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Abstract. We provide asymptotic approximations to the distribution of statistics that are

obtained from network data for limiting sequences that let the number of nodes (agents)

in the network grow large. Network formation is permitted to be strategic in that agents’

incentives for link formation may depend on the ego and alter’s positions in that endoge-

nous network. Our framework does not limit the strength of these interaction effects, but

assumes that the network is sparse. We show that the model can be approximated by a

sampling experiment in which subnetworks are generated independently from a common

equilibrium distribution, and any dependence across subnetworks is captured by state vari-

ables at the level of the entire network. Under many-player asymptotics, the leading term

of the approximation error to the limiting model established in Menzel (2015b) is shown to

be Gaussian, with an asymptotic bias and variance that can be estimated consistently from

a single network.
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1. Introduction

We develop an asymptotic theory for structural models of network formation where agents

(nodes) may be pursuing strategic motives in deciding whether or not to form a link (edge). In

economic contexts, the language of networks has been extremely useful to describe collections

of transactions, contracts, or other relationships, where the various agreements among pairs

or small groups of economic agents may be interrelated.

For example if a network transmits information, then the benefit from a link to another

node varies with how centrally that node is located in the network, and the sign of that effect

generally depends on whether information is rival or not (Calvó-Armengol (2004) and Calvó-

Armengol and Jackson (2004)). Third parties may be used to screen, monitor, or otherwise

secure risky transactions, providing an incentive to form more tightly connected clustered

or cliques of agents (Jackson, Rodriguez-Barraquer, and Tan (2012), Ambrus, Mobius, and

Szeidl (2014), and Gagnon and Goyal (2016)). If bargaining takes place on a network of
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longer-term relationships, node pairs at critical bottlenecks may be able to extract greater

surplus than more marginal nodes (Lee and Fong (2013) and Manea (2018)). Currarini,

Jackson, and Pin (2009) and Currarini, Jackson, and Pin (2010) analyze a friendship for-

mation model with homophilous preferences and endogenous search effort that predicts an

effect of relative group size on friendship networks (“relative homophily”) in addition to

assortatitivity on the homomphilous attributes.

Stylized models for these problems predict that networks formed subject to these strategic

motives depart in systematic ways from an idealized benchmark (e.g. Erdős-Rényi random

graphs). However more comprehensive empirical models that would allow to separate those

patterns from other confounding effects in order to validate these predictions empirically

remain extremely difficult to solve and estimate. With strategic interdependencies in link

payoffs, links between agent pairs can no longer be modeled independently, and standard

solution concepts may fail to predict a unique outcome. While these challenges closely

resemble known problems for simultaneous discrete choice and game-theoretic models (see

e.g. Heckman (1978), Bjorn and Vuong (1984), Bresnahan and Reiss (1991), and Tamer

(2003)), they manifest themselves at a much greater level of complexity in the context of

networks. Real-world examples of networks typically involve a fairly large number of agents

and the relevant “action space” (corresponding to the sets of other nodes that an agent can

link to) also grows in dimension with the number of nodes in the network.

Contribution. This paper develops tractable asymptotic approximations to the distribu-

tion of network moments, where we take limits of observable quantities along sequences of

networks consisting of a finite, but increasing number of nodes drawn at random from a

common population. As an approximation device, this thought experiment yields probabil-

ity limits for observable features of the network that can be characterized directly in terms

of payoff parameters, as well as a central limit theorem to describe the asymptotic behavior

of the approximation error. These approximations can be used for estimation and inference

regarding payoff parameters via likelihood- or moment-based methods.

Menzel (2015b) already derived the first-order limit of conditional link formation frequen-

cies for the setup considered in this paper and showed how these can be used to obtain a

pseudo likelihood or other moment conditions in terms of structural payoff parameters. For

a range of scenarios, expressions for these limits are available in closed form given a vector

of aggregate state variables that solve a population fixed-point condition. For estimation

Menzel (2015b) proposed a pseudo maximum likelihood estimator that is conditional on the

observable aggregate states, and treats the unobserved aggregate states as nuisance param-

eters which satisfy the aggregate constraints implied by the theory. The structure of the

limiting problem is therefore very similar to computational problems that are commonly
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encountered in empirical industrial organization, including stationary discrete dynamic pro-

gramming problems with a value function defined by a Bellman iteration, for which reliable

and efficient computational solutions already exist (see e.g. Rust (1987), Hotz and Miller

(1993), Aguirregabiria and Mira (2007), Su and Judd (2012)). This paper derives a (many

player) asymptotic theory, including weak convergence and the asymptotic distribution of

network moments, that can be used to formalize this particular approach for estimation

and inference. In addition, the results in this paper can also be used when the researcher

estimates parameters using the limiting approximation to other moment conditions for the

network data which may take the form of equality or inequality restrictions.

Most importantly, this paper quantifies the impact of the approximation errors under

many-player asymptotics for estimation and inference, where we establish a characterization

of asymptotic bias and a central limit theorem for the leading stochastic component of

the many-player limiting approximation. Since that leading term of the approximation error

results from sampling uncertainty regarding the nodes forming the network, the distributional

theory can be used for inferential statements regarding payoff parameters that are based on

a finite number of large networks, possibly a single realization of the network. One key

qualitative feature of our asymptotic analysis is that we consider sparse network sequences

in which each node connects to a number of alters that remains stochastically bounded as

the size of the network grows, which we think of as a reasonable qualitative approximation

to many real-world economic networks with a large number of agents.

The key idea behind our approach is to exploit exchangeability and invariance properties

that are built into a typical empirical model. At the center of this approximation is a

representation of the network formation model as a sample of conditionally independent

subnetworks. In that sampling representation, the endogenous network neighborhood for

each subnetwork is drawn independently from a common distribution of exogenous and

(endogenous) network attributes for the nodes that may potentially accept a link to one or

several nodes in that subnetwork.

Since the value of network attributes for these neighboring nodes are in part determined

by the subnetwork itself, we introduce the notion of potential values for network attributes,

accounting for the equilibrium response in the network to conjectural local changes. Further-

more, in addition to the “local” endogeneity modeled as potential values, the distribution

generating potential network neighbors is determined by “global” equilibrium conditions in

the network. We show that, to the first order of approximation, this endogeneity is captured

by aggregate state variables, which are determined in equilibrium by an aggregate fixed-point

condition. This “flattening” of the network graph then allows to evaluate probabilities for

subgraph configurations among a finite subset of nodes entirely in terms of subnetworks of

a fixed size.
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Literature. This paper builds on the approach in Menzel (2015b) who derived the first-

order limit of the network formation model but provided no asymptotic theory for stochastic

convergence of network moments to their asymptotic analogs. The law of large numbers and

central limit theory in this paper provide a sampling theory, allowing to apply his results

for estimation or inference of structural parameters. The general approach in this paper,

exploiting symmetry and identifying aggregate state variables has conceptual parallels with

Menzel (2016b)’s framework of many-player asymptotics for discrete games, however the

present setting is fundamentally different due to the non-anonymous nature of interactions in

a network formation problem among identifiable agents. We also build on insights regarding

the asymptotic distribution of multi-way dependent arrays in Menzel (2016a), where we find

that for the sparse network sequence considered in this paper, non-Gaussian components of

the distribution are dominated in the limit. A similar phenomenon was found by Graham

(2020) for sparse dyadic arrays.

A different set of asymptotic results for large network formation models is available from

Leung (2016) and Leung and Moon (2019) who give conditions on link preferences under

which the network separates into bounded, non-overlapping components that do not interact

strategically. Our approach differs from theirs in that we do not constrain the strength of

strategic interaction effects, allowing for preference cycles of arbitrary length. The other key

difference is in the role of node “locations” in the attribute space. Our framework allows

for distance (or other functions of node positions) to have an effect on link preferences that

remains at the same order of magnitude as unobserved taste shocks and strategic effects,

whereas their framework requires the effect of distance in homophilous attributes to dominate

as the network grows. Earlier work by Leung (2015) also considered an asymptotic theory

for network models based on weak dependence under large-domain asymptotics.

Our approach also differs from a more established literature on random networks in prob-

ability and statistics that derives asymptotic properties of large networks based on indepen-

dence or exchangeability assumptions, starting with the classical Erdős and Rényi (1959)

random graph (RGM) model and including more recent work by Lovasz (2012), Bickel, Chen,

and Levina (2011), Bhattacharya and Bickel (2015) and others. In economics, this approach

has been generalized substantially by Chandrasekhar and Jackson (2016) who propose a

model in which not only edges but also larger subgraphs are formed at random. Among

other advantages this allows to approximate patterns of clustering that theoretical models of

strategic network formation would predict. However for the settings of strategic interactions

considered in this paper, a pairwise stable graph among finitely many nodes is usually not

jointly exchangeable. Furthermore our main objective is to interpret observable features of

the graph in terms of economic primitives, rather than purely descriptive, “reduced-form”

parameters which may not be interpretable in terms of the strategic motives that gave rise
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to the network or even constitute stable features of the model especially when a pairwise

stable network is not unique.

The results in this paper are also complementary to recent advances in understanding iden-

tification of network formation models, including Mele (2017), de Paula, Richards-Shubik,

and Tamer (2018), Sheng (2020),Graham (2017), Dzemski (2014), and Graham (2012). This

work clarifies identification and provides moment conditions relating observable quantities

to economic primitives, and the results in this paper can be used for inference based on

those identification strategies when the data comes from a small number of large networks.

Graham and (eds.) also provides a summary of recent developments in the econometric

literature on network data.

The remainder of the paper is structured as follows: we first describe our general framework

for estimation, then two separate sections introduce the main two concepts for our analysis -

“local” potential values for endogenous network variables, and aggregate states characterizing

a “global” equilibrium - together with key intermediate results. Section 5 then states the

main formal results, a law of large numbers and the asymptotic distribution for the class of

network moments considered in this paper. Section 6 concludes.

2. Setup

We assume that the researcher observes data from a network among n agents (“nodes”/“vertices”)

where n is large. Network connections are represented by the n × n adjacency matrix

L = (Lij)i,j, with the (i, j)th entry corresponding to the value of the edge from node i to

j. For our purposes, links between agents are assumed to be undirected, Lij = Lji and un-

weighted, Lij ∈ {0, 1} for all i, j, and we rule out the possibility of self-links, Lii = 0. Each

node is associated with a vector xi of attributes, with X := [x1, . . . , xn]
′ denoting the stacked

attribute vectors for the entire network. We also let L− {ij} be the network resulting from

deleting the edge ij from L, that is from setting Lij = Lji = 0. Similarly, L + {ij} denotes

the network resulting from adding the edge ij to L.

For pedagogical purposes, we will also primarily discuss the case in which the data consists

of the matrices L,X for a single network. Since our theory concerns the asymptotic behavior

of the network formation model, it is not essential to our results which nodes and attributes

are observed by the researcher. Our theoretical arguments can also be easily extended to

multiple large networks.

2.1. Network Moments. Our main results concern D-adic moments that are a function

of the attributes of the nodes in the D-ad interacted with indicators for events regarding the

subgraph (edges) among those nodes.
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Specifically, let L|i1,...,iD denote the subnetwork among the nodes i1, . . . , iD, as represented

by the submatrix of L corresponding to the rows and columns indexed with i := (i1, . . . , iD)
′,

and xi ≡ xi1,...,iD := (xi1,...,iD)
′ the attributes of the nodes forming the D-ad.

Let Ai ⊂ {0, 1}D(D−1)/2 denote an event regarding undirected subnetworks among the D

nodes. We then consider moment functions that are of the form

mi(L,X; θ) = 1l
{
L|i ∈ Ai

}
h(xi; θ)

for some function (“instrument”) h : XD ×Θ → Rq of node attributes and the parameter θ.

Our asymptotic theory concerns D-adic moments of the form

m̂n(θ) =

[(
n

D

)
pn

]−1 ∑
i1,...,iD

mi1...iD(L,X; θ) (2.1)

These generalized subgraph counts are appropriately normalized averages over all subnet-

works consisting of D distinct nodes. The focus of this paper is on sparse network sequences

under which link probabilities at the level of a dyad go to zero, so that the normalizing

sequence pn will be chosen to ensure that p−1
n E[mi(L,X; θ)] converges to a nontrivial limit.

For expositional purposes we focus on the case of moments based on a single network event

Ai, but more generally our arguments easily generalize to stacked moments corresponding

to different events A
(1)
i , . . . , A

(Q)
i with respective instruments h(1)(xi; θ), . . . ,h

(Q)(xi; θ) and

normalizing sequences p
(1)
n , . . . , p

(Q)
n .

Assumption 2.1. (Moment Functions) (a) The function h : XD × Θ → Rq, (x, θ) 7→
h(x; θ) is bounded and continuous in θ. Given the asymptotic sequence of networks, the

normalizing sequence pn is such that p−1
n Pn

(
L|i ∈ Ai

)
is bounded as n increases.

Denoting

πn(Ai|x1,...,D) := Pn

(
L|i ∈ Ai

∣∣xi = x1,...,D

)
the conditional expectation of the moment function given xi is

En [mi(L,X)|xi = x1,...,D] = πn(Ai|x1,...,D)h(x1,...,D; θ)

in any finite network, so that under Assumption 2.1, the expectation of m̂n(θ) is bounded.

Similarly, the conditional variance

Varn [mi(L,X)|xi = x1,...,D] = πn(Ai|x1,...,D) (1− πn(Ai|x1,...,D))h(x1,...,D; θ)
2

If Ai does not include the empty graph L|i = 0, then for a sparse network πn(Ai|x1,...,D) →
0 for all values of x1,...,D so that the expectation and the variance of the same order of

magnitude. We also denote the unconditional probability with

pn := E [πn(Ai|x1,...,D)]
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which we will use as the normalizing sequence in (2.1).

Many-Player Asymptotics. Following the approach in Menzel (2015b), we derive a limiting

model, where we consider limits of the form

π0(Ai|x1,...,D) := lim
n
p−1
n πn(Ai|x1,...,D)

as the number of nodes in the network grows to infinity. Then the conditional expectation

of the moment function given xi under the limiting model is

E0 [mi(L,X; θ)|xi = x1,...,D] ≡ π0(Ai|x1,...,D)h(x1,...,D; θ)

and the limit of the moment is given by

m0(θ) := E0 [π0(Ai|x1,...,D)h(x1,...,D; θ)]

which is also bounded under Assumption 2.1.

The main purpose of our analysis is to provide asymptotic approximations to the distri-

bution of network moments m̂n(θ) that are of the form (2.1), assuming that the number of

agents (nodes) in the network is large. A previous paper by Menzel (2015b) derived a limit

model that is a distribution (or set of distributions) for the network variables of interest.

This limit model implies a set of limiting values (possibly singleton) for the network moment

m̂n(θ). In practice, this limiting model can be used to obtain bounds or other moment

conditions for identification and estimation of payoff parameters.

For data from an economic or social network with only finitely many agents, these moment

conditions only hold up to an approximation error which vanishes along the asymptotic se-

quence. The objective of this paper is to characterize the leading terms of the approximation

error from evaluating a moment of the data under the limiting distribution instead of the

finite-player distribution. We obtain an approximation of the form

m̂n(θ) = m0(θ) + n−1/2Zn(θ) + oP (n
−1/2) (2.2)

where the focus of this paper is on estimating the distribution of the random variable Zn(θ)

which is asymptotically tight, but not necessarily zero-mean.

The subgraph counts m̂n(θ) share some qualitative features with U-statistics of order

D whose convergence rate and asymptotic distribution generally depend on its order of

degeneracy and whether the network is sparse. We find that under the assumptions of this

paper, m̂n(θ) converges in probability to an element of a set of possible limit values m0(θ)

which in some cases can be characterized in closed form. Furthermore, the leading term of

the asymptotic approximation error is Gaussian,

Vn(θ)
−1/2(Zn(θ)−Bn(θ))

d→ N(0, I)
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for sequences (Bn(θ), Vn(θ))n converging to the asymptotic bias and the asymptotic variance

matrix. Our main formal results below are the law of large numbers in Theorem 5.1, and

the central limit theorem in Theorem 5.2.

Since these limits are obtained using a statistical theory that treats the nodes of the

endogenously formed network as random draws from a distribution of types, the network

moment is subject to sampling uncertainty, which is captured by the stochastic term Zn(θ).

Theorem 5.2 will therefore serve as a basis for inference that properly accounts for simul-

taneity and statistical dependence in network outcomes, and a future version of this paper

will give additional practical results concerning estimation of the asymptotic distribution of

Zn(θ).

2.2. Structural Model. Player i’s incentives for link formation will be given by a payoff

function

Πi(L,X) = Bi(L,X)− Ci(L,X)

which distinguishes a gross benefit Bi(L,X) to i from the network structure, and a total

cost Ci(L,X) of maintaining links. The parametrization of the model will be in terms of the

incremental benefit of adding a link ij to the network L,

Uij(L, ,X) := Bi(L+ {ij},X)−Bi(L− {ij},X)

and the cost increment of adding that same link,

MCij(L,X) := Ci(L+ {ij},X)− Ci(L− {ij},X)

We refer to Uij(L, ,X) as the marginal benefit, and MCij(L, ,X)) as the marginal cost of

the link ij to agent i.

We assume that marginal benefits are of the form

Uij(L,X) = U∗
ij(L,X) + σεij (2.3)

where U∗
ij(L,X) is a deterministic function of attributes x1, . . . , xn and the adjacency ma-

trix L, and will be referred to as the systematic part of the marginal benefit function. The

idiosyncratic taste shifters εij are assumed to be independent of xi and xj and distributed

according to a continuous c.d.f. G(·), and σ > 0 is a scale parameter. In principle, this for-

mulation would allow for arbitrary strategic interference effects among links in the network,

however we will restrict dependence of marginal benefits through dependence on L further

below.

The marginal cost of the link ij to i is assumed to be

MCij(L,X) := max
k=1,...,J

σεi0,k (2.4)
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where εi0,k are independent of xi and across draws k = 1, 2, . . . , and the choice of the number

of draws J will be discussed below. In particular, we let J to grow as n increases in order

for the resulting network to be sparse. In this formulation, marginal costs do not depend

on the network structure, so that in the following we denote marginal cost of the link ij by

MCi without explicit reference to j or the network L. Note that in the absence of further

restrictions on the systematic parts of benefits U∗
ij(L,X), this is only a normalization.

Our framework allows for various types of interaction effects on the marginal benefit

function. The marginal benefit from adding the link from i to j may depend on agent i and

j’s exogenous attributes xi and xj, and the structure of the network through vector-valued

statistics Si, Sj, Tij that summarize the payoff-relevant features of the network L,

U∗
ij(L,X) ≡ U∗(xi, xj;Si, Sj, Tij) (2.5)

Specifically, the marginal benefit of a link may directly depend on node i and j’s exogenous

attributes, xi and xj, respectively, as well as interaction effects between the two. U∗
ij(L,X)

may vary in xi, e.g. because some node attributes may make i attach more value to any

additional links. Dependence on xj allows for target nodes with certain attributes to be gen-

erally more attractive as partners. Finally, a non-zero cross-derivative between components

of xi and xj could represent economic complementarities, or a preference for being linked to

nodes with similar (homophily) or different (heterophily) attributes.

In addition to preferences for exogenous attributes, the propensity of agent i forming an

additional link, and the attractiveness of a link to agent j, may depend on the absolute

position of either node i and j in the network. To account for effects of this type, we can

include node-specific network statistics of the form

Si := S(L,X; i) (2.6)

where we assume that the function S(·) is invariant to permutation of player indices.1

Example 2.1. (Degree and Composition) Node specific network statistics include the

network degree (number of direct neighbors),

S1(L,X; i) :=
∑
j ̸=i

Lij

Alternatively we could measure the share of i’s direct neighbors that are of a given exogenous

type,

S2(L,X; i) :=

∑
j ̸=i Lij1l{xjk = x̄k}∑

j ̸=i Lij

1Formally, we assume that for any i = 1, . . . , n and one-to-one map τ : {1, . . . , n} → {1, . . . , n} with τ(i) = i,
we have S(Lτ ,Xτ ; τ(i)) = S(L,X; i), where the matricesXτ and Lτ are obtained fromX and L by permuting
the rows (rows and columns, respectively) of the matrix according to τ .
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where the kth component of xj may be e.g. gender or race, and x̄k the value corresponding

to the category in question (e.g. with respect to gender or race).

The network degree of a node plays a special role in the description of the link frequency

distribution. In the remainder of the paper, we therefore take the first component of si to

denote the network degree of node i, s1i :=
∑n

j=1 Lij.

Payoffs may also depend on the relative position of the node i with respect to j in the

network. Specifically, the researcher may also want to include edge-specific network statistics

of the form

Tij := T (L,X; i, j) (2.7)

where T (·) may again be vector-valued, and we assume that the function T (·) is invariant

to permutations of player indices.2 In the following, we also assume that the statistic is

symmetric, Tij = Tji.
3 In our description of preferences regarding Tij we will occasionally

use t0 to denote an arbitrarily chosen “default” value for the statistic.

Example 2.2. (Transitive Triads) A preference for closure of transitive triads can be

expressed using statistics of the form

T1(L,X; i, j) =
∑
k ̸=i,j

LikLjk, or T2(L,X; i, j) = max {LikLjk : k ̸= i, j}

Here, T1ij counts the number of immediate neighbors that both i and j have in common, and

T2ij is an indicator whether i and j have any common neighbor. More generally, Tij could

include other measures of the distance between agents i and j in the absence of a direct link,

or indicators for potential “cliques” of larger sizes.

Patterns of transitivity may emerge for example in economic models of social capital where

supporting links to common neighbors may enhance the value or viability of a connection

between an agent pair, see e.g. Jackson, Rodriguez-Barraquer, and Tan (2012) or Gagnon

and Goyal (2016). Transitivity may also reflect a biased search process where agents may

be more likely to “meet” through common neighbors.

Some of our results concern special cases in which the network statistics Si, Sj, and Tij only

depend on nodes at up to a finite network distance from i and j, respectively. Specifically,

we say that Si is a function of the network neighborhood of radius rS around i if S(L,X; i) =

S(L̃,X; i) for any networks L, L̃ such that L̃kl = Lkl whenever the network distance between

i and k is less than or equal to rS. Similarly, we say that Tij is a function of the network

2That is, we assume that for any i, j = 1, . . . , n and any permutation τ : {1, . . . , n} → {1, . . . , n} with
τ(i) = i and τ(j) = j, we have T (Lτ ,Xτ ; i, j) = T (L,X; i, j).
3In order to accommodate the general case of asymmetric edge-specific statistics, it would be possible an
additional argument in the marginal benefit function, and the technical results would continue to go through
without substantive modifications.
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neighborhood of radius rT around i and j if T (L,X; i, j) = T (L̃,X; i, j) for any networks

L, L̃ such that L̃kl = Lkl whenever the network distance of k to i or j is less than rT .

In contrast to node attributes xi, xj, the variables Si, Sj, and Tij are endogenous to the

network formation process, and the characterization of the limiting model therefore must

include equilibrium conditions for the joint distribution of types xi and network statistics

Si and Tij. Following the previous literature on social interactions models we refer to the

payoff contribution of the exogenous attributes xi, xj as exogenous interaction effects, and the

contribution of the endogenous network characteristics si, sj, tij as endogenous interaction

effects.

In order to avoid technical challenges from characterizing equilibrium conditions in infinite-

dimensional vector spaces, the main results of this paper focus on the case of discrete at-

tributes and network statistics:

Assumption 2.2. (Network Statistics) (i) The supports of the payoff-relevant network

statistics, S and T , and the type space X are finite. (ii) The values of S(L,X; i) and

T (L,X; i, j) are determined by a network neighborhood of radius r < ∞ around i (i, j,

respectively). That is for any L̃kl = Lkl and x̃k = x̃k whenever (Lr)ik = (Lr)jk = 0 we have

S(L,X; i) = S(L̃, X̃; i) and T (L,X; i, j) = T (L̃, X̃; i, j)

The finite support assumption for network statistics is restrictive for some leading cases,

for example for preferences depending on degree centrality, the effective support has to be

truncated at some finite value above which preferences become insensitive to a further in-

crease of s1i. For most of the results, we posit that this assumption could be replaced with

a compact support assumption and adequate regularity conditions on the payoff functions,

however we leave such a generalization for future research. Part (iii) is primarily for nota-

tional convenience, especially in connection with the assumption of a discrete type space for

xi.

Assumption 2.3. (Systematic Part of Payoffs) Node attributes xi are i.i.d. draws from

a distribution on X . (i) The systematic parts of payoffs are uniformly bounded in absolute

value for some value of t = t0, |U∗(x, x′, s, s′, t0)| ≤ Ū <∞. Furthermore, (ii) at all values of

s, s′, the function U∗(x, x′, s, s′, t0) is p ≥ 1 times differentiable in x with uniformly bounded

partial derivatives. (iii) The supports of the payoff-relevant network statistics, S and T , and

the type space X are compact sets.

We next state our assumptions on the distribution of unobserved taste shifters. Most

importantly, we impose sufficient conditions for the distribution of εij to belong to the

domain of attraction of the extreme-value type I (Gumbel) distribution. Following Resnick

(1987), we say that the upper tail of the distribution G(ε) is of type I if there exists an
11



auxiliary function a(s) ≥ 0 such that the c.d.f. satisfies

lim
s→∞

1−G(s+ a(s)v)

1−G(s)
= e−v

for all v ∈ R. We are furthermore going to restrict our attention to distributions for which the

auxiliary function can be chosen as a(s) := 1−G(s)
g(s)

, where g(s) denotes the density associated

with the c.d.f. G(s). This property is shared for most standard specifications of discrete

choice models, e.g. if εij follows the extreme-value type I, normal, or Gamma distribution,

see Resnick (1987).

In order to characterize the discrepancy between the tails of the distribution with c.d.f.

G(z) and that of the extreme-value distribution of type I with c.d.f. Λ(z) := exp {−e−z},
we define the function

h(z) := G−1(Λ(z)) (2.8)

Clearly, extreme-value convergence to Λ(z) requires that limz→∞ h(z) = 0. Unfortunately,

convergence may be very slow for some distributions so that the error from an extreme-value

approximation may dominate the limiting distribution. We therefore need to strengthen

that requirement to control that rate and narrow our focus on distributions for εij for which

convergence is sufficiently fast. Specifically, we make the following assumption:

Assumption 2.4. (Idiosyncratic Part of Payoffs) εij and εi0,k are i.i.d. draws from

the distribution G(s), and are independent of xi, xj, where (i) the c.d.f. G(s) is abso-

lutely continuous with density g(s), and (ii) for the function h(z) := G−1(Λ(z)), we have

h′′(log n) = o(n−1/2).

The second requirement is satisfied when G(z) is the c.d.f. of an exponentially or extreme-

value type I (Gumbel) distributed random variable. However it rules out some other common

parametric specifications for a random utility model, in particular the Gaussian distribution.

We embed the finite economy into the asymptotic sequence proposed in Menzel (2015b),

which is chosen to retain a number of qualitative features in the limit. Most importantly,

that sequence will serve only as an approximation device rather than a factual description

on how the network may evolve if additional nodes were added. Formally, we assume the

following:

Assumption 2.5. (Network Size)(i) The number n of agents in the network grows to

infinity, and (ii) the random draws for marginal costs MCi are governed by the sequence

J =
[
n1/2

]
, where [x] denotes the value of x rounded to the closest integer. (iii) The

scale parameter for the taste shifters σ ≡ σn = 1
a(bn)

, where bn = G−1
(
1− 1√

n

)
, and

a(s) is the auxiliary function specified in Assumption 2.4 (ii). Furthermore, (iv) for any

values t1 ̸= t2 ∈ T , |U(x, x′, s, s′, t1) − U(x, x′, s, s′, t2)| may increase with n, and there ex-

ists a constant BT < ∞ such that for any sequence of pairwise stable networks (L∗
n)n≥2,
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supx,x′,s,s′ (E [exp {2|U(x, x′, s, s′, T (L∗
n, x, x

′, i, j))− U(x, x′, s, s′, t0)|}])1/2 ≤ exp{BT} for n

sufficiently large.

Most importantly, the network is assumed to be sparse in the sense that each node is

connected to a stochastically bounded number of alters, which remains stochastic. Further-

more, the relative scale of the systematic and idiosyncratic parts remains of the same order

of magnitude so that differences in the systematic part remain predictive, but do not fully

determine the network outcomes. Finally, preferences for certain network features may vary

along the asymptotic sequence to ensure non-degenerate distributions for edge-specific net-

work statistics. See also Menzel (2015b) for a more detailed justification and discussion of

these choices.

2.3. Solution Concept. Our formal analysis assumes pairwise stability as a solution con-

cept, which was first introduced by Jackson and Wolinsky (1996). While there are alternative

sets of primitive conditions for existence of a pairwise stable network, we make the following

high-level assumption on the observed network L∗:

Definition 2.1. (Pairwise Stable Network) The undirected graph L∗ is a pairwise

stable network (PSN) if for any link ij with L∗
ij = 1,

Uij(L
∗,X) ≥MCi, and Uji(L

∗) ≥MCj

and any link ij with L∗
ij = 0,

Uij(L
∗,X) < MCi, or Uji(L

∗) < MCj

In general the pairwise stable network is not unique, but it is possible to give general

conditions on the payoffs to ensure existence, see e.g. Sheng (2020) for a discussion. Our

results on the possible limits of the network moment do not require any auxiliary assumptions

regarding equilibrium selection, our derivation of its asymptotic distribution requires that

the (possibly stochastic) equilibrium selection mechanism is stochastically independent of

payoffs. Specifically we assume the following:

Assumption 2.6. Solution Concept (i) The observed network L∗ satisfies the payoff

conditions for pairwise stability in Definition 2.1. (ii) In the presence of multiple pairwise

stable networks, agents coordinate on a pairwise stable network via a public signal v that

is measurable with respect to a sigma field F but need not be observable to the researcher.

(iii) Selection is independent of unobserved taste shocks, that is (MCi, εij)i,j are drawn i.i.d.

conditional on F .

One possible interpretation of a selection rule with the properties in (ii) and (iii) is a

myopic tâtonnement process from a network that is initialized at a random network L0 that
13



is selected independently of (MCi, εij)i,j, and at each stage of the adjustment process the

order in which edges Lij are revised is determined independently of unobserved taste shocks

as well.

Our results describing the set of possible network outcomes, including the law of large

numbers in Theorem 5.1, will not make use on any of these assumptions on the selection

mechanism, however parts (ii) and (iii) will be assumed for the CLT in Theorem 5.2. In

particular, while the set of pairwise stable networks certainly depends on realized payoffs,

our distribution theory will assume that the selection rule can be described in terms of

a randomization device that is stochastically independent of link payoffs. For example, a

stochastic selection mechanism could be specified in terms of a random initial condition

and sequence for updating links in a tâtonnement process - under appropriate conditions

tâtonnement can induce a distribution over the pairwise stable networks as the stationary

points of that process.

2.4. Additional Restrictions. Our main objective in this paper is to introduce key theo-

retical ideas and demonstrate their practical use for a sufficiently broad set of applications.

We therefore do not aim for the greatest generality but maintain some additional restrictions

for key formal results to simplify the exposition. To preview the main restrictions, some key

results will only be stated for the case of node-specific interaction effects, Tij := {}. The

implications of edge-specific interaction effects for our approach are discussed separately in

Appendix A.

Furthermore, we also restrict the subnetwork events Ai1...iD in the construction of net-

work moments in order to avoid some complications from the multiplicity of pairwise stable

networks. Specifically, we only consider composite events Ai1...iD such that the existence

of a pairwise stable network supporting each elementary subnetwork outcome are mutually

exclusive events. Dropping this requirement does not fundamentally change our theoretical

analysis, but will pose additional practical problems for implementation as we discuss in

Section 3.4.

Finally, for the asymptotic distribution of the network moment m̂n(θ) we only consider

the case in which the probability for the subnetwork events of interest is uniquely determined

by the (possibly non-unique) equilibrium values of certain aggregate quantities for the entire

network. This can result either from the nature of strategic interaction effects or from

additional constraints on equilibrium selection. Our analysis could in principle be extended to

the case without uniqueness of local network outcomes, however the asymptotic distribution

of network moments could only be characterized indirectly in terms of which bounds on

aggregate state variables are simultaneously binding at any point of interest.
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3. Potential Values and Random Network Neighborhoods

For our analysis we need to characterize the probability of events regarding the links to a

node i and the values of the payoff-relevant network statistics for another set of nodes and

statistics.

To this end, we first define potential values for certain network outcomes as an equilibrium

response to exogenous constraints on some of the link formation decisions. Specifically given

an arbitrary network L, we define Dij := 1l {Uij(L,X) ≥MCi} as an indicator whether i

would agree to form a link to j given that network L, and let D∗
ij := 1l {Uij(L

∗,X) ≥MCi}
denote the corresponding indicator given the pairwise stable network L∗. We also let D and

D∗ denote the matrices with entries Dij and D
∗
ij, respectively, and refer to D as a directed

proposal network. These indicators are directed, i.e. in general Dij need not be equal to Dji,

and from the definition of a pairwise stable network, L∗
ij ≡ D∗

ijD
∗
ji, or

L∗ ≡ D∗ ⊙ (D∗)′

whereA⊙B denotes the Hadamard (element wise) product of two matricesA,B of equal size.

ssTo characterize restrictions onD, we denote a collection of r directed edges (i1, j1), . . . , (ir, jr)

with the 2× r matrix

E :=

[
i1 · · · ir

j1 · · · jr

]
.

We denote the corresponding entries ofD with the r-dimensional vectorDE = (Di1,j1 , . . . , Dir,jr)

with elements DE,i1j1 .

We now consider the pairwise stable networks that may arise from holding link acceptance

decisions at the directed edges in E1 fixed at DE: Given random payoffs and node attributes,

we let

D∗(E1,DE1) :=

{
D∗ : D∗

ij =

{
DE1,ij if (i, j) ∈ E1

1l{Uij(D
∗ ⊙ (D∗)′,X) ≥MCi} otherwise

}
be the collection of link acceptance indicators that are supported by a pairwise stable

network after fixing the proposals for the edges in {E1} at DE1 , where we let {E} :=

{(E11, E21), . . . , (E1r, E2r)} for the set of nodes corresponding to the edges in E. We also

denote a typical entry of a matrix D∗ ∈ D∗(E1,DE1) with D
∗
ij(E1,DE1).

In order to characterize the values of network statistics s∗j that may result from local

changes to the subnetwork on E1, we need to account both for the direct (“mechanical”)

effect on the position of node j from changing links in the network, as well as the indirect

(“equilibrium”) effects from adjustments outside E1 that may be needed for the network on

the complement of E1 to be pairwise stable. That distinction is important for our analysis.

Here, the payoff inequalities characterizing pairwise stability only concern unilateral link-by-

link decisions given the status quo where agents only need to consider direct “mechanical”
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effects. In contrast, probabilities for the resulting subnetwork events have to incorporate

indirect “general equilibrium” effects as well.

We therefore evaluate potential values for the network statistic sj under changes to two,

potentially separate, edge sets E1,E2 and proposal subnetworks on those edges, DE1 ,DE2 .

As a shorthand notation, we denote the subset of non-zero edges in (E,DE) with

E(DE) := {(E1i, E2j) : Dij = 1}

We then let

L(D∗,E2,DE2) := D∗ ⊙ (D∗ + {E(DE2)} − {E(1−DE2)})′

denote the network resulting from D∗ after setting the edges in the set E equal to the values

specified in DE, which need not be pairwise stable. We then define the potential values for

the node-level network statistic sj at the proposal subnetwork DE2 and given proposals DE1

as the set

S∗
j (E1,DE1 ,E2,DE2) := {S(L(D∗,E2,DE2); j) : D

∗ ∈ D∗(E1,DE1)}

That is, S∗
j (E1,DE1 ,E2,DE2) is the set of values for s∗j from changing the proposal subnet-

work on E2 to DE2 , that are supported by a pairwise stable proposal network after holding

the subnetwork on E1 fixed at LE1 . In the same fashion we can define the potential values

for the edge-level statistic tij as

T ∗
ij (E1,DE1 ,E2,DE2) := {T (L(D∗,E2,DE2); i, j) : D

∗ ∈ D∗(E1,DE1)}

Note again that in this notation, the crucial difference in the role of the subnetworks

(E1,DE1) and (E2,DE2) is that potential values of sj, tij account for direct and indirect

effects from exogenously fixing the edges on E1, but only for mechanical effects from chang-

ing edges in E2 from the pairwise stable network to the values DE2 .

Example 3.1. (Potential Values) To fix ideas consider an example with three nodes

{1, 2, 3} with marginal utilities

Uij = sj − 1 + εij

where si =
∑

j ̸=i Lij. Let the edge set E1 :=

[
1 1

2 3

]
be the directed edges from node 1 to

each of the remaining nodes, and consider potential outcomes for s2. If D12 = 0, then s2 = 1

iff U23 ≥ MC2 and U32 ≥ MC3, and zero otherwise, noting that U23 also depends on s3,

and therefore also on D13. If D12 = 1, then s2 = 2 iff U23 ≥ MC2 and U32 ≥ MC3, and

U21 ≥ MC2, s2 = 0 if U21 ≥ MC2 and U23 ≥ MC2 or U32 ≥ MC3, and otherwise s2 = 1.

The distribution for these potential values then derives from the probabilities for these events.
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Figure 1. Potential values for various configurations LEF
around node F ,

and realized outcome in a pairwise stable network.

3.1. Potential Values and Pairwise Stability. The distribution of network moments

(2.1) primarily depends on the probability of network events of the form Ai for a D-ad

i = (i1, . . . , iD), or the joint probabilities over finitely many nodes. Clearly the events Ai

and Aj may be dependent between D-ads i and j, especially (but not only) when they have
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Figure 2. Potential values for E1 with LE2 = 1 for E2 = (), E2 = (A,F ),
and E2 = (B,F ), respectively.

nodes in common. For example, the expectation of m̂n(θ) is determined by probabilities

πn(Ai|xi) := P
(
L∗

|i ∈ Ai|xi

)
and the variance by the probabilities

πn(Ai ∩ Aj|xi,xj) := P
(
L∗

|i ∈ Ai ∩ L∗
|j ∈ Aj|xi,xj

)
for pairs of D-ads i, j.

Since links and network statistics are determined simultaneously, the probability πn(Ai|xi)

is difficult to evaluate. However we argue that the problem becomes more tractable by

separating it into generating the relevant potential values for network statistics in a first

step, and then evaluating the conditional probability of the network event Ai given those

potential values.

We formalize this step as a Lemma for which we need some additional notation: for the

2 × r matrix of directed edges, E1, we denote the vector of indices corresponding to the

source nodes with E1,1· := (E1,11, . . . , E1,1r), and that corresponding to the the target nodes

with E1,2· := (E1,21, . . . , E1,2r). E1,1· and E1,2· also corresponds to the first row and second

row, respectively, of the matrix E1. We also let sE1,2· := (sE1,12 , . . . , sE1,r2)
′ denote a matrix

containing the network statistics for the nodes indexed by E1,2·. Furthermore, we let the

random mapping D∗
E1
(sE1,2·) denote the set of proposals on the edge set E1 that are pairwise
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stable given the network statistics sE1,2· , and S∗
E1,2·

(DE1) be the set of potential values for

the network statistics sE1,2· given the proposals DE1 .

The next Lemma then follows immediately from the definition of potential values for

network statistics:

Lemma 3.1. The proposals DE1 and the network statistics sE1,2· are jointly supported by a

pairwise stable network if and only if DE1 ∈ D∗
E1
(sE1,2·) and sE1,2· ∈ S∗

E1,2·
(DE1).

Sharp upper and lower bounds for πn(Ai|xi) are generally determined by the probability

that certain outcomes, or sets of outcomes, are supported by a pairwise stable network. Given

Lemma 3.1, that probability corresponds to that of drawing the potential values given the

implied relevant overlap times the conditional probability of forming the edges corresponding

to the event.

3.2. Independence. For our purposes it suffices to consider potential outcomes with respect

to edge sets E1 that contain the outgoing edges from a node or a polyad i = (i1, . . . , iD)
′.

We now show that for that particular structure, certain subsets of potential values are

determined by a set of payoff shifters that is disjoint from those determining stability on E1

given potential values, and therefore independent.

To be specific, we consider edge sets of the form

E1 ≡ Ei := [Ei1 , . . . ,EiD ]

for

Eid :=

[
id . . . id

1 . . . n

]
For notational ease, we let E1 include self links, which were all set to zero under the general

assumptions of our framework, so that the number of columns (edges) of E1 is r = nD.

Adapting earlier notation we also let S∗
−i(DE1) denote the set of potential values (sj) j /∈ {i}

with respect to the proposal subnetwork DE1 on E1.

The random mappings S∗
−i : {0, 1}r → 2S

n−D
and D∗

E1
: Sn−D → 2{0,1}

r
are implicitly

defined by the attributes x1, . . . , xn as well as taste shocks ε12, . . . , εnn−1 and marginal costs

MC1, . . . ,MCn. We now give conditions for the events

AD(Ei,DEi
, s−i) :=

{
DE1 ∈ D∗

Ei
(s−i)

}
As(Ei,DEi

, s−i) :=
{
s−i ∈ S∗

−i(DEi
)
}

to be conditionally independent given attributes x1, . . . , xn and F for any values of DEi
, s−i.

For an edge set Ei of this form, we obtain the following independence result:

Lemma 3.2. (Independence) Suppose Assumption 2.4 holds. Then for any polyad i =

(i1, . . . , iD), AD(Ei,DEi
, s−i) and As(Ei,DEi

, s−i) are conditionally independent given xi and
19



F . The analogous conclusion holds after conditioning on taste shocks εk1l1 ,MCk1 , . . . , εkqlq ,MCkq

for any {k1, . . . , kq} ∩ {i1, . . . , iD} = ∅.

See the appendix for a proof. Note that this problem is different from other classical

settings with triangular or other simultaneous equations, where unobservables are allowed

to be arbitrarily correlated. Here, the assumption of i.i.d. taste shocks permits to establish

independence relationships as long as there is no overlap in which factors affect either set of

potential outcomes. It is also important to point out that we only show that independence

holds for a network outcomes across a particular partition of nodes into two disjoint sets

which does not imply any stronger conclusions of conditional or unconditional independence

across nodes.

3.3. Invariance. As a second step, we establish invariance of the distribution of potential

values with respect to permutations of elements of E and s. To compare nodes in the edge

set {E} to other nodes in the network, we define the (payoff) relevant overlap between a set

of nodes j1, . . . , jD and E. In the following, let LE(D0,DE) denote the adjacency matrix

obtained from L(D0,DE) by setting all entries outside E to zero.

Definition 3.1. (Relevant Overlap) The relevant overlap between the directed edges E

and the nodes j1, . . . , jD is a sufficient statistic for LE(D0,DE) with respect to sj1 , . . . , sjD and

tkl for each edge in E that includes a node in {j1, . . . , jD}. That is, we let R(E,DE,X; j1, . . . , jD)

be a mapping such that for all D0 ∈ {0, 1}n(n−1) and D̃E ∈ {0, 1}r, we have S(L(D0, D̃E),X; j) =

S(L(D0,DE),X; j) for j ∈ {j1, . . . , jD}, and T (L(D0, D̃E),X; k, l) = T (L(D0,DE),X; k, l)

for each edge in E that includes a node in {j1, . . . , jD} whenever R(E,LE(D0, D̃E),X; j1, . . . , jD) =

R(E,LE(D0,DE),X; j1, . . . , jD).

Note that since by Assumption 2.2 the network statistics only take finitely many values,

we can without loss of generality assume that R(·) only takes finitely many values as well.

To fix ideas we next give a few examples, where we let L̃kl denote the element of LE(D0, D̃E)

corresponding to the edge (kl) ∈ E.

Example 3.2. Relevant Overlap - Degree Centrality Suppose that Ei is the set of the

directed edges ((i, j))nj=1 and the relevant network statistic sj depends only on the network

neighborhood of radius 1 around j, i.e. the set of nodes k such that Ljk = 1. Then the

relevant overlap with node j, R(Ei,LE(D0, D̃E),X; j) = L̃ij. This includes in particular the

case of degree centrality, sj :=
∑

k ̸=j Lij.

Example 3.3. Relevant Overlap - Transitivity If the payoff relevant network statistic

is the indicator whether i and j have a common network neighbor, tij := maxk ̸=i,j LikLjk,

then the relevant overlap for the set Ei of directed edges ((i, j))nj=1 with the node pair j, k

is R(Ei,LE(D0, D̃E),X; j, k) = 1l{L̃ij = L̃ik = 1}; the relevant overlap of the set Ei ∪ Ek
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of directed edges ((i, k), (j, k))nk=1 with the node k is R(Ei,LE(D0, D̃E),X; j, k) = 1l{L̃ik =

L̃jk = 1}. Note that in this second case, the value of Tij is fully determined given the relevant

overlap.

Example 3.4. Relevant Overlap - Recursive Statistics Suppose that the node-level

statistic sj depends on a network neighborhood of radius greater than 1 around j but is defined

recursively as

sj = S̃2

(
L1jx1, . . . , Lnjxn, L1jS̃1(L,X; 1), . . . , LnjS̃1(L,X; 1)

)
where S̃1(·) defines a vector of m node-specific network statistics, and s̃2(·) is symmetric in its

n(k+m) arguments. That is, sj is a function of the exogenous attributes and “intermediate”

network positions s̃k1 := S̃1(L,X; k) of j’s immediate network neighbors. Then for the set

Ei of directed edges ((i, j))nj=1, the relevant overlap with node j is R(Ei,LE(D0, D̃E),X; j) =(
L̃ij, s̃i1

)
, where s̃i1 := S̃1(LE(D0, D̃E),X; k).

We then consider an arbitrary permutation τ : {1, . . . , n} → {1, . . . , n} which we identify

with a one-to-one map of the set of node indices to itself. We also let Eτ := τ(E) where we

apply the mapping τ to each node index in the matrix E, and let “
d
=” denote equality in

distribution. We can now state the main version of our invariance result:

Lemma 3.3. (Invariance) Suppose Assumptions 2.2-2.5 hold. Then for any i, j = 1, . . . , n,

E, and DE, and arbitrary permutation τ of {1, . . . , n} we have for the node-level statistics

S∗
j (E1,DE1 ,E2,DE2)

d
= S∗

τ(j)(E1,DE1 ,E
τ
2,DE2)

conditional on R(Eτ
1,LE1(D0,DE1),X

τ ; τ(j)) = R(E1,LE1(D0,DE1),X; j), xτ(j) = xj, and

F . Furthermore, for edge-level statistics

T ∗
ij (E1,DE1 ,E2,DE2)

d
= T ∗

τ(i)τ(j)(E1,DE1 ,E
τ
2,DE2)

conditional on R(E1
τ ,LE1(D0,DE1),X

τ ; τ(i), τ(j)) = R(E1,LE1(D0,DE1),X; i, j), xτ(i) =

xi, xτ(j) = xj, and F .

See the appendix for a proof. Since τ is a bijection, the lemma also immediately implies

that

S∗
j (E1,DE1 ,E2,DE2)

d
= S∗

j (E
τ
1,DE1 ,E2,DE2)

conditional on relevant overlap. For some steps, we also need to characterize the joint distri-

bution of node-level statistics for a finite number of nodes. That extension is straightforward

and is given separately in the appendix.

3.4. Sampling Representation. Under pairwise stability, the links to and from a polyad

(i1, . . . , iD) - i.e. the network on the edge set Ei := Ei1∪· · ·∪EiD - are jointly determined with
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network attributes of other nodes in the network. We now establish a “local” representation

which will allow to approximate probabilities for network events on Ei without explicitly

modeling the remainder of the network. For greater ease of exposition, we state our results

in the remainder of the paper only for the case of node-specific interaction effects, Tij := {},
and leave a discussion of the general case to Appendix A.

Given the payoff shocks (εkl)k,l and MC1, . . . ,MCn, we let

Dij0 := 1l{Ū + εij ≥MCi} and Dji0 := 1l
{
Ū + εji ≥MCj

}
.

Since by Assumption 2.3 Ū is an upper bound for the systematic part of random utility,

Dij0 ≥ D∗
ij almost surely. We then define a network neighborhood of node i as the set

Ni of nodes j with Dij0 = Dji0 = 1. That set excludes any node j that will not form a

pairwise stable link to node i for any realization of exogenous attributes xi, xj and network

attributes si, sj, tij, and by Assumption 2.5 the size of Ni is asymptotically bounded. We

refer to
⋃D

d=1Nid as the network neighborhood of the polyad (i1, . . . , iD).

A key challenge in evaluating the probability of an event on the edge set Ei :=
⋃D

d=1Eid

is that network attributes s∗j and link proposals D∗
jir for r = 1, . . . , D and other nodes

j ∈
⋃D

d=1 Nid are jointly determined with the subnetwork on that edge set. We now propose

an alternative sampling experiment which replaces the network neighborhood Ni for each

node in the (D + 1)ad with a random sample Ñi consisting of a stochastically bounded

number of Poisson draws of potential values and taste shocks from the respective marginal

distributions. We then justify that representation by showing that it approximates the

relevant conditional moments of the distribution generated by the finite-population network

formation model.

By invariance in Lemma 3.3, the distribution of potential values s∗j is invariant to node

permutations conditional on

Rij := R
(
Ei,LE(D0, D̃Ei

); j
)

where in the following we assume without loss of generality that Rij is the maximal invariant

of R
(
Ei,LE(D0, D̃Ei

); j
)
under permutations of {1, . . . , n}\{j}.4 We will therefore use the

notation s̃∗k(R) to denote a draw from a conditional distribution of potential values given

Rik = R. Similarly, we use

D̃∗
ki(s;R) := 1l

{
U∗(xk, xi; s̃k(R), s, t) + ε̃ki ≥ M̃Ck

}
to denote an indicator for a proposal from k to i for draws ε̃ki, M̃Ck and a fixed value of s.

4In particular the event Rik = Rij is equivalent to the existence of a permutation τ̃ of {1, . . . , n}\{k} such

that R
(
Eτ̃

i ,LE(D0, D̃Ei
); k
)
= Rij .
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Figure 3. Pairwise stable network (left) and sampling representation of sub-
networks as typical draws from a distribution of network neighborhoods
(right).

In the absence of edge-specific interaction effects, the approximate representation replaces

the network neighborhoodNi with network neighborhoods Ñi1 , . . . , ÑiD that are independent

realizations of a Poisson (point) process.5 The approximating process is governed by the

intensity

M̂n(x, s|R) :=
1
n

∑n
k=1

∑
ĩ:k/∈̃i 1l

{
xk = x, s∗k = s, Rĩk = R,Dkĩ10

= Dĩ1k0
= 1
}

1
n2

∑n
k=1

∑
ĩ:k/∈̃i 1l {Rik = R}

(3.1)

This empirical (Poisson) rate characterizes at what rate nodes k with attributes xk and

network attributes s∗k are part of the network neighborhood Ni of node i conditional on

Rik = R. Note also that under Assumption 2.5 M̂n is stochastically bounded as n increases.

Below we will refer to the population analog of M̂n as the reference distribution of the

network. Clearly, this rate is determined endogenously in the network formation model.

However as shown in Lemma 3.2, independence of taste shocks across nodes ensures that

link payoffs for nodes in {i1, . . . , iD} are conditionally independent of (appropriately defined)

potential values of network statistics for their alters outside of that set so that we can

nevertheless approximate probabilities for network events. Moreover we show in the next

section that in the limit, M̂n can be approximated by the solution of a fixed point problem.

We can now consider an event concerning the subnetwork among the nodes included in the

multi-index i := (i1, . . . , iD)
′, where we define the edge set Ei := [Ei1 , . . . ,EiD ]. To evaluate

the probability of such an event, we now propose the following alternative sampling scheme:

5Recall that a point measure on a set X is of the form ξ =
∑q

i=1 δXi for an integer-valued random variable
q and a discrete set of random values {X1, . . . , Xq} ∈ X . Given a finite measure M on X , a Poisson
process with intensity (mean measure) M is a random point measure such that for any Borel set A ⊂ X
and non-negative integer k, P (ξ(F ) = k) = exp{−M(F )}M(F )k/k!, and for any disjoint sets F1, . . . , Fk,
ξ(F1), . . . , ξ(Fk) are independent, see e.g. Resnick (1987).
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• For each node i in the multi-index i = (i1, . . . , iD)
′, a set of nodes Ñi := {j1, . . . , jr}

with attributes and potential values (xj, s
∗
j(R))j∈Ni

is generated by a point process

with Poisson intensity M̂n(x, s|R).
• For each node pair (i, j) with i ∈ {i1, . . . , iD} and j ∈ Ni ∪ {i1, . . . , iD}\{i} we also

generate i.i.d. draws M̃C i and ε̃ij from their respective marginal distributions.

• The subnetwork LEi
on Ei is then supported if for each d = 1, . . . , D and j ∈ Ñid

Lidj = 1l
{
U∗(xid , xj; sid , s

∗
j(Rij)) + ε̃idj ≥ M̃Cid

}
Djid(sid , Rij),

and Lidj = 0 for all j /∈ Ñid , where sid := s(Riid).

In particular, for every j the network statistics s∗j are independent of whether there is

a robust non-link between i and j under this process. Also, since the Poisson intensity

M̂n(x, s|R) is bounded as n increases, so is the (random) size of Ni.

Lemma 3.4 below shows that this alternative representation can be used to obtain prob-

abilities for any events on Ei given the sigma-field F . Specifically, we let πn(AEi
|xi) ≡

πn(AEi
|xi,F) denote the conditional probability that an event AEi

:= A(LEi
) on Ei is sup-

ported by a PSN given F , and xi, and π̃n(AEi
|xi) ≡ π̃n(AEi

|xi,F) its analog under the

alternative sampling scheme. In particular, the approximation is valid conditional on any

public signals that are used to select among multiple pairwise stable networks. For notational

ease we generally suppress explicit conditioning on F wherever possible.

In the following, we first consider the event whether a particular configuration Li for the

subnetwork among i1, . . . , iD is supported by a pairwise stable network on all of {1, . . . , n},
and we call such a subnetwork event elementary. We then let AEi

denote the set of events

on LEi
,X that are invariant to permutations of edges (ij) ∈ Ei for j /∈ {i1, . . . , iD}, and that

can be represented as the union of mutually exclusive elementary events regarding outcomes

on the subnetwork Li.

Lemma 3.4. Suppose that Assumptions 2.2-2.6 hold, and that there are no edge-specific

interaction effects. Then for any AEi
∈ AEi

πn(AEi
|xi,F) = π̃n(AEi

|xi,F)
(
1 +O(n−1)

)
almost surely. More generally the analogous conclusion holds for any finite collection of

events AEi1
, . . . , AEiq

and D-tuples i1, . . . , iq with q <∞ fixed.

See the appendix for a proof. In interpreting this result one should note that M̂n(x, s|R)
is generally not F -measurable - it may be possible to obtain the analogous conclusion for a

finer conditioning set, but such a strengthening of the result will not be necessary for our

analysis below.

The restriction to AEi
allows for subnetwork events depending on the subnetwork among

i1, . . . , iD as well as the node-specific network attributes s∗i1 , . . . , s
∗
iD

in an arbitrary fashion,
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however events in that class will generally not capture interdependencies between the network

neighborhoods of the individual nodes i1, . . . , iD. We posit that this is a natural restriction

on what network moments the researcher may be interested in for the model without edge-

specific interaction effects. This condition on AEi
yields a major simplification relative to

the general case in which potential values for each node in Nid have to be evaluated at the

relevant overlap with respect to Ei := Ei1 ∪ . . .EiD rather than Eid alone. In the presence of

edge-specific effects, these interactions can no longer be ignored, and we discuss this more

general case in the appendix.

The condition that the event AEi
not include multiple subnetwork configurations that may

be simultaneously supported by a pairwise stable network implies that such an event can

be represented in terms of the marginal distributions (rather than the joint distribution) for

potential values s∗j(R) for each value R of the relevant overlap. Dropping this requirement

does not fundamentally change our theoretical analysis, but will pose additional practical

problems for implementation: As shown by Menzel (2015b) the marginal distributions for

s∗j(R) can be estimated directly from the data, however the joint distribution across different

values of R would have to be inferred from theoretical fixed point conditions for our model.

Alternatively, the Bonferroni inequality gives a conservative bound that can be evaluated

from the marginal distributions alone.

4. Aggregate State Variables

The previous section gave a simplified representation of outcomes in pairwise stable net-

works in terms of local network neighborhoods and potential values for network statistics. In

a pairwise stable network, the distribution of potential values for network statistics and node

“availability” in a network neighborhood are endogenously determined. In this section we

show that this distribution can (to an asymptotic approximation) be characterized in terms

of aggregate state variables, (a) the reference distribution M(x, s|R) and (b) the inclusive

value function H(x; s). Furthermore we show that these aggregate states are in turn deter-

mined by a fixed-point (equilibrium) condition across the entire network, which completes

our asymptotic characterization of the network.

4.1. Extreme-Value Approximations. We first consider the limit of the conditional prob-

ability that certain link proposals are accepted. As Menzel (2015b) showed, in sparse net-

works these limits are governed by extreme-value theory, and this section strengthens his

result, deriving the convergence rate for these approximations as well as other extensions

needed for the central limit theory in this paper.

For the following results, we focus on events regarding the link proposals by i, that is

concerning edge sets of the form Ei :=

[
i . . . i

1 . . . n

]
. The extension to neighborhoods of
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polyads i1, . . . , iD will be straightforward in light of Lemma 3.2. Adapting the notation in

Lemma 3.1, we let s−i := (s1, . . . , si−1, si+1, . . . , sn)
′ and

S∗
−i(DEi

) := ×
j ̸=i

S∗
j

(
Ei,DEi

, [ij, ji] , [1, D∗
ji]
)

be the potential values for a given set of proposals DEi
. We also use the notation WEi for

the set of edges directed at i, where W is the matrix

[
0 1

1 0

]
. Given DEi

and DWEi
, we

then let LEi
= DEi

⊙ DWEi
and j1, . . . , jr ∈ {1, . . . , n} be the indices of nodes such that

Lij = 1. To simplify notation, we also let U∗
ij := U∗(xi, xj; si, sj, tij) for j = 1, . . . , n, where

si := S(L(D∗,E1,DE1); i).

Since links are determined simultaneously, it is necessary to consider joint probabilities of

the form

Φ(i, j1, . . . , jr) = P
(
DEi

∈ D∗
Ei
(s−i)

∣∣X, s−i ∈ S∗
−i(DEi

),DWEi
∈ D∗

WEi
(DEi

)
)

Under the sparse network sequence in Assumption 2.5, Menzel (2015b) showed probabilities

of that form converge to their extreme-value analogs, with joint probabilities across multiple

links converging to products of edge-wise Logit-type probabilities. However for a derivation

of the asymptotic distribution, we also have to ensure that the error from this extreme-value

approximation does not contribute to first order as we take limits. The following lemma

strengthens Lemma 6.2 in Menzel (2015b), showing that the additional tail condition on the

c.d.f. of taste shifters in 2.4 (ii) suffices to guarantee convergence at a sufficiently fast rate.

Lemma 4.1. Suppose that Assumptions 2.3-2.5 hold. Then∣∣∣∣∣∣∣nr/2Φ(i, j1, . . . , jr)−
r!
∏r

s=1 exp{U∗
ijs}(

1 + n−1/2
∑

j /∈{j1,...,jr}D
∗
ji(s) exp{U∗

ij}
)r+1

∣∣∣∣∣∣∣ = o(n−1/2)

See the appendix for a proof. The implied approximation to Φ(i, j1, . . . , jr) has several

properties that help simplify the problem. For one, the joint probability over link acceptances

to nodes j1, . . . , jr is approximated by the product of the marginal probabilities for each of

these edges and a term capturing the probability that all remaining available edges will not be

chosen. Furthermore, each of these (limiting) marginal probabilities is of the Logit form, so

that the set of available link opportunities enters each of these marginal probabilities with the

inclusive value for the alternatives that are not accepted, n−1/2
∑

j /∈{j1,...,jr}D
∗
ji(s) exp{U∗

ij}.
Under Assumption 2.5 the number of available alternatives grows at a n1/2 rates so that

this statistic is approximated by the analogous average over all link opportunities, including

those that are accepted.
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For the sampling representation in Lemma 3.4 we also need conditional probabilities of

the form

Φ̄(i, j1, . . . , jr) = P
(
DEi

∈ D∗
Ei
(s−i)

∣∣X, s−i ∈ S∗
−i(DEi

),DWEi
∈ D∗

WEi
(DEi

), Dij10, . . . Dijr0 = 1
)

where we defined Dij0 := 1l
{
Ū + εij ≥MCi

}
. From Lemma C.1 we can immediately con-

clude that

Φ̄(i, j1, . . . , jr) = exp

{
r∑

q=1

(
U∗
ijq − Ū

)}
(4.1)

Hence the Logit structure in the limit gives us a simple adjustment factor to evaluate the

probability of a combination of proposals conditional on a set of nodes being in the network

neighborhood Ni. The analogous conclusion holds for conditioning on Ū + εikq ≥ MCi,

q = 1, . . . r′ for a subset of nodes k1, . . . , kr′ ∈ {j1, . . . , jr}.

4.2. Inclusive Values. As discussed before, the asymptotic representation in Lemma 4.1

implies that in the limit, conditional acceptance probabilities depend only on the system-

atic utilities of the alternatives chosen, and the inclusive value of the set of available link

opportunities, which we define as

I∗i := n−1/2

n∑
j=1

D∗
ji exp{U∗

ij}

Most importantly, the composition and size of the set of link opportunities affects the condi-

tional choice probabilities only through the inclusive value, so to an asymptotic approxima-

tion the inclusive value serves as a scalar parameter summarizing the systematic components

of payoffs for the available options, similar to the case of single-agent discrete choice (Luce

(1959), McFadden (1974)) or matchign models (Dagsvik (1994),Menzel (2015a)).

Menzel (2015b) establishes a conditional law of large numbers for the inclusive values

which are sample averages over the characteristics of agents j with D∗
ji = 1, where the size

of that set,
∑

j ̸=iDji0 grows at a rate
√
n for any PSN. The following was proven as Lemma

6.3 in Menzel (2015b) and is re-stated here for completeness.

Lemma 4.2. Suppose Assumptions 2.2-2.6 hold. Then, (a) there exists a function Ĥ
∗
n(x, s)

such that for any pairwise stable network, the resulting inclusive values satisfy

I∗i − Ĥ
∗
n(xi, si) = op(1)

for each i drawn from a uniform distribution over {1, . . . , n}. Furthermore, (b), if the weight

functions ω(x, x′, s, s′) ≥ 0 are bounded and form a Glivenko-Cantelli class in (x, s), then

sup
x∈Xs∈S

1

n

n∑
j=1

ω(x, xj, s, sj)(I
∗
j − Ĥ

∗
n(xj, sj)) = op(1)
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As shown in Menzel (2015b), this implies an (approximate) fixed-point condition for the

inclusive value function H(x; s), where we define the mapping

Ψ̂2n[M,H](x; s) :=
1

n

n∑
i=1

∫
s1i exp{U∗(x, xi; s, si, t0) + U∗(xi, x; si, s, t0)− 2Ū}

1 + H(xi; sj)
M(xi, s|R)dxidsi

=:
1

n

n∑
i=1

ψ̃2ni[M,H](x; s) (4.2)

Letting M̂∗
n(x, s|R) denote the empirical distribution of endogenous network characteristics

defined in (3.1), we then have the following:

Lemma 4.3. Suppose that Assumptions 2.2-2.6 hold. Then the inclusive value function

Ĥ
∗
n(x, s) resulting from a PSN has to satisfy the approximate fixed-point condition

Ĥ
∗
n(x; s) = Ψ̂2n[M̂

∗
n, Ĥ

∗
n](x; s) + op(1) (4.3)

where the remainder converges in probability uniformly in the arguments x, s.

This was proven as Lemma 6.4 in Menzel (2015b). We do not derive the stochastic order

of the approximation errors in Lemmas 4.2 and 4.3 at this point. But as part of the proofs

for Lemma 5.1 and Theorem 5.2, we find that under the conditions of our main results, I∗i −
Ĥ

∗
n(xi, si) = Oo(n

−1/4 and that the remainder term in (4.3) is of the order Op(n
−1/2). Most

importantly, both stochasticssL terms generally contribute to the asymptotic distribution of

the network moment.

4.3. Reference Distribution. We next show that the representation result in Lemma 3.4

implies that M̂n(x, s|R) is sufficient to characterize the distribution of potential values for

the nodes forming the links in the edge set Ek.

Equilibrium Condition in Finite Network. We first give the distribution of the r.h.s. variables

in (3.1) to establish stochastic restrictions on the reference distribution. We define

L(s, R0; k, i) := {LEk
: S(LEk

,X; i) = s, R(Ek,LEk
,X; i) = R0} .

and similarly,

L(R0; k, i) := {LEk
: R(Ek,LEk

,X; i) = R0} .

If we then let L∗
k,i be the set of subnetworks (DEk

,DE−k
) that are supported by a pairwise

stable network, we can use

Ak,i(s, R0, x) =
{
L∗

k,i ∩ L(s, R0; k, i) ̸= ∅, xi = x,Dik0 = Dki0 = 1
}

to denote the event that s∗i = s and R(Ek,LEk
,X; i) = R0 are supported by a pairwise stable

subnetwork on Ek, and xi = x. Similarly,

Ak,i(R0) =
{
L∗

k,i ∩ L(R0; k, i) ̸= ∅
}
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In that notation,

ψ∗
1ni(s, R0, x) :=

∑
k ̸=i

1l {Ak,i(s, R0, x)}

and ψ∗
1ni(R0) :=

∑
k ̸=i 1l {Ak,i(R0)} so that we can write

M̂n(s, x|R0) ≤ Ψ̂∗
1n(x, s|R0) (4.4)

for each (s, R0, x), where

Ψ̂∗
1n(x, s|R0) :=

1
n

∑n
i=1 ψ

∗
1ni(s, R0, x)

1
n2

∑n
i=1 ψ

∗
1ni(R0)

Equilibrium Condition under Sampling Representation. We next define an analog of Ψ̂∗
1n

under the sampling representation in Lemma 3.4, where we let Ñi be the random network

neighborhood of node i given a reference distribution M and let Ei,{j1,...,jr} denote the set

of edges (ij1), . . . , (i, jr). For notational simplicity, we identify Ñi with the attribute values

(xj1 , sj1 , . . . , xjr , sjr) where we denote a typical draw Ni,{j1,...,jr}. We then denote

L(s, R0; k, i, Ni,{j1,...,jr}) :=
{
LEi,{j1,...,jr}

: S(LEi,{j1,...,jr}
,X; i) = s,

R(LEi,{j1,...,jr}
,X; i) = R0

}
and let L̃∗

k,i,{j1,...,jr} be the set of networks on Ei,{j1,...,jr} such that the links Lkj are pairwise

stable for j ∈ {j1, . . . , jr} given potential values in Nk. We also let

Ãk,i(s, R0, x) =
{
L̃∗

k,i,{j1,...,jr} ∩ L(s, R0; k, i, {j1, . . . , jr}) ̸= ∅, xi = x, D̃ik0 = 1
}

We can then define an analog to ψ∗
1ni in terms of the sampling representation,

ψ̃1ni[M ](s, R0, x) :=
∑
k ̸=i

1l
{
Ãk,i(s, R0, x)

}
. (4.5)

and ψ̃1ni[M ](R0) in an analogous fashion. Note that the first argument expresses dependence

of ψ̃1ni on the reference distributionM from which the network neighborhood Ñi was drawn.

Lemma 4.4 below establishes that (4.4) gives rise to an approximate fixed point condition

M̂n(s, R0, x) ≤ Ψ̄1n[M̂n, Ĥn](x, s|R0) + op(1)

for a mapping of the form

Ψ̄1n[M,H](x, s|R0) :=
1
n

∑n
i=1 ψ̄1ni[M,H](s, R0, x)

1
n

∑n
i=1 ψ̄1ni[M,H](R0)

where the functions ψ̄1ni derive from expectations of ψ̃1ni according to asymptotic probabil-

ities of subnetwork events. Specifically, for a given realization of the network neighborhood
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Ni,{j1,...,jr} we define

ψ̄1ni,j1...jr [M,H](LEi,{j1,...,jr}
, Ni,{j1,...,jr}, x) :=

exp{Ū}
1 + H(xi, si)

×

 r∏
q=1

exp
{
DijqU

∗
ijq +DjqiU

∗
jqi − 2Ū

}
(1 + H(xi, si))

Dijq
M(sjq , x|Rjq)


which can be aggregated at the level of each node as

ψ̄1ni[M,H](s, R0, x) :=
∑
r≥0

∑
Ni,{j1,...,jr}

∑
L∈Li,j1,...,jr

ψ̄1ni,j1...jr [M,H](L, Ni,{j1,...,jr}, x)

where Li,j1,...,jr := L(s, R0; i, Ni,{j1,...,jr}) and ψ̄1ni[M,H](R0) is defined analogously.

Sharp bounds for the reference distribution have to incorporate additional restrictions

between various values of s, R0. For a set of outcomes {(s1, R1), . . . , (sK , RK)}, let the set

L({(s1, R1), . . . , (sK , RK)}; i,Ni) :=
{
LEi

: Lij = 0 for all j /∈ Ni, S(LEi
X; i) = sk, and

R(Ei,LEi
,X; i) = Rk for some k ≤ K

}
The set of distributions that can then be characterized by a capacity

Ψ̄1n[M̂n, Ĥ
∗
n]

(
x, s1, . . . , sK

∣∣∣∣∣
K⋃
k=1

Rk

)
=

1
n

∑n
i=1 ψ̄1ni[M̂n, Ĥn]({(s1, R1), . . . , (sK , RK)}, x)

1
n

∑n
i=1 ψ̄1ni[M̂n, Ĥn](R1, . . . , RK)

where

ψ̄1ni[M̂n, Ĥn]({(s1, R1), . . . , (sK , RK)}, x)

=
∑
r≥0

∑
Ni,{j1,...,jr}

∑
L∈LK,i,j1,...,jr

ψ̄1ni,j1...jr [M,H](L, Ni,{j1,...,jr}, x)

where LK,i,j1,...,jr := L((s1, R1), . . . , (sK , RK); i, Ni,{j1,...,jr}). Taken together, these arguments

imply that any reference distribution that results from a pairwise stable network must satisfy

an approximate fixed point condition which we summarize in the following Lemma:

Lemma 4.4. Suppose that Assumptions 2.2-2.6 hold and that nP(Rij = R0|Dij0 = Dji0 =

1) → ∞ for each value of R0. Then the reference distribution M̂∗
n(x, s, R) resulting from a

PSN has to satisfy the approximate fixed-point condition

M̂∗
n(x, s|R) = Ψ̄1n[M̂

∗
n, Ĥ

∗
n](x, s|R) + oP (1) (4.6)

for any s, R0, and∑
{k=1,...,K}

M̂n(sk, Rk, x) ≤ Ψ̄1n[M̂n]

(
x, s1, . . . , sK

∣∣∣∣∣
K⋃
k=1

Rk

)
+ oP (1)

where the remainder converges in probability uniformly in the arguments x, s.
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See the appendix for a proof.

4.4. Limit of Fixed-Point Mapping. Taken together, Lemmas 4.3 and 4.4 give a joint

fixed point condition for the reference distribution M̂∗
n(x, s|R0) and the inclusive value func-

tion Ĥ
∗
n(x, s), where we stack the mappings Ψ̂n := [Ψ̂′

1n, Ψ̂
′
2n]

′, to write

M̂∗
n ≤ Ψ̂1n[M̂

∗
n, Ĥ

∗
n] + op(1)

Ĥ
∗
n = Ψ̂2n[M̂

∗
n, Ĥ

∗
n] + op(1) (4.7)

Under regularity conditions, we next show that the mapping Ψ̂n[M,H] and its fixed points

converge to a proper limit Ψ0[M,H] := [Ψ10[M,H]′,Ψ20[M,H]′]′, and its fixed points to the

solutions of the limiting problem

M∗
0 ≤ Ψ10[M

∗
0 ,H

∗
0]

H∗
0 = Ψ20[M

∗
0 ,H

∗
0] (4.8)

In order to define stochastic convergence when the limit may remain stochastic (e.g. when

pairwise stable networks are selected at random), we furthermore need to ensure that for each

limiting point η0 ∈ Ψ0[η0] there exists a sequence of values for the aggregate state variable

η̂n ∈ Ψ̂n[η̂n] such that η̂n → η0. To this end, we rely on the notion of regularity for the

solutions of the fixed-point problem which correspond to standard local stability conditions

in optimization theory (see e.g. chapter 9 in Luenberger (1969), or chapter 3 in Aubin and

Frankowska (1990)): The contingent derivative of Ψ0 at (η′, ψ′)′ ∈ gph Φ0 ⊂ H2 is defined

as the set-valued mapping DΨ0(η, ψ) : H ⇒ H such that for any u ∈ H

v ∈ DΨ0(η, ψ)(u) ⇔ lim inf
h↓0,u′→u

d

(
v,

Ψ0(η + hu′)− ψ

h

)
where d(a,B) is taken to be the distance of a point a to a set B.6 Note that if the correspon-

dence Ψ0 is singleton-valued and differentiable, the contingent derivative is also singleton-

valued and equal to the derivative of the function Ψ0(η). The contingent derivative of Ψ0 is

surjective at η0 if the range of DΨ0(η0, ψ0) is equal to H. If the fixed point η0 ∈ Ψ0[η0] is

such that the contingent derivative of Ψ0 at η0 is surjective, then we say that it is a regular

fixed point of the mapping.

We can now summarize the main assumptions on the fixed-point mappings Ψ̂n and Ψ0 for

the aggregate state variables in the finite network and the limiting economy, respectively:

Assumption 4.1. (i) The mapping Ψ0 is compact and upper hemi-continuous in H,M for

all x ∈ X and S ⊂ R, and (ii) the core of Ψ0[H,M ] is nonempty, where the boundary

points of the core of the capacity Ψ0[H,M ] is in some compact subset U ⊂ ∆(X ×R) for all

values of H,M . (iii) supx,Z⊂R

∣∣∣Ψ̂n[M,H](Z)−Ψ0[M,H](Z)
∣∣∣ → 0 uniformly in H ∈ G and

6See Definition 5.1.1 and Proposition 5.1.4 in Aubin and Frankowska (1990)
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distributions M ∈ U . (iv) Each point (M0,H0) satisfying (M0,H0) ∈ Ψ0[M0,H0] is a regular

fixed point of Ψ0. (v) The fixed-point mapping Ψ0[M,H] is singleton-valued and continuously

differentiable at each η.

These high-level assumptions on the equilibrium mapping Ψ0 have to be verified on a case

by case basis. Existence of a fixed point for the limiting model as well as the law of large

numbers require parts (i)-(iii) of this assumption, parts (iv) and (v) are only used to derive

the asymptotic distribution.

Uniform convergence of Ψ̂n with respect to M in part (iii) is only stated only as a high-

level condition in order to keep the result as general as possible. Menzel (2015b) discussed

primitive conditions and also showed that for some cases of applied interest - e.g. interac-

tions through the degree distribution - the mapping Ψ0 does not depend on the sampling

distribution of types, in which case uniform convergence as in part (iii) trivially holds.

These high-level conditions are sufficient to ensure that the limiting model for the network

formation problem is indeed well-defined. The following result was proven as Theorem 4.1

in Menzel (2015b):

Theorem 4.1. (Fixed Point Existence) Suppose that Assumptions 2.3 and 4.1 (i)-(ii)

hold. Then the mapping (H,M) ⇒ (Ψ0,Ω0)[H,M ] has a fixed point.

As shown in Menzel (2015b), the reference distribution can be estimated from observable

network data under certain conditions, however the inclusive value function H∗(x; s) cannot.

That said, we can give conditions that ensure that the inclusive value function H∗ is uniquely

defined given a reference distribution M(x, s|R):

Proposition 4.1. Suppose that Assumptions 2.3-2.5 hold. Then (i) for any given reference

distribution M∗(s|x) for which the network degree s1i satisfies E[s1i|xi] < Bs < ∞ almost

surely, the mapping log H 7→ log Ψ20[H] is a contraction mapping with contraction constant

λ < Bs exp{2Ū}
1+Bs exp{2Ū} . Moreover, (ii) the fixed points in (4.8) are continuous functions that have

bounded partial derivatives at least up to order p.

The formal argument for this result closely parallels the proof of Theorem 3.1 in Menzel

(2015a) with contraction constant equal to Bs exp{2Ū}
1+Bs exp{2Ū} , a separate proof is therefore omitted.

Below we rely on these uniqueness results for conditional inference given M̂n(x, s|R) to

rule out multiplicity for unobserved aggregate state variables.

To summarize, this section establishes an approximate representation of aggregate states

of pairwise stable networks that govern the process generating the network neighborhoods

in the representation in Lemma 3.4. Those states are (a) the inclusive value function H∗

characterizing the set of link opportunities available to the “typical” node with certain

attributes, and (b) the reference distribution M∗ of potential values for the (endogenous)
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payoff-relevant network statistics. We give a fixed-point characterization for these states,

where the finite-network fixed-point mapping can be computed from observable data, and

its solutions are shown to converge to fixed points of the limiting map. This structure will

serve as the basis for estimation and inference, using the distribution theory given in the

next section.

5. Asymptotic Results

We can now state the main formal results of this paper, a law of large numbers and a

central limit theorem for the network moments. Our approach is based on our finding (most

importantly the conclusion of Lemma 3.4) that the behavior of network moments can be ap-

proximated by a representation in which the contributions from a finite empirical population

(“drawing without replacement”) are replaced by independent draws from a common distri-

bution (“drawing with replacement”). Specifically, we approximate the array (mi1...iD)i1...iD
with the array (m̃i1...iD)i1...iD resulting from drawing network statistics s∗j from the distribu-

tion M̂n(s, R0, x). Furthermore, M̂n(s, R0, x) is itself random and determined endogenously

by the same network formation process. We therefore characterize the distribution of m̂n and

M̂n(s, R0, x) jointly by stacking the network moment and the fixed point mapping, which is

an average across the n nodes.

To that end, we let

η := [M ′,H′]

denote a vector that consists of the reference distribution M and inclusive value function H.

Under Assumption 2.2, η can be taken to be a finite-dimensional vector. By Lemmas 4.3

and 4.4 we can then write the moments of m̃i1...iD in more compact notation as a function

of η,

m0(θ; η) := Eη [m̃i1...iD(θ)]

where Eη[·] denotes the expectation for network outcomes with random network neighbor-

hoods drawn according to a distribution governed by the aggregate state η. In particu-

lar, m0(θ; η) may in general remain random in the limit if η is stochastic. In the infinite-

population model, that aggregate state satisfies the fixed-point condition

η0 ∈ Ψ0(η0)

where Ψ0(η) was given as a function of the expectations E
[
ψ̃i(η)

]
in Section 4.

Similarly, we can write the sampling approximation to the empirical moment as

m̃n(θ; η̂n) :=

[(
n

D

)
pn

]−1 ∑
i1<···<iD

m̃i1...iD(L,X; θ)
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where η̂n denotes the value of the relevant aggregate state variables for the finite network

which determine the sampling representation according to which m̃i1...iD(·) is drawn. Fur-

thermore, as shown in Section 4, η̂n must satsify the fixed point condition

η̂n ∈ Ψ̂n(η̂n)

where Ψ̃n(η) was defined as a function of averages 1
n

∑n
i=1 ψ̃i(η).

Hence, the asymptotic distribution of m̃n(θ) can be derived in terms of properties of(
m̂n(θ; η)−m0(θ; η), Ψ̂n(η)−Ψ0(η)

)
as a function of η. Specifically, we can expand

m̂n(θ) = m̃n(θ; η̂n) + oP (n
−1)

= m0(θ; η0) + [m0(θ; η̂n)−m0(θ; η0)] + [m̃n(θ; η̂n)−m0(θ; η̂n)] + oP (n
−1)

Similarly, for the fixed point equation

η̂n ∈ Ψ̃n(η̂n)

= Ψ0(η0) + [Ψ0(η̂n)−Ψ0(η0)] +
[
Ψ̃n(η̂n)−Ψ0(η̂n)

]
In particular, we can show that given the set of fixed points H0 := {η0 : η0 ∈ Ψ0[η0]}, the

distance d(η̂n,H0) converges to zero almost surely. Under the additional regularity conditions

on the moment functions we can therefore obtain a law of large numbers for the network

moments, which is proven in the appendix.

Theorem 5.1. Suppose that Assumptions 2.1-2.5 and 2.6 (i) hold. In addition assume

that the fixed-point mapping Ψ0 satisfies Assumption 4.1 (i)-(iii). Then we can find a F-

measurable sequence ηn such that ηn ∈ Ψ0(ηn) and

m̂n(θ)−m0(θ; ηn)
p→ 0

Given this law of large numbers with respect to the set of possible limits for the network

formation model, we next provide an asymptotic distribution theory under somewhat more

stringent conditions. The central limit theorem for network moments assumes stronger

conditions on the fixed-point mapping, 4.1 (iv)-(v) which were not needed for the law of

large numbers. In particular, the CLT will require Ψ0[η] to be singleton valued, which may

either hold directly given the nature of strategic interaction effects, or under additional

constraints on the mechanism for selecting among multiple pairwise stable networks.

Since the limiting model need not have a unique solution and the observed network may

be generated according to a stochastic selection rule, we formulate an asymptotic theory that

is conditional on the selected equilibrium. Specifically, we assume that agents to coordinate

on a pairwise stable network via a public signal with a selection mechanism satisfying As-

sumption 2.6 (ii)-(iii). In particular the remaining results will assume that selection among
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multiple stable networks is based on a signal that is independent of the payoff-relevant vari-

ables xi,MCi, εij.

We first give a result on the rate of the asymptotic bias. Let m̄n(θ; η) := En[mi1...iD(θ; η)]

and Ψ̄n(θ; η) := En[mi1...iD(θ; η)], where En[·] denotes the expectation under the respective

distributions of m̃i1...iD and ψ̃i1 for a network of size n. We then define

Bm,n(θ; η) :=
√
n(m̄n(θ; η)−m0(θ; η))

BΨ,n(θ; η) :=
√
n(Ψ̄n(θ; η)−Ψ0(θ; η))

and let Bn := [B′
m,n, B

′
Ψ,n]

′.

Lemma 5.1. Assume the network formation model in Assumptions 2.1-2.6, and 4.1. Fur-

thermore suppose that the network event Ai1...iD implies that Li1is = 1 for at least one

s ∈ {2, . . . , D}. Then B(θ; η) := limnBn(θ; η) exists and is finite almost surely.

This bias arises from the approximation of conditional link acceptance probabilities with

the inclusive value function and effectively consists of two separate contributions which can

be addressed separately. For one, the probabilities given in Lemma C.1 are in terms of the

inclusive value of the link opportunity set excluding the contribution of the link proposals that

were accepted. This source of bias can immediately be removed by evaluating conditional

link probabilities at the suitably adjusted inclusive value, resulting in a correction of the order

n−1/2. The second bias contribution due to the nonlinearity in conditional link acceptance

probabilities could in principle be estimated analytically, using the asymptotic moments of

n1/4(I∗i − H∗(xi, si)), or via resampling. However establishing the asymptotic validity of

either procedure is beyond the scope of this paper, and we will be left for future research.

In order to establish a central limit theorem, we approximate the exact, finite-network

distribution of the network moment by that of an exchangeable array. The finite-agent net-

work is generally not jointly exchangeable under pairwise stability, instead links are formed

simultaneously given realized payoffs for finitely many nodes. Nevertheless we can construct

a sequence of jointly exchangeable arrays that approximate the finite-agent moment suffi-

ciently closely. We show how to define that approximating sequence on a common probability

space, allowing to establish convergence in distribution that is mixing with respect to the

selected fixed point η0.

Then, by an Aldous-Hoover representation any jointly exchangeable array can be repre-

sented as a function

Ỹi1...iD = h
(
α(0), α

(1)
i1
, . . . , α

(1)
iD
, α

(2)
{i1,i2}, . . . , α

(D)
{i1,...,iD}

)
of i.i.d. uniform random variables α(0), α

(1)
i1
, . . . , α

(1)
iD
, α

(2)
{i1,i2}, . . . , α

(D)
{i1,...,iD} indexed by the

subsets of {i1, . . . , iD}. We therefore can analyze the D-adic mean of Ỹi1...iD in terms of its

Hoeffding decomposition, i.e. in terms of a conditional expectations projection on nested
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subsets of the Aldous-Hoover factors α(0), α
(1)
i1
, . . . , α

(1)
iD
, α

(2)
{i1,i2}, . . . , α

(D)
{i1,...,iD}. Asymptotic

normality is then established by showing that the leading terms of that Hoeffding decomposi-

tion correspond to projections on single Aldous-Hoover factors which dominate the respective

contributions of the terms depending on two or more factors at a time.

Given these constructions, we can state our main result as follows:

Theorem 5.2. Suppose Assumptions 2.1-2.6 and 4.1 hold. Furthermore we assume that the

network event Ai1...iD is such that Li1is = 1 for at least one s ∈ {2, . . . , D} and
(
n
D

)
pn → ∞.

We then have

√
n (M ′VM)

−1/2
(m̂n(θ)− E [m̃i1...iD(θ)| F ])−M ′B

d→ N(0, Iq)

mixing in F , where η0 is F-measurable,

M :=
[
I,∇ηm0(θ; η0)(I−∇ηΨ0(η0))

−1
]′

and V is the conditional asymptotic variance matrix of [m̂n(θ, η0), Ψ̂n(η0)] given η0.

See the appendix for a proof. Note that Assumption 4.1 (v) requires that Ψ0[η] is singleton-

valued, so the derivative of the fixed-point mapping is well-defined.

Since this result is obtained from a statistical theory that treats nodes in the (large)

network as random, we can interpret the central limit theorem as a first-order approximation

to the sampling error in network moments relative to their large-population counterparts.

Since the main result in Menzel (2015b) allows to characterize the mapping from payoff

parameters to those limiting population moments, Theorem 5.2 can therefore serve as the

basis for an inferential theory relying on these asymptotic representations. In particular

with appropriate corrections for the asymptotic bias in Lemma 5.1, this result can be used

to construct hypothesis tests or confidence intervals for structural parameters of the network

formation model in an otherwise conventional manner. When the limiting distribution is not

unique, inference will be conditional on η0 in a completely analogous fashion to the approach

in Menzel (2016b). In future versions of this paper, we will also provide formulae to correct

for the asymptotic bias and variance for m̂n(θ).

6. Conclusion

This paper develops an asymptotic distribution theory for network formation models which

allow for strategic interaction effects. Our results are based on large-network asymptotics, i.e.

approximations that become more accurate as the number of agents (nodes) in the network

increases. Tractable approximations to probabilities of network events (most importantly

conditional link frequencies) for our framework were first derived by Menzel (2015b). Our

analysis in the present paper gives a law of large numbers and a (conditional) central limit

theorem for a class of network moments which make it possible to develop estimation and
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inference procedures based on those approximations. For certain cases of interest these

approximations are available in closed form and can therefore be implemented without relying

on simulation methods.

The limiting model is characterized in terms of stable subnetworks on random network

neighborhoods that are generated from a common distribution of nodes and their (endoge-

nous) network attributes. This approximation has some interesting qualitative features. For

one, any “long-range” interdependence between link formation decisions is entirely captured

by the aggregate state variables H∗ and M∗, whereas “short-range” interdependence can be

characterized through the edge-level response to a given realization of potential values of

payoff-relevant network variables. This dichotomy - eliminating any additional “medium-

range,” indirect effects in the limit - is a result of symmetry (exchangeability) of a form

that is implicitly assumed for typical economic models of networks. Non-uniqueness of the

pairwise stable network in the finite economy may still manifest itself in the limiting distri-

bution, both as “global” multiplicity corresponding to different solutions for the equilibrium

conditions for aggregate state variables, as well as “local” multiplicity of stable outcomes in

a network neighborhood.
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Appendix A. Edge-Specific Interaction Effects

This appendix generalizes the sampling representation from Lemma 3.4 to the case of edge-specific interac-

tion effects when strategic effects may be jointly determined jointly by subsets of the network neighborhood

of {i1, . . . , iD} that are larger than in the case of node-specific interaction effects.

To define the expanded network neighborhoods, we let

Tq :=
{
T (Lq,X; i, j) : Lq ∈ {0, 1}q(q−1)/2

}
denote the set of values for the statistic Tij that can be generated on a network of q nodes including i, j. We

also write

Ūq := sup
t12∈Tq

sup
x1,x2,s1,s2

U(x1, x2; s1, s2, t12)

for the largest value of the systematic part of marginal utility that can be attained on Tq. We then let

v̄(q) := min

{
v : sup

x1,x2,s1,s2

U(x1, x2; s1, s2, T (Lq,X; i, j)) = Ūq, ∥Lq∥ = v

}
be the smallest numbers of edges on a network of size q that attains Ūq, and r̄ denote the smallest integer

that attains the upper bound for Ūq with respect to q,

r̄ := min

{
r ∈ Z : sup

v∈Z
Ūrv ≥ sup

q,v∈Z
Ūqv

}
While the approach outlined here will only be practical when r̄ is fairly small, definitions and notation will

cover the general case of any finite value.

For any integers r, p we define the p, v-neighborhood of nodes i1, . . . , ir as

N (p)
i1...ir;v

:=

{
k1, . . . , kp :

r∑
s=1

p∑
q=1

Diskq ;v0Dkqis;r0 ≥ v̄(r + p)− r(r − 1)

2

}
where

Dki;r0 := 1l
{
Ūr + εki ≥MCk

}
That is, N (p)

i1...ir;v
is the set of p distinct nodes k that are contained in a p-tuple (k1, . . . , kp) such that at

least v̄(r + p) links among (i1, . . . , ir, k1, . . . , kp) can be pairwise stable under some configuration of the

subnetwork among these nodes, assuming that i1, . . . , ir are fully connected. For such a p-tuple (k1, . . . , kp),

we also denote the relevant overlap with the r-tuple (i1, . . . , ir) with

Ri1...ir;k1...kp
:= R

(
Ei1...ir ,LEi1...ir

(D0,DEi1...ir
); k1, . . . , kp

)
As in the baseline case, the probability of AEi

depends on the global network structure through the

empirical (Poisson) rates at which groups of nodes k := (k1, . . . , kp) with attributes xk1
, . . . , xkp

and potential

values for network attributes s∗k1
(Ri1...ir;k1...kp), . . . , s

∗
kp
(Ri1...ir;k1...kp) are jointly selected into the network

neighborhood of the tuple i := (i1, . . . , ir). To characterize these Poisson rates for different values of r, p, we
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extend our definition of the reference distribution as follows

M̂rp,n(x1, . . . , xp, s1, . . . , sp|R) :=
(
n
p

)−1
p−1
n

∑
k

∑
k∩i=∅ 1l{Aik(x1, . . . , xp, s1, . . . , sp, R, v̄)}(

n
p

)−1∑
k

∑
k∩i=∅ 1l {Aik(R)}

(A.1)

where

Aik(x1, . . . , xp, s1, . . . , sp, R, v̄) :=
{
xk1

= x1, . . . , xkp
= xp, s

∗
k1

= s1, . . . , s
∗
kp

= sp, Ri1...ir;k1...kp
= R,

r∑
s=1

p∑
q=1

Dkqis0 = v̄(r + p)− r(r − 1)

2

}
,

Aik(R) :=
{
Ri1...ir;k1...kp

= R
}
,

and pn is a normalizing sequence that depends on v̄(r+ p)− r(r−1)
2 and the rate at which Ūr grows in n. To

approximate the probability of an event AEi
we then generate a network neighborhood Ñi of i at random

by drawing sets of nodes that are individually (or jointly) acceptable to some subset of nodes in {i1, . . . , iD}
under some configuration of that subnetwork. Specifically,

• For each subset {i1, . . . , ir} ⊂ {i1, . . . , iD} of size r = 1, . . . , r̄ − 1 and p = 1, . . . , r̄ − r we then

generate the degree-p neighborhood of {i1, . . . , ir}, Ñ (p)
i1...ir

independently where potential values in

Ñ (p)
i1...ir

are with respect to the edge set
⋃r

s=1 Eis . Specifically, the set Ñ (p)
i1...ir

consists of p-tuples

with attributes and potential values(
(xj , s

∗
j (R), t

∗
ij(R)) : i ∈ {i1, . . . , ir}, j ∈ {j1, . . . , jp} ∈ Ñ (p)

i1...ir

)
that are the realizations of a point process with Poisson intensity M̂rp,n(x1, . . . , xp, s1, . . . , sp|R).

• For each node pair (i, j) with i ∈ {i1, . . . , iD} and j ∈
(
{i1, . . . , iD} ∪

(⋃
r,p

⋃
i∈{i1,...,ir} N{i1 . . . ır}(p)

))
\{i}

we also generate i.i.d. draws M̃Ci and ε̃ij from their respective marginal distributions.

• Give these network neighborhoods, we let the indicator

L
(p)
ik;i1...ir,k1...kp

= 1l
{
U∗(xi, xk; si, s

∗
k(Ri1...ir;k1...kp

), t∗ik(Ri1...ir;k1...kp
)) + ε̃ik ≥ M̃Ci

}
Dki(si, Ri1...ir;k1...kp

)

denote the event that the link ik is supported on the neighborhood Ñ (p)
i1...ir

.

• The subnetwork LEi1
∪...EiD+1

on Ei1 ∪ . . . EiD+1
is then supported if for each d = 1, . . . , D and

k ∈
⋃

r,p

⋃
i∈{i1...,ir} Ñ

(p)
i1...ir

Lidk = max
r≤r̄

max
i∈{i1...ir}

max
k∈{k1...,kp}

L
(p)
ik;i1...ir,k1...kp

,

and Lidk = 0 for all k /∈
⋃

r,p

⋃
i∈{i1...,ir} Ñ

(p)
i1...ir

.

Under Assumption 2.5, the size of each neighborhood |Ñ (p)
i1...ir

| is random, but stochastically bounded as

n increases. By an argument analogous to that in the proof of Lemma 3.4, the probability of ties across

{i1, . . . , iD} and the neighborhoods N (p)
i1...ir

for r = 1, . . . , r̄ and p = 1, . . . , r̄ − 1 goes to zero at a 1
n rate.

In particular the probability that the event AEi
is supported by a pairwise stable network on the full set of

nodes {1, . . . , n} is also approximated up to the order 1
n by the probability of a pairwise stable subnetwork

on {i1, . . . , iD} given the network neighborhood Ñi.

While this extension substantially complicates notation, we assert - without rigorous proof - that the main

arguments for the baseline case continue to go through with minor modifications.
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Appendix B. Proofs for Section 3

B.1. Proof of Lemma 3.2. By construction, the potential values given DEi
are fully determined by the

“complementary” edge set

Ei
c :=

[
(iD+1, . . . , in) ⊗ ιn

ιn−D ⊗ (1, . . . , n)

]
For a given proposal subnetwork DEi

, the pairwise stability conditions for proposals on Ei
c are fully de-

termined by x1, . . . , xn together with MCiD+1
, . . . ,MCin as well as εiD+11, . . . , εinn. On the other hand,

the proposals on Ei are determined by x1, . . . , xn together with MCi1 , . . . ,MCiD as well as εi11, . . . , εiDn.

In particular, there is no overlap between the taste shocks determining pairwise stability of DEi
and DEc

i
,

respectively. Since the taste shocks MC1, . . . ,MCn as well as ε12, . . . , ε(n−1)n are i.i.d. draws from their

respective distributions by Assumption 2.4, this establishes the main conclusion of the lemma. The second

conclusion follows immediately from the observation that the taste shocks εk1l1 ,MCk1
, . . . , εkqlq ,MCkq

are

independent of those determining DEi
. □

B.2. Proof of Lemma 3.3. Consider first a permutation τ such that for j, k, τ(j) = k and τ(k) = j,

but τ(i) = i for any i ̸= j, k. To establish invariance, we now compare the distribution of potential values

S∗
j (E1,DE1

,E2,DE2
) to that of their permuted analogs S∗

τ(j)(E1,DE1
,Eτ

2 ,DE2
) under τ .

We establish the conclusion by induction over the number of edges in E1. For the start of induction, we

can immediately see that the conclusion of the Lemma holds for r = 0, i.e. {E1} = ∅ since node attributes

and taste shocks are identically distributed, and payoffs are therefore jointly exchangeable. Therefore we

only need to establish the inductive step where an edge ij is added to E1.

Specifically, suppose that invariance with respect to the permutation τ holds for r − 1 with the edge set

E1,r−1 and any values of DE1,r−1
∈ {0, 1}r−1. We now add the directed edge ir and jr to that set,

E1,r :=

(
i1 · · · ir−1 ir

j1 · · · jr−1 jr

)
,

and let DE1,r
:= (Di1j1 , . . . , Dirjr ) ∈ {0, 1}r. Given the inductive hypothesis, it now suffices to show that

for any fixed values DE1,r−1
∈ {0, 1}r−1, the distribution of potential values is invariant to the permutation

τ for either value of Dirjr ∈ {0, 1}.
To this end, we need to distinguish whether or not there may be indirect “interference” effects from

a change to Dirjr on the potential values s∗j , s
∗
k that are supported by a pairwise stable network given

DE1,r−1 ∈ {0, 1}r−1. Following Leung (2016), we say that a link ij is not robust if there exist values of

s1, s2, t12 and s′1, s
′
2, t

′
12 such that U∗(xi, xj ; s1, s2, t12) + εij ≥ MCi and U

∗(xj , xi; s2, s1, t21) + εji ≥ MCj ,

but also either U∗(xi, xj ; s
′
1, s

′
2, t

′
12) + εij < MCi or U∗(xj , xi; s

′
2, s

′
1, t

′
21) + εji < MCj . That is, a link is

not robust given realized payoffs if there exist one configuration of values of si, sj , tij such that Lij = 1 is

pairwise stable, and another such that it is not.

To make this argument precise, we now characterize events regarding whether a switch of Dirjr triggers

a chain of non-robust link formation decisions given the network L∗ that was pairwise stable given the

restrictions on the edge set E1,r−1. For any l /∈ {ir, jr}, let Akl denote an indicator for the event that there

exists a proposal network D∗ ∈ D∗(E1,r−1) given the link proposals DE1,r−1 such that for the resulting

network L∗ := L(D∗),

1l{Ukl(L
∗+{irjr}) ≥MCk, Ulk(L

∗+{irjr})−MCl} ≠ 1l{Ukl(L
∗−{irjr}) ≥MCk, Ulk(L

∗−{irjr})−MCl}
42



In words, Akl is an indicator for whether a change to the link Lirjr changes whether the link kl is pairwise

stable.

We then letBj(q;F ) be an indicator for the event that there exists a proposal networkD∗ ∈ D∗(E1,r−1,DE1,r−1)

such that D∗
jrir

= 1,
∑

k,lAjl = q and the conditional empirical distribution of xl, s
∗
l , t

∗
jl given Ajl = 1 is

equal to F . By Assumptions 2.2 (ii) and 2.5 (ii), q is stochastically bounded. We then define Bj,irjr as the

sigma-field generated by {Bj(q;F ) : q = 0, 1, . . . , n− 1, F is a c.d.f.}. We define Bk,irjr analogously.

Now conditional on j and k having the same relevant overlap with E1,r for some permutation τ ,

R(E1
τ ,LE1

(D0,DE1),X
τ ; j) = R(E1,LE1

(D0,DE1),X; k),

we have by the inductive hypothesis that for each q and F , Bj(q;F ) and Bk(q;F ) have the same probability.

We then distinguish all possible cases whether or not a change to Dirjr triggers a chain of adjustments

through j or k, or neither, corresponding to the events Bj,irjr (qj , Fj) and Bk,irjr (qk, Fk) for all combinations

of (qj , Fj) and qk, Fk. If we can show that conditional on a partition in terms of these events, the distribution

of network statistics is the same for nodes j and k, then conditional invariance given xi, xj and equal relevant

supports follows from the law of total probability.

Specifically we first consider the (potentially overlapping) events

C(q1, q2, F1, F2) := {Bj(q1, F1) ∩Bk(q2, F2)}

as the arguments q1, q2 and F1, F2 vary freely. We first consider the case q2 = q1 and F2 = F1: by definition

of the event C(q1, q1, F1, F1), a switch in Di1j1 triggers q1 chains of adjustments starting at node j. Any such

chain may reach node k after a change to l, and depending only on the signs of U∗(xl, xk; sl, sk, tlk)+εlk−MCl

and U∗(xk, xl; sk, sl, tlk)+εkl−MCk. Similarly, the chain reaches j after that same change depending only on

the signs of U∗(xl, xj ; sl, sj , tlj)+εlj −MCl and U
∗(xj , xl; sj , sl, tlj)+εjl−MCj . By inspection, conditional

on BE1,j and BE1
τ ,k the distributions of (εlk, εkl,MCk, xk) and (εlj , εjl,MCj , xj) are the same, so that for

sj = sk, tlk = tlj , and tjl = tkl, the probability that the chain proceeds to j is equal to that of the chain

proceeding to k. Finally, conditional on R(E1
τ ,LE1(D0,DE1),X

τ ; k) = R(E1,LE1(D0,DE1),X; j), the

resulting changes on the sets S∗
j (E1,DE1

,E2,DE2
) and S∗

τ(j)(E1,DE1
,Eτ

2 ,DE2
) are the same.

Hence, given R(E1
τ ,LE1

(D0,DE1),X
τ ; k) = R(E1,LE1

(D0,DE1),X; j), the conditional probability that

S∗
j (E1,DE1 ,E2,DE2) is supported given C(q1, q1;F1, F1) is equal to that of S∗

k(E1,DE1 ,E
τ
2 ,DE2) being

supported given C(q1, q1;F1, F1).

For the case (q1, F1) ̸= (q2, F2), we can follow an analogous line of argument to conclude that con-

ditional on R(E1
τ ,LE1(D0,DE1),X

τ ; k) = R(E1,LE1(D0,DE1),X; j), the conditional probability that

S∗
j (E1,DE1

,E2,DE2
) is supported given C(q1, q2;F1, F2) is equal to that of S∗

k(E1,DE1
,Eτ

2 ,DE2
) being

supported given C(q2, q1;F2, F1). Since the events C(q2, q1;F2, F1) and C(q2, q1;F2, F1) have equal probabil-

ity, it follows from the law of total probability that the conditional distributions are the same given the union

C(q1, q2;F1, F2)∪C(q2, q1;F2, F1). A similar line of reasoning gives us the analogous conclusion conditional

on any intersections of “symmetrized” events C(q1, q2;F1, F2)∪C(q2, q1;F2, F1), . . . , C(qR, qR+1;FR, FR+1)∪
C(qR+1, qR;FR+1, FR), allowing us to construct a partition of the event R(E1

τ ,LE1(D0,DE1),X
τ ; k) =

R(E1,LE1
(D0,DE1),X; j) such that invariance with respect to τ holds conditional on each element in that

partition. By the law of total probability, this completes the inductive step from r − 1 to r.

This establishes the conclusion of the Lemma for a binary permutation τ such that for j, k, τ(j) = k and

τ(k) = j, but τ(i) = i for any i ̸= j, k. Since an arbitrary permutation can be generated by a sequence of

pairwise swaps of indices, this is sufficient to establish the first conclusion of the Lemma.
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To establish the second part of the claim we can adapt the same argument to the level of an edge, requiring

only notational adjustments. Since the argument is otherwise completely analogous to the case of node-level

statistics, we do not give it here explicitly. □

For future reference we now also state without proof an immediate generalization of the result for the

leading case to the joint distribution for multiple nodes.

Lemma B.1. Suppose Assumptions 2.2-2.5 hold. Then for any i1, . . . , iD = 1, . . . , n, E, and DE we have(
S∗
i1(E1,DE1

,E2,DE2
), . . . , S∗

iD (E1,DE1
,E2,DE2

)
)

d
=

(
S∗
τ(i1)

(E1,DE1
,Eτ

2 ,DE2
), . . . ,S∗

τ(iD)(E1,DE1
,Eτ

2 ,DE2
)
)

conditional on

R(E1
τ ,LE1

(D0,DE1),X
τ ; τ(i1)) = R(E1,LE1

(D0,DE1),X; i1)

...

R(E1
τ ,LE1

(D0,DE1),X
τ ; τ(iD)) = R(E1,LE1

(D0,DE1),X; iD),

xτ(i1) = xi1 , . . . , xτ(iD) = xiD , and F . The analogous conclusion holds for edge-level statistics among

i1, . . . , iD as well.

It can be seen from the proof of the main result that this generalization of the leading case, where we

only need to account for the rates at which any chain of non-robust edges links back to either node i1, . . . , iD

relative to its image under the permutation τ .

Proof of Lemma 3.4. First note that a Poisson process with an intensity equal to the empirical distribution

over n values of the variable can equivalently be represented as a Poisson process on {1, . . . , n} with uniform

mean measure. In contrast, Ni is generated by drawing from {1, . . . , n}\{i1, . . . , iD} uniformly at random

and without replacement conditional on realizations (xj , s
∗
j ) for j /∈ {i1, . . . , iD}. Hence the point measure

associated with Ni has the same distribution as that associated with Ñi conditional on Ñi assigning zero

weight to the values corresponding to i1, . . . , iD and attaining no multiplicities greater than one for any

i ∈ {1, . . . , n}.
Furthermore, if the neighborhoods Ni1 , . . . ,NiD are disjoint, the relevant overlap for any j ∈ Nid with

id′ , d′ ̸= d corresponds to the empty graph. Hence in the absence of ties in Ni1 , . . . ,NiD and Ñi1 , . . . , ÑiD ,

respectively, the relevant overlap of any node j with {i1, . . . , iD} can without loss of generality be taken to

be Ridj if j ∈ Nid .

We therefore next verify that the probability of ties across Ni1 , . . . ,NiD and {i1, . . . , iD} is bounded by

a sequence of the order O(n−1): Denoting κn := nP (Dij0 = Dji0 = 1), Assumption 2.5 immediately implies

that κn is bounded. We then let qid := |Ñid | and Q :=
∑D

d=1 qid , we have that conditional on Q, the

probability that the qth draw for Nid constitutes a tie is at most D+Q−1
n , so the conditional probability of

a tie given Q is bounded from above by

µ̄n := 1−
(
1− D +Q− 1

n

)Q

=
D +Q− 1

n
+ o

(
n−1

)
for any finite Q.

We can then use the law of iterated expectations with respect to Q together with the fact that the

Poisson distribution for Q has exponential tails to conclude that the sampling representation approximates

probability of the network event up to an error 2D(1+κn)
n . Specifically, for a truncation argument we can
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choose Qn = O(log n) such that P (Q ≥ Qn) ≤ 2D(1+κn)
n . We can then bound

E

[(
1− Q

n

)Q
]

=

∞∑
q=0

(
1− q

n

)q (Dκn)
qe−Dκn

q!

≥
Qn∑
q=0

(
1− q

n

)(
1− Qn

n

)q−1
(Dκn)

qe−Dκn

q!

=

(
1− E[Q]

n

)(
1− P (Q ≥ Qn)− op(n

−1)
)

≥ 1− 2D(1 + κn)

n
+ op(n

−1)

which is of the desired order of magnitude. Note in particular that this bound does not depend on the

empirical distribution of realizations for (x1, s
∗
1), . . . , (xn, s

∗
n) and therefore also holds conditional on F .

Furthermore, by Assumption 2.5, the size of Nid is also bounded for each d = 1, . . . , D so that by an

analogous argument the probability of ties among Ni1 , . . . ,NiD is also of the order O(n−1) with the same

bounding constants.

We next argue that conditional on the event Bi of no ties in the sets Ni1 , . . . ,NiD , {i1, . . . , iD} and no ties

in Ñi1 , . . . , ÑiD , {i1, . . . , iD}, the probability of the subnetwork event on {i1, . . . , iD} on the n-agent network

is the same as that generated by the sampling process. To this end, consider any node j ∈ Ni in the original

network. It then follows from Lemma 3.3 that conditional on Rj , (xj , s
∗
j ) has the same distribution as

(xj , s
∗
j̃
(Rj), t

∗
ij̃
(Rj)) for any node j̃ ∈ Ñi. Moreover, Lemma 3.3 also implies that conditional on F drawing

from (xj , s
∗
j̃
(Rj), t

∗
ij̃
(Rj))

n
j=1 with replacement results in the same conditional probabilities as drawing from

the distribution M̂n(x, s|Rj).

By Lemma 3.2, for all i ∈ {i1, . . . , iD} and j ∈ Ni, εij ,MCi are furthermore independent of s∗j (R) for

each R conditional on F . In particular, proposals

D∗
ji(s,Rij) := 1l

{
U∗(xj , xi; s

∗
j (Rij)) + εji ≥MCj

}
are fully determined by initial taste shocks, and potential values s∗j (Rij) for each s ∈ S and therefore also

independent of εij ,MCi.

Since the event AEi
was assumed to be the union of disjoint elementary events regarding the subnetwork

Li, these steps establish that πn(AEi
|xi,Bi,F) = π̃n(AEi

|xi,Bi,F) and that P(Bi
c|F) = O(n−1), where

Bi
c denotes the complement of Bi. By the law of total probability,

|πn(AEi
|xi,F)− π̃n(AEi

|xi,F)| ≤ |πn(AEi
|xi,Bi

c,F)− π̃n(AEi
|xi,Bi

c,F)|P(Bi
c|F)

By assumption, the event AEi
is invariant to permutations of edges (ij) ∈ Ei for j /∈ {i1, . . . , iD}, so that

πn(AEi
|xi,Bi

c,F) = πn(AEi
|xi,F) and π̃n(AEi

|xi,Bi
c,F) = π̃n(AEi

|xi,F) so that
πn(AEi

|xi,Bi
c,F)

π̃n(AEi
|xi,F) is also

bounded. By the triangle inequality it therefore follows that

|πn(AEi
|xi,F)− π̃n(AEi

|xi,F)|
π̃n(AEi

|xi,F)
= O(n−1)

establishing the main claim. The generalization to finite collections of events is immediate □

Appendix C. Proofs for Section 4

Before establishing the rate of convergence to an extreme value distribution in Lemma 4.1, we first re-

state the result from Menzel (2015b) establishing that the limits for conditional link acceptance probabilities
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essentially correspond to their analogs under the assumption of independent extreme-value type-I taste

shifters:

Lemma C.1. Suppose that Assumptions 2.3-2.5 hold. Then as n→ ∞,∣∣∣∣∣nr/2Φ(i, j1, . . . , jr)− r!
∏r

s=1 exp{U∗
ijs

}(
1 + n−1/2

∑n
i=1D

∗
ji(s) exp{U∗

ij}
)r+1

∣∣∣∣∣→ 0 (C.1)

for any r = 0, 1, 2, . . . .

This is Lemma 6.2 in Menzel (2015b), and we include the proof below for easier reference.

Proof of Lemma C.1. This result is a generalization of Lemma B.1 in Menzel (2015a). We therefore refer

to the proof of that result for some of the intermediate technical steps below.

Denote the event Bi :=
{
X, s−i ∈ S∗

−i(DEi
),DE−i

∈ D∗
E−i

(DEi
)
}
. We also let J = ⌈n1/2⌉ as in Assump-

tion 2.5, and jr+1, . . . , jn be an enumeration of the indices in {1, . . . , n}\{j1, . . . , jr}. Then by independence

of ηi1, . . . , ηiN ,

JrΦ(i, j1, . . . , jr) = JrP (Uij1 ≥MCi, . . . , Uijr ≥MCi, Uijr+1 < MCi, . . . , UijJ < MCi|Bi)

= Jr

∫ ( r∏
q=1

P (Uijq ≥ σs|Bi)

)(
n∏

q=r+1

P (Uijq < σs|Bi)
Djqi

)
JG(s)J−1g(s)ds

= Jr

∫ ( r∏
q=1

(1−G(s− σ−1U∗
ijq ))

)(
n∏

q=r+1

G(s− σ−1U∗
ijq )

Djqi

)
JG(s)J−1g(s)ds

=

∫ ( r∏
q=1

J(1−G(s− σ−1U∗
ijq ))

)
J
g(s)

G(s)

× exp

{
J logG(s) +

1

J

n∑
q=r+1

J logG(s− σ−1U∗
ijq )Djqi

}
ds (C.2)

Now let bJ := G−1
(
1− 1

J

)
and aJ = a(bJ), where a(·) is the auxiliary function in Assumption 2.4 (ii).

By Assumption 2.5 (iii), σ = 1
a(bJ )

, so that a change of variables s = aJ t+ bJ yields

JrΦ(i, j1, . . . , jr) =

∫ ( r∏
q=1

J(1−G(bJ + aJ(t− U∗
ijq )))

)
J
aJg(bJ + aJ t)

G(bJ + aJ t)

× exp

{
J logG(bJ + aJ t) +

1

J

n∑
q=r+1

J logG(bJ + aJ(t− U∗
ijq ))Dji

}
dt

By Assumption 2.4 (ii), J(1−G(bJ + aJ t)) → e−t and

JaJg(bJ + aJ t) = Ja(bJ)g(bJ + a(bJ)t) = a(bJ)
1−G(bJ + aJ t)

a(bJ + aJ t)(1−G(bJ))
→ e−t

where the last step uses Lemma 1.3 in Resnick (1987). Also, following steps analogous to the proof of Lemma

B.1 in Menzel (2015a), we can take limits and obtain

r∏
q=1

J(1−G(bJ + aJ(t− U∗
ijq ))) → exp

{
−rt+

r∑
q=1

U∗
ijq

}
J logG(bJ + aJ(t− U∗

ijq )) → −e−t exp{U∗
ijq}
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Combining the different components, we can take the limit of the integrand in (C.3),

RJ(t) :=

(
r∏

q=1

J(1−G(bJ + aJ(t− U∗
ijq )))

)
J
aJg(bJ + aJ t)

G(bJ + aJ t)

× exp

{
J logG(bJ + aJ t) +

1

J

n∑
q=r+1

J logG(bJ + aJ(t− U∗
ijq ))Djqi

}

= exp

{
−e−t

(
1 +

1

J

n∑
q=r+1

Djqi exp{U∗
ijq}

)
− (r + 1)t+

r∑
q=1

U∗
ijq

}
+ o(1) (C.3)

for all t ∈ R. Using the same argument as in the proof of Lemma B.1 in Menzel (2015a), pointwise convergence

and boundedness of the integrand under Assumption 2.3 imply convergence of the integral by dominated

convergence, so that we obtain

JrΦ(i, j1, . . . , jr|z∗i ) →
∫ ∞

−∞
exp

{
−e−t

(
1 +

1

J

n∑
q=r+1

Djqi exp{U∗
ijq}

)
− (r + 1)t+

r∑
q=1

U∗
ijq

}
dt

=

∫ 0

−∞
exp

{
s

(
1 +

1

J

n∑
q=r+1

Djqi exp{U∗
ijq}

)
+

r∑
q=1

U∗
ijq

}
srds

=
r! exp{

∑r
q=1 U

∗
ijq

}(
1 + 1

J

∑n
q=r+1Djqi exp

{
U∗
ijq

})r+1

where the first step uses a change of variables s = −e−t, and the last step can be obtained recursively via

integration by parts. Furthermore, if r
J → 0, boundedness of the systematic parts from Assumption 2.3

implies that ∣∣∣∣∣∣ 1J
J∑

j=1

Dji exp
{
U∗
ij

}
− 1

J

n∑
q=r+1

Djqi exp
{
U∗
ikq

}∣∣∣∣∣∣→ 0

so that

JrΦ(i, j1, . . . , jr) →
r!
∏r

q=0 exp{U∗
ijq

}(
1 + 1

J

∑n
j=1Dji exp

{
U∗
ij

})r+1

which completes the proof □

To establish the leading terms in the asymptotic distribution for generalized subgraph counts below, we

also need to show that the limiting distribution conditional on MCi is strictly decreasing in MCi: Defining

Φ(i, j1, . . . , jr|µ) = P
(
DEi

∈ D∗
Ei
(s−i)

∣∣X, s−i ∈ S∗
−i(DEi

),DE−i
∈ D∗

E−i
(DEi

),MCi − bJ/aJ = µ
)

we have the following lemma:

Lemma C.2. Suppose the assumptions of Lemma C.1hold. sLet bJ := G−1
(
1− 1

J

)
and aJ = a(bJ)

and suppose that r ≥ 1. Then for the conditional probability given MCi − bJ/aJ = µ, we have that

nr/2Φ(i, j1, . . . , jr|µ) converges to a function of µ that is strictly decreasing in µ for µ large enough.

Proof of Lemma C.2 As before we let J = ⌈n1/2⌉. Considering the conditional version of (C.2),

JrΦ(i, j1, . . . , jr|µ) =

(
r∏

q=1

J(1−G(µ+ bJ/aJ − σ−1U∗
ijq ))

)(
n∏

q=r+1

G(µ+ bJ/aJ − σ−1U∗
ijq )

Djqi

)

=

(
r∏

q=1

J(1−G(bJ − aJ(U
∗
ijq − µ)))

)
exp

{
1

J

n∑
q=r+1

J logG
(
bJaJ(U

∗
ijq − µ)Djqi

)}
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where the last equality follows from a change of variables s = aJ t+ bJ with aJ , bJ defined as in the proof of

Lemma C.1 and Assumption 2.5 regarding the asymptotic sequence for σ. Substituting in the component-

wise limits derived in the proof of Lemma C.1, we obtain

JrΦ (i, j1, . . . , jr |µ ) → exp

{
r∑

q=1

(U∗
ijq − µ)− 1

J

n∑
q=r+1

Djqi exp
{
U∗
ijq − µ

}}
By inspection, there is a sufficiently large (but finite) value of µ0 < ∞ such that the function on the

right-hand side is strictly decreasing in µ for all µ ≥ µ0 □

Proof of Lemma 4.1. This result requires only a few modifications to the proof of Lemma C.1 to control

the rate at which J(1−G(bJ + aJv)) converges to e
−v. For this proof, bJ is again chosen according to

1−G(bJ) =
1

J

and aJ := 1−G(bJ )
g(bJ )

, so that in particular,

J(1−G(bJ + aJv)) =
1−G(bJ + aJv)

1−G(bJ)

For the main results, we only require rates that are pointwise in v, where pointwise convergence rates

are invariant under mappings that are continuously differentiable. The mapping w 7→ log(w) is continously

differentiable for w ∈ (0,∞), so it is sufficient to establish rates in levels or logs.

First consider the term

|log(1−G(bJ + aJv)) + log J + v| → 0

In the following, we let

h(u) := log(1−G(u))

By the choice of bJ and the fundamental theorem of calculus, we have

log (J(1−G(bJ + aJv))) = log(1−G(bJ + aJv)− log(1−G(bJ))

=

∫ aJv

0

h′(bJ + u)du

By the mean-value theorem, for any value of u ∈ [0, aJv], there exists an intermediate value ū(u) ∈ [0, u]

such that

h′(u) = h′(bJ) + h′′(bJ + ū(u))u

Furthermore, from the choice of aJ we have

aJh
′(bJ) = −aJ

g(bJ)

1−G(bJ)
= −1

Therefore,

|log (J(1−G(bJ + aJv))) + v| =

∣∣∣∣h′(bJ)aJv + ∫ aJv

0

aJvh
′′(bJ + ū(u))udu+ v

∣∣∣∣
=

∣∣∣∣∣
∫ bJ+aJv

bJ

h′′(bJ + ū(u))udu

∣∣∣∣∣
≤

∫ bJ+aJv

bJ

|h′′(ū(u))||aJv|du

= v

∫ bJ+aJv

bJ

|h′′(ū(u))|
|h′(bJ)|

du
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Since aJ/bJ → 0, we can bound |h′′(ū)| ≤ 2|h′′(bJ(1− ε))| asymptotically. From Assumption 2.4 (ii), it then

follows that the right-hand side of this expression is of the order o
(
exp

{
− 1

2bJ
})

= o(J−1).

Finally we need to establish the rate of convergence for J logG(bJ+aJv)+e
−v. The argument is analogous

to the previous case - noting that we can rewrite the logarithm via a mean-value expansion around G = 1,

J logG(bJ + aJv) = J log(1) +
J

1
(G(bJ + aJv)− 1) +

J

Ḡ
(G(bJ + aJv)− 1)2

so that by the same arguments as before,

J logG(bJ + aJv) = − exp{−v}+ o(J−1)

Since all multiplicative terms of the integrand in (C.2) converge to finite limits, the rate of convergence of

the product is governed by the term that converges at the slowest rate, which is also o(J−1). This establishes

the point-wise convergence rate of the integrand, so that Lemma 4.1 follows by dominated convergence □

Proof of Lemma 4.4. We first establish a law of large numbers for the bound Ψ̂1n in equation (4.4),

showing that ∣∣∣∣∣Ψ̂1n(x, s|R0)−
1
n

∑n
i=1 EH[ψ̃1ni[M̂n]](s,R0, x)

1
n2

∑n
i=1 EH[ψ̃1ni[M̂n]](R0)

∣∣∣∣∣ p→ 0,

for each s,R0, x. We then establish that ψ̄1ni[M,H] := EH[ψ̃1ni[M ]], allowing us to express the fixed point

condition as a known expression in terms of the aggregate state variables M,H and economic primitives. To

simplify notation, we also let Lij0 := Dij0Dji0.

For a point-wise law of large numbers for 1
nqn

∑n
i=1 ψ

∗
1ni(s,R0, x) it is then sufficient to show that its

variance goes to zero as n grows. Now, by Lemma C.1,

nP(Lik0 = 1) ≤
(

exp{Ū}
1 + exp{Ū}

)2

=: C̄2

We also let qn := P(Rik = R0|Lik0 = 1), where by assumption nqn → ∞. We can then bound

Var

 1

nqn

n∑
i=1

∑
k ̸=i

1lAk,i(s,R0,x)

 =
n(n− 1)

n2q2n
Var

(
1lA1,2(s,R0,x)

)
+
n(n− 1)(n− 2)

n2q2n
Cov(1lA1,2(s,R0,x), 1lA1,3(s,R0,x))

+
n(n− 1)(n− 2)

n2q2n
Cov(1lA1,3(s,R0,x), 1lA2,3(s,R0,x))

+
n(n− 1)(n− 2)(n− 3)

n2q2n
Cov

(
1lA1,2(s,R0,x), 1lA3,4(s,R0,x)

)
≤ C̄2

nqn
Var

(
1lA1,2(s,R0,x) |L210 = 1, R21 = R0

)
+
C̄4

nqn
Cov

(
1lA1,2(s,R0,x), 1lA1,3(s,R0,x) |L210 = L310 = 1, R21 = R0

)
+
C̄4

nqn
Cov

(
1lA1,3(s,R0,x), 1lA2,3(s,R0,x) |L310 = L320 = 1, R31 = R0

)
+C̄4Cov

(
1lA1,2(s,R0,x), 1lA3,4(s,R0,x) |L210 = L430 = 1, R21 = R43 = R0

)
Since nqn → ∞, the variance therefore vanishes whenever

Cov
(
1lA1,2(s,R0,x), 1lA3,4(s,R0,x) |L210 = L430 = 1, R21 = R43 = R0

)
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≡ P (A1,2(s,R0, x) ∩A3,4(s,R0, x) |L210 = L430 = 1, R21 = R43 = R0 )

−P (A1,2(s,R0, x))P (A3,4(s,R0, x) |L210 = L430 = 1, R21 = R43 = R0 )

→ 0

To keep notation manageable, we will take probabilities and expectations for the remainder of this step to

be conditional on L210 = L430 = 1 and R21 = R43 = R0, noting also that the event A3,4(s,R0, x) does not

involve L21 and R21, and vice versa.

To bound Cov
(
1lA1,2(s,R0,x), 1lA3,4(s,R0,x)

)
, we partition the event A1,2(s,R0, x) ∩ A3,4(s,R0, x) according

to whether both events are supported by common non-zero edges in E1 and E2. That is, by the law of total

probability we can write

P (A1,2(s,R0, x) ∩A3,4(s,R0, x)) = P (A1,2(s,R0, x) ∩A3,4(s,R0, x) |LE1∩E3 ̸= 0 )P (LE1∩E3 ̸= 0)

+P (A1,2(s,R0, x) ∩A3,4(s,R0, x) |LE1∩E3 = 0 )P (LE1∩E3 = 0)

Now since the number of edges in E1 ∩E2 is fixed, we have by Assumption 2.5 that

P (LE1∩E3 ̸= 0) = O(n−1)

Therefore we have

|P (A1,2(s,R0, x)|LE1∩E3 = 0) − P (A1,2(s,R0, x))|

= |P (A1,2(s,R0, x)|LE1∩E3 ̸= 0)− P (A1,2(s,R0, x)|LE1∩E3 = 0)|P (LE1∩E3 ̸= 0)

≤ P (LE1∩E3 ̸= 0) = O(n−1)

Furthermore, by Lemma 3.4,

P (A1,2(s,R0, x) ∩A3,4(s,R0, x)|LE1∩E3 = 0) = P (A1,2(s,R0, x)|LE1∩E3 = 0)P (A3,4(s,R0, x)|LE1∩E3 = 0)

Hence, we can bound∣∣Cov (1lA1,2(s,R0,x), 1lA3,4(s,R0,x)

)∣∣ ≤ |P (A1,2(s,R0, x)|LE1∩E3 = 0)P (A3,4(s,R0, x)|LE1∩E3 = 0)

−P (A1,2(s,R0, x))P (A1,2(s,R0, x))|+O(n−1)

≤ 4P (LE1∩E3 ̸= 0) +O(n−1) = O(n−1)

Hence, the variance of the sample mean of 1lA1,2(s,R0,x) is of the order O(n−1) so that by Chebyshev’s

inequality 1
n

∑n
i=1

∑
k ̸=i ψ

∗
1ni(s,R0, x) converges in probability to its expectation given M̂n. Since Lemma

3.4 also implies that

EM̂n
[ψ∗

1ni(s,R0, x)] = E[ψ̃1ni[M̂n]](s,R0, x) +O

(
1

n

)
,

Similarly,

1

n2qn

n∑
i=1

∑
k ̸=i

ψ∗
1ni(R0)−

1

n2

n∑
i=1

∑
k ̸=i

E[ψ̃1ni[M̂n]](R0)
p→ 0

where 1
n2qn

∑n
i=1

∑
k ̸=i E[ψ̃1ni[M̂n]](R0) is bounded away from zero. Convergence of Ψ̂1n(s, x|R0) then fol-

lows from the continuous mapping theorem.

For the second step, we can evaluate the expectation of ψ̃1ni[M̂ ] under the sampling representation in

Lemma 3.4. Specifically, by the law of total probability the probability that s∗i = s and R∗
i = R0 are

50



supported by a pairwise stable network, and Dik0 = 1 for an arbitrary node k ̸= i,

E[ψ̃1ni[M ]] =
1

n

n∑
k ̸=i

P
(
L∗
k,i,{j1,...,jr} ∩ L(s,R0; k, i, {j1, . . . , jr}) ̸= ∅, xi = x, L̃ik0 = 1|M

)
=

1

n

∑
k ̸=i

∑
r≥0

∑
Ni,{j1,...,jr}

P
(
L∗
k,i,{j1,...,jr} ∩ L(s,R0; k, i, {j1, . . . , jr}) ̸= ∅, xi = x, D̃ik0 = 1|Ñi = Ni,{j1,...,jr}

)
×P(Ñi = Ni,{j1,...,jr}|M)

=
∑
r≥0

∑
Ni,{j1,...,jr}

∑
L∈{0,1}r

ψ̄1ni,j1...jr [M,H](L, Ni,{j1,...,jr}, x)1lL∈L(s,R0;i,Ni,{j1,...,jr}) (C.4)

where the second equality uses the law of total probability and that by Lemma 3.4, Ñi and M̂n are in-

dependent. For the third equality, we used Lemma C.1 and (4.1). Furthermore, by standard arguments,

drawing from M̂n independently with replacement differs from drawing from the underlying population

without replacement, and leaving out i by a factor that is at most of the magnitude O
(
1
n

)
as n grows.

Averaging over all nodes, we obtain

Ψ̄1n[M,H](x, s|R0) :=

1
n

∑n
i=1 EH

[
ψ̃1ni[M ](s,R0, x)

]
1
n

∑n
i=1 EH

[
ψ̃1ni[M ](R0)

]
=:

1
n

∑n
i=1 ψ̄1ni[M,H](s,R0, x)

1
n

∑n
i=1 ψ̄1ni[M,H](R0)

+ o(1)

as claimed, where L∗
i is the set of subnetworks LEi

∗ that are supported by a pairwise stable subnetwork on

Ei.

Combining this with convergence of Ψ̂1n to Ψ̄1n[M̂n, H] we obtain the conclusion of the Lemma for a

singleton argument s,R0. The analogous conclusion for sets {(s1, R1), . . . , (sK , RK)} follows in a completely

analogous fashion □

Appendix D. Proofs for Section 5

The main result in this paper is a central limit theorem for moments of the form (2.1) for pairwise stable

networks among finitely many agents. The main argument proceeds along the following steps:

• For the D-fold array of contributions (mi1...iD )i1...iD , we first develop an approximate sampling

representation in terms of jointly exchangeable arrays (defined below).

• Using results by Aldous (1981) and Hoover (1979), we show that these approximating arrays can

be characterized by a function of (vector-valued) i.i.d. factors α
(1)
i1
, . . . , α

(D)
i1...iD

that are indexed by

subsets of {i1, . . . , iD}.
• This characterization allows us to decompose the D-adic average in (2.1) of, generally dependent,

contributions to the network moment, into a sum of multi-linear forms of random vectors whose

entries are independent. We can then use results by de Jong (1990) to establish CLT-type results

to these multi-linear forms.

• Having established that the network moment is asymptotically normal, we can then characterize

the first two moments of its asymptotic distribution in terms of model primitives.

This appendix establishes a central limit theorem in terms of high-level conditions, which will then be

used to prove Theorem 5.2.
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D.1. Coupling to Exchangeable Array. We start out by approximating the array
(
Yi1,...,iD+1

)
i1...iD+1

with elements

Yi1,...,iD+1
:=
(
m′

i1...iD , ψiD+1

)
i1...iD+1

determining the joint distribution of the network moment m̂n(θ) and the fixed point conditions for the

aggregate state η = [M,H], with another array
(
Ỹi1,...,iD+1

)
i1...iD+1

consisting of entries

Ỹi1,...,iD+1
[η̂n] :=

(
m̃′

i1...iD , ψ̃iD+1

)
i1...iD+1

constructed under the sampling representation in Lemma 3.4, where the reference distribution M̂n is given

by the first component of η̂n = [M̂n, Ĥn].

Specifically, we let M̂n be the reference distribution corresponding to the realization of (Yi)i, and generate

(Ỹi)i by drawing node attributes, network neighborhoods, and taste shocks for each node i at random from

M̂n, independently from the original array. We also denote the properly normalized sample averages with

Ȳn :=

([(
n

D

)
pn

]−1∑
i

mi,
1

n

n∑
i=1

ψi

)
and

Ỹ n[η̂n] :=

([(
n

D

)
pn

]−1∑
i

m̃i,
1

n

n∑
i=1

ψ̃i

)
respectively. We first note that the array Ỹi1...iD+1

is jointly exchangeable:

Definition D.1. A jointly exchangeable array is an infinite array (Yi1...iD )i1...iD such that for any integer

Ñ <∞ and permutation τ : {1, . . . , Ñ} → {1, . . . , Ñ}, we have(
Yτ(i1)...τ(iD)

)
i1...iD

d
= (Yi1...iD )i1...iD ,

where “
d
=” denotes equality in distribution.

By construction of either component potential values for the network statistics were drawn independently

from the reference distribution so that
(
Ỹi1,...,iD+1

)
i1...iD+1

is in fact jointly exchangeable. It remains to be

shown that this array approximates its finite-network analog under the appropriate metric. Specifically, we

establish the following:

Lemma D.1. Suppose Assumptions 2.1-2.5 hold. Then we have

Ỹ n[η̂n]
d
= Ȳn +Op

(
1

n

)
conditional on η̂n = Ψ̂n[η̂n] =

ˆ̃Ψn[η̂n].

Proof: Note first that M̂n is the conditional empirical distribution given relevant overlap of draws (xk, s
∗
k)

such thatDik0 = Dki0 = 1 for some i ̸= k. As an intermediate step for the approximation, we now consider an

array
(
Ÿi[M ]

)
i
for a fixed value of M which results from permuting the pre-network at random, specifically

for a permutation τ on {1, . . . , n} that is generated uniformly at random we let D̈τ(i)k0 = D̈kτ(i)0 = 1 iff

Dik0 = Dki0 = 1, while leaving (ẍk, s̈
∗
k) = (xk, s

∗
k) unchanged. Ÿi[M ] is then defined in analogy Ỹi[M ] where

network neighborhoods N̈i are defined by the pre-network D̈ik0 = D̈ki0 = 1. We also denote the polyadic

average with

Ÿ n :=

([(
n

D

)
pn

]−1∑
i

m̈i,
1

n

n∑
i=1

ψ̈i

)
=:
(
ˆ̈mn,

ˆ̈Ψn

)
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Since for the original array the joint distribution of εik and MCi is i.i.d. and therefore in particular

invariant to permutations of this kind, and polyadic averages are also a symmetric function of node identifiers,

we have that

Ÿ n[η̂n]
d
= Ȳn

conditional on η̂n ∈ ˆ̈Ψn[η̂n] and η̂n ∈ Ψ̂n[η̂n]. The most important implication of this step is that for the

approximating array the pairwise stability conditions only need to hold at the level of the aggregate fixed

point condition η̂n ∈ Ψ̂n[η̂n] rather than for each node.

To complete the argument, it remains to be shown that Ỹ n[η̂n]−Ÿ n[η̂n] = OP

(
1
n

)
. Here the key difference

between the two arrays is that the array
(
Ÿi

)
i
can be thought of drawing the pre-network around a node k

without replacement, whereas the array
(
Ÿi

)
i
is generated by drawing with replacement with probabilities

equal to the corresponding frequencies for the former array.

We bound the approximation error via a coupling between the two arrays that is constructed as follows:

suppose that for a given node i we have D̈ikq0D̈kqi0 = 1 for q = 1, . . . , Q(i), and D̈ikq0D̈kqi0 = 0 for all

k /∈ {k1, . . . , kQ(i)}. We then draw l1, . . . , lQ(i) uniformly at random and with replacement from 1, . . . , Q(i),

resulting in the network neighborhood Ñi consisting of nodes kl1 , . . . , klQ(i)
. This construction Ñi is equiva-

lent to the sampling representation in Lemma 3.4.

In particular it allows for the neighborhood to contain replicates of the same node, whereas in the absence

of such ties, Ñi = N̈i. Comparing a sequence of Q < ∞ draws, the probability of such a tie is bounded

by Q
n . Now, a given entry of the array Ỹi ̸= Ÿi only if Ñid ̸= N̈id for at least one component id of the

multi-index i = (i1, . . . , iD). However since the pre-network degree |Ni| is stochastically bounded and D is

fixed, the probability for that event is also bounded by a nonstochastic sequence at the rate 1
n . Since the

event Ñi ̸= N̈i is furthermore independent across i = 1, . . . , n, this establishes the desired conclusion □

D.2. Aldous-Hoover Representation. By construction, Ỹi1...iD is determined by the draws for marginal

costs, taste shocks, and local neighborhoods Ñi1 , . . . , ÑiD , which are generated as i.i.d. random draws from

their respective distributions. In particular, Ỹi1...iD is jointly exchangeable in i1, . . . , iD.

From an Aldous-Hoover representation (Theorem 7.22 in Kallenberg (2005)), we can represent such a

jointly exchangeable D-fold array on a Borel space B as

Ỹi1...iD = h
(
α(0), α

(1)
i1
, . . . , α

(1)
iD
, α

(2)
{i1,i2}, . . . , α

(D)
{i1,...,iD}

)
for some measurable function h : [0, 1]2

D → B, and (α(0), α
(1)
i1
, . . . , α

(1)
iD
, α

(2)
i1i2

, . . . , α
(D)
i1...iD

) is a uniform random

array whose 2D components are random variables that are independently and uniformly distributed on the

unit interval, and which are indexed by the subsets of {i1, . . . , iD}.

D.3. Decomposition for CLT. In what follows we therefore restrict our attention to the term

Z̃n =

(
n

D

)−1 ∑
i1<···<iD

(Ỹi1...iD − E[Yi1...iD |α(0)])
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For a decomposition of Z̃n, we now denote the conditional expectations of Yi1...iD with

y
(1)
j1...jD

:= E[Z̃n|α(0), α
(1)
j1
, . . . , α

(1)
jD

]

y
(2)
j1...jD

:= E[Z̃n|α(0), α
(1)
j1
, . . . , α

(D)
j2

, α
(2)
j1j2

, . . . , α
(2)
jD−1jD

]

...
...

y
(d)
j1...jD

:= E[Z̃n|α(0), α
(1)
j1
, . . . , α

(d)
j1...jd

. . . , α
(d)
jD−d...jD

]

for d = 1, . . . , D, noting that y
(D)
j1...jD

= Yj1...jD . We then form recursive projection residuals

ẏ
(1)
j1...jD

:= y
(1)
j1...jD

ẏ
(2)
j1...jD

:= y
(2)
j1...jD

− y
(1)
j1...jD

...
...

ẏ
(d)
j1...jD

:= y
(d)
j1...jD

− y
(d−1)
j1...jD

...
...

ẏ
(D)
j1...jD

:= y
(D)
j1...jD

− y
(D−1)
j1...jD

By construction, these projection residuals are uncorrelated within and across index sets.

Given these definitions, we can decompose the sum

Z̃n = Z̃1n + · · ·+ Z̃Dn (D.1)

where

Z̃1n :=

(
n

D

)−1 ∑
i1<···<iD

ẏ
(1)
i1...iD

...
...

Z̃Dn :=

(
n

D

)−1 ∑
i1<···<iD

ẏ
(D)
i1...iD

By construction, each terms Z̃dn is mean-independent of its precursors Z̃1n, . . . , Z̃(d−1)n.

We can now analyze the asymptotic distribution of each term Z̃1n, Z̃2n, . . . , noting that our analysis is

conditional on α(0) so that Z̃0n is regarded as fixed. We can rewrite

ẏ
(1)
i1...iD

=

D∑
r=1

∑
q∈Q1(r,D)

e
(1)
i1...ir;dq(1)...dq(r)

where Q1(r, d) denotes the set of all strictly increasing mappings {1, . . . , r} → {1, . . . , d}, and we define

e
(1)
j1;d1

:= E[ẏ(1)i1...iD
|α(0), α

(1)
id1

= α
(1)
j1

]

e
(1)
j1,j2;d1,d2

:= E
[
ẏ
(1)
i1...iD

∣∣∣α(0), α
(1)
id1

= α
(1)
j1
, α

(1)
id2

= α
(1)
j2

]
−e(1)j1;d1

− e
(1)
j2;d2

e
(1)
j1...jr;d1...dr

:= E
[
ẏ
(1)
i1...iD

∣∣∣α(0), α
(1)
id1

= α
(1)
j1
, . . . , α

(1)
idr

= α
(1)
jr

]
−

r−1∑
s=1

∑
q∈Q1(s,r−1)

e
(1)
j1...js;dq(1)...dq(s)
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recursively. This expansion can be viewed as a generalized Hoeffding composition, whose individual compo-

nents are mean-independent from their respective precursors, again by construction.

Now let Q2(r, d) denotes the set of all nondecreasing mappings q : {1, . . . , r} → {1, . . . , d}2 such that the

second component is larger than the first, and for each s = 1, . . . , r, at least one component of q(s) is strictly

greater than the corresponding component of q(s− 1). We then write

ẏ
(2)
i1...iD

=

D∑
r=2

∑
q∈Q2(r,D)

e
(2)
i1...ir;dq(1)...dq(r)

where with some abuse of notation we let iq1q2 := (iq1iq2), dq1q1 := (dq1dq2), and we define

e
(2)
j1;d1

:= E
[
ẏ
(2)
i1...iD

∣∣∣α(0), α
(1)
i1
, . . . , α

(1)
iD
, α

(2)
id1

= α
(2)
j1

]
e
(1)
j1...jr;d1...dr

:= E
[
ẏ
(2)
i1...iD

∣∣∣α(0), α
(1)
i1
, . . . , α

(1)
iD
, α

(2)
id1

= α
(2)
j1
, . . . , α

(2)
idr

= α
(2)
jr

]
−

r−1∑
s=2

∑
q∈Q2(s,r−1)

e
(2)
j1,...js;dq(1)...dq(s)

recursively.

More generally, for k = 1, . . . , D, we let Qd(r, k) denote the set of all nondecreasing mappings q :

{1, . . . , r} → {1, . . . , k}d such that for each s = 1, . . . , r, at least one component of q(s) is strictly greater

than the corresponding component of q(s− 1), and each component ql(s) < ql+1(s). We then write

ẏ
(k)
i1...iD

=

D∑
r=k

∑
q∈Qk(r,D)

e
(k)
i1...ir;dq(1)...dq(r)

(D.2)

where iq1...qr := (iq1 . . . iqr ), dq1...qr := (dq1 . . . dqr ), and

e
(k)
j1;d1

:= E
[
ẏ
(k)
i1...iD

∣∣∣α(0), α
(1)
i1
, . . . , α

(1)
iD
, . . . , α

(k−1)
iD−k+1...iD

, α
(k)
id1

= α
(k)
j1

]
e
(k)
j1...jr;d1...dr

:= E
[
ẏ
(k)
i1...iD

∣∣∣α(0), α
(1)
i1
, . . . , α

(1)
iD
, , . . . , α

(k−1)
iD−k+1...iD

, α
(k)
id1

= α
(k)
j1
, . . . , α

(k)
idr

= α
(k)
jr

]
−

r−1∑
s=k

∑
q∈Qk(s,r−1)

e
(k)
j1...js;dq(1)...dq(s)

are again defined recursively.

D.4. Rate of Convergence. In the next subsections D.4-D.5, we present generic results for a scalar com-

ponent of the multivariate exchangeable array Ỹi, which will subsequently be extended to the full array

using the Cramér-Wold device.

For the scalar case, we can write

σ2
k,d1...dr

:= Var(e
(k)
j1...jr;d1...dr

)

for any k = 1, . . . , D, where each ds ∈ {1, . . . , D}k and js ∈ {1, . . . , D}k. Under sparse asymptotics, σ2
k,d1...dr

will in general not be constant, but some components will go to zero at some rate as n increases. We first

establish the stochastic order of the terms the expansion (D.1) and (D.2) corresponding to projections of

degree r = 1.

Lemma D.2. Suppose that Ỹi1...iD is a jointly exchangeable array with scalar entries which are symmetric

across dimensions d = 1, . . . , D and satisfy the conditions of Assumption 2.1. Then for any k = 1, . . . , D
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such that
(
n
k

)
σ2
k,d1

→ ∞, the terms∑
1≤i1<···<ik≤n

∑
1≤d1<···<dk≤D

e
(k)
i1...ik,d1...dk

= OP (r
−1/2
n,k )

where

r−1
n,k :=

(
n

k

)−1

σ2
k,d1

and d1 := (1, . . . , k)′.

Proof: From the recursive construction of e
(k)
i1...ik,d1...dk

and independence of {α(s)
id1 ,...,ids

: s = 1, . . . , D},
we have that conditional on {α(s)

id1 ,...,ids
: s = 1, . . . , k − 1}, e(k)i1...ik,d1...dk

are mean-independent, although

not necessarily i.i.d.. Furthermore, Yi1...iD are bounded by Assumption 2.1 (a), so that the conclusion

follows from a martingale difference central limit theorem for triangular arrays, see e.g. the main theorem

in McLeish (1974). The unconditional statement follows from the law of iterated expectations and the fact

that {α(s)
id1 ,...,ids

: s = 1, . . . , k − 1} are also i.i.d. □

The next lemma establishes that under regularity conditions, the projections of degree r = 1 do in fact

provide the leading terms in that expansion, possibly for multiple values of k = 1, . . . , D, whereas terms

corresponding to r > 1 are generally dominated.

Lemma D.3. Suppose that Ỹi1...iD is a jointly exchangeable array with scalar entries which are symmetric

across dimensions d = 1, . . . , D and satisfy the conditions of Assumption 2.1. Furthermore assume that the

component variances satisfy σ2
k,d1

/σ2
k,d1...dr

≥ B for some lower bound B > 0. Then for any k = 1, . . . , D

and r = 2, . . . , k, the terms ∑
1≤i1<···<iD≤n

∑
q∈Qk(r,D)

e
(k)
iq1 ...iqr ,dq1

...dqr
= oP (r

−1/2
n,k )

Proof: We first notice that by Assumption 2.1 and the triangle inequality all moments of ei1...ir,d1...dr

exist. Also by construction, ei1...ir,d1...dr are mean-independent and therefore uncorrelated. Since there

are
((nk)

r

)
of these terms, the variance of the r-fold mean equals

[((nk)
r

)
σ2
k,d1...dr

]−1

≤
[((nk)

r

)
Bσ2

K,d1

]−1

,

which converges to zero at a rate faster than r−1
n,K , so that the conclusion follows directly from Chebyshev’s

inequality □

D.5. Generic LLN and CLT. Given the previous two lemmata, we can establish a Law of Large Numbers

for the average Z̃n.

Lemma D.4. Suppose that Ỹi1...iD is a jointly exchangeable array with scalar entries which are symmetric

across dimensions d = 1, . . . , D and satisfy the conditions of Assumption 2.1. Then for any sequence qn

such that for each k = 1, . . . , D, σ2
n,k/pn is bounded and

(
N
D

)
pn → ∞, we have

p−1
n Z̃n

p→ 0

This lemma is an immediate consequence of Lemmas D.2 and D.3 and Chebyshev’s Inequality. These

lemmas furthermore identify the leading terms in the expansion for Z̃n, allowing us to establish a generic

central limit theorem. Let rn := min{rn,1, . . . , rn,D} and define

Vn := rn

D∑
k=1

(
n

k

)(
D

k

)
σ2
k,d1

We then have the following:
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Lemma D.5. Suppose that Ỹi1...iD is a jointly exchangeable array with scalar entries which are symmetric

across dimensions d = 1, . . . , D and satisfy the conditions of Assumption 2.1. If furthermore Vn → V for

some F-measurable positive definite matrix V almost surely, we have

r1/2n V −1/2Z̃n
d→ N(0, I),

mixing with respect to F .

Note that the asymptotic variance V is defined only implicitly as a limit in order to allow for drifting

sequences to accommodate sparse network asymptotics. We analyze this expression in terms of the primitives

of the economic model further below.

Proof: As before, we decompose Z̃n into

Z̃n = Z̃1n + Z̃2n + · · ·+ Z̃Dn

with Z̃kn defined in (D.1). It follows from Lemmas D.2 and D.3 that

Z̃kn =
∑

i1<···<iD

∑
q∈Qk(D,k)

e
(k)
i1...ik;dq1 ...dqk

+ oP (r
−1/2
nk )

so that in the following we can focus on the leading term of each component Z̃kn.

We now define the filtration

Gi := σ
({
α(0), α

(1)
i1
, . . . , α

(D)
i1...iD

: i1 ≤ i
})

By definition of e
(k)
i1...ir;d1...dr

,

E[e(k)i1...ik;d1...dk
|Gi] =

{
e
(k)
i1...ik;d1...dk

if i1 ≤ i

0 otherwise

Hence, Z̃kn is a martingale adapted to GI with the martingale differences

Xkni = E[Zkn|Gi]− E[Zkn|Gi−1]

=
∑

i=i1<i2<···<iD

∑
q∈Qk(D,k)

e
(k)
i1...ik;dq1

...dqk
+ oP (r

−1/2
nk /n)

Since each component of e
(k)
i1...ik;dq1

...dqk
is mean-independent of its predecessors e

(k−s)
i1...ik−s;dq1

...dqk−s
, s =

1, . . . , k − 1, the first three conditional moments of Xn := Xn1i + · · ·+XnDi given Gj are equal to the sum

of the respective conditional moments of Xn1i, . . . , XnDi.

By construction, E[Xni|Gi−1] = 0, and

Var(r1/2n Xni|Gi−1) = rn

D∑
k=1

(
n− 1

k − 1

)(
D − 1

k − 1

)
σ2
k,d1

+ oP

(
rn
nrn,k

)
which is bounded by the definition of rn. Summing over i = 1, . . . , n and rearranging terms, we get

Var(r1/2n Z̃n) = rn

D∑
k=1

(
n

k

)(
D

k

)
σ2
k,d1

+ oP (1)

Furthermore, the third absolute moments of the joint distribution of r
1/2
n (X1ni, . . . , XDni) are bounded, so

that the third moments of r
1/2
n Xni are also bounded. This implies a Lindeberg condition as stated in (2.4) in

McLeish (1974), which ensures that conditions (a) and (b) of Theorem (2.3)in McLeish (1974) are satisfied.
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Condition (c) follows from similar considerations for the fourth moments and Chebyshev’s inequality. Hence,

the conclusion of this Lemma follows from Theorem (2.3) in McLeish (1974) □

Given these intermediate results, we now conclude with the proofs of the main results for Section 5.

D.6. Proof of Theorem 5.1. The asymptotic representation of the moment in terms of the aggregate state

variables follows from Lemmas 4.3 and 4.4, and Theorem 4.1 ensures that the limiting model is well-defined.

The existence a sequence of fixed points

ηn ∈ Ψ0(ηn)

supporting a converging sequence of the moment follows immediately from Theorem 4.1 in Menzel (2015b).

Furthermore Lemma B.3 in Menzel (2015b) implies convergence of η̂n ≡ η̂n(α
(0)) to the set of fixed points

of Ψ0 conditional on F . In particular, given the conclusion of Lemma D.1, a law of large numbers for

the mapping Ψ̂n follows from the Birkhoff LLN for exchangeable sequences together with the continuous

mapping theorem and the Glivenko-Cantelli property for ψ̃i(η). The conclusion then follows from Lemmas

D.1 and D.4 with qn := pn, noting that σ2
k,n/pn is asymptotically bounded and that m0(θ; η) is continuous

in η □

D.7. Embedding into Asymptotic Sequence. For a central limit theorem with mixing we embed the

approximating array
(
Ỹi

)
i
into an asymptotic sequence along which we then take limits. Since the fixed

points for η̂n and ˆ̃ηn are not necessarily unique but may be selected at random, this requires that the

approximating sequence is defined on a common probability space such that ˆ̃ηn converges to a well-defined

limit η∗0 which may be stochastic. Specifically we have the following:

Lemma D.6. Suppose Assumptions 2.3-2.4, 2.5, and 4.1 hold. Then for any regular fixed point of the

limiting mapping η∗0 ∈ Ψ0[η
∗
0 ] we can construct a sequence of exchangeable arrays

(
Ỹin

)
i
, n = 1, 2, . . .

defined on a common probability space according to the sampling representation in Lemma 3.4 such that

ˆ̃ηn ∈ Ψ̃n[ˆ̃ηn] and ˆ̃ηn → η∗0 almost surely.

Proof: From the law of large numbers in Theorem 5.1 it follows that for the set H∗
0 := {η∗0 : η∗0 = Ψ0[η

∗
0 ]}

we have d(ˆ̃ηn,H∗
0)

p→ 0. Hence we can choose η∗0 as the element of H∗
0 that is closest to η̂n. Recall that

Assumption 4.1 (iv) states that the fixed point η∗0 must be a regular point of the mapping Ψ0[η]. Local

existence of a fixed point ˆ̃ηn′ ∈ Ψ̃n[ˆ̃ηn′ ] for each n′ and ˆ̃ηn′
a.s.→ η∗0 then follows from Theorem 3.1(b) in

Menzel (2016b) □

Since we are coupling realizations of
(
Ỹi

)
i
rather than the initial array (Yi)i, this does not require existence

of a pairwise stable network supporting values η̂n → η∗0 for any given realization of payoffs, which would be

more difficult to establish. For the remainder of the argument, we take the approximating sequence to be

defined on a common probability space according to the coupling in Lemma D.6.

Given the generic CLT in Lemma D.5 in the appendix, we now turn to our main results which will be

stated in terms of primitives of the network formation model. We first note that the network moments have

the specific structure

mi(L,X; θ) = 1l
{
L|i ∈ Ai

}
hAi

(xi; θ)

For simple (i.e. singleton) events Ai, the corresponding indicator variable is the product of edge-specific

indicators Liqir , (1−Liqir ) for q, r ∈ {1, . . . , D}. If the two-dimensional approximating array
(
L̃ij

)
is jointly

exchangeable, it follows that it can be represented as a function

L̃i1i2 = g(ξ(0), ξ
(1)
i1
, ξ

(1)
i2
, ξ

(2)
i1i2

)
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Since attributes xi1 are i.i.d. by assumption, it follows that we can represent

mi(L̃,X; θ) = m̃(ξ(0), ξ
(1)
i1
, . . . , ξ

(1)
iD
, ξ

(2)
i1i2

, . . . , ξ
(2)
iD−1iD

, xi1 , . . . , xiD ; θ) (D.3)

as a function of i.i.d. random variables at the node or edge level alone, which does not depend on any shocks

at the level of d-ads of any order higher than d = 2.

For composite events, corresponding to the case where Ai is a set of size greater than one, the same

argument holds, noting that the indicator for the composite event is the maximum over the indicators for

each of the simple events contained in Ai. Lemma D.7 in the appendix then determines convergence rates

given the network formation model in Assumptions 2.3-2.4.

Given the projection representation of the network moment introduced before, we next establish the

convergence rate given the network formation model:

Lemma D.7. Assume the network formation model in Assumptions 2.3-2.4, and 2.5. Furthermore suppose

that Assumption 2.1 holds and that the network event Ai1...iD implies that Li1is = 1 for at least one s ∈
{2, . . . , D}. We then have that σ2

1/p
2
n converges almost surely to a limit that is finite and bounded away from

zero, and σ2
2/p

2
n = O (1) so that rn =

((
n
1

)
p2n
)−1

. Furthermore,

rnσ
2
k,d1

→ 0

almost surely for all k > 2.

Proof: Note first that by Lemma D.6, the second moments converge almost surely to their F-measurable

limits. For the first claim, consider the conditional probability of Ai given MCi,

πn1(µ) := P
(
L|i ∈ Ai

∣∣∣MCi1 −
1

2
log n = µ

)
where by the law of iterated expectations, E[πn1(MCi1)] = pn. Since

e1i1;1 := (πn1(MCi1)− pn)E[h(xi1 , . . . , xiD )|xi1 ]

it that it will be sufficient to show that Var
(

πn1(MCi1 )−pn

pn

)
remains bounded away from zero.

In order to evaluate πn1(MCi1), we make use of the conditional independence result in Lemma 3.2. As

before, we define Dij := 1l {Uij(L,X) ≥MCi} as an indicator whether i would agree to form a link to j

given that network L, and let D∗
ij := 1l {Uij(L

∗,X) ≥MCi} denote the corresponding indicator given the

pairwise stable network L∗.

Now for every network L̄|i ∈ Ai, we let ADi1;i2...iD (L̄|i) denote the event that Di1is = 1 for each

is ∈ {i2, . . . , iD} with L̄i1is = 1. Since it was assumed that Ai1...iD contains at least one non-zero link

between i1 and another node is ∈ {i2, . . . , iD}, there exists at least one such is. We also let ADi1;i2...iD (L̄|i) ∈
ADi1;i2...iD (L̄|i) denote the (singleton) event Di1is = L̄i1is for all s = 2, . . . , D. Since under sparse asymp-

totics in Assumption 2.5, P(Dij = 1) goes to zero,
P(ADi1;i2...iD

(L̄|i))

P(ADi1;i2...iD
(L̄|i))

→ 1 so that we can without loss of

generality restrict our attention to the singleton event ADi1;i2...iD (L̄|i).
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We then have by the law of iterated expectations that

πn1(µ) := P
(
L|i ∈ Ai

∣∣ADi1;i2...iD ,MCi1 −
1

2
log n = µ

)
P(ADi1;i2...iD |MCi1 −

1

2
log n = µ)

=
∑

L̄|i∈Ai

P
(
L|i
∣∣ADi1;i2...iD (L̄|i),MCi1 −

1

2
log n = µ

)
P(ADi1;i2...iD (L̄|i)|MCi1 −

1

2
log n = µ) + o(pn)

=
∑

L̄|i∈Ai

P
(
L|i
∣∣ADi1;i2...iD (L̄|i)

)
P(ADi1;i2...iD (L̄|i)|MCi1 −

1

2
log n = µ) + o(pn)

where the last step follows from Lemma 3.2.

Since ηi1is is continuously distributed with full support, P(ADi1;i2...iD (L̄|i)|MCi1− 1
2 log n = µ)P(ADi1;i2...iD (L̄|i))

is strictly increasing in µ for any n, and by Lemma C.2, its limit is also strictly decreasing in µ. Since MCi

is continuously distributed with full support on R, it follows that Var
(

πn1(MCi1
)−pn

pn

)
converges to a strictly

positive limit, establishing the first claim.

From analogous arguments, we can show that σ2
2 = O (pn) and σ2

k,d1...dr
= O (pn) for every k ≥ 2 and

r = 1, . . . , k. By Lemma D.3, this establishes the rate rn =
((

n
D

)
pn
)−1

. Finally (D.3) implies that jointly

exchangeable approximation to the network moment can be represented in terms of Aldous-Hoover factors

of degree less than 3, establishing the last claim of this Lemma □

We can now state the proofs for the remaining results in Section 5.

D.8. Proof of Lemma 5.1. Without loss of generality, we assume that the approximating sequence of

arrays
(
Ỹin

)
i
is defined on a common probability space using the construction in Lemma D.6.

Using the notation in Lemma 3.1, we let Ji denote the set of nodes available to i given the selected

potential values of network statistics, sEi,2
,

J ∗
i ≡:= J ∗

i (DEi
) := {j : D∗

ji = 1} ⊂ {1, . . . , n}

where DEi
∈ D∗

Ei
(sEi,2

). We also let

J∗ := |J ∗
i |

denote the size of the link opportunity set J ∗
i . By Assumption 2.5, J∗/

√
n = Op(1) with finite variance.

The expectation of m̂n and Ψ̂n will be determined by conditional link acceptance probabilities of the form

Φ(i, j1, . . . , jr|z∗i ) = P (Uij1 , . . . , Uijr ≥MCi > Uij′ all other j
′ ∈Wi(L

∗)|z∗i )

For a given node set {j1, . . . , jr} we also denote

J̄ ∗
i := J ∗

i \{j1, . . . , jr}

Given the conclusion of Lemma 4.1, conditional link acceptance probabilities nr/2Φ(i, j1, . . . , jr|z∗i ) can

be approximated by a smooth function of Îi,j1,...,jr;n := 1
J∗

∑
j∈J̄ ∗

i
exp{Ũij} at a rate faster than n−1/2.

Specifically we denote

g(Îi,j1,...,jr;n) :=
r!
∏r

s=1 exp{Ũijs}(
1 + Îi,j1,...,jr;n

)r+1

We also define Îi;n := 1
J∗

∑
j∈J ∗

i
exp{Ũij}.

First, if r
n1/2 → 0, boundedness of the systematic parts from Assumption 2.3 implies that

n1/2|Îi,j1,...,jr;n − Îi,n| = n1/2

∣∣∣∣∣∣ 1J∗

∑
j∈J ∗

i

exp
{
Ũij

}
− 1

J∗

∑
j∈J̄ ∗

i

exp
{
Ũij

}∣∣∣∣∣∣
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as asymptotically bounded.

The second approximation error arises from the randomness in Îi,n − Ĥn(xi, si). To this end we establish

that n1/4(Îi,n−Ĥn(xi, si)) is asymptotically normal, so that in particular its asymptotic variance converges to

a finite limit. Define Xkn := (1l{Uki ≥MCk} − πkn) exp{U∗
ik(L

∗)}, where πkn := P(Uki ≥MCk|z∗1i, . . . , z∗ni).
By Lemma 3.2, εki and MCk are drawn without replacement from ε1i, . . . , εni and MC1, . . . ,MCn, inde-

pendent of z∗1i, . . . , z
∗
ni.

Since ε1i, . . . , εni and MC1, . . . ,MCn are in turn i.i.d. draws from the respective marginal distribution

independent of z1i, z2i, . . . , Xkn are conditionally independent given z∗1i, z
∗
2i, . . . . We also define s2n :=∑

k ̸=i πkn(1−πkn) exp{2U∗
ik(L

∗)}. We then consider convergence of Tn := 1
sn

∑
k ̸=iXkn to a standard normal

random variable conditional on z∗1i, . . . , z
∗
ni. A sufficient condition for this is the Lyapounov condition

1

s3n

∑
k ̸=i

E[|Xkn|3] → 0. (D.4)

Noting that by Assumption 2.3, 0 < exp{−Ū} ≤ exp{2U∗
ik(L

∗)} ≤ exp{Ū} < ∞ for all k = 1, 2, . . . .

Furthermore, the (centered) Bernoulli random variable E |1l{Uki ≥MCk} − πkn|3 = πkn(1 − πkn)
3 + (1 −

πkn)π
3
kn ≤ 2πkn. Hence, we have that

1

s3n

∑
k ̸=i

E[|Xkn|3] ≤ 2 exp{6Ū}
∑

k ̸=i πkn(∑
k ̸=i

1
4πkn

)3/2 =
1

4
exp{6Ū}

∑
k ̸=i

πkn

−1/2

for n sufficiently large since for each k, πkn is bounded by a sequence that converges to zero.

Since
√
npn is bounded from above and away from zero,

∑
k ̸=i πkn diverges to infinity so that the Lya-

pounov condition (D.4) holds. It then follows from Lyapounov’s CLT for triangular arrays that conditional

on z∗1i, z
∗
2i, . . . , ∑

k ̸=i (1l{Uki ≥MCk} − πkn) exp{U∗
ik(L

∗)}
sn

d→ N(0, 1)

In particular,

n−1/4
∑
k ̸=i

(1l{Uki ≥MCk} − πkn) exp{U∗
ik(L

∗)} d→ N(0, V )

conditional on z∗1i, z
∗
2i, . . . .

We can now combine these findings with a mean-value expansion to conclude that

E[
√
ng(Îi,j1,...,jr;n)− g(Ĥn(xi, si))] =

√
ng′(Ĥn(xi, si))E[Îi,j1,...,jr;n)− Ĥn(xi, si)]

+
1

2
g′′(Ĥn(xi, si))E[(Îi,j1,...,jr;n − Ĥn(xi, si))

2] + o(1)

= Bg,n + o(1)

conditional on Ĥn(xi, si)), which is asymptotically bounded given the bounds on the bias and variance of

Îi,j1,...,jr;n − Ĥn(xi, si) established before. Finally, the expectations of m̂n(θ; η) and Ψ̂n(θ; η) are Lipschitz

in the asymptotic conditional link acceptance probabilities, establishing the conclusion of this Lemma □

D.9. Proof of Theorem 5.2. Stacking the moments, we can consider linear functionals of the form

Zn := a′

(
n1/2

[
m̂n(θ; η)−m0(θ; η)

Ψ̂n(θ; η)−Ψ0(θ; η)

]
−B

)
for an arbitrary conformable column vector a, noting that B is well-defined by Lemma 5.1.
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Without loss of generality, we assume that the approximating sequence of arrays
(
Ỹin

)
i
is defined on

a common probability space using the construction in Lemma D.6. Given the convergence rate for m̂n

established in Lemma D.7, we can apply Lemma D.5 to establish convergence

(a′V a)−1/2Zn
d→ N(0, 1)

for each a. By the Cramér-Wold device we then have that for any θ, η,

√
nV −1/2

(
m̂n(θ; η)−m0(θ; η)

Ψ̂n(θ; η)−Ψ0(θ; η)

)
−B

d→ N(0, I)

mixing with respect to F .

Since by Assumption 4.1, η0 is a regular fixed point of Ψ0 the conclusion follows from a mean-value

expansion of [m̂n(θ; η̂n), Ψ̂n(θ; η̂n)]
′ about η0 □
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