aN and g1� � � � � gT are i.i.d. draws from their respective marginal dis-
tributions, since αi and γt are i.i.d. by Assumption 2.1. Hence, the smooth function model
in Hall (1992) directly applies, and since bounded moments of order 4 and Cramér’s con-
dition were assumed in this proposition, we can directly apply Theorem 2.2 in Hall (1992)
to obtain the Edgeworth expansion of the sampling distribution to order j = 2.

For the bootstrap distribution, note that by construction of the bootstrap procedure,
a∗

1� � � � � a
∗
N and g1� � � � � g

∗
T are i.i.d. draws from the respective empirical distributions of âi

and ĝt . We can therefore directly apply Theorem 5.1 in Hall (1992), where the remaining
regularity conditions are subsumed by the assumptions of this proposition.

Comparing Moments

We next need to establish that the first three cumulants of the bootstrap distribution
consistently estimate those of the sampling distribution: First note that the third moment
of âi under the sampling distribution is

E
[
â3
i

]= (E[a3
i

]+ 2
T
E
[
aiw

2
it

]+ 1
T 2E

[
w3
it

])(
1 +O(1/N))�

where we used the fact that wit is mean-independent of ai. By the assumptions of the
theorem and a central limit theorem, we then have

E
∗
NT

[(
a∗
i�b

)3]−E
[
a3
i

]= 1
N

N∑
i=1

(
â3
i −E

[
a3
i

])=OP(N−1/2
)
�
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Hence, for the variables

Ŵ a
N := 1√

N

N∑
i=1

ai and Ŵ a�∗
N := 1√

N

N∑
i=1

a∗
i�b�

we have that

E
∗
NT

[(
Ŵ a�∗
N

)3]−E
[(
Ŵ a
N

)3]=N−1/2
(
E

∗
NT

[(
a∗
i

)3]−E
[
a3
i

])=OP(N−1
)
�

Similarly, for

Ŵ
g
N := 1√

T

T∑
t=1

gt and Ŵ
g�∗
T := 1√

T

T∑
t=1

g∗
t�b�

we have that

E
∗
NT

[(
Ŵ

g�∗
T

)3]−E
[(
Ŵ

g
T

)3]= T−1/2
(
E

∗
NT

[(
g∗
t

)3]−E
[
g3
t

])=OP(T−1
)
�

By construction, Ŵ a
N and Ŵ g

T and their bootstrap versions Ŵ a�∗
N and Ŵ g�∗

T are indepen-
dent. For any weights s1, s2, we therefore have

E
∗
NT

[(
s1Ŵ

a�∗
N + s2Ŵ

g�∗
T

)3]−E
[(
s1Ŵ

a
N + s2Ŵ

g
T

)3]=OP(N−1 ∨ T−1
)
�

We can apply this in particular to the case s1 = λa and s2 = λg, where λa, λg
p→ 1.

Taken together with the Edgeworth expansions of the sampling distribution and the
bootstrap distribution, this implies that the bootstrap distribution Ẑa�∗

NT + Ẑ
g�∗
NT approx-

imates the sampling distribution of Ẑa
N + Ẑ

g
T at a rate r−2

NT = O(N−1 ∨ T−1) under the
Kolmogorov metric.

Remainder

Finally, we need to assess the magnitude of the contribution of the remaining terms of
the representation of rNT(Ȳ

∗
NT − ȲNT). We already showed in the proof of Lemma A.2 that

the term

Ẑe�∗
NT +

∑
k

ckẐ
φ�∗
Nk Ẑ

ψ�∗
Tk =OP

(
(NT)−1/2

)
�

Since the limiting distribution of Ẑa�∗
NT + Ẑg�∗

NT is Gaussian, its c.d.f. is Lipschitz-continuous,
so that ∥∥∥∥P∗

NT

(√
NT

Ȳ ∗
NT − ȲNT

Ŝ∗
NT�sel

)
− P

∗
NT

(
Ẑa�∗

NT + Ẑg�∗
NT

Ŝ∗
NT�sel

)∥∥∥∥
∞

=O((NT)−1/2
)

as well. The analogous conclusion holds for the sampling distribution. Taken together
with the rate of approximation for the leading term Ẑa

N + Ẑ
g
T and its bootstrap analog,

this establishes the claim. Q.E.D.
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