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Abstract. We consider the problem of extrapolating treatment effects across heteroge-

neous populations (“sites”/“contexts”). We consider an idealized scenario in which the

researcher observes cross-sectional data for a large number of units across several “experi-

mental” sites in which an intervention has already been implemented to a new “target” site

for which a baseline survey of unit-specific, pre-treatment outcomes and relevant attributes

is available. Our approach treats the baseline as functional data, and this choice is moti-

vated by the observation that unobserved site-specific confounders manifest themselves not

only in average levels of outcomes, but also how these interact with observed unit-specific

attributes. We consider the problem of determining the optimal finite-dimensional feature

space in which to solve that prediction problem. Our approach is design-based in the sense

that the performance of the predictor is evaluated given the specific, finite selection of ex-

perimental and target sites. Our approach is nonparametric, and our formal results concern

the construction of an optimal basis of predictors as well as convergence rates for the esti-

mated conditional average treatment effect relative to the constrained-optimal population

predictor for the target site. We quantify the potential gains from adapting experimental

estimates to a target location in an application to conditional cash transfer (CCT) programs

using a combined data set from five multi-site randomized controlled trials.
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1. Introduction

When scaling up an intervention or planning an implementation at a new location, it is

often necessary to extrapolate experimental evidence to new sites or contexts, knowing that

average causal effects are likely heterogeneous across sites. We consider a problem in which

cross-sectional information on outcomes and covariates is available for both experimental
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and target sites, and we formalize a process of predicting a causal response that uses pre-

intervention (baseline) outcome data from the target location to obtain a forecast that is

responsive to site-specific heterogeneity. The underlying premise of such an approach is that

the data-generating processes for potential outcomes for pre- and post-intervention outcomes

are likely similar, and depend on the same unit- and site specific factors, so that baseline

outcomes are in fact predictive for treatment effects. Such an assumption may be particularly

plausible when the effect of the intervention is expected to be only incremental rather than

fundamentally altering the relationship between unit or site characteristics and the outcome

of interest.

In principle, the relevant baseline information for a given site consists of the full conditional

distribution of pre-intervention outcomes given unit covariates, that is we view the baseline

as functional data. This choice is motivated by the observation that unobserved site-specific

confounders may generally manifest themselves not only in average levels of outcomes, but

also how these interact with observed unit-specific attributes. However, in most practically

relevant settings, the number of observed sites is not large, forcing the researcher to make

pragmatic decisions on how flexibly to model the observable data.1 The corresponding

problem of predicting conditional average treatment effects from baseline outcome data can

be viewed as functional regression where a realistic implementation can at best achieve

a highly regularized solution. Moreover these data constraints also make it all the more

important to choose a procedure that makes statistically efficient use of the available data.

Our approach corresponds to a finite-dimensional approximation to that problem, where

we determine the optimal feature space in which to solve a linear version of the prediction

problem. In our leading application, cross-validation suggests that the optimal number of

features for prediction is K = 2. Compared to alternative regularization schemes, one ad-

vantage of this particular approach is interpretability, where the resulting transfer estimate

is the best linear predictor given those constructed site-specific features. Furthermore, the

proposed approximation is chosen optimally for prediction of conditional average treatment

effects. We can furthermore assess whether there exist sites in the experimental population

that are similar to a target location in terms of these site characteristics that were deter-

mined to be most predictive of conditional average treatment effects. Similar techniques

could in principle be developed to predict conditional treatment effects for sites within the

experimental sample when treatment assignment was randomized at the site level.

Conditioning on baseline data requires the definition of a joint distribution for pre- and

post-intervention outcomes across sites. We choose a design-based approach that regards

1Allcott (2015) considers a setting in which a policy was initially evaluated at 10 sites and eventually scaled
up to 111 separate sites. Dehejia, Pop-Eleches, and Samii (2021) use 142 year/country samples from 61
different countries. The PROGRESA study of conditional cash transfers in Mexico was initially conducted
in 506 rural communities across 7 states in Mexico (see Todd and Wolpin (2006)). Meager (2022) aggregates
across seven different RCTs for micro-credit interventions published in 2015.
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the combined (finite) population of experimental and target sites as fixed, but assumes that

the number of cross-sectional units within each cluster is large. Statistical properties of

extrapolation estimators are then evaluated under a randomization protocol that assigns

experimental versus target status at random among those clusters. In analogy with the

literature on conformal prediction, the constructed statistical experiment treats experimental

and target locations as finitely exchangeable. We do not necessarily regard this assignment

mechanism as factually accurate - e.g. the observed assignment may likely exhibit site-

selection effects of the kind documented by Allcott (2015). Rather, this data generating

process can alternatively be viewed a device to define a pseudo-true treatment parameter that

incorporates the available information on average effects and between cluster heterogeneity.

A transfer estimate of this kind would summarize the relevant evidence from the available

experimental data and could be subject to additional (qualitative or quantitative) sensitivity

analysis with respect to potential violations of the exchangeability assumption.

Notice also that rather than imposing strong assumptions necessary for identification of

counterfactuals in a target location, our focus is on prediction. That said, in Section 2.3

we also discuss some conditions under which the bias from linear interpolation vanishes, in

which case the predictor could be interpreted as asymptotically unbiased estimator for a

version of the problem in which sites are drawn at random from an infinite superpopulation.

The empirical application in this paper concerns the effect of conditional cash transfers

(CCT) to households on children’s school attendance. The effect of CCTs was first evalu-

ated in a large multi-site trial of the PROGRESA/OPORTUNIDADES program in Mexico,

which was followed by implementations and additional RCTs in many developing and middle-

income countries, often modeled after the PROGRESA study. After applying selection crite-

ria we construct a data set of 640 sites, combining data from five studies in Mexico, Morocco,

Indonesia, Kenya, and Ecuador to illustrate our approach. One non-technical contribution

of this paper is to exploit cross-site variation within and across studies for extrapolation

across populations, where we find that site heterogeneity at baseline predicts cross-study

differences in post-intervention responses and conditional average treatment effects.

The problem of adapting empirical findings to new contexts allowing for unobserved het-

erogeneity is certainly not limited to estimation of discrete treatment contrasts but is also

relevant to make more model-based estimates generalizable or comparable across settings.

A fully nonparametric approach appears to be well-suited for the particular problem of a

binary policy intervention, but can be seen as a stand-in for a more pragmatic estimation

approach based on a more explicit model for the outcome of interest. For more “structural”

approaches, it may be preferable to choose low-dimensional models of site heterogeneity

that can be directly incorporated into the model, possibly motivated by economic theory or

empirical regularities.
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The remainder of the paper is organized as follows: we first give a formal characteriza-

tion of transfer estimation as a statistical problem. We then determine the optimal finite-

dimensional subspace of features of the baseline data, and propose nonparametric estimators

based on the experimental sample. Asymptotic properties of those estimators, assuming the

number of experimental sites grows large, are given in Appendix A. The approach is then

illustrated using an application to predicting the causal effect of conditional cash transfer

programs to new locations.

2. Problem Description

The population of interest consists of G sites (“clusters”/“contexts”), where the gth site

consists of Ng units. For the purposes of this paper, we focus on the case in which there

is a single target site g∗ in addition to G − 1 experimental sites g ∈ {1, . . . , G} \ {g∗}. We

also use the dummy variable Rg ∈ {0, 1} to indicate whether g is an experimental location

(Rg = 1), or a target site (Rg = 0).

There is a binary policy variable (“treatment”) Dgi ∈ {0, 1} which acts at the level of

the unit i at site g, where we assume that the outcome of interest is determined only by

the unit’s own treatment status. Specifically, the unit is associated with potential outcomes

Ygi(0), Ygi(1), where the realized outcome is given by Ygi := Ygi(Dgi). Furthermore, each unit

is associated with a finite-dimensional vector Xgi of attributes whose distribution is given

by the p.d.f. fg(x) for cluster g, where we assume that the support X of Xgi is a compact

subset of Rd. For the purposes of this paper Ng will be treated as infinite, but the researcher

only observes a finite random sample of units for each cluster.

Adapting notation from Nie, Imbens, and Wager (2021), we can without loss of generality

characterize potential outcomes as

Ygi(d) ≡ y(d;Xgi, Ugi, Vg), d = 0, 1 (2.1)

for some unspecified mapping y(·) and potentially multi-dimensional unobserved individual

and site-specific heterogeneity Ugi and Vg. Previous work by Gechter (2023) and Nie, Imbens,

and Wager (2021) proposed strategies to address cross-site differences in the conditional

distribution of individual heterogeneity Ugi, whereas our focus is on site-specific heterogeneity

Vg. While Vg could be included with the vector Ugi as a matter of notation, the approaches

in Gechter (2023) and Nie, Imbens, and Wager (2021) require Ugi to have the same support

across sites, which can’t be satisfied by variables Vg that are shared by all units at the site.

We therefore prefer to keep site-specific heterogeneity explicit in our notation.

Using this notation we can write the conditional means of post-intervention outcomes at

site g

µg(x; 1) ≡ µ(x; 1, Vg) := E[Ygi(1)|Xgi = x, Vg]
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or conditional average treatment effects

τg(x) ≡ τ(x;Vg) := E[Ygi(1)− Ygi(0)|Xgi = x, Vg]

For a given superpopulation Vg ∼ FV , we can also define the cross-site averages µ(x; 1) :=

EFV
[µ(x; 1, Vg)] and τ(x) := EFV

[τ(x;Vg)] of the CATE.

Our goal is to use the site-specific distribution of pre-intervention outcomes, Ygi(0)|Xgi

to predict τg(x) and µg(x; 1) given the conditional distribution of pre-intervention outcomes

Ygi(0)|Xgi. In particular, we aim to use baseline outcome data to predict model shifts

∆τg(x) := τg(x) − τ(x) and ∆µg(x; 1) := µg(x; 1) − µ(x; 1). While other moments of the

conditional distribution of baseline outcomes may reveal additional information regarding

Vg, in this paper we restrict our attention to the problem of using only the conditional first

moment of baseline outcomes

µg(x; 0) ≡ µ(x; 0, Vg) := E[Ygi(0)|Xgi = x, Vg]

as a predictor of ∆τg(x).

In our application, the outcome of interest Ygi is a binary indicator whether a school-age

child attends school, so that all higher moments of potential outcomes are known functions

of the conditional expectation µg(x; 0), but in general higher-order conditional moments

of Ygi(0) given Xgi may also be predictive of the CATE at the target site. We also do

not consider the use potentially predictive information form the marginal distribution of

covariates fXg |Vg(x|Vg). We also discuss how to incorporate observable site-specific covariates

into our approach in Section 3.4 below, however the main focus is on prediction using µg(·; 0)
alone.2

By focusing on the conditional average treatment effects (CATE), covariate shifts across

sites are already accounted for. Prediction of site-specific CATE therefore seeks to account

for model shifts ∆τg(x). Our method aggregates information on the first two moments of

the distribution of conditional expectation functions (pre- and post-intervention) across sites

and does not require that we can estimate either conditional mean function consistently for

any individual site. In particular, we also discuss a version of our aproach for the case in

which treatment assignment was randomized at the site level. In principle, the arguments

behind our method can therefore also be extended to imputation of site-specific CATE for

experimental sites when treatment was randomized at the site level, or the researcher only

observes a moderate number of units for each site.

2For our empirical application to conditional cash transfer (CCT) programs, the main outcome of interest
is whether a school age child regularly attends school, which is binary so that higher-order moments do not
provide additional information. The main individual attributes in our empirical analysis are gender, age,
and per capita household income, where the distribution of age and gender does not vary substantially across
sites.
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2.1. Stylized Example. The problem of adapting an estimate to a target location using

baseline data can be illustrated using the following idealized example: Suppose that sites are

sampled i.i.d. from a superpopulation according to Vg ∼ FV (v) for some distribution FV , and

for each site we observe an i.i.d. sample (Ygi(0), Xgi)
ng

i=1 from the p.d.f. fXgYg(0)|Vg(x, y|Vg).
If in addition all variables are discrete with Ygi(0) ∈ {0, 1} and Xgi ∈ {x1, x2}, the p.d.f.

of the baseline sample can be written as the probability mass function

fXgYg(0)|Vg(x, y|Vg) = fYg(0)|XgVg(y|x)fXg |Vg(x|Vg) ≡ µg(x; 0)fXg(x|Vg).

If we also assume for simplicity that Xgi⊥⊥Vg, we have fXg(x|Vg) ≡ fXg(x) a.s., so that

the only predictive information for potential outcomes at site g corresponds to the two

conditional means µg(x1; 0), µg(x2; 0).

In this stylized setting, the best predictor (in the usual sense) for the model shift relative

to the cross-site CATE given baseline data is then given by the conditional expectation

∆τ̃g(x) := E[Ygi(1)− Ygi(0)|Xgi, µg(x1; 0), µg(x2; 0)]− τ(x) (2.2)

Hence, the predicted model shift in this simple example amounts to a regression adjustment

over τ(x), where we condition on the two scalar variables µg(x1; 0), µg(x2; 0) ∈ [0, 1]. In more

realistic settings, implementation is more challenging:

(1) For one, a typical application may combine data from separate studies that were

planned and conducted independently, so that observed sites do not represent a

random sample from a well-defined superpopulation FV (·). We therefore cast the

transfer problem as prediction, where we optimize predictive performance within the

fixed population of sites included in the sample.

(2) Since the dimension of (µg(x; 0))x∈X corresponds to the cardinality of X (potentially

infinite), we typically need to restrict the conditioning set in (2.2) to a smaller number

of variates. The focus of this paper is therefore on how to represent the space of cross-

site predictors and systematically determine the most relevant features for prediction

of the model shift. In our particular application, cross-validation recommends an

approximation using a subspace of dimension as low as K = 2.

The remainder of this section discusses each of these aspects in more detail.

2.2. Fixed-Population Approach. The first problem consists in determining the relevant

superpopulation for the prediction problem, when the researcher wishes to extrapolate from

existing experimental data and therefore has limited control or knowledge on how those

sites had been selected. In such a scenario, it is generally implausible to assume a well

defined sampling mechanism from a particular population, however defined. Instead, we
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follow a fixed-population (design-based) approach to the problem of extrapolating from ex-

perimental to target sites, where our statistical theory will regard the combined population

of experimental and target clusters as fixed.

We consider a transfer estimate τ̂g∗,1,...,G(x) for extrapolating from the sites {1, . . . , G}\{g∗}
to g∗. Such a transfer estimate combines information on covariates and outcomes from the G

experimental and target sites to predict the CATE for the target site, g∗. Specifically, when

treatment is assigned at random within each experimental site, the site-specific conditional

average treatment effect τg(x) := µg(x; 1)−µg(x; 0) is identified for each g ∈ {1, . . . , G}\{g∗}
under standard conditions on the assignment mechanism, whereas for the target site, only

the conditional distribution of Yg∗i(0) given Xg∗i is identified from a pre-intervention baseline

sample.

The key structure we impose on this problem is that we treat the combined experimental

and target sites as finitely exchangeable (see Assumption 2.2 below), in close analogy with

the literature on conformal prediction (see e.g. Vovk, Gammerman, and Shafer (2005) and

Lei, G’Sell, Rinaldo, Tibshirani, and Wasserman (2018)). This exchangeability condition

requires that the researcher “curate” a sample of experimental sites from available data that

is generally comparable ex ante to the target site, and potentially discard sites or studies

that are known to differ systematically from that site. The resulting prediction may also be

interpreted ex post in light of possible departures from exchangeability.3

Under this fixed-population approach, the cluster-specific conditional average treatment

effects τ1(x), . . . , τG(x) are viewed as deterministic, however the assignment Rg of sites to the

experimental population as well as the selectionDgi of treated units within each experimental

cluster are random. In particular, the cross-cluster average and empirical covariance of the

functions µg(x; d) can only be estimated with error since even for units included in the

sample, only one of the two potential outcomes Ygi(0), Ygi(1) is observed. For the remainder

of the paper we only consider the case in which there is a single target cluster in addition to

G− 1 experimental clusters.

We then evaluate the statistical performance of such a transfer estimate τ̂g,1...,G(x) in terms

of the integrated mean-squared error (IMSE) under the resulting statistical experiment,

IMSE :=
1

G

G∑
g=1

E
[
(1−Rg)

∫
(τ̂g,1...,G(x)− τg(x))

2f0(x)dx

]
(2.3)

with a weight function f0(x) that has the properties of a p.d.f. and is chosen by the researcher.

The finite population approach is used as a way of formalizing the researcher’s problem who

aims to produce a forecast that performs as well as possible on average for prediction among

3In the literature on conformal prediction such a sensitivity analysis was formally proposed by Barber,
Candès, Ramdas, and Tibshirani (2023).
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this fixed population of sites. The best feasible prediction under those circumstances is a

parameter that is specific to the set of observable experimental and target sites.

The resulting transfer estimator represents a summary of site-specific unobserved model

heterogeneity that can be quantified based on the experimental sample and used to predict

the treatment effect at the target site. This is analogous to a situation that would arise when

the sample average treatment effect (SATE) is used to predict the treatment effect for an

individual participant in an experimental trial on subjects that were not sampled at random

from a well-defined population.

Our approach could also be directly implemented in a sampling based framework by re-

placing sample with superpopulation moments. However we do not evaluate prediction errors

with respect to a (“natural” or constructed) superpopulation, but define transfer estimate as

fixed-population, design-based analogs instead. This design-based interpretation of transfer

estimation therefore keeps any potential caveats about non-representative sampling of sites

explicit. There are in fact some scenarios in which the experimental clusters were in fact

chosen at random from the relevant superpopulation, allowing for an alternative, sampling

based interpretation. For example, for several of the studies of conditional cash transfers

the study population consisted of randomly selected villages or schools in a subset of major

administrative regions (states, provinces) of the country in which the study was conducted.

In such a setting, a sampling-based approach is well-suited to estimating the anticipated

effect of scaling the policy to the remaining sites in those regions.

2.3. Functional Predictors. The premise of our approach is that baseline (pre-intervention)

outcome data is predictive of post-intervention outcomes, both at the level of the site and

the individual unit. This may be particularly plausible when the effect of the intervention is

expected to be only incremental so that pre- and post-intervention outcomes behave similarly

and depend on the same unit- and site-specific factors. Under this view of the DGP, unob-

served site-specific heterogeneity Vg is not necessarily separable, but site effects will often

manifest themselves in interactions between attributes and outcome variables. Hence there

is generally relevant predictive information regarding Vg from the conditional moments of

baseline outcomes in addition to unconditional moments of Ygi(0).

For example in the study of conditional cash transfers, school attendance may differ across

sites according to whether there is a secondary school in close proximity to the community.

If the closest secondary school is difficult to reach, then older age groups will likely have

substantially lower attendance at baseline, but also be less responsive to a cash incentive.

Also, local price levels may differ across communities, causing shifts between sites in the

relationship between attendance and nominal measures of income. Sites may also differ e.g.

in terms of how well the site is connected to urban centers, or whether the language of in-

struction is widely spoken within the community. For the CCT data one might expect that
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there is a substantial amount of heterogeneity of sites within each study country regarding

these aspects, and that these site-specific factors may have similar effects on the outcome

of interest across these countries. In practice, the researcher may in addition directly ob-

serve site-specific measures e.g. of price variables or the cost of attending school, and our

approach could then be viewed as addressing residual site-specific heterogeneity after prac-

tically feasible adjustments for observable covariates. We discuss this further in Section 3.4

below.

To frame thoughts, consider first the case in which sites are random draws from an abstract

superpopulation, Vg ∼ FV . For a target site g∗ drawn from such a superpopulation the

best (lowest variance) predictor of τg∗(x) given µg∗(·; 0) is then given by the conditional

expectation function,

E[τ(x;Vg∗)|µ(:, 0, Vg∗)] = E [µ(x; 1, Vg∗)− µ(x; 0, Vg∗)|µ(·; 0, Vg∗)] (2.4)

For the fixed-population problem discussed before, sites are not i.i.d. draws from a dis-

tribution, but instead drawn without replacement from the finite set {V1, . . . , VG}. Since

µ(·; 0, Vg∗) is generally infinite-dimensional (unless all attributes Xgi are discrete), completely

flexible interpolation between sites is generally not feasible as a practical matter.

Instead, we restrict our attention to predictors that are linear in µg∗(x), i.e. that can be

expressed in terms of a linear operator B acting on µg∗ ,

Π [τ(x, Vg∗)|µ(·; 0, Vg∗)] := τ(x) +

∫
µ(x1; 0, Vg∗)β(x1, x)f0(x1)dx1 =: (Bµg∗(·; 0))(x) (2.5)

where β(x1, x2) is a square integrable function. That is, we can view a linear predictor

as a regression adjustment over the unconditional CATE τ(x), corresponding to a Hilbert-

Schmidt integral operator acting on µ(·; 0, Vg∗) with kernel function β(x1, x2).

Finding the kernel β(x1, x2) corresponding to the best linear predictor corresponds to

functional linear regression (see Ramsay and Silverman (2005), He, Müller, Wang, and Yang

(2010), and Benatia, Carrasco, and Florens (2017)). Our approach approximates that kernel

in terms of K basis function pairs {ϕk(·), ψk(·)}Kk=1, that is we solve the linear problem (2.5)

after projecting into a finite-dimensional subspace of L2. Our main technical contribution

concerns the optimal choice of such a finite-dimensional subspace at any order of approxima-

tion. In the fixed-population setting of interest for this paper, the relevant superpopulation

is finite, so that the conditional expectation (2.4) is generally degenerate and not identified.

A finite-dimensional approximation to the problem (2.5) therefore works not only as a reg-

ularization device in the usual statistical sense but also ensures that the prediction problem

is well-defined without having to invoke an abstract infinite superpopulation.

Our choice of restricting the problem to linear predictors also allows us to use modeling

techniques from the literature on functional data analysis. In general, there is no guarantee
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that a linear projection (2.5) can extract all relevant information on site heterogeneity from

µg(·; 0) but will in general result in an interpolation error eg(x) := E [τ(x;Vg)|µ(·; 0, Vg)] −
Π [τ(x;Vg)|µ(·; 0, Vg)]. While the assumption of linearity is fairly well understood in the

finite-dimensional case, we next illustrate the possibilities and limitations of this approach

using a few stylized examples for the functional prediction case that are motivated by our

leading application.

Example 2.1. Location-Scale Model. µg(x) = vg11+vg12m(x) and τg(x) = vg21+vg22t(x)

for functions m(x), t(x), where m(x) takes at least two different values in the support of

Xgi for all g, and the conditional expectations E[vg2s|vg11, vg12] are linear in vg11, vg12 for

s = 1, 2. Then E[τg(x)|µg(·; 0)] is linear in µg(·; 0), so that in particular the interpolation

error eg(x) ≡ 0.

Specifically, without loss of generality assume that the support of Xgi equals [0, 1], and

that there exists 0 < κ < 1 such that w0 ≡ 1
κ

∫ κ

0
m(s)ds ̸= 1

1−κ

∫ 1

κ
m(s)ds ≡ w1. Then,

for wg0 := 1
κ

∫ κ

0
µg(s)ds and wg1 := 1

1−κ

∫ 1

κ
µg(s)ds we can write vg12 = wg1−wg0

w1−w0
and vg11 =∫ 1

0
µg(s)ds− vg12

∫ 1

0
µ(s)ds. Moreover,

E[τg(x)|µg(·)] = E[τg(x)|vg11, vg12] = E[vg21|vg11, vg12] + E[vg22|vg11, vg12]t(x)

is linear in vg11, vg12 by assumption, and therefore also linear in µg(x), so that recursive

substitution yields a bounded expression for the kernel β(x1, x2) in (2.5) as long as κ is

bounded from zero and one, and t(x) and the conditional expectations of vg2s are bounded.

We next give an example where the distribution of the outcome variable is discontinuous

at a known value of a covariate. The main empirical motivation for this setting concerns

school attendance according to the child’s age, where the cost of attending secondary school

at age 12 or above may be different from that for primary school, and both costs may also

vary across sites. For example, many sites may have access to a primary school in close

proximity, but the nearest secondary school may be more difficult to reach at some sites,

leading to lower attendance pre- and post-intervention.

Example 2.2. Common Structural Break. Suppose that µg(x) = vg11m(x)1l{x ≤ x0}+
vg12m̄(x)1l{x > x0} and τg(x) = vg21t(x)1l{x ≤ x0}+vg22t̄(x)1l{x > x0}, where the conditional
expectations E[vg2s|vg11, vg12] are linear in vg11, vg12 for s = 1, 2. Then E[τg(x)|µg(·; 0)] is
linear in µg(·; 0) and eg(x) ≡ 0. The structure of this example closely parallels the previous

one, we therefore omit a separate proof.

The following example concerns the case in which a covariate may be measured at different

units at each site. For example, agents choices may be determined by income and costs in

terms of site-specific purchasing power, whereas recorded amounts are in terms local currency
10



units, typically expressed in US Dollar equivalents according to purchasing power parity at

the national level.

Example 2.3. Heterogeneous Measurement Units I Suppose that sites are heteroge-

neous with respect the scale at which a characteristic is measured, where µg(x) = m(vgx)

and τg(x) = t(vgx), and that vg only takes finitely many values v1, . . . , vJ . If for some

collection of intervals I1, . . . , IJ , the matrix M :=
(∫

Ii
m(vjs)f0(s)ds

)
i,j

has full rank then

τg(x) ≡
∫
µg(s)β(s, x)f0(s)ds where β(s, x) := (1l{s ∈ Ij})Jj=1M

−1 (t(vjx))
J
j=1 and we take

(cj)
J
j=1 to be a column vector with entries c1, . . . , cJ . In particular, the resulting interpolation

error is zero, eg(x) ≡ 0.

Alternatively, under global smoothness of m(x), the relevant information on vg may be

recovered as a limit of linear functionals in µg(·) even when the site-specific scaling factor

may take infinitely many values.

Example 2.4. Heterogeneous Measurement Units II Consider again the setting from

the previous example, where this time, vg may be continuously supported but m(x) is differ-

entiable at any order at x = 0, and [0, ε) is contained in the support of Xgi. Furthermore

suppose that t(x) is the limit of a convergent power series on the support of Xgi where the

polynomial coefficients k1, k2, . . . are nonzero. Also, Then, if the corresponding derivatives

m(ks)(0) := dks

dxksm(x)
∣∣∣
x=0

are all nonvanishing at zero, the linear projection of τg(x) on

µg(x; 0) equals τg(x), in particular E[τg(x)|µg(·; 0)] is linear in µg(·; 0).
To see why this is the case, note first that the derivatives µ

(ks)
g (0) := dks

dxks µg(x; 0) ≡
vksg

dks

dxksm(x) are limits of finite differences of µg(x; 0) and therefore linear in values of the

function at points in the neighborhood of x. By assumption we can then represent

τg(x) =
∑
s≥1

vksg
t(ks)(0)xks

ks!
=
∑
s≥1

µ
(ks)
g (0)

m(ks)(0)

t(ks)(0)xks

ks!

which is linear in µg(·, 0) since m(ks)(0) and t(ks)(0) are constant across sites.

Using this argument, τg(x) is recovered only in the limit along sequences of Hilbert-Schmidt

operators acting on µg(·). In particular there is no guarantee that the limit itself will be

Hilbert-Schmidt, so the function τg(x) may only be recovered as an approximation.

The preceding examples suggest that even in the presence of interpolation error, linear pro-

jection can be responsive to the patterns of unobserved site heterogeneity used to motivate

our approach although conditional expectations are linear only under admittedly fairly styl-

ized assumptions. While our arguments are given in terms of m(x), t(x), an implementation

of linear projection obviously does not require knowledge of these functions.

Finally, even under linearity, there may still remain relevant site-specific unobserved het-

erogeneity that does not express itself in µg(·; 0) and therefore cannot be predicted from
11



baseline outcomes. For example, modeling pre-intervention outcomes µg(x; 0) as a func-

tion of household income could help predict aggregate heterogeneity in income effects in the

response to a conditional cash transfer program. At the same time, a predictor based on

income alone may not be responsive to site-specific (rather than only individual-specific) het-

erogeneity in substitution effects which may manifest themselves more clearly if in addition

some measure of the cost of school attendance were taken into account.

2.4. Assumptions. We next formalize the identifying conditions which are adapted from

Hotz, Imbens, and Mortimer (2005). We depart from their main framework in two substantial

ways: for one our design-based approach treats experimental and target sites as random

draws from a finite population of sites. Moreover, we also consider a version of the problem in

which baseline data on pre-treatment outcomes for the target site are available and are to be

used to predict site-specific “macro” effects. We highlight how this affects the interpretation

of the assumptions on the assignment mechanism. While our derivation of optimal predictors

in section 3 is directly in terms of high-level properties of covariance operators, the following

assumptions are maintained to establish asymptotic rates for estimates in Appendix A.

We assume throughout that for each cluster g = 1, . . . , G the researcher observes a sample

of ng units that are drawn independently and uniformly at random from {1, . . . , Ng}, and
also independently of potential values and unit attributes. For notational convenience our

results will be stated for the case that the observed number of units is the same for each

site, ng ≡ n for g = 1, . . . , G. For each experimental site, we assume that selection of units

into treatment is based only on observables Xgi,

Assumption 2.1. (Unconfounded Assignment) For all g with Rg = 1,

Dgi⊥⊥(Ygi(0), Ygi(1))|Xgi, Rg = 1

where Dg1, . . . , DgNg are also conditionally independent across units and clusters given at-

tributes and R1, . . . , RG.

This condition is met if Dgi was assigned at random as part of a randomized controlled

trial (RCT) at each experimental site, and it captures the idea of extrapolating from a

collection of internally valid estimates of site-specific causal effects to a new site. In a

practical application the set of confounders Xgi may differ from the conditioning variables

chosen by the researcher for define the relevant conditional average treatment effect, however

for expositional clarity we only consider the case in which the conditioning variables are the

same. It is also possible to adapt our approach to the case of randomization at the cluster

level, Dgi ≡ Dg for all i = 1, . . . , ng, see Appendix A for a brief discussion.

Furthermore, we assume that among the G sites, the G − 1 experimental locations were

selected independently of potential values, conditional on observable covariates:
12



Assumption 2.2. (Unconfounded Location) g∗ is drawn uniformly at random from

{1, . . . , G} independently of {Ygi(0), Ygi(1), Xgi : g = 1, . . . G, i = 1, . . . , Ng}.

This assumption is strengthened version of Assumption 2 in Hotz, Imbens, and Mortimer

(2005) and describes an idealized observational protocol that rules out systematic ex-ante

site selection bias. It can be seen immediately that under this condition, for a randomly

selected experimental site g̃ with Rg̃ = 1, (Yg̃i(0), Yg̃i(1), Xg̃i)
d
= (Yg∗i(0), Yg∗i(1), Xg∗i), where

“
d
=” denotes equality in marginal distributions. Therefore, Assumption 2.2 implies that

experimental and target sites are exchangeable, the fundamental assumption in the literature

on conformal prediction (Vovk, Gammerman, and Shafer (2005) and Lei, G’Sell, Rinaldo,

Tibshirani, and Wasserman (2018)).

In practice, we do not expect that assumption to be an accurate description on how experi-

mental (study) and target sites were selected. Rather, in the absence of additional knowledge

regarding site selection, this auxiliary assumption defines a pseudo-true parameter, which

aggregates estimates from experimental sites into a “best” prediction for the target popula-

tion. The resulting transfer estimate should therefore be interpreted as a summary of the

directly quantifiable relevant information from previous experiments, which could be subject

to additional (qualitative or quantitative) sensitivity analysis with respect to suspected vio-

lations of that exchangeability condition (see e.g. Barber, Candès, Ramdas, and Tibshirani

(2023) for the problem of conformal prediction).

For the next assumption, we define the site-specific propensity score as

pg(x) := P(Dgi = 1|Xgi = x)

We require that the supports of covariates overlap, both between treated and control units,

as well as across the sites g = 1, . . . , G.

Assumption 2.3. (Support Conditions) There exists δ, 0 < δ < 1 such that

δ < pg(x) < 1− δ and δ < fg(x)/f0(x) < 1/δ

for all g ∈ {1, . . . , G}\{g∗} and x in the support of f(x). Furthermore, the support X
of Xgi is a compact subset of Rd, without loss of generality X = [0, 1]d, and we assume

infx∈[0,1]d fg(x) ≥ κ > 0 for all g = 1, . . . , G.

The role of this assumption is to ensure that conditional moments of either potential

value are identified and can be estimated consistently across sites. While Assumption

2.2 does allow for experimental and target sites to differ in terms of the distribution of

observables, we require that the site-specific supports overlap, potentially after trimming

non-overlapping regions in the covariate space as suggested in Hotz, Imbens, and Mor-

timer (2005). This assumption also does not cover site-specific aggregate covariates that

may serve as additional predictors as analyzed by Hotz, Imbens, and Mortimer (2005) and
13



Dehejia, Pop-Eleches, and Samii (2021). Randomization at the level of the site would not

satisfy the support condition on the site-specific propensity score and therefore requires a

different approach which is discussed in Appendix A. Additional adjustments for site-specific

variables may be possible, but would also be severely constrained by the small number of

observable sites. While our focus is on the optimal use of cross-sectional information for

extrapolation, we briefly discuss how to incorporate site-level covariates in Section 3.4.

Nonparametric estimation of the first two conditional moments of potential values Ygi(d)

given attributes Xgi requires additional moment and smoothness conditions, where we specif-

ically assume the following:

Assumption 2.4. (Distribution and Moments) For g = 1, . . . , G, (a) Xgi is continu-

ously distributed on [0, 1]d with marginal p.d.f. that is bounded from above supx∈[0,1]d fg(x) ≤
B0 < ∞. (b) The site-specific density fg(x), propensity score pg(x), and conditional mean

functions µg(x; d) are twice continuously differentiable in x with uniformly bounded deriva-

tives. We also assume that (c) potential outcomes have bounded moments E|Ygi(d)|s < ∞
for d = 0, 1 and some s > 3, (d) there exist finite constants B0, B1 such that supx f(x) ≤ B0

and supx E[|Ygi(d)|s|Xgi = x]fg(x) ≤ B1 for all g.

To avoid additional notation, we do not explicitly discuss the case in which some compo-

nents of Xgi may be discrete. With the exception of part (c), the conditions in Assumption

2.4 are commonly assumed for nonparametric estimation of conditional moments, see e.g.

Hansen (2008). Notice also that we effectively need to be able to estimate conditional mo-

ments separately for each site, and therefore require these conditions to hold uniformly over

g. In the absence of covariate shifts, i.e. if the distribution of covariates fg(x) or propensity

score pg(x) did not vary over g, this issue could be avoided (see Yao, Müller, and Wang

(2005a)), however we do not find such an assumption plausible for the problem considered

here.

2.5. Literature. A conceptual framework for the problem of extrapolation of estimated

treatment effects across heterogeneous sites was developed in the seminal article by

Hotz, Imbens, and Mortimer (2005). Using their terminology, we assume unconfounded

locations, but specifically want to allow for (site-specific) model shifts (“macro effects”),

that is shared heterogeneity in potential outcomes and treatment effects within each clus-

ter. We propose a mechanism to incorporate information on pre-treatment outcomes at the

cluster/site level when no treated units are observed in the population of interest.

Extrapolation of treatment effects was considered by various studies, including Dehejia,

Pop-Eleches, and Samii (2021), Gechter (2023), Meager (2022), Nie, Imbens, and Wager

(2021), Adjaho and Christensen (2022), and Canen and Song (2023). Dehejia, Pop-Eleches,

and Samii (2021) considered the problem of predicting treatment effects at target sites based
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on observed site-specific covariates. Gechter (2023), Manski (2020), and Nie, Imbens, and

Wager (2021) derive bounds that account for selection effects at the individual level, allowing

individual heterogeneity to be distributed differently across sites. Our focus is on site-specific

heterogeneity, in particular we do not require the support of unobservables (U ′
ig, V

′
g )

′ to be

shared across sites for the approach to be useful. Adjaho and Christensen (2022) consider

robust extrapolation of treatment rules when there is no separate data on the target site,

but the distribution of potential outcomes is in a neighborhood of that for the experimental

population.

A separate question concerns the transfer performance of extrapolation methods. Gechter,

Samii, Dehejia, and Pop-Eleches (2019) use data from two conditional cash transfer programs

to evaluate extrapolation of empirical treatment rules. Kuang, Xiong, Cui, Athey, and

Li (2018) identify attributes that exhibit a stable predictive relationship to the outcome

of interest across environments. Andrews, Fudenberg, Liang, and Wu (2022) analyze the

problem of assessing transfer performance, where model estimates from data in one domain

are transferred to another, whereas this paper optimizes cross-domain model performance

within the experimental sample. While our analysis is formally design-based conditional

on the experimental sample (rather than assuming i.i.d. draws of contexts from a meta-

population), a sampling-based interpretation similar to theirs is also possible. Gechter,

Hirano, Lee, Mahmud, Mondal, Morduch, Ravindran, and Shonchoy (2023) discuss optimal

selection of experimental locations for extrapolation to other sites.

The work closest to ours is Canen and Song (2023) who propose to use the distribution of

pre-intervention outcomes for the target site together with post-intervention outcomes from

the experimental locations to predict outcomes under a synthetic transferability condition.

Their approach predicts policy effects based on the assumption that the policy shift affects

outcomes through an index where the supports of pre- and post-intervention index values

overlap in the target population. We consider a setting in which the policy intervention

is binary and not equivalent to a shift in other observed covariates. Under that scenario

the supports for pre- and post-intervention values for that index are disjoint, so that no

subpopulation of the target site can be directly matched to post-intervention outcomes in the

experimental sample. Our approach predicts counterfactuals conditional on pre-treatment

outcomes alone, and is therefore complementary to theirs.

The working assumption of exchangeability between experimental and target sites is shared

by conformal prediction methods (see Vovk, Gammerman, and Shafer (2005) and Lei, G’Sell,

Rinaldo, Tibshirani, and Wasserman (2018)). The focus of the present paper is on a point

estimate that is informed by the experimental sample rather than inference, however under

an exchangeability assumption our approach could in principle be combined with classical or
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conformal methods for inference with either asymptotic or finite-sample guarantees. Sensitiv-

ity of conformal inference with respect to departures from exchangeability was characterized

by Barber, Candès, Ramdas, and Tibshirani (2023). We do not explore the problems of

inference or sensitivity analysis in this paper but leave this for future research.

It is also worth comparing our approach to other conceptual frameworks for aggregation

of causal estimates across different populations: Pearl and Bareinboim (2014) gave explicit

conditions for transportability of causal estimates across populations in terms of selection

diagrams. One interpretation of our approach is the construction of a site-level covariate

from baseline outcome data conditional on which potential outcomes are, to an approxima-

tion, mean-independent of selection. This paper also differs in the interpretation of transfer

estimates, where our focus is on cross-population prediction of causal effects, rather than

assuming the idealized conditions that would guarantee transportability in the strict sense.

Conceptually, the extrapolation problem also has some resemblance with the method

of synthetic controls (Abadie and Gardeazabal (2003),Abadie, Diamond, and Hainmueller

(2010)). However our approach is developed with a setting in mind where we do not have

(typically aggregate) time series information on a treated unit and the “donor pool” of

potential controls. Rather we assume that each site/context provides rich cross-sectional

information, where a fraction of units is treated in a study population of sites, and we

then predict treatment effects for the (yet untreated) target cluster. For that problem,

Gunsilius (2023) is most similar to our approach in that he proposes to use cross-sectional

variation in micro-data to calibrate synthetic weights, however our approach differs in that

rather than optimizing weights to match the distribution of baseline outcomes as closely

as possible, we construct factors that are optimized to predict post-treatment outcomes

based on the conditional distribution given unit-specific attributes. Shin (2022) uses a k-

means algorithm to model unobserved heterogeneity in a problem with cluster dependence

in treatment assignment.

In order to model site-specific conditional mean functions as random objects, we use

tools from functional data analysis (Ramsay and Silverman (2005) for an overview), where

function-to-function regression was analyzed by He, Müller, andWang (2003) and He, Müller,

Wang, and Yang (2010),Yang, Müller, and Stadtmüller (2011), and Benatia, Carrasco, and

Florens (2017). Our approach is also related to functional principal components approaches

for function completion/reconstruction based on partially observed functional data, where

our setting corresponds more closely to that of sparsely sampled functions analyzed in Yao,

Müller, and Wang (2005a), rather than the dense case considered by Kraus (2015) and

Kneip and Liebl (2020), although we assume that the number of points sampled for each

curve (site) grows large. Since our focus is on cases in which only a modest number of

trajectories is observed, the basis functions for our approach is constructed in as to be
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optimal for prediction, using both covariate and outcome data rather than separate principal

components for covariate and outcome trajectories.

Generally our problem differs from function reconstruction in that our objective is to

predict the difference between two curves, corresponding to conditional mean functions for

either potential value, rather than the trajectory of the partially observed curve, so that

the functional principal components of the conditional mean functions themselves do not

generally have the best basis property for this particular task. Our problem differs from

that of covariate adaptive reconstruction (Jiang and Wang (2010),Liebl (2019)) in that we

consider unit-specific covariates which correspond to coordinates of the random trajectories,

rather than site-specific covariates that shift the distribution of the random curve. Prediction

of scalar outcomes based on functional principal components was analyzed by Cai and Hall

(2006) and Hall and Horowitz (2007).

Our focus is on prediction of the conditional average treatment effect as a function of

covariates, and we derive a choice of basis functions that is optimal for that prediction task

in a sense to be made more specific below. We show that our solution bears some resem-

blance with, but is distinct from Hotelling (1936)’s classical problem of canonical correlation

analysis. For functional data, functional canonical regression has first been proposed by He,

Müller, Wang, and Yang (2010) whose approach differs from the present paper in terms of

the approach to regularization. We derive our approach from optimality considerations and

establish a (to our knowledge novel) formal optimality result.

Interpreting “locations” at which random trajectories are evaluated as covariates or causal

variables also requires a few subtle adjustments relative to the classical literature on func-

tional data analysis. In particular, the covariate distributions may differ across sites, so

nonparametric estimation of moments of the distribution of the random function requires

some local reweighting and support conditions.

3. Estimation Approach

This section concerns the optimal choice of basis functions (features) for estimation of the

linear projection problem (2.5). Our general approach is based on a representation of the

random processes µg∗(x; 0) and τg∗(x) for the target site g∗ in terms of orthogonal bases,

ϕ1, ϕ2, . . . and ψ1, ψ2, . . . ,

µg∗(x; 0) = µ(x; 0) +
∞∑
k=1

mg∗kϕk(x)

τg∗(x) = τ(x) +
∞∑
k=1

tg∗kψk(x) (3.1)
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Note that µg∗(x; 0) and τg∗(x) are stochastic only due to the fact that the target site g∗ is

random draw from the population {1, . . . , G}.
Our approach then estimates a truncated version of this expansion,

τKg∗ (x) := τ(x) +
K∑
k=1

tg∗kψk(x) (3.2)

to approximate the CATE at site g at a low order K << G. For the scenarios we are

envisioning in this paper, the number of experimental clusters
∑G

g=1Rg is not very large, so

K should be thought of as fairly small. In fact, for our empirical application, cross-validation

(with respect to cross-site prediction) suggests a value of K equal to 2 or 3, depending on

the exact specification. So rather than aiming for consistent estimation of τg(x), we view

the use of the first few leading factors in the expansion (3.1) as a method of improving over

an unconditional forecast τ(x) that doesn’t account for site heterogeneity.

It is therefore all the more important to have theoretical guidance on how to choose the

basis of that expansion optimally so as to prioritize those features in the data that will be

most predictive for τg∗(x). The need to truncate the expansion for purposes of estimation

stems from ill-posedness in the problem of predicting τg∗(x) based on trajectories µg∗(x; 0).

While other continuous regularization methods are available (see Carrasco, Florens, and

Renault (2007)), an advantage of this finite-dimensional approximation is that it can be

interpreted as a linear prediction of the CATE based on the first K factors in an analogous

expansion of the trajectory µg∗(x; 0) even for small values of K.

Our approach requires nonparametric estimation of the mean functions

µ(x; d) := E[µg∗(x; d)] ≡
1

G

G∑
g=1

µg(x; d), d = 0, 1

and

τ(x; d) := E[µg∗(x; d)] ≡
1

G

G∑
g=1

τg(x; d), d = 0, 1

as well as the covariance kernels

Hµµ(x1, x2) := Cov(µg(x1; 0)− µ(x1; 0), µg(x2; 0)− µ(x2; 0))

=
1

G

G∑
g=1

(µg(x1; 0)− µ(x1; 0))(µg(x2; 0)− µ(x2; 0))

Hµτ (x1, x2) := Cov(µg(x1; 0)− µ(x1; 0), τg(x2)− τ(x2))

=
1

G

G∑
g=1

(µg(x1; 0)− µ(x1; 0))(τg(x2)− τ(x2))
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Hττ (x1, x2) := Cov(τg(x1; 0)− τ(x1; 0), τg(x2)− τ(x2))

=
1

G

G∑
g=1

(τg(x1; 0)− τ(x1; 0))(τg(x2)− τ(x2))

where covariances are with respect to a random draw of a site g from the discrete uniform

distribution over {1, . . . , G}.
A standard representation of the random processes µg(x; 0) and τg(x) in (3.1) is the

Karhunen-Loève expansion, which chooses the basis functions ϕ1, ϕ2, . . . and ψ1, ψ2, . . . as

eigenfunctions of the respective covariance operators Hµµ(·), Hτ,τ (·), see Ramsay and Silver-

man (2005) and Rasmussen and Williams (2006). These bases of eigenfunctions ordered by

their associated eigenvalues are also known as the functional principal components (FPC)

of the random functions µg(x; 0) and τg(x). At any finite order, an approximation of the

function by its leading K FPC is known to be optimal with respect to the mean-square

error of approximation. However, our goal is to extract those features of µg(x; 0) that are

“most predictive” for the average of τg(Xgi), which generally do not coincide with the FPC.

We show that instead, that optimal choice can be described in terms of a singular value

decomposition of an operator characterizing the covariance between µg(x; 0) and τg(x).

3.1. Optimal Basis Functions. Our main objective is to determine the optimal finite-

dimensional feature space for the baseline data in which to solve the prediction problem

(2.5). We regard the conditional mean functions µg(x; d) and τg(x) as random elements of

the Hilbert space L2(X , f0) (L2(X ) henceforth) of square integrable functions with norm

induced by the scalar product

⟨ϕ, ψ⟩ =
∫
ϕ(x)ψ(x)f0(x)dx

where f0(x) denotes the weighting function introduced in (2.3).

We also define integral operators Tµµ, Tµτ associated with the covariance kernels

(Tµµφ)(x) :=

∫
Hµµ(x1, x)φ(x1)f0(x1)dx1

(Tµτφ)(x) :=

∫
Hµτ (x1, x)φ(x1)f0(x1)dx1

(Tττφ)(x) :=

∫
Hττ (x1, x)φ(x1)f0(x1)dx1

for any square integrable function φ. The operators Tµµ, Tττ are self-adjoint, whereas the

adjoint of Tµτ is given by

(T ∗
µτφ)(x) :=

∫
Hµτ (x, x1)φ(x1)f0(x1)dx1.
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We now turn to the construction of an optimal K-dimensional basis for predicting τg(x)

based on µg(x; 0). For a collection ϕ1(x), . . . , ϕK(x) of K functions we let PK : L2(X ) → HK

denote the operator associated with orthogonal projection onto the closed linear subspace

HK := span (ϕ1, . . . , ϕK) :=

{
K∑
k=1

akϕk : a1, . . . , aK ∈ R

}
By the classical projection theorem (Theorem 2 on p.51 in Luenberger (1969)) that projection

is well-defined.

We then consider the predictors BPKµg for τg on that subspace corresponding to linear

operators B : HK → L2(X ). We then let

IMSEK ≡ IMSEK [ϕ1, . . . , ϕK ]

:=

∫
min

B∈HK×L2(X )
E
[
(∆τg∗(x)−BPKµg∗(x))

2
]
f0(x)dx

denote the integrated mean-square error of prediction, minimized over the set of linear pre-

dictors using those K functions. We restrict our attention to basis functions in the closed

linear subspace N⊥, the orthogonal complement of the null space of Tµµ, N := ker(Tµµ).

This restriction is of no practical consequence since for any function h in the null space of

Tµµ, Var(⟨µg, h⟩) = ⟨h, Tµµh⟩ = 0. Considering any possible choices of ϕ1, . . . , ϕK ∈ L2(X ),

we first give a lower bound on IMSEK

Lemma 3.1. Suppose that Tµµ, Tµτ are compact operators, and define

IMSE∗
K := inf

ϕ1,...,ϕK

(∫
E[∆τg∗(x)2]f0(x)dx−

K∑
k=1

⟨ϕk, TµτT
∗
µτϕk⟩

)
(3.3)

where the infimum is taken over ϕ1, . . . , ϕK ∈ L2(X ) such that ⟨ϕk, Tµµϕl⟩ = δkl for all

k, l = 1, . . . , K. Then for an arbitrary choice of ϕ1(x), . . . , ϕK(x) we have that IMSEK ≥
IMSE∗

K.

See the appendix for a proof. Since the operator Tµµ in the constraint is compact, there

is no guarantee that the infimum will be attained by square integrable functions ϕ1, . . . , ϕK .

Intuitively, this ill-posedness stems from the fact that there may be functionals of µg(x; 0)

that have small variance across sites but are highly predictive with respect to τg∗(x). This

problem bears some resemblance with functional canonical analysis, where He, Müller, and

Wang (2003) propose high-level conditions on the cross-correlation operator which would

also be sufficient to guarantee that the infimum in (3.3) is in fact attained at elements in

L2(X ).

If such a solution exists, it can be easily seen from the expression for IMSE∗
K that the

optimal basis functions for linear prediction are given by the solutions to the generalized
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eigenvalue problem

TµτT
∗
µτϕ

∗
k = λkTµµϕ

∗
k for each k = 1, . . . , K (3.4)

where we select the eigenfunctions ϕ∗
1, . . . , ϕ

∗
K associated with the K leading eigenvalues

|λ1| ≥ |λ2| ≥ . . . . Note that while the self-adjoint operators TµτT
∗
µτ and Tµµ are both non-

negative, the generalized eigenvalue problem may have solutions associated with a negative

eigenvalue.

Rather than imposing conditions for existence, we focus instead on a regularized version of

the problem, where we then demonstrate that the solution to that problem is approximately

optimal in the sense that they achieve an IMSE that can be arbitrarily close to IMSE∗
K

when the regularization parameter is sufficiently small. Specifically, we consider the following

generalized eigenvalue problem

TµτT
∗
µτϕ

∗
ka = λka(Tµµ + aId)ϕ∗

ka for each k = 1, . . . , K (3.5)

where a > 0 is a regularization parameter. We then let ϕ∗
1a, . . . , ϕ

∗
Ka be the eigenvectors

corresponding to the K largest eigenvalues (in absolute value), that is |λ1a| ≥ |λ2a| ≥
. . . |λKa| ≥ |λK+sa| for each s ≥ 1, where we impose the normalization ⟨ϕ∗

ka, Tµµϕ
∗
ka⟩ = 1 for

each k = 1, . . . , K. In what follows, we also denote the operator Tµµa := Tµµ + aId.

We denote the integrated mean-square error of prediction using the basis from the regu-

larized problem (3.5) with

IMSE∗
K(a) :=

∫
min

B∈H∗
K×L2(X )

E
[
(∆τg∗(x)−BP ∗

Kµg∗(x))
2
]
f0(x)dx

where P ∗
K is the orthogonal projector onto H∗

K := span (ϕ∗
1a, . . . , ϕ

∗
Ka). We show that the

solutions to (3.5) corresponding to the K largest eigenvalues are approximately optimal as

a→ 0:

Theorem 3.1. (Optimal Basis for µg(x; 0)) Suppose that Tµµ and Tµτ are compact op-

erators. Then for any a > 0 and fixed K there exists a solution ϕ∗
1a, . . . , ϕ

∗
Ka the functions

solving the generalized eigenvalue problem (3.5), and the resulting IMSE satisfies

IMSE∗
K(a) ≤ IMSE∗

K + o(1)

as a→ 0.

See the appendix for a proof. We can interpret this result as establishing an optimal

finite-dimensional feature space for µg(·; 0) for predicting the conditional average treatment

effect, up to a regularization bias that can be made small in terms of its impact on the IMSE

of prediction.
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3.1.1. Digression: Existence of Solution without Regularization. We next give results on

the behavior of IMSEK(a) under conditions for which a solution to the non-regularized

problem (3.4) exists. Following He, Müller, Wang, and Yang (2010), we state those sufficient

conditions in terms of separate Karhunen-Loève expansions for µg(x; 0) and τg(x; 0),

µg∗(x; 0) = µ(x; 0) +
∞∑
k=1

αg∗kξk(x)

τg∗(x) = τ(x) +
∞∑
k=1

βg∗kζk(x) (3.6)

where ξ1, ξ2, . . . and ζ1, ζ2, . . . are orthonormal systems corresponding to the eigenfunctions

of the covariance operators for µg∗(·; 0) and τg∗(·) associated with eigenvalues E[α2
g∗k] and

E[β2
g∗k], respectively. By the usual properties of the Karhunen-Loève representation, the

coefficients satisfy E[αg∗k] = E[βg∗k] = 0 and E[αg∗kαg∗l] = E[βg∗kβg∗l] = 0 for all k =

1, 2, . . . , and l ̸= k.

We then analyze regularization bias under the following condition:

∞∑
k=1

∞∑
l=1

E[αg∗kβg∗l]
2

E[α2
g∗k]

3/2
<∞ (3.7)

Note that by compactness of Tµµ, E[α2
g∗k] → 0 as k grows, so that this condition is slightly

weaker than the sufficient condition given by He, Müller, Wang, and Yang (2010) for the

existence of a functional linear regression model representing the linear projection of τg∗ on

µg∗ (see their Proposition 2.4).

While the squared correlation coefficient r2kl :=
E[αg∗kβg∗l]

2

E[α2
g∗k]E[β

2
g∗l]

is bounded by 1 for any fixed

k, l and E[β2
g∗l] are square summable in l, (3.7) may fail when there are many features of the

conditional mean of baseline outcomes Yg∗i(0) given Xgi that have low variability in αg∗k but

are highly predictive of τg∗ .

Proposition 3.1. Suppose that Tµµ and Tµτ are compact and that µg∗(x; 0) and τg∗(x) have a

Karhunen-Loève representation (3.6) with coefficients satisfying (3.7). Then (a) the solutions

to the problem (3.4) are well-defined, and the conclusion of Theorem 3.1 holds with

IMSE∗
K(a) ≤ IMSE∗

K +O(a)

See the appendix for a proof. This result establishes not only that the optimal IMSE can

be achieved at a linear rate in a, but also that the condition (3.7) is sufficient to guarantee

that the optimal predictors defined in (3.4) exist independently of a particular regularization

scheme, and can also be estimated consistently under conditions given in the next section.

3.1.2. Prediction of Model Shift. Given the proposed choice of ϕ∗
1, . . . , ϕ

∗
K , we also state the

projection of τg onto the optimal basis:
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Corollary 3.1. Suppose the assumptions of Theorem 3.1 hold. Then for any K = 1, . . . , K∗,

the projection based on the solution of (3.5) takes the form

τ ∗g∗K(x) := τ(x) +
K∑
k=1

tg∗kψ
∗
ka(x)

where tg∗k :=
1+a
1−a

⟨µg∗ , ϕ
∗
ka⟩ and

ψ∗
ka(x) :=

(
T ∗
µτϕ

∗
ka

)
(x) (3.8)

See the appendix for a proof. In particular, given the operators Tµµ, Tµτ defined at the

population level, the optimal projection depends on the site-specific mean function µg∗(x, 0)

only through K scalar features (tg∗1, . . . , tg∗K) that can be estimated consistently as the

number ng∗ of observations in the target cluster grows large.

Incidentally, we can also confirm that each of the functions ψ∗
1a, . . . , ϕ

∗
Ka is an eigenfunction

of the operator T ∗
µτT

−1
µµaTµτ at the eigenvalue λka:

T ∗
µτT

−1
µµaTµτψ

∗
ka = T ∗

µτT
−1
µµaTµτT

∗
µτϕ

∗
ka

= λkT
∗
µτϕ

∗
ka = λkψ

∗
ka

Hence one interpretation of the approach is as an approximation based on the K lead-

ing components of a singular value decomposition of the operator T
−1/2
µµa T ∗

µτ on a suit-

ably chosen linear subspace of L2(X ): Consider the eigensystem ϕ∗
1a, ϕ

∗
2a, . . . solving (3.5)

at any nonzero value for the generalized eigenvalue λka, and the corresponding functions

ψ∗
1a, ψ

∗
2a, . . . . By standard properties of eigenfunctions, these systems form a basis for the

orthogonal complements of the null spaces ker(TµτT
−1/2
µµa ) and ker(T

−1/2
µµa T ∗

µτ ), respectively.

Hence, using these bases as test functions, we can confirm that {ϕ∗
1a, ϕ

∗
2a, . . . }, {ψ∗

1a, ψ
∗
2a, . . . },

and {
√
|λ1a|,

√
|λ2a|, . . . } represent a singular value decomposition of the operator T

−1/2
µµa T ∗

µτ

where

(T−1/2
µµa T ∗

µτh)(s) =
K∗∑
k=1

√
|λka|ϕ∗

ka(s)⟨ψ∗
ka, h⟩

for any h ∈ L2(X ).

3.2. Comparison to Existing Approaches for Functional Regression. We briefly

discuss how this approach compares to existing methods in the literature on functional

regression with a functional response.

While the basis functions ϕ1k, ϕ2,
∗ , . . . in our analysis are derived from optimality consid-

erations, the procedure we arrive at has a close resemblance to canonical correlation analysis

which has previously been proposed for functional regression problems by He, Müller, Wang,

and Yang (2010). Our results differ in that for one the basis ϕ∗
1, . . . , ϕ

∗
K is formally shown to

23



be optimal for the linear prediction problem considered here. Moreover, the canonical vari-

ates need not be ordered according to the eigenvalues λk which we show to be the relevant

ordering for the IMSE-optimal choice among the eigenfunctions ϕ∗
1, ϕ

∗
2, . . . .

To address the potential non-existence of an unregularized solution to (3.4),

He, Müller, and Wang (2003) and He, Müller, Wang, and Yang (2010) impose high-level

conditions on the cross-correlation operator to ensure existence (see Proposition 4.2 in

He, Müller, and Wang (2003)). Since our focus is on prediction, we focus instead on the

achievable IMSE, allowing for the possibility that unregularized canonical variates need not

be well-defined. This approach parallels the analysis of Cupidon, Eubank, Gilliam, and

Ruymgaart (2008) who consider estimation of the largest canonical correlation between two

L2 processes and show that this scalar parameter can be approximated arbitrarily closely

via regularized canonical correlation analysis.

Yang, Müller, and Stadtmüller (2011) propose regression based on a singular value de-

composition of the operator Tµτ rather than T
−1/2
µµ Tµτ ,

(Tµτh)(s) :=
K∑
k=1

√
νk⟨ζ∗k , h⟩ξk(s)

A finite-K expansion based on spectral analysis of Tµτ has no known optimality proper-

ties but elegantly sidesteps the problem of inverting Tµµ and therefore works under weaker

conditions and is numerically stable in the absence of regularization.

Another important approach proposed by Benatia, Carrasco, and Florens (2017) who

directly minimize the mean-square error of prediction in a functional linear regression model,

subject to a nuclear norm penalization of the projection operator B. The particular appeal

of that approach is that it offers a “one-stop” approach towards regularization with a single

tuning parameter, and directly optimizes the in-sample predictive performance subject to

that penalty. Their approach assumes that B is a Hilbert-Schmidt (kernel) operator which

is not guaranteed under our assumptions. Their approach is also designed towards delivering

a consistent estimator for B in a setting where G is large.

Our focus is instead on heavily regularized but interpretable solutions Ba,K for moderate

values of G, where the singular value representation delivers a sparse representation of the

operator in terms of a functions of x. The estimated scores can then be used to assess

whether the target site is comparable to the experimental sample in terms of the most

predictive features identified by the method. The extrapolated CATE can be interpreted as

a best linear predictor given the estimated basis functions, and regularization bias results in

a potentially suboptimal (with respect to the IMSE), but ultimately valid construction of

features from µg(x; 0).
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3.3. Estimation. The representation in Corollary 3.1 motivates an estimator of the form

τ̂g∗(x) := τ̂(x) +
K∑
k=1

ˆ̃tg∗kψ̂ka(x)

where τ̂(x) := µ̂(x; 1)−µ̂(x; 0), ˆ̃tg∗k = ⟨µ̂g∗ , ϕ̂ka⟩ for a nonparametric estimator µ̂g of µg(x; 0),

and the basis functions ϕ̂1a, . . . , ϕ̂Ka are obtained by solving an empirical analog of the

generalized eigenvalue problem (3.5).

Here we develop our approach for the case of densely sampled clusters, n→ ∞, for a discus-

sion of the setting with sparse samples, see Appendix A. We estimate µ(x; d) := E[µg∗(x; d)]

and H(x1, x2; d1, d2) := Cov(µg∗(x1; d1), µg∗(x2; d2)) using nonparametric estimators µ̂(x; d)

and Ĥ(x1, x2; d1, d2). While our theory is not restricted to one particular choice of nonpara-

metric estimators, following Yao, Müller, and Wang (2005a) we give results for local linear

estimators: For each experimental cluster, let

µ̂g(x; d) := argb0 min
b0,b1

ng∑
i=1

wgi(x; d)(Ygi − b0 − b1(x−Xgi))
2 (3.9)

with nonparametric weights

wgi(x; d) := 1l{Dgi = d}K
(
Xgi − x

h

)
.

Here, K(u) is a kernel function with standard properties (see Assumption A.1 in the Appen-

dix for formal conditions on K(·)), and the bandwidth h > 0 is chosen according to sample

size G, n, the dimension of Xgi and assumed smoothness of the estimands. We also let

M̂g(x1, x2; d1, d2) := arg
b
(g)
0

min
b
(g)
0 ,b

(g)
11 ,b

(g)
12

∑
j ̸=i

Hgij(x1, x2,b)wgi(x1; d)wgj(x2; d) (3.10)

where

Hgij(x1, x2,b) :=
(
YgiYgj − b

(g)
0 − b

(g)
11 (Xgi − x1)− b

(g)
12 (Xgj − x2)

)2
.

We then construct

µ̂(x; d) :=
1

G− 1

G∑
g=1

Rgµ̂g(x; d)

Ĥ(x1, x2; d1, d2) :=
1

G− 1

G∑
g=1

RgM̂g(x1, x2; d1, d2)− µ̂(x1; d1)µ̂(x2; d2)

In principle, the bandwidth could be chosen differently for estimation of µ̂(x; d) and

Ĥ(x1, x2; d1, d2), however in our theory in Appendix A, the optimal rate turns out to be the

same for either estimator in the densely sampled case. Apart from kernel-based approaches,

other possible methods include series estimators, random forests, or neural networks. The
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choice of nonparametric estimator will generally depend on the support of the covariates and

other practical considerations.

This estimator is an average of separate local linear estimators for each of the G − 1

experimental clusters, in a departure from the approach in Yao, Müller, and Wang (2005a)

who propose a local linear estimator based on the pooled data from all G−1 clusters. There

are two reasons for a different approach in the densely sampled case: for one we do not

assume that attributes (“positions”) are sampled from the same distribution in all clusters,

but sites may differ in the distribution of Xgi. We furthermore assume “dense” samples

from a small number of clusters, whereas they consider scenarios in which n is small, but G

grows large. In our setup, cluster-specific moments can be estimated consistently, whereas

between-cluster variation is the dominant source of estimation noise due to small G. That

source of estimation error would be amplified in a nonparametric regression step, so our

approach seeks to avoid that potential problem.

To describe the estimator for the basis functions ϕ̂1, . . . , ϕ̂K let

Ĥµµ(x1, x2) := Ĥ(x1, x2; 0, 0) and Ĥµτ (x1, x2) := Ĥ(x1, x2; 1, 0)− Ĥ(x1, x2; 0, 0).

In analogy to the definition for the operators Tµµ and Tµτ , we can construct the estimators

(T̂µµh)(x) =

∫
Ĥµµ(x, s)h(x)f0(s)ds

(T̂µτh)(x) =

∫
Ĥµτ (x, s)h(x)f0(s)ds

(T̂ ∗
µτh)(x) =

∫
Ĥµτ (s, x)h(x)f0(s)ds

(3.11)

for any square integrable function h, and let T̂µµa := T̂µµ + aId.

In order to estimate the eigenfunctions ϕ∗
1a, ϕ

∗
2a, . . . , we solve the generalized eigenvalue

problem (3.5) after replacing the operators Tµτ , Tµµ with their estimates as defined above.

Specifically, we can find the functions ξ̂1a, . . . , ξ̂Ka solving the eigenvalue problem

T̂−1/2
µµa T̂µτ T̂

∗
µτ T̂

−1/2
µµa ξ̂ka = λ̂kξ̂ka (3.12)

and that are associated with the K largest eigenvalues in λ̂1 ≥ λ̂2 ≥ . . . . We then solve for

ϕ̂ka := T̂−1/2
µµa ξ̂ka. (3.13)

26



Since T̂µµ is a nonnegative (nonnegative definite) operator and a > 0, the operator on the

left-hand side of (3.12) is Hermitian and compact, and the inverse problem (3.13) is well-

posed. To implement the procedure we use linear sieve approximations to the eigenfunctions,

which converts (3.12) into a finite-dimensional eigenvalue problem.4

We then construct ψ̂ka by applying the estimator of T ∗
µτ to the estimated eigenfunction

ϕ̂ka,

ψ̂ka(x) :=
(
T̂ ∗
µτ ϕ̂ka

)
(x) ≡

∫
Ĥµτ (s, x)ϕ̂ka(s)f0(s)ds

for k = 1, . . . , K. Using these estimates, we then obtain̂̃tg∗k := ⟨µ̂g∗ , ϕ̂ka⟩

Substituting this into the formula from Corollary 3.1, our estimate of the conditional ATE

τg∗(x) is

τ̂g∗(x) = τ̂(x) +
K∑
k=1

̂̃tg∗kψ̂ka(x)

Appendix A gives convergence rates for these estimators both for densely and sparsely sam-

pled sites. Specifically, assuming equal numbers of cross-sectional observations for each site,

ng ≡ n, Theorem A.1 gives the rate

rGn =
1

G
+ h2 +

(
log n

Gnhd

)1/2

for the preliminary nonparametric estimators of mean and covariance functions if sites are

densely sampled (nG → ∞ as G → ∞) and treatment is randomized among units in

each site. If treatment is instead randomized at the site level, the approach to estimating

the covariance function H(x1, x2; d1, d2) has to be modified as discussed in the appendix,

resulting in a rate

rGn =
1√
G

+ h2 +

(
log n

Gnhd

)1/2

for the densely sampled case. For sparsely sampled sites (nG bounded), H(x1, x2; d1, d2)

can still be estimated consistently as G → ∞ by pooling observation pairs across sites.

Convergence for eigenfunctions and the IMSE of prediction depends on the asymptotic rate

of estimation of the covariance function H(x1, x2; d1, d2),

rGn = h2 +

(
logG

Gh2d

)1/2

whereas the rate for estimating the conditional mean function µ(x1; d1) is faster for reasonable

bandwidth choices.

4See e.g. Ramsay and Silverman (2005), chapter 8.4.2.
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Given these preliminary rates, Theorem A.2 gives a rate

∥ϕ̂k − ϕka∥ = Op

(
a−3/2rGn

)
for estimation of the eigenfunctions, and Corollary A.3 shows that the IMSE of prediction

using the estimated basis function is

|IMSEK [ϕ̂1, . . . , ϕ̂K ]− IMSE∗
K | = OP

(
a+ a−3/2rGn

)
Appendix A also provides comparable rates for nonparametric estimation of mean and co-

variance functions using B-splines instead of local linear regression.

Since the transfer estimate is always a linear projection on the constructed features ϕ̂k,

these rates illustrate how fast the quality of the prediction improves as we approximate the

optimal basis functions ϕ∗
k more closely. In general, that approximation requires the number

of sites G to be not too small, especially if treatment was not randomized within each site.

The difference in rates between the densely and sparsely sampled cases also illustrates how a

larger number of cross-sectional observations ng within each site can be leveraged to retrieve

the optimal predictors more accurately, although in practice typically the number of sites G

is the main limiting factor.

3.4. Site-Specific Covariates. A natural extension of the main framework concerns site-

specific covariates Wg which may be observed in addition to the unit-level attributes Xgi.

In this section we sketch a conceptual extension to our approach under the assumption that

these covariates satisfy unconfoundedness conditions analogous to those for Xgi. When the

number of experimental sites is not very large, controlling nonparametrically for a significant

number of site covariates is generally not feasible in practice, so we consider this extension

to be primarily of theoretical interest. For the purposes of this section, we also regard the

G sites as random draws from a superpopulation in order to be able to define conditional

expectations given the covariate Wg in a meaningful way.

To be specific, we consider a version of the original problem, where Assumption 2.1 is

changed to

Dgi⊥⊥(Ygi(0), Ygi(1))|Xgi,Wg, Rg = 1

and Assumption 2.2 is strengthened to assume that g∗ is drawn independently of

Yg∗i(0), Yg∗i(1), Xg∗i, and Wg∗ . Assuming that the gth cluster represents a random draw

from a superpopulation, we can define the conditional expectation

µ(x,w; d) := E[Yg∗i(d)|Xg∗i = x,Wg∗ = w]

and covariance function

H(x1, x2, w; d1, d2) := E
[
(Yg∗1(d1)− µ(x1, w; d1))(Yg∗2(d2)− µ(x2, w; d2))

∣∣∣Xg∗1 = x1, Xg∗2 = x2,Wg∗ = w
]
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where expectations are with respect to the joint distribution of potential values, attributes,

and Wg in that superpopulation.

We can then apply the previous method conditional on Wg∗ = wg∗ , where we replace the

unconditional mean function µ(x; d) with an estimate of estimate µ(x;wg∗ ; d), and form the

analogs of the covariance operators Tµµ and Tµτ from estimates of the conditional covariance

function Hd1d2(x1, x2;wg∗). The conditionally optimal basis functions ϕ∗
1, . . . , ϕ

∗
K are then

obtained from an eigenanalysis of the conditional covariance operators given Wg∗ . Such an

approach would effectively amount to a regression adjustment for the mean and covariance

functions for µg∗(x; d) with respect to Wg∗ .

For modest values of G, the scope for fully nonparametric adjustments to site-specific

covariates is fairly limited for practical purposes, in contrast to “micro” (unit-specific) co-

variates where our approach can leverage the size of the cross-sectional sample for each site

to construct approximately optimal adjustments to estimates for the CATE. Dehejia, Pop-

Eleches, and Samii (2021) used machine learning methods to adjust (unconditional) ATE

estimates for site-specific covariates, however a fully nonparametric site-specific adjustment

to the estimated CATE poses greater challenges given realistic sample sizes.

4. Empirical Application

We illustrate our approach with an empirical application to the estimation of the effect of

conditional cash transfers on children’s school attendance. In this literature, a conditional

cash transfer is a recurring grant paid to an eligible household that is explicitly linked to

a child attending school or other household decisions the policy maker wants to encourage,

with transfer amounts of the order of 5-20 percent of average household consumption in the

target population. In 1998-99 the government of Mexico conducted a large-scale randomized

trial during the roll-out of the PROGRESA/OPORTUNIDADES program (Schultz (2004)

and Todd and Wolpin (2006)), and similar programs have subsequently been implemented

in over 50 other countries (see Banerjee, Hanna, Kreindler, and Olken (2017) for a recent

summary).

4.1. Data. We combine samples from PROGRESA with four additional randomized studies

that were conducted in Indonesia (Program Keluarga Harapan (PKH), see Alatas (2011) and

Cahyadi, Hanna, Olken, Prima, Satriawan, and Syamsulhakim (2020)), Morrocco (Tayssir,

see Benhassine, Devoto, Duflo, Dupas, and Pouliquen (2015)), Kenya (Kenya CT-OVC,

Team (2012)), and Ecuador (Bono de Desarrollo Humano (BDH), Edmonds and Schady
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(2012)).5 Each of these field trials was a multi-site study conducted by the national gov-

ernment, where participants were recruited from a previously selected sample of clusters

(schools, villages, or other comparable unit). In each study, clusters were drawn from a

subset of the major administrative regions in each of these countries.

It should be noted that there were substantial differences in the exact design of the incen-

tive between these five studies. In particular, Progresa and PKH explicitly make part of the

transfer dependent on school attendance, whereas Tayssir experimented with a nudge rather

than a strictly conditional transfer. For the remaining two studies in Kenya and Ecuador,

cash transfers were unconditional. We deliberately pool the sites to replicate a realistic sce-

nario for which a policy as been adapted to local circumstances, due to practical constraints

and the policymaker’s preferences.

Our main focus is on leveraging cross-site variation within each multi-site trial to extract

predictive information on site-specific heterogeneity in the CATE. The five study populations

in Mexico, Indonesia, Morocco, Ecuador, and Kenya are likely systematically different in

terms of many factors that cannot be modeled explicitly, such as the local educational system,

the chosen target population within the geographic reach of the study, the specific manner in

which the transfer scheme was implemented, etc. Nevertheless, sites also vary substantially

within each study, e.g. according to travel distance to urban centers or secondary school,

or whether the language of instruction is widely spoken in the community. Hence, some

communities in the heterogeneous pool of clusters in, say, Mexico, may still be sufficiently

similar to a target location in Morocco or Indonesia in terms of the predictive attributes, as

determined by our method. We will assess to what extent between-study variation can be

predicted from between site variation on a more disaggregated level.

We retain all observations of households that met the eligibility criteria for the program,

and for whom we can reconstruct measures of school attendance and per capita household

expenditure at baseline and follow-up, along with children’s age and gender, and the house-

hold head’s level of education. For school attendance we use self-reports from baseline and

follow up household surveys rather than data from school records or random checks which

were only collected for some of the studies used in our analysis. After dropping households

with incomplete data and locations with fewer than 15 school-aged children, we obtain a

sample of 640 clusters (sites) with average cluster sizes ranging from 18 (PKH, Indonesia) to

47 (PROGRESA, Mexico) and 51 (BDH, Ecuador). PROGRESA and TAYSSIR (Morocco)

contribute the largest number of clusters (297 and 238, respectively) compared to 50 for

PKH (Indonesia), 31 for BDH (Ecuador), and 24 for CT-OVC (Kenya). For the purposes of

5These studies were selected according to ease of access to the underlying microdata, where we excluded one
additional study from Colombia (Subsidios Condicionados a la Asistencia Escolar, Barrera-Osorio, Bertrand,
Linden, and Perez-Calle (2011)) due to our inability to reconstruct baseline attendance data from the repli-
cation package.
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this analysis we assign equal weight to each cluster. Of those clusters, 434 were treated, the

remaining clusters were in the control group.

4.2. Implementation. We compare our approach across three different prediction tasks -

as a benchmark, we report some results for the in-sample fit, with µ(·) and H(·) and resulting

basis functions ϕk, ψk estimated from the full data set. We then consider cross-site prediction

where for a given target site g∗, the basis functions are estimated from the remaining G− 1

sites, and the transfer estimate is obtained by estimating the principal scores mg∗1, . . . ,mg∗K

from the baseline for the target site. Finally, we perform cross-study extrapolation, with the

predictive model estimated from data excluding all other sites from the study that included

the target site, for example predicting the outcome at a Progresa site using only data from

sites in the remaining four studies.

Given the small to moderate cluster sizes, we choose an estimation approach suited to

sparsely sampled functional data, see also Appendix A. The main difference to the densely

sampled case is that the cluster-specific covariate distribution fg(x) for the weights in (3.9)

and (3.10) cannot be estimated nonparametrically. We make the simplifying assumptions

that gender and age are independent of location and household per capita expenditure, and

per capita expenditure follows a log-normal distribution within each cluster, which we then

estimate parametrically.

The setting also differs from the idealized setup discussed in the theoretical sections of the

paper in that there is baseline data available for each experimental cluster. Furthermore, in

each of theses studies, treatment was randomized at the cluster level. We therefore construct

predictors from the observed baseline data for µgt(x; 0) := E[Ygit(0)|Xgit = x] at t = 0,

which are then used to predict conditional expectations µgt(x; 1) := E[Ygit(d)|Xgit = x] for

d ∈ {0, 1} and t = 1. The covariance operators between µg0(x; 0) and µg1(x; 1) or µg1(x; 0) are

then estimated using the treatment and control clusters in the experimental population. We

first consider the problem of predicting post-treatment outcomes from baseline outcomes in

the treated clusters, where we can validate predictions directly against the observed data at

the site level. We then implement the algorithm for predicting conditional average treatment

effects, which are not directly observed at the cluster level for any of the experimental sites.

Given the limited number of distinct sites, and also in order to apply consistent variable

definitions across studies we restrict the unit-specific covariates Xgi to four variables, the

child’s gender, the child’s age in years, enrollment status at baseline, and log per-capita

household expenditure. We also restrict the estimators for µ(·) and H(·) to be additively

separable in covariates, where we flexibly dummy out gender and age in years, and use B-

splines of degree 2 to model variation with respect to log expenditure. Tuning parameters are

chosen using cross-validation across clusters, where we separately target the integrated mean-

square error of estimating the mean and covariance functions to determine the bandwidths
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Prediction using IMSE-Optimal Basis Functions

baseline mean K=1 K=2 K=3 K=4 K=5 K=6

in-sample fit 0.1379 0.4398 0.5039 0.5038 0.5167 0.5191 0.4835
cross-site prediction 0.0136 0.3600 0.4484 0.4514 0.4524 0.4603 0.4252
cross-study prediction -0.0400 0.2164 0.3198 0.2987 0.3282 0.3028 0.3267

Prediction using Functional PC

baseline mean K=1 K=2 K=3 K=4 K=5 K=6

in-sample fit 0.1379 0.1377 0.3871 0.3776 0.4051 0.4221 0.4224
cross-site prediction 0.0136 0.0896 0.3743 0.3544 0.3706 0.3878 0.3852
cross-study prediction -0.0400 0.1519 0.2414 0.2988 0.2868 0.3134 0.3356

Table 1. Prediction of Post-Intervention Outcomes µg1(x; 1)− µ(x; 1) using
the leading K IMSE-optimal basis functions (top panel) and functional PC
(bottom panel) as predictors. Entries correspond to correlation coefficients
between actual mean at the site level and the baseline average (first column)
and the prediction based on the leadingK basis functions (remaining columns).

for local linear regression, and the mean-square error for cross-cluster prediction for the

regularization parameter a in (3.5).

4.3. Results. We first report results for prediction of themodel shift in post-intervention

outcomes ∆µg(x; 1) := µg(x; 1)−µ(x; 1) using the estimated IMSE-optimal predictors from

(3.5), which were estimated using only the 434 treated sites. We assess their performance

as predictors at the level of the individual site as well as after aggregating sites within

each study. The number of knots for B-spline approximations was determined using (leave-

one-site-out) cross-validation, targeting the mean function µ(x; d) and covariance function

H(x1, x2; d1, d2), respectively. The ridge parameter a was chosen based on estimated cross-

site predictive performance, and cross-validation also suggests that for this application the

optimal number of basis functions is K = 2.

Table 4.3 reports the correlation coefficient between the predicted model shift for the

average effect at site g, ∆̂µg1K := 1
ng

∑ng

i=1

∑K
k=1 t̂gkψ̂k(xgi) with its post-hoc empirical coun-

terpart, ∆̂µg1 :=
1
ng

∑ng

i=1(Ygi1− µ̂1(Xgi)). A natural alternative strategy would be to predict

post-intervention outcomes using separate regression estimates stratified by average pre-

intervention outcomes. In the first column we therefore report correlation coefficients with
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Cross-Site Prediction

Study actual K=1 K=2 K=3 K=4 K=5 K=6

MEX -0.0077 -0.0006 -0.0033 -0.0015 -0.0018 -0.0018 -0.0033
MOR 0.0220 -0.0016 0.0259 0.0231 0.0228 0.0210 0.0266
IDN 0.0037 -0.0003 0.0053 0.0094 0.0086 0.0059 0.0133
KEN 0.0300 0.0353 0.0356 0.0432 0.0591 0.0580 0.0694
ECU -0.0495 -0.0172 -0.0170 -0.0230 -0.0198 -0.0217 -0.0252

Cross-Study Prediction

MEX -0.0077 -0.0064 -0.0014 0.0007 0.0009 0.0004 0.0012
MOR 0.0220 -0.0008 0.0108 0.0213 0.0161 0.0238 0.0290
IDN 0.0037 -0.0004 -0.0006 0.0022 0.0014 -0.0002 0.0016
KEN 0.0300 0.0230 0.0200 0.0283 0.0441 0.0405 0.0412
ECU -0.0495 -0.0165 -0.0150 -0.0201 -0.0186 -0.0128 -0.0144

Table 2. Predictions of post-intervention outcomes µg1(x; 1)− µ(x; 1) using
the leading K IMSE optimal basis functions as predictors. Rows correspond
to averages across sites for each of the five studies (Progresa, Tayssir, PKH,
CT-OVC, BDH), “actual” corresponds to the empirical mean of µg1(x; 1) −
µ(x; 1).

the corresponding predictors as a benchmark, where sites were binned into three groups of

equal size (terciles) according to average enrollment at baseline.

According to our results, optimal basis functions result in substantially more precise pre-

dictions relative to binned estimates and standard FPC, where gains are largest for the first

two basis functions, and then plateau for 3 or more components. For example for cross-site

prediction, we find a correlation coefficient of around 0.36 (corresponding to an R-square of

0.13) after using only the leading baseline function (K = 1), which still gradually improves

as additional terms are included. For K larger than 5 or 6, terms are fairly noisily estimated

and therefore do not lead to substantial additional improvements. As expected, the strength

of correlation for cross-study extrapolation is lower than for cross-site prediction, but still

substantial. Stratified estimation by pre-intervention levels of outcomes does not appear

to extract much predictive information at all, suggesting that the gains observed for our

estimator exploit information on how outcomes vary together with covariates at each site.

In Table 4.3, we compare cross-site averages of predictions, where we let Gs denote the

subset of {1, . . . , G} corresponding to sites that were part of study s = 1, . . . , 5. For each

study s we then compare 1
|Gs|
∑

g∈Gs
(µ̂g1K − µ̂1) to their “realized” empirical counterparts,
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Cross-Site Prediction

Study actual K=1 K=2 K=3 K=4 K=5 K=6

MEX -0.0077 0.0089 -0.0049 -0.0051 -0.0040 -0.0036 -0.0034
MOR 0.0220 -0.0042 0.0258 0.0285 0.0271 0.0271 0.0281
IDN 0.0037 0.0043 0.0090 0.0221 0.0166 0.0255 0.0213
KEN 0.0300 0.0074 0.0550 0.0943 0.0921 0.0912 0.0961
ECU -0.0495 0.0047 -0.0138 -0.0182 -0.0213 -0.0251 -0.0371

Cross-Study Prediction

MEX -0.0077 0.0005 -0.0032 -0.0066 -0.0013 -0.0021 -0.0018
MOR 0.0220 -0.0011 -0.0043 0.0286 0.0373 0.0364 0.0364
IDN 0.0037 0.0035 0.0077 0.0174 0.0105 0.0168 0.0125
KEN 0.0300 0.0041 0.0340 0.0604 0.0543 0.0505 0.0507
ECU -0.0495 0.0053 -0.0118 -0.0152 -0.0192 -0.0366 -0.0370

Table 3. Predictions of post-intervention outcomes µg1(x; 1)− µ(x; 1) using
the leadingK functional PC as predictors. Rows correspond to averages across
sites for each of the five studies (Progresa, Tayssir, PKH, CT-OVC, BDH),
“actual” corresponds to the empirical mean of µg1(x; 1)− µ(x; 1).

1
|Gs|
∑

g∈Gs
(µ̂g1 − µ̂1). We find that the predicted average outcomes reflect some of the sys-

tematic differences, although especially for BDH and CT-OVC, the numbers and sizes of

clusters are smaller, so results are likely noisier than for the first three studies. It should also

be noted that the baseline outcome Ygi0 is already included as a control for post-intervention

outcomes in the specification of µ1. Without controlling for state-dependence at the individ-

ual level (not reported here), the correlation between pre- and post-intervention outcomes

at the site-level is substantially stronger, but the relative comparison between using base-

line averages as the “naive” predictor and prediction using K estimated basis functions is

qualitatively similar.

We next repeat the same analysis using the respective functional PC for µ̂g0(x) and µ̂g1(x),

see Table 4.3. Since the general patterns of school attendance as a function of child and

household attributes were unlikely to have shifted fundamentally between baseline and follow-

up, and the effect of the intervention was sizeable but incremental, we should expect the

functional PC for the baseline to be fairly closely aligned with those at follow-up, and

therefore perform very well as predictors for post-intervention outcomes. This is confirmed

by the quantitative results, where performance is very similar to the IMSE optimal predictors,

likely within or close to the margin of error, although we do not formally quantify estimation

error for these results.
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Figure 1. Optimal basis functions for predicting µg1(x) (left), and condi-
tional MSE of prediction given age using 0 to 8 basis functions (right).

In Figure 4.3, we report estimates of the leading two leading optimal basis functions for

predicting conditional post-intervention outcomes. These basis functions do not appear to

vary much with income, so we plot ϕ1, ϕ2 only as functions of gender and age alone. Since

post-intervention outcomes are also observed at all treated sites, we also plot the conditional

mean square error for predicting the post-intervention response for those sites, where IMSE0

corresponds to the case in which we use the unadjusted cross-site average as a predictor, and

IMSEk for the prediction using the first k basis functions ϕ1, . . . , ϕk as predictors. While the

predictors appear to be responsive to differences in enrollments at young and old ages, most

of the improvement in the forecast is for enrollment at ages 12 and above, where (within

and across site) variation is generally highest. Most of the improvement in the conditional

forecast results from including the first two factors, whereas additional predictors lead to a

significant deterioration of the forecast at lower ages. This is in line with the number K = 2

of factors selected by cross-validation.

Finally, Figure 4.3 plots the estimated scores corresponding to the leading two basis func-

tions, m̂g1, m̂g2 together with variance ellipses corresponding to a 80 percent confidence set

for jointly normal variates. We can see that while there is substantial overlap in the support,

their distributions vary substantially across the five studies, with especially some sites in the

BDH and CT-OVC differing quite substantially from those in the other three studies.

We next repeat the analysis for prediction of model shifts in site-specific treatment

effects τg(x)−τ(x), both using IMSE-optimal basis functions and functional PC as predictor

(Tables 4.3). These results were obtained combining the data from the 434 treated and 206

control sites, and since the covariance operator of µg(x; 0) with the baseline is estimated
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Figure 2. Estimated scores for leading K = 2 IMSE-optimal predictors of µg1(x).

Cross-Site Prediction

Study actual K=1 K=2 K=3 K=4 K=5 K=6

MEX 0.0011 -0.0006 -0.0019 -0.0011 -0.0028 -0.0029 -0.0031
MOR 0.0029 -0.0002 -0.0021 0.0161 0.0198 0.0213 0.0178
IDN -0.0173 -0.0022 -0.0135 -0.0455 -0.0570 -0.0564 -0.0577
KEN -0.0506 -0.0394 -0.0301 -0.0253 -0.0245 -0.0197 -0.0198
ECU -0.0264 -0.0005 -0.0053 -0.0057 -0.0076 -0.0083 -0.0107

Cross-Study Prediction

MEX 0.0005 -0.0088 -0.0046 -0.0039 -0.0013 0.0040 0.0036
MOR 0.0021 -0.0015 0.0005 0.0309 0.0306 0.0236 0.0154
IDN -0.0170 -0.0009 -0.0050 -0.0169 -0.0286 -0.0344 -0.0247
KEN -0.0522 -0.0540 -0.0470 -0.0376 -0.0273 -0.0199 -0.0191
ECU -0.0258 0.0023 -0.0062 -0.0081 0.0073 0.0033 0.0055

Table 4. Prediction of Conditional ATE τg(x) − τ(x) averaging across sites
for each of the five studies (Progresa, Tayssir, PKH, CT-OVC, BDH), using the
leading K IMSE optimal basis functions as predictors. “Actual” corresponds
to the empirical mean of τg(x)− τ(x).
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Figure 3. Estimated scores for leading K = 2 IMSE-optimal predictors of τg(x).

using only data from the substantially smaller control group, we should expect the resulting

estimates to be less precise than for predicting post-intervention average outcomes.

In all five RCTs, treatment was randomized at the cluster level, so we can’t directly assess

the performance of either type of predictor at that level, but we can still aggregate actual

and predicted effects at the level of the study. Here, average predictions based on the IMSE

optimal basis functions match the sign and approximate magnitudes of post-hoc realized

effects for all values of K, whereas at least 3 or 4 functional principal components appear

to be necessary to match at least some qualitative aspects of study-level averages. We also

report the estimated scores for predicting conditional ATEs plotted in Figure 4.3.

For any of these comparisons, it should also be noted that both types of predictions

are based on the unconfounded location assumption (Assumption 2.2), whereas realized

conditional effects also reflect systematic differences between studies that can’t be predicted

by extrapolating intra-study variation among sites. Most importantly, the five studies differ

in terms of the exact implementation of the incentive, and also country specific factors. Most

importantly, cash transfer for CT-OVC in Kenya and BDH in Ecuador were unconditional,

whereas transfers under Progresa, PKH, and Tayssir were conditioned on, or connected to,

the child’s enrollment in school. While cross-site average treatment effects for those two

studies were indeed substantially lower than the cross-study average (first column in Table

4.3), our method appears to replicate most of that difference for the Kenyan sites, whereas

it fails to reproduce the deviation from the cross-study average only for Ecuador.
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Cross-Site Prediction

Study actual K=1 K=2 K=3 K=4 K=5 K=6

MEX 0.0011 -0.0008 -0.0014 -0.0015 -0.0018 -0.0020 -0.0027
MOR 0.0029 0.0004 0.0153 0.0150 0.0157 0.0160 0.0164
IDN -0.0173 0.0003 -0.0002 -0.0160 -0.0169 -0.0167 -0.0245
KEN -0.0506 -0.0321 -0.0308 -0.0202 -0.0152 -0.0151 -0.0132
ECU -0.0264 0.0018 -0.0025 -0.0018 -0.0095 -0.0182 -0.0185

Cross-Study Prediction

MEX 0.0005 -0.0005 -0.0010 -0.0027 -0.0022 -0.0027 -0.0026
MOR 0.0021 -0.0003 -0.0073 -0.0288 0.0028 0.0034 0.0031
IDN -0.0170 -0.0001 0.0018 -0.0022 0.0072 0.0070 0.0075
KEN -0.0522 -0.0299 -0.0297 -0.0021 0.0031 0.0074 0.0052
ECU -0.0258 0.0047 -0.0005 0.0047 0.0073 -0.0039 -0.0038

Table 5. Prediction of Conditional ATE τg(x) − τ(x) averaging across sites
for each of the five studies (Progresa, Tayssir, PKH, CT-OVC, BDH), using the
leading K functional PC as predictors. “Actual” corresponds to the empirical
mean of τg(x)− τ(x).

5. Conclusion

We investigate how to exploit observed between-site variation within one or several studies

to predict outcomes using baseline data for new “target” sites. The premise of our approach

is that agent responses at the micro level follow some universal patterns across study pop-

ulations. These responses are generally confounded by site-specific factors of an unknown

structure, but cross-sectional patterns of attributes and outcome at baseline for each site

typically contain useful information regarding those environmental factors in a target site,

and may help identify “comparable” sites in the experimental sample. We chose to focus

on a nonparametric, linear version of the problem primarily for clarity and ease of imple-

mentation, and nonseparable or structural models with sufficiently flexible specifications of

site-specific heterogeneity may be another fruitful approach to this problem.

We give a finite-population formulation for the statistical problem of evaluating out of

sample forecast performance. We define the target for the transfer estimate as a pseudo-true

parameter which reflects the relevant information regarding likely outcomes at the target

site that may be learned from previously observed contexts. The corresponding prediction

problem is equivalent to functional regression, but given the limited number of sites can only

estimate heavily regularized version of the problem. We therefore choose a regularization
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approach that targets a small number of “most predictive” features of the distribution of

outcomes in the baseline. Those optimal predictors are solutions to a generalized eigenvalue

problem in terms of the covariance operators of µg and τg. The approach can be adapted

to sparsely or densely sampled sites, as well as randomization within or between clusters,

resulting in different convergence rates.

Appendix A. Asymptotic Theory

This section gives convergence rates for the estimated eigenfunctions ϕ̂k, ψ̂k and the resulting integrated

mean square error relative to the optimal benchmark IMSE∗
K . We consider rates as both G and ng ≡ n

grow to infinity, possibly at different rates. We first state results for the case of densely sampled clusters,

n→ ∞ based on local linear estimators for the mean and covariance functions. We then discuss estimation

using B-splines, and rates for the sparsely sampled case as well as site-based randomization.

A.1. Nonparametric Estimation of Covariance Functions. We first derive convergence rates for the

local linear estimator of the covariance function H(x1, x2; d1, d2). Following Hansen (2008), we assume the

following regarding the kernel function

Assumption A.1. (Kernel Function) The multivariate kernel function K : Rd → R satisfies (a) |K(u)| ≤
K̄ < ∞ and

∫
|K(u)|du ≤ µ < ∞. Furthermore, (b) K(u) is differentiable and there exist Λ1, L < ∞ and

ν > 1 such that ∥∇uK(u)∥ ≤ Λ1 min {1, ∥u∥−ν} for ∥u∥ > L. (c) The first two moments of the kernel satisfy

the conditions
∫
K(u)du = 1,

∫
uK(u)du = 0, and

∫
uu′K(u)du = Ω, a finite, positive definite matrix.

Parts (a) and (c) are fairly standard in the literature, the bound in part (b) is important for the uniformity

arguments. These assumptions are satisfied by commonly used kernel functions such as the Gaussian or

Epanechnikov kernel. Hansen (2008) and Graham, Niu, and Powell (2021) consider an alternative set of

conditions for kernel functions with bounded support that need not be differentiable, which could be used

to replace part (b).

We consider uniform convergence over a compact subset of the support of X, without loss of generality

[0, 1]d. We can now state our main result regarding the rate of consistency for the local linear estimator for

the conditional mean functions and their covariance kernel:

Theorem A.1. Suppose that Assumptions 2.1-2.4 and A.1 hold. Furthermore, the bandwidth h satisfies(
n

logn

)1/3
hd → ∞ and

(
logn
Gnhd

)1/2
→ 0. Then the local linear estimators for µ(x;d) and the covariance

operator Hd1d2(x1, x2) are consistent at the rate

sup
d,x1

|µ̂(x1, d)− µ(x1, d)| = Op (rGn)

sup
d1,d2,x1,x2

∣∣∣Ĥ(x1, x2; d1, d2)−H(x1, x2; d1, d2)
∣∣∣ = Op (rGn)

where rGn = 1
G + h2 +

(
logn
Gnhd

)1/2
, and the suprema are for x1, x2 ∈ [0, 1]d. The rate optimal bandwidth

minimizing the second term of either error is of the order h∗ = O

((
logn
Gn

) 1
4+d

)
, resulting in a rate 1

G +(
logn
Gn

) 2
4+d

.
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The proof uses uniform consistency results by Hansen (2008) and Graham, Niu, and Powell (2021) for

nonparametric regression using cross-sectional and dyadic data and is provided in the appendix. The conver-

gence rate consists of two separate contributions: the first component represents the error from estimating

moments from the G − 1 experimental clusters, which excludes the single target cluster. The rate for this

component is of the order Op(G
−1) rather than its square root, owing to the fact that the estimands are

the mean and covariance function for the sample of G sites, G − 1 out of which are used for estimation. If

instead the population of interest consisted of a greater number additional target clusters growing at least

at the order of G or an infinite meta-population, the rate on that leading term would instead be O(G−1/2).

The second component represents the sampling error in nonparametric estimation of conditional mean

functions in each cluster, where the optimal bandwidth sequence balances the respective rates for the smooth-

ing bias and sampling error. It is also instructive to compare the rate to that in Theorem 1 of Yao, Müller,

and Wang (2005a) who consider the case of sparse (finite-n) rather than dense samples from each site. For

one the effective dimension for nonparametric estimation of the covariance kernel is only d in our problem

rather than 2d, reflecting the fact that the contribution for each cluster is a U-statistic averaging over
(
n
2

)
terms, so that allowing n to grow results in a more favorable rate. A similar phenomenon was pointed out

for nonparametric regression with dyadic data in Graham, Niu, and Powell (2021).

A.2. Estimation of Basis Functions ϕk, ψk. We next consider convergence rates for the estimated eigen-

functions given a preliminary estimator for mean and covariance function for the conditional average treat-

ment effect function µg(x). We distinguish between settings where the optimal predictors ϕ∗k are well-defined

in the absence of regularization according to (3.4) and the general case in which we consider estimation of

ϕ∗ka for the regularized version of the problem (3.5), and ψ∗
ka given by Corollary 3.1.

We first state result in terms of a generic nonparametric estimator and its convergence rate, both under

the inner product norm ∥ · ∥ as well as the sup norm. Asymptotic rates based on the local linear estimator

are given further below.

Theorem A.2. Suppose the estimator Ĥ(x1, x2; d1, d2) is consistent with rate

sup
x1,x2,d1,d2

∣∣∣Ĥ(x1, x2; d1, d2)−H(x1, x2; d1, d2)
∣∣∣ = Op(rGn).

Then the estimators for the generalized eigenvalue problem (3.5) with regularization parameter a > 0 are

consistent at respective rates |λ̂k − λka| = Op

(
a−3/2rGn

)
, ∥ψ̂k − ψka∥ = Op

(
a−3/2rGn

)
, ∥ϕ̂k − ϕka∥ =

Op

(
a−3/2rGn

)
for each k = 1, . . . ,K. Furthermore, supx |ψ̂k(x)−ψka(x)| = Op(a

−3/2rGn) and supx |ϕ̂k(x)−
ϕka(x)| = Op(a

−3/2rGn) for each k = 1, . . . ,K.

The proof has a similar overall structure as that for results for functional principal components in Gobet,

Hoffmann, and Reiß (2004) and Yao, Müller, and Wang (2005a) (Proposition 4.2 and Theorem 2, respec-

tively), but requires some major adjustments. For the problem considered here, estimation of the operator

itself requires regularization, and furthermore the rank of all covariance operators is less than or equal to G,

treating the population of sites as fixed. We also allow the dimension of x to be greater than one and some

of the relevant eigenvalues need not be unique. While each of these adjustments is incremental and leaves

the general structure of the argument unchanged, we provide a self-contained proof in Appendix C below.

For the local linear estimator we can immediately obtain the following from Theorems A.1 and A.2:

Corollary A.1. For each k = 1, . . . ,K, let ψ̂k, ϕ̂k and ν̂k, λ̂k the estimators for eigenfunctions and eigen-

values using local linear estimators for µ(x) and Hd1d2
(x1, x2) with a bandwidth sequence h satisfying
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(
n

logn

)1/3
hd → ∞ and

(
logn
nhd

)1/2
→ 0. Under the assumptions for Theorem A.1, the conclusions of Theorem

A.2 hold for these estimators with the rate

rGn =
1

G
+ h2 +

(
log n

Gnhd

)1/2

Similarly, we can give the asymptotic rate for estimating the best linear predictor for the conditional

average treatment effect as defined in (3.2), where the rates of individual components follow immediately

from Theorem A.2.

Corollary A.2. Suppose the estimators µ̂(x; d) and Ĥd1d2(x1, x2) are consistent with rates supx1,d1
|µ̂(x1; d1)− µ(x1; d1)| =

Op(rGn) and supx1,x2,d1,d2

∣∣∣Ĥ(x1, x2; d1, d2)−H(x1, x2; d1, d2)
∣∣∣ = Op(rGn). Then for any fixed value of K,

the estimator τ̂Kg (x) based on (3.2) is consistent at the rate

sup
x∈X

∣∣τ̂g(x)− τKg (x)
∣∣ = Op

(
a−3/2rGn

)
At present we do not derive the asymptotic distribution for functionals of τ̂g(x). Asymptotic normality

of certain functionals of estimated eigenfunctions were derived in a different site by Christensen (2014).

Whether his strategy of proof can be adapted to derive distributional results for our setup is left for future

research.

We finally consider the case in which condition (3.7) holds and the solution to the unregularized problem

(3.4) is well defined. It can be seen from the proof of Theorem A.2 that regularization is generally still

necessary for estimation of the optimal functions ϕ∗1, . . . , ϕ
∗
K , but we can give a rate with which the IMSE

given the estimated functions converges to the lower bound in Lemma 3.3. Specifically, for any K square-

integrable functions ϕ1, . . . , ϕK , we define

IMSEK [ϕ1, . . . , ϕK ] :=

∫
min

B∈ĤK×L2(X )
E
[
(τg(x)−BPKµg(x))

2
]
f0(x)dx

where PK : L2(X ) → HK denotes the operator associated with orthogonal projection onto the closed linear

subspace HK := span (ϕ1, . . . , ϕK). Combining the rate results in Proposition 3.1 and Theorem A.2, we can

then give the following

Corollary A.3. Suppose that the Assumptions of Theorems A.1 and A.2 hold along with Condition (3.7).

For the local linear estimator with bandwidth h∗ = O

((
logn
Gn

) 1
4+d

)
and regularization parameter a > 0,

|IMSEK [ϕ̂1, . . . , ϕ̂K ]− IMSE∗
K | = OP

(
a+ a−3/2rGn

)
where rGn := 1

G +
(

logn
Gn

) 2
4+d

.

The rate for the IMSE in a and rGn suggests that this upper bound is minimized at a rate a = r
2/5
nG for the

regularization parameter. For methods of functional data analysis, it is common to determine regularization

parameters by cross-validation (see e.g.

He, Müller, Wang, and Yang (2010)), however we do not formally establish consistency of such a method.

A.3. Sparsely Sampled Clusters. If the number of observed units in each cluster ng is bounded or grows

at a slow rate relative to G, we have to adapt the strategy for estimating the mean and covariance functions

of µg(x; d) along the lines proposed by Yao, Müller, and Wang (2005a) for the problem of functional principal

components.
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A challenge relative to the densely sampled case is that the site-specific distribution of attributes fg(x) can

no longer be estimated consistently. Instead, we assume that the cluster-specific distribution of attributes

Xgi is either known or can be estimated parametrically with sufficient precision from the ng observations in

each cluster, so that individual observations can be reweighted accordingly to match the target distribution

f0(x) in each cluster.6

Specifically, let

µ̂(x; d) := argb0 min
b0,b1

G∑
g=1

ng∑
i=1

wgi(x; d, hµ)(Ygi − b0 − b1(x−Xgi))
2

for µ(x; d). As before, K(u) is a kernel function satisfying Assumption A.1, and the bandwidth h > 0 is

chosen according to sample size G,ng, the dimension of Xgi, and assumed smoothness of the estimands. The

weights wgi(x; d, h) := 1l{Dgi = d} f0(x)
fg(x)

K
(

Xgi−x
h

)
are assumed to be known. We also let

Ĥ(x1, x2; d1, d2) := arg
b
(g)
0

min
b
(g)
0 ,b

(g)
11 ,b

(g)
12

G∑
g=1

∑
j ̸=i

Hgij(x1, x2,b)wgi(x1; d, hH)wgj(x2; d, hH)

for an appropriately chosen bandwidth hH , whereHgij(x1, x2,b) :=
(
YgiYgj − b

(g)
0 − b

(g)
11 (Xgi − x1)− b

(g)
12 (Xgj − x2)

)2
Then using arguments parallel to the proof of Theorem A.1, the convergence rates of the local linear

estimators for µ(x;d) and the covariance operator Hd1d2(x1, x2) are given by

sup
d,x1

|µ̂(x1, d)− µ(x1, d)| = Op (rGµ)

sup
d1,d2,x1,x2

∣∣∣Ĥ(x1, x2; d1, d2)−H(x1, x2; d1, d2)
∣∣∣ = Op (rGH)

where the sup is taken over x1, x2 ∈ [0, 1]d and rGµ = h2µ+
(

logG
Ghd

µ

)1/2
and rGH = h2H +

(
logG
Gh2d

H

)1/2
. A similar

result was proven under slightly different conditions in Theorem 1 by Yao, Müller, and Wang (2005a).

Comparing these rates to those for the densely sampled case in Theorem A.1, the contributions of order
1
G are now unambiguously dominated by the remaining errors. Furthermore, in the rate for the covariance

kernel, the bandwidth hH now appears at the power h2dH (compared to hdH in the dense case). This is a

consequence of the fact that the number of unit pairs in each cluster no longer increases to infinity under

the sparsely sampled case. As a result, the optimal bandwidths for estimating µ(x; d) and H(x1, x2; d1, d2)

are generally at different rates and should therefore also be chosen separately in this case. As in the densely

sampled case, we can then use Theorem A.2 to determine rates for eigenfunctions and eigenvalues. Unbiased

estimators for the scores mgk, tgk are also available, however consistent estimation requires ng growing large

for the sites of interest.

A.4. Cluster-Based Randomization. We can also adapt the approach to the scenario in which treatment

assignment is randomized at the cluster level, but a baseline survey of pre-intervention outcomes is available.

Specifically, we let Dgi ≡ Dg be the assigned treatment for all units in cluster g, and Ygit(d) denote the

potential value for the policy variable Dgit = d unit i at site g in period t = 0, 1. We then consider the

6For the combined studies of conditional cash transfers in the empirical application, this is unproblematic
for some of the demographic variables, including the child’s age and gender. On the other hand, the means
and variances of log per capita household expenditure vary between sites, but separate histograms for each
study suggest that the log-normal distribution provides a plausible parametric approximation to the marginal
distribution.
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problem of predicting post-intervention conditional average treatment effects

τg1(x) := E [Ygi1(1)− Ygi1(0)|Xgi = x]

based on µg0(x) := E [Ygi0(0)|Xgi = x], where the covariatesXgi are also assumed to be measured at baseline.

With cluster-level randomization, we only observe potential values Ygi1(1) for all units in a cluster g

assigned to treatment, Dg = 1, or only Ygi1(0) for all units in a control cluster with Dg = 0. However under

ignorable assignment,

Dg⊥⊥Ygi0(0), Ygi1(0), Ygi1(1)|Xgi

and independent assignment across clusters, we can estimate the covariance function

Hµτ (x1, x2) := Cov(µg0(x1), τg(x2)) consistently as G→ ∞ via

Ĥµτ (x1, x2) := Ĥ(x1, x2; 0, 1)− Ĥ(x1, x2; 0, 0).

where Ĥ(x1, x2; 0, 1) and Ĥ(x1, x2; 0, 0) are nonparametric estimators for Cov(µg0(x1), µg1(x2; 1)) and

Cov(µg0(x1), µg1(x2; 0)), respectively, obtained separately from the treatment and control clusters.

With minor modifications of the proofs of Theorem A.1 and Theorem 1 in Yao, Müller, and Wang (2005a)

we can then obtain the convergence rates rGn = 1√
G
+ δ−1

Gn

(
h2 +

(
logn
Gnhd

)1/2)
for the densely sampled case

where ng ≡ n → ∞ for each cluster. For the sparsely sampled case where ng remains fixed, we obtain

rGµ = h2µ +
(

logG
Ghd

µ

)1/2
and rGH = h2H +

(
logG
Gh2d

H

)1/2
, so that the rates coincide with the case of within

cluster-randomization. The eigenfunctions in (3.5) can then be obtained from Theorem A.2 as before.

A.5. Estimation using B-Splines. This section contains additional results for nonparametric estimation

of the mean and covariance functions using B-splines as a convenient alternative to kernel estimation. As

before, we consider estimation at covariate values on a compact subset X ∗ of Rd, without loss of generality,

X ∗ ≡ [0, 1]d. We first define the B-spline basis functions, following the exposition in Chen and Christensen

(2015).

We first partition the support of the d′th dimension of the continuously distributed components of Xgi

with Md knots 0 ≡ t0d′ < ... < tMd′d
′ ≡ 1 for each d′ = 1, . . . , d. For the B-spline of order r > 1 we also

set t−(r−1)d′ = t−(r−2)d′ = · · · ≡ t0d′ , and for notational simplicity we only consider the case Md′ ≡ M

and tjd′ ≡ tj for all d′ and assume that the mesh ratios for successive spline bases, max0≤j≤M{tj+1 −
tj}/min0≤j≤M{tj+1 − tj} are uniformly bounded for all M = 1, 2, . . . .

The univariate basis functions are then defined according to

Nj,1(x) := 1l{tj ≤ x < tj+1}

Nj,r′(x) :=
x− tj

tj+r′−1 − tj
Nj,r′−1(x) +

tj+1 − x

tj+r′ − tj+1
Nj+1,r′−1(x)

recursively for r′ = 1, . . . , r and all j and we set 1
0 ≡ 0. The resulting function Nj,r(x) are piecewise

polynomial of order r and continuously differentiable up to order r − 1. After rescaling we denote the basis

functions for a particular choice of r and M with

bMj (x) :=
√
M + rNj,r(x)

and denote

bM (x; d1) := (b−(r−1)(x)1l{d1 = 0}, . . . , bM (x)1l{d1 = 0}, b−(r−1)(x)1l{d1 = 1}, . . . , bM (x)1l{d1 = 1}).

where the argument d1 ∈ {0, 1} corresponds to the treatment indicator.
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Noting that we chose the same univariate basis for each dimension, we then define the multivariate spline

bases

bM,1(x1; d1) :=

d⊗
d′=1

bM (x1d′ ; d1)

and

bM, 2(x1, x2; d1, d2) := bM (x1; d1)⊗ bM (x2; d2)

by forming the tensor product of the univariate spline bases, so the resulting dimension of bM,1 is (M + r)d.

As for any linear sieve, it is also straightforward to impose additive separability among dimensions of Xgi by

omitting all interaction terms among the corresponding univariate basis functions from this tensor product.

Given the sample Xg1, . . . , Xgng
for the gth site, we construct the matrices

Bg1 := (bM
1 (Xg1;Dg1), . . . ,b

M
1 (Xgng ;Dgng ))

and

Bg2 := (bM,2
2 (Xg1, Xg2;Dg1, Dg2), . . . ,b

M,2
2 (Xgng−1, Xgng ;Dgng−1, Dgng )).

We can then define the site-specific estimates

µ̂g(x1; d1) := bM,1
w (x1; d1)

(
B′

g1Bg1

)−1
B′

g1Yg

=:
1

ng

n∑
i=1

mgi(x1; d1)

Ĥg(x1, x2; d1, d2) := bM,2
w (x1, x2; d1, d2)

(
B′

g2Bg2

)−1
B′

g2((Yg − µg)⊗ (Yg − µg))

=:

(
ng
2

)−1 ∑
1≤i<j≤ng

Hngij(x1, x2; d1, d2)

The resulting B-spline estimators for the mean and covariance functions are then given by

µ̂(x1; d1) ≡
1

G

G∑
g=1

µ̂g(x1; d1)

and

Ĥ(x1, x2; d1, d2) ≡
1

G

G∑
g=1

Ĥg(x1, x2; d1, d2).

We can give the following convergence rates for B-spline estimators using this construction:

Proposition A.1. Suppose that Assumptions 2.1-2.4 hold, and that the numberM of knots satisfiesM → ∞
and Md logn

n → 0. Then the B-spline estimators for µ(x;d) and the covariance operator Hd1d2
(x1, x2) are

consistent at the rate

sup
d,x1

|µ̂(x1, d)− µ(x1, d)| = Op (rGn)

sup
d1,d2,x1,x2

∣∣∣Ĥ(x1, x2; d1, d2)−H(x1, x2; d1, d2)
∣∣∣ = Op (rGn)

where rGn = 1
G + (M/cn)

−2
+
(

Md logn
Gn

)1/2
, and the suprema are for x1, x2 ∈ [0, 1]d. The rate optimal

number of knots minimizing the second term of either error is of the order M∗ = O

((
Gn
logn

) 1
4+d

)
, resulting

in a rate 1
G +

(
logn
Gn

) 2
4+d

.
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This result takes the role of Theorem A.1, and convergence rates for estimation of eigenfunctions and the

transfer estimator follow by plugging that rate into Theorem A.2 and Corollaries A.2 and A.3. The proof

follows closely that of Theorem 2.1 in Chen and Christensen (2015), with only minor modifications to allow

for expanding support and two-way averages in estimation of the covariance function. We therefore only

provide a brief outline of the formal argument below.

Appendix B. Proofs for Section 3

Before proving the main result, we give a characterization of the integrated mean square error of projection

into closed linear subspaces of L2(X ). Specifically, we consider the mean square error of projection of τg∗

with respect to a general linear transformation µg∗ .

We consider the problem where the domain of the operator B is restricted to H, a closed linear subspace

H of N⊥), which was defined as the orthogonal complement of the null space of Tµµ, N := ker(Tµµ). It is

known that for any linear operator T : L2(X ) → L2(X ), im(T ) and ker(T ) are linear subspaces of L2(X ), and

that ker(T ) is closed if the linear operator T is bounded. Since H is the orthogonal complement of the null

space ker(Tµµ), it is a closed linear subspace of L2(X ), so this allows for the choice H ≡ N⊥. We also let the

operator P : L2(X ) → H to denote the orthogonal projection on H. Since H is closed by assumption, that

projection is well-defined by the Classical Projection Theorem (Theorem 2 on p.51 in Luenberger (1969)).

We can then characterize the integrated mean square error of projection as follows:

Theorem B.1. (Integrated MSE of Projection) There exists a best linear predictor for τg∗ of the form

(2.5) based on µg∗ that is of the form

τ∗g∗(x) :=

∫
µg∗(s)β(s, x)f0(s)ds

If furthermore the operator PTµµA
∗P : H → H possesses an inverse, the minimized mean square error of

prediction satisfies∫
E
[
(τg∗(x)− τ∗g∗(x))2

]
f0(x)dx = E∥τg∗∥2 − tr

(
T ∗
µτP (PTµµP )

−1PTµτ
)

(B.1)

For the definition of the inverse in (B.1), note that the operator and therefore its inverse are understood

to be restricted to the subspace H.

Proof: We first consider the case P = Id. The set M of linear predictors of the form (2.5) can

be identified with the Hilbert space L2(X × X ) endowed with the scalar product ⟨T1, T2⟩ = tr(T ∗
1 T2) =∫ ∫

g(x2, x1)h(x1, x2)f0(x1)f0(x2)dx1dx2 and the trace norm induced by that scalar product.

To obtain a representation of the minimized projection error, we derive a projection analog for the re-

gression model developed in He, Müller, and Wang (2000). We first show that M is a closed linear subspace

of L2(X ): Consider a random element ϕg∗ ∈ L2(X ) and define Hϕg∗ ,µg∗ (x1, x2) := E[ϕg∗(x1)µg∗(x2; 0)] and

let Tϕµ denote the corresponding Hilbert-Schmidt integral operator. We then have that ϕg∗ is orthogonal to

Bµg∗ if

0 = E⟨ϕg∗ , Bµg∗⟩

= E
[∫

ϕg∗(x1)µg∗(x2)β(x1, x2)f0(x1)f0(x2)dx1dx2

]
=

∫
E [ϕg∗(x1)µg∗(x2)]β(x1, x2)f0(x1)f0(x2)dx1dx2

=

∫
Hϕg∗ ,µg∗ (x1, x2)β(x1, x2)f0(x1)f0(s)dx1dx2 = tr (TϕµB)
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Since B may in particular include the identity, ϕg∗ is orthogonal to M for any B ∈ L2(X × X ) if and only

if Hϕg∗ ,µg∗ (x1, x2) ≡ 0. Since M is the orthogonal complement of the set of all such vectors ϕg∗ ∈ L2(X ),

it is in particular a closed linear subspace of L2(X ).

By the classical projection theorem (Theorem 2 in Luenberger (1969), p.51), it then follows that there

exists a unique minimizer τ∗0 ∈ M. Furthermore, that minimizer also satisfies the orthogonality condition

⟨m, τg∗ − τ∗0 ⟩ for any m ∈ M. It follows that

min
B∈L2(X×X )

E ∥τg∗ −Bµg∗∥2 = E∥τg∗∥2 − 2E⟨τg∗ , τ∗0 ⟩+ E∥τ∗0 ∥2

= E∥τg∗∥2 − 2(E∥τ∗g∗∥2 + E⟨τg∗ − τ∗g∗ , τ∗g∗⟩) + E∥τ∗g∗∥2

= E ∥τg∗∥2 − E
∥∥τ∗g∗

∥∥2 (B.2)

We next characterize the optimal solution τ∗g∗ in terms of the operators Tµµ and Tµτ . Suppose that B0

with kernel β∗
0(x1, x2) is such that τ∗g∗ = B0µg. Then, we have for any h ∈ L2(X ) that

(Tµτh)(x1) =

∫
E[µg∗(x1)τg∗(x2)]h(x2)f0(x2)dx2

=

∫
E [µg∗(x1) [(B0µg∗)(x2) + {τg∗(x2)− (B0µ)(x2)}]]h(x2)f0(x2)dx2

=

∫
E[µg∗(x1)µg∗(x2)]β

∗
0(x2, x3)f0(x2)dx2h(x3)f0(x3)dx3

+

∫
E [µg∗(x1) {τg(x3)− (B0µ)(x3)}]h(x3)f0(x3)dx3

= (TµµB0h) (x1) + 0 (B.3)

where the last equality follows from orthogonality of the projection error, noting that Bµg∗ := Idµg∗ is in

M.

Now suppose that the minimum is attained at both B0µg∗ ∈ M and B1µg∗ ∈ M. Then by orthogonality

of the projection error,

E∥τg∗ −B1µg∗∥2 = E∥τg∗ −B0µg∗ + (B0 −B1)µg∗∥2

= E∥τg∗ −B0µg∗∥2 + 2E⟨τg∗ −B0µg∗ , (B0 −B1)µg∗⟩+ E∥(B0 −B1)µg∗∥2

= E∥τg∗ −B0µg∗∥2 + E∥(B0 −B1)µg∗∥2

Hence the minimum can be attained at both B1 and B0 iff

0 = E∥(B0 −B1)µg∗∥2

=

∫
(β0(x1, x2)− β1(x1, x2))E[µg∗(x1)µg∗(x3)](β0(x3, x2)− β1(x3, x2))f0(x1)f0(x3)f0(x2)dx1dx2dx3

= tr ((B0 −B1)Tµµ(B
∗
0 −B∗

1))

or equivalently iff (B0 − B1) ∈ ker(Tµµ). In particular, the orthogonal projection B∗
0 of any solution B ∈

L2(X ×X ) onto the closed subspace N⊥×L2(X ) exists and is a solution to the same minimization problem.

So without loss of generality we can restrict our attention to the minimization problem

min
B∈N⊥×L2(X )

E ∥τg∗ −Bµg∗∥ (B.4)

Noticing that restricted to its range N⊥, the operator Tµµ possesses an inverse, we can solve the normal

equations (B.3) to obtain

B∗
0h = T ∗

µτT
−1
µµ h
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for any h ∈ N⊥. Substituting this expression into (B.2), we therefore obtain

min
B∈L2(X×X )

E ∥τg∗ −Bµg∗∥2 = E∥τg∗∥2 − tr
(
T ∗
µτT

−1
µµ Tµτ

)
establishing the claim for P1 = Id. For the general case, notice that H was a closed linear subspace of N⊥

and A was assumed to be invertible on H, so that the argument continues to apply when restricted to the

subspace of linear predictors based on Pµg∗ □

B.1. Proof of Lemma 3.1. We use the formula from (B.1) with H̃K := span
(
ϕ̃1, . . . , ϕ̃K

)
as the linear

subspace of L1(X ) spanned by the K orthonormal functions ϕ̃1(x), . . . , ϕ̃K(x).

We first consider the operator S̃K := P̃KTµµP̃K . Since H̃K is finite-dimensional, we can identify S̃K with

a K ×K matrix of coefficients with respect to the basis ϕ̃1, . . . , ϕ̃K of H̃K ,

S̃K :=
(
⟨ϕ̃k, Tµµϕ̃l⟩

)
k,l

Noting that Tµµ is injective on N⊥ we will impose the normalization

⟨ϕ̃k, Tµµϕ̃l⟩ = δk,l (B.5)

so that S̃K = IK , the K-dimensional identity matrix.

Furthermore, evaluating the trace using an arbitrarily chosen orthonormal system for L2(X ), we can also

verify that

tr(T ∗
µτ P̃K P̃KTµτ ) =

∫ K∑
k=1

(∫
Hµτ (x1, x2)Hµτ (x3, x1)ϕ̃k(x2)ϕ̃k(x3)f0(x2)f0(x3)dx2dx3

)
f0(x1)dx1

=

K∑
k=1

⟨ϕ̃k, TµτT ∗
µτ ϕ̃k⟩

Hence, using the formula from Theorem B.1,∫
E
[
(τg∗(x)− τ∗g∗(x))2

]
f0(x)dx =

K∑
k=1

⟨ϕ̃k, TµτT ∗
µτ ϕ̃k⟩

for any collection of functions ϕ̃1, . . . , ϕ̃K satisfying the constraint (B.5).

Hence, the mean-square error optimal basis functions are determined by the quadratic program

inf
ϕ1,...,ϕK

K∑
k=1

⟨ϕk, TµτT ∗
µτϕk⟩ s.t. ⟨ϕk, Tµµϕl⟩ = δkl (B.6)

which establishes the claim □

B.2. Proof of Theorem 3.1. From the definition of IMSE∗
K , there exist ϕ̃1ε, . . . , ϕ̃Kε ∈ L2(X ), such that

⟨ϕ̃kε, Tµµϕlε⟩ = δkl and

IMSEK

[
ϕ̃1ε, . . . , ϕ̃Kε

]
≤ IMSE∗

K +
ε

2

Since ϕ̃1ε, . . . , ϕ̃Kε ∈ L2(X ), we can find Lε <∞ such that ∥ϕ̃kε∥ ≤ Lε.

TheseK functions do not necessarily satisfy the regularized orthogonality constraint, rather we find “close”

alternative functions ϕ̄1ε, . . . , ϕ̄Kε such that ⟨ϕ̌kε, Tµµaϕ̌lε⟩ = δkl. Since the operator Tµµa is Hermitian and

positive, we can define a scalar product ⟨u, v⟩a := ⟨u, Tµµav⟩. We first obtain K functions ϕ̌1ε, . . . , ϕ̌Kε that

satisfy the orthogonality constraints ⟨ϕ̌kε, ϕ̌lε⟩ = 0 for all k ̸= l. To that end, we use the Gram-Schmidt
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procedure with respect to the scalar product ⟨·, ·⟩a, where ϕ̌1ε := ϕ̃1ε, and

ϕ̌kε := ϕ̃kε −
k−1∑
l=1

⟨ϕ̃kε, ϕ̌lε⟩a
⟨ϕ̌lε, ϕ̌lε⟩a

ϕ̌lε

Defining ckk = 1 and clk := − ⟨ϕ̃kε,ϕ̌lε⟩a
⟨ϕ̌lε,ϕ̌lε⟩a

for k ̸= l, we can confirm by induction that

ϕ̌kε = ϕ̌kε −
k−1∑
l=1

dlkϕ̃lε

where dlk =
∑

J (l,k)

∏|k−l|
s=2 cjsjs−1

, and J (l, k) is the set of all (j1, . . . , js) such that s ≤ |k − l| and j1 <

j2 · · · < js. For notational convenience, we also define dkk = 1.

We now recursively bound ckl and dkl for k ̸= l. Due to the constraint on ϕ̃1ε, . . . , ϕ̃Kε it follows for any

k ̸= l,

⟨ϕ̃kε, ϕ̃lε⟩a = ⟨ϕ̃kε, Tµµϕ̃lε⟩+ a⟨ϕ̃kε, ϕ̃lε⟩ = a⟨ϕ̃kε, ϕ̃lε⟩

Hence we can calculate the scalar products

⟨ϕ̃kε, ϕ̌lε⟩a = a

l∑
j=1

dlj⟨ϕ̃kε, ϕ̃jε⟩

⟨ϕ̌kε, ϕ̌kε⟩a = 1 +

k−1∑
l=1

d2kl + a

k−1∑
j=1

k−1∑
l=1

dkjdkl⟨ϕ̃jε, ϕ̃lε⟩

for any k ̸= l. In particular, denoting d̄k := max{|dkl| : k > l}, we can bound∣∣∣⟨ϕ̃kε, ϕ̌lε⟩a∣∣∣ ≤ a(1 + (k − 1)d̄k)L
2
ε∣∣∣∣∣⟨ϕ̌kε, ϕ̌kε⟩a − 1−

k−1∑
l=1

d2kl

∣∣∣∣∣ ≤ aL2
ε(1 + (k − 1)2d̄2k)

Hence for a satisfying 2a2 ≤ (L2
εK

2)−1, we can bound d̄2 := |c21| ≤ 2aL2
ε. It then follows by induction over

k that |ckl| ≤ 4aL2
ε and

d̄k ≤ 8aL2
ε

for each k = 1, . . . ,K.

To obtain functions ϕ̄1ε, . . . , ϕ̄Kε with the desired property, we furthermore need to impose the scale

normalization ⟨ϕ̄kε, ϕ̄kε⟩a = 1. Since ϕ̌kε =
∑k

j=1 dkj ϕ̃kε,

⟨ϕ̌kε, ϕ̌kε⟩a = ⟨
k∑

j=1

ϕ̃jε, Tµµ⟨ϕ̌kε, ϕ̌kε⟩ϕ̃jε⟩+ a⟨ϕ̌kε, ϕ̌kε⟩

Since dkk = 1, we can then bound

|⟨ϕ̌kε, ϕ̌kε⟩a − 1| ≤ Kd̄2k + aL2
ε ≤ (K + 8)aL2

ε

We can therefore form

ϕ̄k := (⟨ϕ̌kε, ϕ̌kε⟩a)−1/2ϕ̌kε

By construction, ϕ̄1ε, . . . , ϕ̄Kε satisfy the constraints ⟨ϕ̄kε, ϕ̄lε⟩a = δkl and, using standard bounding argu-

ments

∥ϕ̄kε − ϕ̃kε∥ ≤ 10KaL3
ε

for any sufficiently small value of a > 0.
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It remains to be shown by a continuity argument that the IMSE achieved by ϕ̄1ε, . . . , ϕ̄Kε is greater than

IMSE∗
K + ε for a sufficiently close to zero. Using the formula from (B.1), we can write the IMSE for a given

set of basis functions as

IMSEK [ϕ1, . . . , ϕK ] = tr(C−1
K AK)

where CK and AK can be identified with K ×K matrices AK = (Akl) and CK = (Ckl), and

Ckl := ⟨ϕk, Tµµϕl⟩

and

Akl := ⟨ϕk, TµτT ∗
µτϕl⟩

By assumption, for the basis functions ϕ̃1ε, . . . , ϕ̃Kε we have Ckl = δkl so that the corresponding matrix is

the K-dimensional identity matrix. Furthermore, the operators Tµµ and TµτT
∗
µτ are compact with largest

eigenvalue equal to ν1 <∞ and λ1 <∞, respectively. Since ∥ϕ̄kε − ϕ̃kε∥ ≤ aB9Kε
3, there exists a constant

κε <∞ such that

|IMSEK [ϕ̄1ε, . . . , ϕ̄Kε]− IMSEK [ϕ̃1ε, . . . , ϕ̃Kε]| ≤ κεa (B.7)

for a sufficiently small, which establishes the desired conclusion □

We also note that the convergence rate for |IMSEK(a)− IMSE∗
K | as a function of a generally depends

on the eigenvalues of Tµµ and Tµτ , where Lε in the preceding proof may diverge as ε → 0. We leave this

question for future research.

Proof of Proposition 3.1. Since Tµµ is injective on ker(Tµµ)
⊥, any function ϕ∗k solving the generalized

eigenvalue problem (3.4) at eigenvalue λk can be equivalently characterized by ϕ∗k := T
−1/2
µµ χ∗

k, where χ
∗
k is

an eigenfunction

T−1/2
µµ TµτT

∗
µτT

−1/2
µµ χ∗

k = λkχ
∗
k

at the same eigenvalue λk. In what follows we also write S := T
−1/2
µµ TµτT

∗
µτT

−1/2
µµ . Without loss of generality

we also assume that eigenvalues are ordered according to λ1 ≥ λ2 ≥ . . . , and λK > 0.

We next argue that under the condition (3.7), S is compact: it follows immediately from the Karhunen-

Loève expansion (3.6) that we can write

(Tµµh)(x) =

∞∑
k=1

E[α2
g∗k]⟨ξk, h⟩ξk(x)

(Tµτh)(x) =

∞∑
k=1

∞∑
l=1

E[αg∗kβg∗l]⟨ζl, h⟩ξk(x),

with the analogous expression for the adjoint T ∗
µτ .

Since ξ1, ξ2, . . . is a basis of ker(Tµµ)
⊥, we can therefore evaluate the trace of S in terms of that basis to

obtain

tr(S) =

∞∑
k=1

∞∑
l=1

E[αg∗kβg∗l]
2

E[α2
g∗k]

which is finite by (3.7). In particular, the sequence of compact operators SK defined as the analog of S

after truncating the respective Karhunen-Loève expansions for µg∗ and τg∗ after the K leading principal

components converges to S under the trace norm, so that S is also compact. Since S is self-adjoint and

nonnegative and therefore has a discrete spectrum of nonnegative eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 with

associated eigenfunctions χ∗
1, χ

∗
2, · · · ∈ L2(X ).
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It remains to be shown that the norm of ϕ∗k := T
−1/2
µµ χ∗

k is also bounded. Since χ∗
k is an eigenfunction of

S at eigenvalue λk > 0, we can write

ϕ∗k := λ−1
k T−1/2

µµ Sχ∗
k.

Hence, the norm of ϕ∗k is given by

∥ϕ∗k∥2 = λ−2
k ⟨T−1/2

µµ Sχ∗
k, T

−1/2
µµ Sχ∗

k⟩ = λ−2
k ⟨χ∗

k, ST
−1
µµ Sχ

∗
k⟩

noting that S and Tµµ are self-adjoint. Moreover, expressing Tµµ and Tµτ in terms of the Karhunen-Loève

representations (3.6), we can use the Cauchy-Schwarz inequality to bound

tr(ST−1
µµ S) ≤

( ∞∑
k=1

∞∑
l=1

E[αg∗kβg∗l]
2

E[α2
g∗k]

3/2

)2

which is finite under (3.7). Noting that SrT−1
µµ S

r is self-adjoint, this establishes that the operator is also

trace-class and therefore compact with operator norm bounded by tr(ST−1
µµ S).

In particular, since λ1 ≥ . . . λK > 0 by assumption, we can bound

max
k=1,...,K

∥ϕ∗k∥2 ≤ |λK |−2tr(ST−1
µµ S)max

k
∥χ∗

k∥2

where ∥χ∗
k∥ is finite for each k since χ∗

k ∈ L2(X ).

We can then apply the argument from the proof of Theorem 3.1 where we choose ϕ̃kε(x) ≡ ϕ∗k(x), the

solutions to (3.4) corresponding to the kth largest eigenvalue for k = 1, . . . ,K. Since those functions are

chosen independently of ε, the bound Bε is fixed at some finite value B0, so that the claim follows immediately

from (B.7), noting that κε ≡ κ0 is constant. □

B.3. Proof of Corollary 3.1. By construction, the optimal basis for the regularized problem 3.5 satisfies

the constraint ⟨ϕ∗k, (Tµµ + aId)ϕ∗l ⟩ = δkl. Hence, we can rewrite the K ×K matrix P ∗
KTµµP

∗
K = IK − aP ∗

K ,

and use the Neumann series to obtain its inverse, (P ∗
KTµµP

∗
K)−1 = IK + a

1−aP
∗
K . From the proof of Theorem

B.1, the projection of τg∗ onto the optimal basis is therefore given by

τ∗g∗K(x) :=

K∑
k=1

⟨µg∗ , ϕ∗k⟩
1 + a

1− a

(
T ∗
µτϕ

∗
k

)
(x)

which establishes the formula given in the Corollary □

Appendix C. Proofs for Section A

C.1. Proof of Theorem A.1. We use the main result in Graham, Niu, and Powell (2021) which adapts

Theorems 2 and 10 in Hansen (2008) to nonparametric regression for dyadic data, rather than conventional

sample averages. We first apply their results separately for each clusters g = 1, . . . , G, where we strengthen

the rate conditions to ensure uniformity across clusters. We then aggregate the cluster-specific estimates to

obtain the first and second conditional moments across clusters.

C.1.1. Convergence Rate for Kernel Averages. The local linear estimator can be expressed in terms of

weighted averages of products of Xgi, dgi, Ygi. For a general notation, let Wsgi = (a0s+a1sXgi)(b0s+ b1sYgi)

be a function of Xgi, Ygi that is affine in Ygi given fixed coefficients a0s, b0s, a1s, b1s. We consider uniform
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convergence of conventional and dyadic kernel averages

Ψ̂g(x1; d1) :=
1

nhd

n∑
i=1

W1giK

(
x1 − xgi

h

)
1l{dgi = d1}

Ω̂g(x1, x2; d1, d2) :=

(
n

2

)−1

h−2d 1

2

∑
i̸=j

W1giW2gjK

(
x1 − xgi

h

)
K

(
x2 − xgj

h

)
1l{dgi = d1, dgj = d2}

for each g = 1, . . . , G such that Rg = 1.

Lemma C.1. Suppose that the bandwidth g satisfies
(

n
logn

)1/3
hd → ∞ and

(
logn
nhd

)1/2
. Under Assumptions

2.4 and A.1, the kernel averages Ψ̂g and Ω̂g converge uniformly to their respective expectations at the rate

max
g=1,...,G

Rg sup
x1∈[0,1]d

∣∣∣Ψ̂g(x1; d1)− E[Ψ̂g(x1; d1)]
∣∣∣ = OP

((
log n

nhd

)1/2
)

max
g=1,...,G

Rg sup
x1,x2∈[0,1]d

∣∣∣Ω̂g(x1, x2; d1, d2)− E[Ω̂g(x1, x2; d1, d2)]
∣∣∣ = OP

((
log n

nhd

)1/2
)

(C.1)

for any d1, d2 ∈ {0, 1}.

Proof: We prove this result using Theorem 3.2 in Graham, Niu, and Powell (2021). Note first that,

since Wgi are conditionally i.i.d., Assumption 2.4 implies Assumptions 3.1 and 3.3 (a) in Graham, Niu, and

Powell (2021) for Zgij :=WgiWgj . Also, Assumption A.1 subsumes Assumptions 3.2 and 3.3 (b) in Graham,

Niu, and Powell (2021). Moreover, for s ≥ 3, lengthy but elementary rate calculations confirm that any

bandwidth sequence with
(

n
logn

)1/3
hd → ∞ satisfies the additional bandwidth conditions required for their

theorem.

Their argument can then be adapted to achieve uniform convergence of Ψ̂gs(x1; d1) and Ω̂gs(x1, x2; d1, d2)

with respect to x1, x2 and g. To that end, the grid X ∗
n{wn1, . . . , wnLn

} is chosen in a way such that the set

[0, 1]d is covered by the collection of balls of radius anh. We then replace the approximating grid introduced

on p.19 of Graham, Niu, and Powell (2021) with X ∗
n × {1, . . . , G}, resulting in Ln := G

(
h−1

(
logn
nhd

)1/2)d

partition elements. We can therefore conclude that

max
g=1,...,G

Rg sup
x1,x2∈[0,1]d

∣∣∣Ω̂gs(x1, x2; d1, d2)− E[Ω̂g1(x1, x2; d1, d2)]
∣∣∣ = Op

(
log n

nhd

)1/2

(C.2)

for s = 1, 2. The claim regarding Ψ̂(x1; d1) is proven in an analogous manner using Theorem 2 in Hansen

(2008), whose conditions are subsumed under those for Theorem 3.2 in Graham, Niu, and Powell (2021) □

C.1.2. Proof of Theorem A.1. We now complete the proof of Theorem A.1. We consider the general case of

estimating the conditional expectation

Ψg(x; d) ≡ Ψg(x1, x2; d1, d2) := E [W1gi,W2gj |Xgi = x,Xgj = x2, Dgi = d1, Dgj = d2]

and Λ(x1, x2; d1, d2) :=
1
G

∑G
g=1 Λg(x1, x2; d1, d2). for generalW1gi,W2gj . The corresponding cluster-specific

local linear estimator

Ψ̂g(x1, x2; d1, d2) := arg
b
(g)
0

min
b
(g)
0 ,b

(g)
11 ,b

(g)
12

ng∑
i=1

∑
j ̸=i

Ψgij(x1, x2;b)wgi(x1; d1)wgj(x2; d2)
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where we denote Ψgij(x1, x2;b) :=
(
W1giW2gj − b

(g)
0 − b

(g)
11 (Xgi − x1)− b

(g)
12 (Xgj − x2)

)
, and as before,

wgi(x1; d1) := K
(

Xgi−x1

h

)
1l{dgi = d1}.

As in the proof of Theorem 10 in Hansen (2008), we can write each local linear estimator as

Λ̂g(x; d) =
m̂g + Ŝ′

gM̂
−1
g N̂g

f̂g − Ŝ′
gM̂

−1
g Ŝg

where for greater legibility, we write (x, d) := (x1, x2; d1, d2) and suppress dependence on d1, d2 wherever

possible, and terms on the right-hand side are defined as follows:

m̂g = m̂g(x; d) :=

(
n

2

)−1

h−2d 1

2

∑
i ̸=j

WgiWgjwgi(x1; d1)wgj(x2; d2)

f̂g = f̂g(x; d) :=

(
n

2

)−1

h−2d 1

2

∑
i ̸=j

wgi(x1; d1)wgj(x2; d2)

Ŝg = Ŝg(x; d) :=

(
n

2

)−1

h−2d 1

2

∑
i̸=j

(
x−Xgij

h

)
wgi(x1; d1)wgj(x2; d2)

M̂g = M̂g(x; d) :=

(
n

2

)−1

h−2d 1

2

∑
i̸=j

(
x−Xgij

h

)(
x−Xgij

h

)′

wgi(x1; d1)wgj(x2; d2)

N̂g = N̂g(x; d) :=

(
n

2

)−1

h−2d 1

2

∑
i ̸=j

(
x−Xgij

h

)
Wgijwgi(x1; d1)wgj(x2; d2)

Applying Lemma C.1 component by component, each of these terms converges uniformly to its expectation.

Specifically, denoting bn :=
(

logn
nhd

)1/2
, and Σ :=

∫
uu′K(u)du, standard calculations for conditional moment

estimation using local linear regression (see also the proofs of Theorems 8 and 10 in Hansen (2008)) then

yield

m̂g(x; d) = mg(x; d) +O(h2) +Op(bn)

f̂g(x; d) = fg(x; d) +O(h2) +Op(bn)

Ŝg(x; d) = hΣ∇xfg(x; d) +O(h2) +Op(bn)

M̂g(x; d) = Σfg(x; d) +O(h2) +Op(bn)

N̂g(x; d) = hΣ∇xmg(x; d) +O(h2) +OP (bn)

uniformly in (x; d), where mg(x; d) := Ψg(x; d)fg(x; d).

We can now confirm that b
1/3
n h ≡

(
n

logn

)1/3
hd → ∞ implies that

h

bn
=

(
n

log n

)
hd+1 =

[(
n

log n

)1/3

hd

]3
h1−2d → ∞

for any d ≥ 1. Hence, collecting terms,∣∣∣∣Ŝg(x; d)
′M̂g(x; d)

−1N̂g(x; d)− h2
∇xfg(x; d)

′Σ∇xmg(x; d)

fg(x; d)

∣∣∣∣ = Op

({
h2

fg(x; d)
+ h

}
bn

)
≤ Op

(
h2δ−1

Gnbn + hbn
)
= hOp (bn)

where convergence is uniform in (x; d).
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Hence, from standard rate calculations

Ψ̂g(x; d) =
m̂g + Ŝ′

gM̂
−1
g N̂g

f̂g − Ŝ′
gM̂

−1
g Ŝg

=
Ψg(x; d)fg(x; d) +O(h2) +Op (bn + hbn)

fg(x; d) +O(h2) +OP (bn + hbn)

= Ψg(x; d) +OP (bn) +O
(
h2
)

Since units i = 1, . . . , n are sampled independently in each location, the OP (·) terms are independent across

locations g = 1, . . . , G with expectation of order o(h2).

Hence, aggregating over g = 1, . . . , G,

Ψ̂(x1, x2; d1, d2) =
1

G− 1

G∑
g=1

RgΨ̂g(x1, x2; d1, d2)

Hence, by the triangle inequality∣∣∣Ψ̂(x1, x2; d1, d2)−Ψ(x1, x2; d1, d2)
∣∣∣ ≤

∣∣∣∣∣ 1

G− 1

G∑
g=1

RgΨ̂g(x1, x2; d1, d2)−Ψg(x1, x2; d1, d2)

∣∣∣∣∣
+

∣∣∣∣∣ 1

G− 1

G∑
g=1

Rg|Ψg(x1, x2; d1, d2)−Ψ(x1, x2; d1, d2)

∣∣∣∣∣
= Op

(
bn + h2

G1/2

)
+OP

(
1

G

)
since Rg is equal to zero for a single unit g∗ selected at random and one otherwise, where we use unconfound-

edness of location, Assumption 2.2 and bounded conditional moments in Assumption 2.4. By our previous

arguments, convergence is also uniform with respect to the arguments x1, x2; d1, d2.

We can immediately verify that µ̂(x; d) and µ(x; d) correspond to Ψ̂(x; d) and Ψ(x; d), respectively, for

the case W1gi = Ygi and W2gj = 1, so that

sup
x∈[0,1]d

|µ̂(x; d)− µ(x; d)| = Op

(
bn + h2

G1/2δGn−1

)
+OP

(
1

G

)
For the covariance kernel H(x1, x2; d1, d2), we can set W1gi = Ygi and W2gj = Ygj so that the cluster-specific

local linear estimator

Ψ̂g(x1, x2; d1, d2) := arg
b
(g)
0

min
b
(g)
0 ,b

(g)
11 ,b

(g)
12

ng∑
i=1

∑
j ̸=i

{
1l{Dgi = d1, Dgj = d2}

(
YgiYgj − b

(g)
0 − b

(g)
11 (Xgi − x1)− b

(g)
12 (Xgj − x2)

)}
×wgi(x1; d1)wgj(x2; d2)

is uniformly consistent for any g = 1, . . . , G with Rg = 1 so that for

Ĥ(x1, x2; d1, d2) =
1

G− 1

G∑
g=1

RgΨ̂d1d2,g(x1, x2; d1, d2)− µ̄(x1; d1)µ̄(x2; d2)

we can conclude

sup
x1,x2∈[0,1]d

|Ĥ(x1, x2; d1, d2)−H(x1, x2; d1, d2)| = Op

(
bn + h2

G1/2δGn−1

)
+OP

(
1

G

)
establishing the convergence rates for a general choice of the bandwidth sequence subject to the rate condi-

tions in the theorem.
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Since by standard arguments the bias is of the order h2, the rate of the root mean square error is

minimized at bandwidth sequences such that h2 =
(

logn
Gnhd

)1/2
so that such a sequence must go to zero at a

rate h∗ = O
(

logn
Gn

) 1
4+d

. □

C.2. Proof of Proposition A.1. We give the argument for estimation of H(x1, x2; d1, d2), the proof for

the mean function µ(x1; d1) follows as a special case. We let H∗
g denote the projection of Hg onto the spline

basis under the empirical measure. Parallel to the case of kernel estimation in Graham, Niu, and Powell

(2019), the estimation error in Ĥg(x1, x2; d1, d2) can be decomposed into

Ĥg(x1, x2; d1, d2) = H∗
g(x1, x2; d1, d2) +

2

ng

∑
i

H
(1)
gngi

+

(
ng
2

)−1∑
i<j

H
(2)
gngij

=: H∗
g(x1, x2; d1, d2) + Tgng

(1) + T (2)
gng

where

H
(1)
gngi = E[Hngij |Ygi, Xgi,Xg]− E[Hngij ,Xg]

H
(2)
gngij

= E[Hngij |Ygi, Ygj , Xgi, Xgj ,Xg]−H
(1)
gngi −H

(1)
gngj + E[Hngij ,Xg]

and Hngij ≡ Hngij(x1, x2; d1, d2).

The variance bound can then be derived following the arguments in the proof of the i.i.d. case for Lemma

2.3 in Chen and Christensen (2015): By assumption, the term Tgng
(1) directly satisfies the conditions of

their lemma. For Tgng
(2), we set h := 1/M and note that by assumption logn

nhd → 0, so that an analogous

bound for the second term follows from arguments completely analogous to the proof of claim (ii) in Lemma

3.4 of Graham, Niu, and Powell (2021). The triangle inequality then yields

Var

(
sup

x1,x2,d1,d2

∣∣∣Ĥg(x1, x2; d1, d2)−H∗
g(x1, x2; d1, d2)

∣∣∣) ≲
(M + r)d log n

n
,

noting that from known facts about tensor products of polynomial spline bases (see p.450 in Chen and

Christensen (2015)), λKn ≲ O(1).

Given these bounds, aggregation of the site specific estimates is completely analogous to the case of

kernel-based estimation in the proof of Theorem A.1 and yields

sup
x1,x2,d1,d2

∣∣H∗
g(x1, x2; d1, d2)−Hg(x1, x2; d1, d2)

∣∣ ≲ ( (M + r)d log n

n

)1/2

+M−2 +G−1

which establishes the claim □

C.3. Proof of Theorem A.2. For the following formal arguments we let ∥ · ∥F denote the trace operator

norm ∥T∥F := tr(T ∗T ). We start by proving the following Lemma:

Lemma C.2. Suppose that S is a compact, self-adjoint operator with eigenvalues λ1 ≥ λ2, . . . , counted

by their multiplicity, and corresponding eigenfunctions ϕ1, ϕ2, . . . . Then for any sequence Ŝ of compact,

self-adjoint operators with eigenvalues λ̂1 ≥ λ̂2, . . . such that ∥Ŝ − S∥F = OP (rGn) we can choose the

eigenfunctions ϕ̂1, ϕ̂2, . . . such that

|λ̂k − λk| = Op (rGn)

∥ϕ̂k − ϕk∥ = Op (rn) (C.3)

for each k = 1, 2, . . . such that λk > 0.
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Proof: We follow closely the proofs for Proposition 4.2 in Gobet, Hoffmann, and Reiß (2004) and

Theorem 2 in Yao, Müller, and Wang (2005a). Since S is compact, existence of eigenvalues λ1 ≥ λ2 ≥ . . .

and eigenfunctions ϕ1, ϕ2, . . . follows from Mercer’s Theorem (see Happ and Greven (2018) for a multivariate

generalization where X may be of dimension greater than one).

We define the resolvent maps of the operators S and Ŝ,

R(z) := (S − zId)
−1
, and R̂(z) :=

(
Ŝ − zId

)−1

Defining the resolvent sets ϱ(S) and ϱ(Ŝ) via ϱ(T ) := {z ∈ C : T − zId is invertible}, we have for z ∈
ϱ(S) ∩ ϱ(Ŝ),

R̂(z) =
(
S − zId + (Ŝ − S)

)−1

=
(
R(z)−1 + (Ŝ − S)R(z)R(z)−1

)−1

= R(z)
(
Id + (Ŝ − S)R(z)

)−1

= R(z) +R(z)

∞∑
s=1

(
(S − Ŝ)R(z)

)s
where the last equality uses a Neumann representation of the inverse. Therefore, if ∥Ŝ − S∥F ∥R(z)∥F < 1,

we can use the triangle inequality for the (trace) operator norm to bound

∥ ˆR(z)−R(z)∥F ≤
∞∑
s=1

∥∥∥R(z)((S − Ŝ)R(z)
)s∥∥∥ ≤ ∥Ŝ − S∥F ∥R(z)∥2F

1− ∥Ŝ − S∥F ∥R(z)∥F
(C.4)

Now, consider the kth eigenvalue λk. Since the operator S is self-adjoint and compact, its spectrum is

real-valued and separated. In particular any nonzero eigenvalue λk has only finite multiplicity mk < ∞,

and there exists ϱk > 0 such that the ϱk-ball around λk in the complex plane C does not contain any other

eigenvalue different from λk.

We then let Γk : [0, 2π] → C be the positively oriented Jordan curve

Γk(t) := λk + ϱk/2e
it

around λk with radius ϱk/2. By the Cauchy integral formula and the Hilbert’s resolvent equations (equations

(2.4) and (2.5) in Chatelin (1983)) it can be verified that the operator

Pk := − 1

2iπ

∫
Γk

R(z)dz

is the orthogonal projector onto the eigenspace of S at the eigenvalue λk (Theorem 2.27 in Chatelin (1983)).

We can similarly define

P̂k := − 1

2iπ

∫
Γk

R̂(z)dz

Since the nonzero eigenvalues of Ŝ are also separated and of finite multiplicities, we can assume without loss

of generality that the curve Γk encloses a finite number of eigenvalues of Ŝ, and that no eigenvalues of Ŝ lie

on the curve (otherwise we can replace the radius ϱk/2 with any other number in the interval (0, ϱk)). By

Cauchy’s integral formula, P̂k is the sum of the orthogonal projectors onto the eigenspaces of Ŝ associated

with the eigenvalues of Ŝ enclosed by Γk. In particular, P̂k is an orthogonal projector into a linear subspace

of finite dimension.
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Next we define

Mk := sup {∥R(z)∥ : z ∈ Γk} <∞

and assume that ε := ∥Ŝ − S∥F ≤ 1
2Mk

, so that in particular the bound (C.4) holds, and we can use (C.4)

to bound

∥P̂k − Pk∥F ≤ 1

2π

∫
Γk

∥R̂(z)−R(z)∥F dz

≤ ϱk
2

∥Ŝ − S∥FM2
k

1− ∥Ŝ − S∥FMk

≤ ϱkM
2
kε =: Bk

Since ∥P̂k − Pk∥F ≤ Bk < ∥Pk∥F for n sufficiently large, P̂k ̸= 0. In particular, the intersection of the

ϱk/2 ball around λk with the spectrum of Ŝ is nonempty. Now, let ϕk be an eigenvector of S associated with

the eigenvalue λk, and let ϕ̂k be a vector of unit length in the eigenspace of Ŝ corresponding to an eigenvalue

λ̂k with |λ̂k − λk| ≤ ϱk/2. Without loss of generality, we choose ϕ̂k such that ⟨ϕ̂k, ϕk⟩ > 0 and that ϕk is

orthogonal to all other eigenvectors of Ŝ at eigenvalue λ̂k. In particular, P̂kϕk = ⟨ϕk, ϕ̂k⟩ϕ̂k, so that

∥P̂k − Pk∥2 ≥ ∥(P̂k − Pk)ϕk∥2 = ∥P̂kϕk − ϕk∥2

= 1− 2⟨ϕk, P̂kϕk⟩+
∥∥∥P̂kϕk

∥∥∥
= 1− (⟨ϕ̂k, ϕk⟩)2

Furthermore,

∥ϕ̂k − ϕk∥2 ≤ 2− 2⟨ϕ̂k, ϕk⟩ ≤ 2(1− ⟨ϕ̂k, ϕk⟩)(1 + ⟨ϕ̂k, ϕk⟩)

= 2
(
1− (⟨ϕ̂k, ϕk⟩)2

)
≤ 2∥P̂k − Pk∥2 ≤ 2Bk

Reversing the roles of S and Ŝ, we can similarly find an eigenvector of S at eigenvalue λk for any vector ϕ̂k

in the eigenspace of Ŝ at an eigenvalue λ̂k with |λ̂k − λk| ≤ ϱk/2, such that ∥ϕk − ϕ̂k∥ satisfies the same

bound. The convergence rate for the eigenvalues then follows from Slutsky’s Lemma applied to the formula

characterizing the kth eigenvalue, λk = ⟨ϕk, Sϕk⟩ □

We now complete the proof of Theorem A.2: Since ϕ̂k are defined by the generalized eigenvalue problem

T̂µτ T̂
∗
µτ ϕ̂k = λ̂kT̂µµaϕ̂k

and T̂µµa is injective, we can equivalently rewrite

ϕ̂k := T̂−1/2
µµa χ̂k

where χ̂k solves the eigenvalue problem

Ŝχ̂k = λ̂kχ̂k

and Ŝ := T̂
−1/2
µµa T̂µτ T̂

∗
µτ T̂

−1/2
µµa . We therefore first derive the convergence rate for χ̂k with respect to χk, the

eigenfunction associated with the kth larges eigenvalue λk of S := T
−1/2
µµa TµτT

∗
µτT

−1/2
µµa .

Since by assumption of the theorem, the covariance functions Hµµ and Hµτ are estimated uniformly con-

sistently at the rate rGn, it follows immediately that the corresponding Hilbert-Schmidt operators converge

at the same rate under the trace (operator) norm, ∥T̂µµ − Tµµ∥F = Op(rGn) and ∥T̂µτ − Tµτ∥F = Op(rGn),

follows immediately.
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We furthermore confirm that the operator S0 := T
−1/2
µµ TµτT

∗
µτT

−1/2
µµ is compact. From the proof of Lemma

B.1, minB ∥τg−Bµg∥2 = tr(T ∗
µτT

−1
µµ Tµτ ) where the operator Tµµ is understood to be restricted to ker(Tµµ)

⊥.

Therefore,

tr(T−1/2
µµ TµτT

∗
µτT

−1/2
µµ ) = tr(T ∗

µτT
−1
µµ Tµτ )

= min
B

∥τg −Bµg∥2 ≤ ∥τg∥2 <∞

Since S0 is self-adjoint, it follows that it is also trace class and therefore compact. Since T
−1/2
µµa T

1/2
µµ and its

transpose are compact for any a ≥ 0, it also follows that S ≡ Sa is compact for any a ≥ 0 as well. Ŝ can be

shown to be compact by the same argument applied to sample analogs.

Next, define Aa := (Tµµ + aId)1/2 ≡ (T
1/2
µµ + a1/2Id) and Âa := (T̂

1/2
µµ + a1/2Id). We can then check that

Â−1
a −A−1

a = Â−1
a (Âa −Aa)A

−1
a = Â−1

a (T̂ 1/2
µµ − T 1/2

µµ )A−1/2
a

The difference between Ŝ and S can be written as

Ŝ − S = T̂−1/2
µµa T̂µτ T̂

∗
µτ T̂

−1/2
µµa − T−1/2

µµa TµτT
∗
µτT

−1/2
µµa = R1 +R2 +R3

where

R1 = T̂−1/2
µµa T̂µτ T̂µτ∗(T̂−1/2

µµa − T−1/2
µµa )

= T̂−1/2
µµa T̂µτ T̂µτ∗ T̂−1/2

µµa (T̂ 1/2
µµa − T 1/2

µµa)T
−1/2
µµa

= Ŝ(T̂ 1/2
µµa − T 1/2

µµa)T̂
−1/2
µµa

R2 = T−1/2
µµa (T̂µτ T̂

∗
µτ − TµτT

∗
µτ T̂

−1/2
µµa

R3 = (T̂−1/2
µµa − T−1/2

µµa )TµτTµτ∗T−1/2
µµa

= T̂−1/2
µµa (T̂ 1/2

µµa − T 1/2
µµa)S

Since T̂µµ and Tµµ are nonnegative, the eigenvalues of T̂
1/2
µµa and T

1/2
µµa are bounded from below by a−1/2. It

therefore follows that ∥R1∥ = O(a−1/2rGn), ∥R2∥ = O(a−1rGn), and ∥R3∥ = O(a−1/2rGn) under the trace

norm. Hence together with the triangle inequality, Lemma C.2 implies that χ̂∗
k − χk converges at a rate

OP (a
−1rGn). The conclusion of the Theorem then follows from the observation that the largest eigenvalue

of T̂
−1/2
µµa is bounded by a−1/2 □
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