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Abstract. We derive asymptotic approximations for models of strategic network forma-

tion, where limits are taken as the number of nodes (agents) increases to infinity. Our

framework assumes a random utility model where agents have heterogeneous tastes over

links, and payoffs allow for anonymous and non-anonymous interaction effects, and the ob-

served network is assumed to be pairwise stable. Our main results concern convergence

of the link intensity from finite pairwise stable networks to the (many-player) limiting dis-

tribution. The set of possible limiting distributions is shown to have a fairly simple form

and is characterized through aggregate equilibrium conditions, which may permit multiple

solutions. We illustrate how these formal results can be used to analyze identification of

link preferences and estimate or bound preference parameters. We also derive an analytical

expression for agents’ welfare (expected surplus) from the structure of the network. We

apply our results to estimate a model of network formation with endogenous search effort

in order to assess whether patterns of relative homophily, first documented by Currarini,

Jackson, and Pin (2009), can be replicated in a richer empirical framework.
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1. Introduction

Network models can be used to describe systems of contracts, transactions, and other

formal or informal relationships between economic agents. In many economic contexts, the

incentives to form new network connections exhibit strategic interdependencies across links.

In models of trust and social capital, risky exchanges may be secured through transactions

with third parties (see e.g. Jackson, Rodriguez-Barraquer, and Tan (2012), Ambrus, Mobius,

and Szeidl (2014), Gagnon and Goyal (2016)) which may help with screening, monitoring, and

enforcement of an agreement. When networks provide access to information, link formation

incentives depend crucially on how a signal is transmitted through that network (see Calvó-

Armengol (2004) and Calvó-Armengol and Jackson (2004)). For example, an agent may

obtain more widely sourced information through a more central nodes, but may at the

same time have to compete with a larger number of network neighbors for access to that
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information. For theoretical or empirical models of peer effects or social coordination -

for example in the decision to smoke or engage in other types of risky behavior among

high school students - the friendship network often has to be regarded as endogenous with

respect to the relevant outcome if that activity itself plays a significant role in agents’ social

life, or the decision depends on unobservables that may also influence friendship formation

(see e.g. Goyal and Vega-Redondo (2005), Goldsmith-Pinkham and Imbens (2012), and

Badev (2016)). Strategic incentives of this type may or may not lead to formation of the

most beneficial links in terms of aggregate welfare or a social planner’s objective. In either

case, distinguishing “strategic” externalities from “intrinsic” preferences for forming social

or economic relationships are of immediate policy relevance.

As an example, our empirical application revisits Currarini, Jackson, and Pin (2009)’s

analysis of friendship formation where agents have potentially homophilous preferences for

gender and race (“baseline homophily”), but also face a costly search for potential friends.

With homophilous preferences the individually optimal effort choice depends crucially on

the racial composition of the environment, with students in “homophilous” minorities hav-

ing a lower incentive to socialize (“relative homophily”). Separating baseline from relative

homophily is policy relevant - while the policy maker would likely regard homophilous pref-

erences as given, the effect of a search friction on network segregation could be mitigated by

creating additional opportunities for students to socialize across homophilous categories.

Contribution. This paper analyzes a random utility model of network formation which

allows to translate premises and predictions of (typically more stylized) theoretical models

into testable hypotheses. We consider settings where network links are undirected and

discrete, and link preferences may depend on agents’ exogenous attributes and (endogenous)

position in the network.

To frame ideas, we could e.g. consider a parametric model which specifies a net payoff

to agent i from establishing a link to agent j that depends on either node’s exogenous

attributes xi, xj, the respective number of agents si, sj either node is directly connected to,

and an indicator tij whether i and j have another network neighbor in common. In order

to keep our focus on the main conceptual ideas, we also restrict our attention to the case in

which the statistics si and tij take only finitely many values. The incremental benefit to i

from forming such a link could then be of the form

Uij = x′iβ1 + x′jβ2 + |xi − xj|′β3 + γ1si + γ2sj + δtij + εij

where εij an idiosyncratic shock to i’s preferences of forming a link to j. These random

utilities could be regarded as continuation values or “reduced form” payoffs from economic

activity on the resulting network, reflecting strategic motives of the kind discussed at the

beginning of this introduction. Our framework allows for more general payoffs depending
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on exogenous and endogenous characteristics, and assumes that the observable network is

pairwise stable (Jackson and Wolinsky (1996)), where a link ij forms if and only if the

incremental benefit of that link to either node exceeds the cost of maintaining that link.

Pairwise stability is the default solution concept for models strategic network formation

in economics (see e.g. Jackson (2008)) and imposes only minimal requirements on agents’

strategic sophistication. The main technical challenges in estimating a model of this form is

that the variables si, sj, tij are a function of the network graph, and therefore endogenous to

the network formation model.

Our main theoretical result is a tractable approximation to the expectations network mo-

ments, assuming that the number of nodes (agents) in the network is large. Our analysis

identifies the relevant aggregate state variables that characterize equilibrium and interdepen-

dence of individual link formation decisions, and shows how to use (many-agent) limiting

approximations to simplify the representation of the network in terms of these variables. We

derive a sharp characterization of the set of link distributions generated by pairwise stable

networks. We do constrain the equilibrium selection mechanism in that while the set of

pairwise stable networks depends on unobserved taste shocks, we do not allow agents to use

them to coordinate on a particular outcome in that set. While we leave the selection rule

otherwise unconstrained, this is an important restrictions which makes our framework a lot

more tractable.

Based on this limiting approximation we then consider strategies for estimation and infer-

ence regarding the model parameters. In addition, we derive an analytical limiting expression

for the agent’s expected random payoff corresponding to the pairwise stable links, which can

serve for welfare analysis regarding any policy interventions that affect the shape of the net-

work. Our present results are complemented by a more recent paper by Menzel (2021) who

obtains a law of large numbers and a central limit theorem for network moments that can be

used to establish consistency and the asymptotic distribution of estimators, assuming data

from a small number of large networks. In the empirical application we use that character-

ization of surplus to analyze incentives for participating in network formation or exerting

effort searching for potential network connections (as in the model of Currarini, Jackson,

and Pin (2009)).

The asymptotic approximation is obtained by embedding the finite-player network cor-

responding to the observable data into a sequence of network formation models with an

increasing number of agents. Using statistical approximation techniques, we derive the limit

for the distribution of links along that sequence. The primary motivation for many-agent

asymptotics in the network model is to arrive at a tractable model that does not require an

explicit account for certain interdependencies that are not of first order in the limiting exper-

iment. In particular, the limiting sequence considered has the following qualitative features:
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(1) each agent can choose from a large number of possible link formation opportunities, and

(2) similar agents face similar choices, at least as measured by the inclusive values corre-

sponding to link opportunity sets. (3) By construction, additional links become increasingly

costly along the asymptotic sequence, so that the resulting network remains sparse. (4)

The limiting distribution of links resulting from pairwise stable network formation need in

general not be unique. Rather, a given realization of payoffs may support multiple pair-

wise stable networks that differ qualitatively both in terms of global, aggregate features, as

well as locally in assigning nodes different roles under alternative equilibria. The limiting

sequence does not impose any additional qualitative constraints on agents’ incentives for

forming network links.

Our approach incorporates some qualitative insights on many-agent limits of game-theoretic

models and matching markets from Menzel (2016), Dagsvik (2000), and Menzel (2015).

However the main new technical challenges in analyzing large networks cannot be addressed

using the formal tools developed in these papers. Most importantly, many realistic models

of strategic externalities in link formation need to allow for strong (statistical) dependence

across the entire network. The limiting arguments developed in this paper (most impor-

tantly Lemma 3.2) relying on symmetric (exchangeable), rather than weak dependence are

to my knowledge entirely new and may serve as a blueprint for limiting arguments in large

games beyond the context of networks. Furthermore, in a network formation problem with

link externalities, non-uniqueness of stable outcomes results in a non-singleton set of limiting

distributions, adding conceptual difficulties in taking many-player limits. In contrast, the

structure of the matching problem in Menzel (2015) was shown to imply weak dependence

of matching outcomes and resulted in a unique limiting distribution.

Literature. A powerful and convenient formal framework for describing networks is the

classical Erdős and Rényi (1959) random graph model (RGM). The RGM describes links as

independent binary random variables and has been extended in various ways to allow for

node- and edge-level heterogeneity and has been used in applied work (see e.g. Fafchamps

and Gubert (2007)). For strategic models of network formation, strategic interdependence

between link formation decisions typically leads to stochastic dependence between links and

can therefore in general not be represented as RGM. Also, network data often exhibit cluster-

ing and degree heterogeneity in excess of levels compatible with that model. One approach

to accommodate this empirical regularity into econometric models of link formation is to

allow for preferential attachment and unobserved heterogeneity in the propensity of a node

to form links (see Graham (2017) and Dzemski (2014)).

As an alternative, the model may directly incorporate (endogenous) network attributes -

including degree centrality or network distance - as determinants of the link probability in a

generalized exponential random graph model (ERGM). Mathematical properties of ERGM
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are by now fairly well understood, and some fairly general results on estimation and large-

sample theory are already available.1 Here Chandrasekhar and Jackson (2016) develop a

flexible approach to match not only pairwise frequencies, but also subgraph counts involving

three or more nodes. Our framework differs from these papers in that we characterize the

network formation process using link preferences that may depend directly on endogenous

network attributes. This introduces a strategic element into the model which in some cases

produces interdependencies of link formation decisions between “distant” nodes, and typ-

ically yields a multiplicity of stable network outcomes. In particular, Chandrasekhar and

Jackson (2016)’s assumption that subnetworks of certain types form independently is not

generally consistent with pairwise stability under preferences that exhibit strategic inter-

dependencies between different links. Lovász (2012) showed how to characterize a finite

network graph as a sample from a continuous limiting object. However when the graph

is the result of strategic decisions by the agents associated with the (finitely many) nodes,

the relationship between features of the descriptive limiting “graphon” to stable, “struc-

tural” features of an underlying population is generally not transparent or even well-defined,

especially if the network formation model admits multiple stable outcomes.

Most existing approaches to structural estimation rely heavily on simulation methods - this

includes Hoff, Raftery, and Handcock (2002), Christakis, Fowler, Imbens, and Kalyanara-

man (2010), Mele (2017), Sheng (2020), and Leung (2019) - whereas our approach focusses

on analytic characterizations of pairwise stable networks. Instead of considering the joint

distribution of the adjacency matrix or larger local “neighborhoods” within the network

(as considered by Sheng (2020), de Paula, Richards-Shubik, and Tamer (2018) or Graham

(2012)), we argue that it is typically sufficient for estimation to consider the frequencies of

links between pairs of nodes (dyads) with a given combination of exogenous attributes and

endogenous network characteristics. Our analysis differs from de Paula, Richards-Shubik,

and Tamer (2018) in that our limiting model is constructed as a limiting approximation

to a finite network, whereas their model assumes a continuum of players. Furthermore, we

model link preferences as non-anonymous in the finite network, and therefore have to char-

acterize explicitly how subnetworks interact with the full network through link availability

and strategic interaction effects with neighboring nodes. Our asymptotic approximations

allow to characterize that dependence using aggregate state variables that satisfy certain

equilibrium conditions in order for the network to be pairwise stable. Boucher and Mourifié

1See e.g. Frank and Strauss (1986), Wasserman and Pattison (1996), Bickel, Chen, and Levina (2011), or
Snijders (2011) for a survey. Jackson and Rogers (2007) analyze characteristics of large networks of homoge-
neous agents that result from a sequential random meeting process where links may be added “myopically”
at each step.
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(2012) give conditions for weak dependence of network links under increasing domain asymp-

totics, whereas our approach can be thought of as “infill” asymptotics where link frequencies

between distant nodes are non-trivial under any metric on the space of node characteristics.

This work is most closely related to a concurrent paper by Leung (2019) and subsequent

work by Leung and Moon (2019) and Menzel (2021). Menzel (2021) extends the formal ideas

in this paper to obtain a central limit theory for network moments and to cover more general

settings, including polyadic subnetwork counts and edge-specific interaction effects. Leung

(2019) and Leung and Moon (2019) give weak laws, and a central limit theorem, respectively,

that also cover static network formation. Their approach requires that strategic interaction

effects are not too large in magnitude and that agents interact primarily locally in a (latent

or observed) attribute space that grows in diameter along the asymptotic sequence. These

conditions ensure that strategic interdependencies remain limited to subnetworks that are

stochastically bounded in size even as the number of nodes grows large. Our approach holds

the support of any payoff-relevant attributes fixed as we take limits and relies on symmetry

and exchangeability arguments instead. This does allow for long-range stochastic dependence

of arbitrary strength where even global features of the network may remain stochastic as we

take limits. Either modeling approach may be more appropriate for a given application,

depending on the nature of strategic interactions or the presence of node attributes that

have a sufficient strong effect on link formation to produce the topology required for the

framework in Leung (2019) and Leung and Moon (2019).2 The other key difference is in the

nature of our results, where our focus is on closed-form expressions or bounds for probabilities

of network events, whereas their approach requires finding the pairwise stable subnetworks

on strategic neighborhoods given simulated payoffs.

The remainder of the paper is organized as follows: we first describe the economic model,

including alternative solution concepts. Section 3 defines the limiting model and gives formal

results regarding convergence to that limit. Section 4 gives an outline of the main formal

steps for the convergence argument. Section 5 discusses strategies for identification and

estimation based on that representation, and gives an analytical characterization of agents’

welfare (expected surplus) from the structure of the network. Section 6 gives an empirical

application, estimating a model of network formation with endogenous search effort. The

appendix presents additional Monte Carlo study illustrating the theoretical convergence

results, and proofs of theoretical claims.

2Our empirical example uses the AddHealth data set, where networks consists of the students in each
particular high school. While we find that residential location does have a nontrivial impact on link formation,
it is of a magnitude comparable to, but not exceeding that of other relevant preference shifters, including
idiosyncratic taste heterogeneity, so that we favor the framework put forward in the present paper for that
particular setting.
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2. Model Description

The network consists of a set of n agents (“nodes” or “vertices”), which we denote with

N = {1, . . . , n}. We assume that each agent is associated with a vector of exogenous

attributes (types) xi ∈ X . Our network formation model regards exogenous attributes as

random draws xi from a distribution with marginal p.d.f. w(x), and for the purposes of this

paper the type space X is assumed to be finite. We also use X = [x1, . . . , xn]
′ to denote the

matrix containing the n nodes’ exogenous attributes.

Using standard notation (see Jackson (2008)), we identify the network graph with the

adjacency matrix L = (Lij)ij, where the element

Lij =

{
1 if there is a direct link from node i to node j

0 otherwise

As a convention, we do not allow for any node i to be linked to itself, Lii = 0. We furthermore

assume that all links are undirected, so that the adjacency matrix L is symmetric, i.e.Lij =

Lji. We also let L − ij be the network resulting from deleting the link along the edge ij

from L, that is from replacing the ijth entry of L with zero. Similarly, L + ij denotes the

network resulting from setting Lij to one.

In an idealized application, the observed network data consists of X and L. However,

the limiting approximations do not distinguish between observable and unobservable com-

ponents of xi and can therefore also be used in settings in which some relevant exogenous

characteristics are unobserved. In a similar fashion a data set may consists of a subset of

nodes and edges that were selected at random according to a known sampling rule. In that

case, the asymptotic full-network likelihoods derived in this paper can be adjusted by the

probability that a given edge or node would be selected into such a sample, as long as the

resulting data set also contains sufficient information to evaluate the payoff-relevant network

attributes for sampled nodes or edges.

2.1. Network Payoffs. Player i’s payoffs are of the form

Πi(L) = Bi(L)− Ci(L)

where Bi(L) denotes the gross benefit to i from the network structure, and Ci(L) the cost

of maintaining links. In economic terms the benefit function would typically represent a

continuation value representing utility or profit from economic activity on the network once

it has formed. Since the formal distinction between costs and benefits is arbitrary, we will

take the cost Ci(L) to be only a function of the number of direct links to player i, but not

the identities or characteristics of the individuals that i is directly connected to under the

network structure L.
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We specify the model in terms of the incremental benefit of adding a link ij to the network

L,

Uij(L) := Bi(L+ ij)−Bi(L− ij)

and the cost increment of adding that link,

MCij(L) := Ci(L+ ij)− Ci(L− ij)

With a slight departure from common usage of those terms, we refer to Uij(L) and MCij(L)

as the marginal benefit and marginal cost (to player i), respectively, of adding the link ij to

the network.

Throughout our analysis we specify the marginal benefit function as

Uij(L) = U∗
ij(L) + σεij (2.1)

where U∗
ij(L) is a deterministic function of attributes x1, . . . , xn and the adjacency matrix

L, and will be referred to as the systematic part of the marginal benefit function. The

idiosyncratic taste shifters εij are assumed to be independent of xi and xj and distributed

according to a continuous c.d.f. G(·), and σ > 0 is a scale parameter. Also, we assume that

marginal costs to i for forming a link are given by

MCij(L) ≡MCi(L) := max
k=1,...,J

σεi0,k (2.2)

where εi0,k are independent of xi and across draws k = 1, 2, . . . , and the choice of the number

of draws J will be discussed in Section 3. In particular, we let J to grow as n increases in

order for the resulting network to be sparse.3 In this formulation, marginal costs are assumed

not to depend on the network structure or the identity of the target node, so that in the

following we denote marginal cost of the link ij by MCi without explicit reference to j or

the network L. Note that in the absence of further restrictions on the systematic parts of

benefits U∗
ij(L), this is only a normalization.

The main application of our asymptotic results concerns identification of - parametric or

nonparametric models for the function U∗
ij(L), where the distribution of taste shocks G(·)

need not be specified by the researcher as long as its upper tail is assumed to satisfy the

shape restriction in Assumption 2.2 below. We find below that for some relevant aspects of

the model, only the sum of the systematic part of marginal utilities between the two nodes

constituting an edge matters, we also define the pseudo-surplus for the edge ij as

V ∗
ij(L) := U∗

ij(L) + U∗
ji(L)

3Alternatively, it would be possible to model marginal costs MCi = log J + εi0,k under the extreme-value
arguments, however the specification in (2.2) is analytically more convenient for our derivations. Otherwise
our specification of MCi is analogous to the treatment of the outside option in the matching model in Menzel
(2015), and we refer the reader to that paper for a further discussion.
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Obviously V ∗
ij(L) = V ∗

ji(L), so pseudo-surplus is symmetric with respect to the identities of

the two nodes.

Our framework allows for various types of interaction effects on the marginal benefit

function. The marginal benefit from adding the link from i to j may depend on agent i and

j’s exogenous attributes xi and xj, and the structure of the network through vector-valued

statistics si, sj, tij that summarize the payoff-relevant features,

U∗
ij(L) ≡ U∗(xi, xj; si, sj, tij) (2.3)

Specifically, the marginal benefit of a link may directly depend on node i and j’s exogenous

attributes, xi and xj, respectively, as well as interaction effects between the two. U∗
ij(L) may

vary in xi, e.g. because some node attributes may make i attach more value to any additional

links. On the other hand, dependence on xj allows for target nodes with certain attributes

to be generally more attractive as partners. Finally, a non-zero cross-derivative between

components of xi and xj could represent economic complementarities, or a preference for

being linked to nodes with similar attributes (homophily).

In addition to preferences for exogenous attributes, the propensity of agent i to form an

additional link, and the attractiveness of a link to agent j may depend on the absolute

position of either node i and j in the network. To account for effects of this type, we can

include node-specific network statistics of the form

si := S(L,X; i)

where we assume that the function S(·) is invariant to permutation of player indices.4

Example 2.1. (Degree and Composition) Node specific network statistics include the

network degree (number of direct neighbors),

S1(L,X; i) :=
∑
j ̸=i

Lij

Another statistic could measure the share of i’s direct neighbors that are of a given exogenous

type,

S2(L,X; i) :=

∑
j ̸=i Lij1l{xjk = x̄k}∑

j ̸=i Lij

where the kth component of xj may be e.g. gender or race, and x̄k the value corresponding

to the category in question (e.g. with respect to gender or race).

4Formally, we assume that for any i = 1, . . . , n and one-to-one map π : {1, . . . , n} → {1, . . . , n} with π(i) = i,
we have S(Lπ, Xπ; i) = S(L,X; i), where the matrices Xπ and Lπ are obtained from X and L by permuting
the rows (rows and columns, respectively) of the matrix according to π.
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The network degree of a node plays a special role in the description of the link intensity.

In the remainder of the paper, we therefore partition the vector of node i’s network charac-

teristics into si = (si1, s
′
i2)

′, where si1 :=
∑n

j=1 Lij will always be understood to denote the

network degree of node i, and si2 a vector of the remaining payoff-relevant network statistics.

In this paper, we restrict these node-specific statistics S(L,X; i) to depend only on the links

to i, i.e. the ith row of the adjacency matrix L, analogous results for the more general case

are given in Menzel (2021).

Payoffs may also depend on the relative position of the node i with respect to j in the

network. Specifically, the researcher may also want to include edge-specific network statistics

of the form

tij := T (L,X; i, j)

where T (·) may again be vector-valued, and we assume that the function T (·) is invariant

to permutations of player indices.5

Example 2.2. (Transitive Triads) A preference for closure of transitive triads can be

expressed using statistics of the form

T1(L,X; i, j) =
∑
k ̸=i,j

LikLjk, or T2(L,X; i, j) = max {LikLjk : k ̸= i, j}

Here, T1ij counts the number of immediate neighbors that both i and j have in common, and

T2ij is an indicator whether i and j have any common neighbor. More generally, Tij could

include other measures of the distance between agents i and j in the absence of a direct link,

or indicators for potential “cliques” of larger sizes.

Patterns of transitivity may emerge for example in economic models of social capital where

supporting links to common neighbors may enhance the value or viability of a connection

between an agent pair, see e.g. Jackson, Rodriguez-Barraquer, and Tan (2012) or Gagnon

and Goyal (2016). Transitivity may also reflect a biased search process where agents may

be more likely to “meet” through common neighbors. In this paper we will only consider

dependence of payoffs on node-specific statistics, analogous results allowing for edge-specific

statistics are developed in Menzel (2021).

In contrast to node attributes xi, xj, the variables si, sj, and tij are endogenous to the

network formation process, and the characterization of the limiting model therefore must

include equilibrium conditions for the joint distribution of types xi and network statistics si

and tij. We therefore refer to the payoff contribution of the exogenous attributes xi, xj as

exogenous interaction effects, and the contribution of the endogenous network characteristics

si, sj, tij as endogenous interaction effects. In terms of this specification, we can also rewrite

5That is, we assume that for any i, j = 1, . . . , n and permutation π : {1, . . . , n} → {1, . . . , n} with π(i) = i
and π(j) = j, we have T (Lπ, Xπ; i, j) = T (L,X; i, j).
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the pseudo-surplus function as

V ∗
ij(L) = V ∗(xi, xj; si, sj, tij) := U∗(xi, xj; si, sj, tij) + U∗(xj, xi; sj, si, tij)

This paper considers only the case of node-specific network statistics si, sj entering payoffs

for a link ij, that is

U∗
ij(L) ≡ U∗(xi, xj; si, sj).

Results concerning the general case including edge-specific interaction effects are given in the

more recent paper Menzel (2021). Furthermore, we maintain that the deterministic parts of

random payoffs satisfy certain uniform bounds and smoothness restrictions. Specifically we

assume the following

Assumption 2.1. (Systematic Part of Payoffs) Payoffs do not depend on edge-specific

network statistics, where (i) the systematic parts of payoffs are uniformly bounded in absolute

value, |U∗(x, x′, s, s′)| ≤ Ū < ∞. Furthermore, (ii) The supports of the payoff-relevant net-

work statistics, S and the type space X are finite sets. (iii) The network statistics S(L,X; i)

do not depend on Lkl for any k, l ̸= i.

The uniform bound on systematic payoffs in part (i) serves primarily to simplify the

formal argument, and might be replaced by bounds on other norms on the function U∗(·), a
question we will leave for future research. Part (ii) is used to ensure that the limit of the game

can be represented as an equilibrium in finite-dimensional state variables. This condition

could in principle be relaxed under some additional regularity conditions, mainly to ensure

compactness of the range of the corresponding fixed point mappings. This restriction applies

only to the payoff relevant network statistics, for example in our setting network degree si1

generally has unbounded support, but our setting would allow for preferences that depend on

a transformation of si1 that takes only finitely many values, e.g. a measure s̃i := min{si1, s̄}
that censors degree at some finite value s̄. Furthermore, while part (ii) implies part (i) of

this assumption, we state this condition separately in order to define the bound Ū for later

reference.

As discussed in the previous section, we also restrict the focus of this paper to the case of

strategic effects from node-specific network statistics, where part (iii) requires that for any

network L, the value of si is determined by the edges to/from i, i.e. the ith row and column

of the adjacency matrix L. These restrictions are primarily to keep notation as simple as

possible; the main theoretical ideas developed in this paper are extended to a less restrictive

setup in Menzel (2021) who also derives and asymptotic distribution theory for generalized

subgraph counts.

We next state our assumptions on the distribution of unobserved taste shifters. Most

importantly, we impose sufficient conditions for the distribution of εij to belong to the

domain of attraction of the extreme-value type I (Gumbel) distribution. Following Resnick
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(1987), we say that the upper tail of the distribution G(ε) is of type I if there exists an

auxiliary function a(s) ≥ 0 such that the c.d.f. satisfies

lim
s→∞

1−G(s+ a(s)v)

1−G(s)
= e−v

for all v ∈ R. We are furthermore going to restrict our attention to distributions for which

the auxiliary function can be chosen as a(s) := 1−G(s)
g(s)

, where g(s) denotes the density

associated with the c.d.f. G(s). This property is shared for most standard specifications

of discrete choice models, e.g. if εij follows the extreme-value type I, normal, or Gamma

distribution, see Resnick (1987). We can now state our main assumption on the distribution

of the idiosyncratic part of payoffs:

Assumption 2.2. (Idiosyncratic Part of Payoffs) εij and εi0,k are i.i.d. draws from

the distribution G(s), and are independent of X, where (i) the c.d.f. G(s) is absolutely

continuous with density g(s), and (ii) the upper tail of the distribution G(s) is of type I with

auxiliary function a(s) := 1−G(s)
g(s)

.

2.2. Solution Concept. Our formal analysis assumes pairwise stability as a solution con-

cept, which was first introduced by Jackson and Wolinsky (1996).

Definition 2.1. (Pairwise Stable Network) The undirected graph L is a pairwise

stable network (PSN) if for any link ij with Lij = 1,

Uij(L) ≥MCi, and Uji(L) ≥MCj

and any link ij with Lij = 0,

Uij(L) < MCi, or Uji(L) < MCj

Pairwise stability as a solution concept only requires stability against deviations in which

one single link is changed at a time. For a pairwise stable network there may well be an

agent who can increase her payoff by reconfiguring two or more links unilaterally. While it

is possible to consider stronger notions of individually optimal choice which require stability

against more complex deviations, PSN gives a set of necessary conditions which have to be

met by any such refinement.

Pairwise stability also does not necessarily impose particularly high demands on partic-

ipating agents’ knowledge and strategic sophistication: Jackson and Watts (2002) showed

that pairwise stable networks can be achieved by tâtonnement dynamics in which agents

form or destroy individual connections, taking the remaining network as given and not an-

ticipating future adjustments. This makes PSN a plausible static solution concept for a

decentralized network formation process even when agents have only a limited understand-

ing of the network as a whole, and link decisions may in fact take place over time, where the

exact sequence of adjustments is not known to the researcher.
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A major limitation of PSN as a solution concept is that, without additional restrictions

on payoffs a pairwise stable network is not guaranteed to exist. While to our knowledge

there are no fully general existence results, there are some relevant special cases for which

existence of a PSN is not problematic.6

A second challenge is that pairwise stability does not predict a unique outcome for the

network formation game. Neither the static nor the tâtonnement interpretation of pairwise

stability in a model of decentralized network formation appear to suggest a particular rule for

selecting one stable outcome over another. In their most general version our results therefore

do not constrain the mechanism for selecting among multiple pairwise stable matchings, but

give sharp bounds on the distribution of network outcomes.

For a revealed-preference analysis it is useful to represent the pairwise stability conditions

as a discrete choice problem, where preferences are given by the random utility model de-

scribed above, and the set of available “alternatives” for links arises endogenously from the

equilibrium outcome. Specifically, given the network L we define the link opportunity set

Wi(L) ⊂ N as the set of nodes who would prefer to add a link to i,

Wi(L) := {j ∈ N\{i} : Uji(L) ≥MCj} (2.4)

Using this notation, we can rewrite the pairwise stability condition in terms of individually

optimal choices from the opportunity sets arising from a network L.

Lemma 2.1. Assuming that all preferences are strict, a network L∗ is pairwise stable if and

only if for all i = 1, . . . , n,

L∗
ij =

{
1 if Uij(L

∗) ≥MCi

0 if Uij(L
∗) < MCi

(2.5)

for all j ∈ Wi(L
∗), and L∗

ij = 0 for all j /∈ Wi(L
∗).

The proof for this lemma is similar to that of Lemma 2.1 in Menzel (2015) and is given in

the appendix.

It is also instructive to contrast our use of a solution concept that is essentially static to

the approaches in Christakis, Fowler, Imbens, and Kalyanaraman (2010) and Mele (2017)

who consider link distributions resulting from myopic random revisions of past link formation

decisions, where agents are not assumed to be forward-looking regarding future stages of the

formation game. Christakis, Fowler, Imbens, and Kalyanaraman (2010) specify an initial

condition and a stochastic revision process, so that (in the absence of further shocks to the

process) further iterations of the tâtonnement process would generate a distribution over

6As an example, Miyauchi (2012) considers the case of non-negative link externalities, in which case pairwise
stability can be represented as Nash equilibrium in a finite game with strategic complementarities. Hence,
existence and achievability through a myopic tâtonnement mechanism follow from general results by Milgrom
and Roberts (1990).
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pairwise stable outcomes or cycles with mixing weights depending on that specification. The

revision process in Mele (2017) is represented by a potential function, favoring formation

of links that lead to larger cardinal utility improvements, and networks generating a large

“systematic” surplus.

2.3. Potential Values. To verify whether a link on the edge ij is supported by a pair-

wise stable network, it suffices to check two separate conditions. For one, the network

statistics si, sj, tij must be supported by a pairwise stable network on the remaining edges

after constraining the edge ij to the value L∗
ij = l for l ∈ {0, 1}. On the other hand,

the value L∗
ij has to satisfy the payoff conditions U(xi, xj; si, sj, tij) + σεij ≥ MCi and

U(xj, xi; sj, si, tij) + σεji ≥ MCj if and only if L∗
ij = 1, holding si, sj, tij fixed at their re-

spective values. In what follows we let Dij ∈ {0, 1} denote an indicator whether i agrees to

form a link with j, where we consider both the case of exogenously fixed, as well as pairwise

stable link proposals D∗
ij := 1l{U(xi, xj; si, sj, tij) + σεij ≥MCi}.

After restricting the subnetwork on a selected subset of edges to a particular configuration,

we refer to the values for a network statistic si that are supported by a network L∗
−ij that

is pairwise stable on the remaining, unrestricted edges as the potential values for that

statistic with respect to that subnetwork configuration. For the purposes of this paper it

suffices to consider potential values with respect to a single edge Lij together with the link

proposals by nodes i and j, Di = (Dik) and Dj = (Djk).

Definition 2.2. (Potential Values) We say that for l = 0, 1 and proposals Di, Dj ∈
{0, 1}n the potential values S∗

kij(l;Di, Dj) for sk are supported by a pairwise stable network if

given realized attributes and taste shocks there exists a network with nodes N and adjacency

matrix L∗
−ij = (L∗

kl,−ij)k,l such that (a) L∗
ij,−ij = l, (b) for each edge pq with p, q /∈ {i, j},

L∗
pq,−ij = 1 if and only if Upq(L

∗
−ij) ≥ MCp and Uqp(L

∗
−ij) ≥ MCq, (c) for each p /∈ {i, j}

and q ∈ {i, j}, L∗
pq,−ij = 1 if and only if Upq(L

∗
−ij) ≥ MCp and Dqp = 1, and (d) S(L∗

−ij +

ij,X; k) = S∗
kij(l;Di, Dj).

These potential values can be interpreted as the set of possible structural responses to the

link proposals by nodes i and j. That is, the difference between potential values S∗
kij(0; ·)

and S∗
kij(1; ·) accounts for indirect, “general equilibrium” effects of exogenously setting the

link Lij to one or zero. These potential values are random variables, since stability of the

network L∗
−ij given Di, Dj depends on attributes and payoff shifters at the nodes in N\{i, j}.

When the pairwise stable network is not unique, the realized potential values correspond to

a selection from among those values that are supported according to this definition. The

characterization of outcomes on subnetworks of more than two nodes requires a more general

definition of potential outcomes, which is given in Menzel (2021).
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Figure 1. Constrained stable network configurations for Lij = 0 and Lij =
1, respectively. The respective potential values correspond to the network
statistics for i and j, evaluated at either constrained stable network, which
need not be unique for either value of Lij.

Note also that we take both network statistics S∗
kij(0; ·),S∗

kij(1; ·) to be evaluated at a

network with the connection between i and j present. The potential outcomes with that

link removed, i.e. evaluated under L∗
−ij − (ij), do not appear in the payoff conditions for

pairwise stability and we therefore do not need to refer to them in what follows. Note that

Di, Dj were defined to include the proposals Dii, Dij, Dji, Djj. This is entirely for notational

convenience, and requirements (b) and (c) of this definition have been formulated in a way

such that those proposals are redundant. Also, whenever a proposal Dip is not reciprocated,

the potential value S∗
kij(l;Di + ip,Dj) is supported whenever S∗

kij(l;Di − ip,Dj), where the

notation Di + ij and Di − ij denote the proposal vector D after setting Dij to one (zero,

respectively). Since we only need to consider potential outcomes for proposals Dip = 1

whenever for Ū + σεip ≥ MCi and Ū + σεpi ≥ MCp, the effective number of distinct

potential outcomes is in fact bounded.

To illustrate this definition, we give a conceptual example in Figure 2: Given realized

network payoffs, dashed arcs indicate links Lij that may be pairwise stable for some values

si1, sj1 of degree centrality for nodes i and j, whereas links between any other node pairs

are not mutually agreeable regardless of the network positions of the end nodes. We then

obtain the potential values for si1, sj1 that are supported given these payoffs by determining

all pairwise stable networks after fixing either value l ∈ {0, 1} for the edge Lij. For l = 0,
15
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Figure 2. Potential values for si1, sj1 with respect to Lij = 0 (top row) and
Lij = 1 (bottom row).

we can see that j can only form a pairwise stable link to k4, but i can form a pairwise stable

link either to k1 alone, or to k1 and k2. Hence the supported potential values are {1, 2} for

si1, and {1} for sj1. Fixing Lij at l = 1 instead, the supported potential values for si1 are

{3}, and {2, 4} for sj1. In general there may also be direct or indirect connections between

the nodes k1, . . . , k6 and pairwise stability may depend on the positions of those nodes as

well. Hence solving for these potential values would be very cumbersome in realistically

sized problems, and given our intermediate results - specifically Lemma 3.2 - an explicit

calculation will not be necessary.

2.4. Equilibrium Selection. The number of distinct pairwise stable networks for a given

realization of payoffs may be very large. In this paper we take a pragmatic approach to equi-

librium selection which imposes an (in our view) mild constraint on stochastic equilibrium

selection rules. Previous versions of this paper did not impose any conditions on equilibrium

selection which are in fact not needed for the main approximation arguments, but greatly

simplify the asymptotic representation and our approach towards estimation.

Assumption 2.3. Solution Concept (i) The observed network L∗ satisfies the payoff

conditions for pairwise stability in Definition 2.1. (ii) In the presence of multiple pairwise

stable networks, agents coordinate on a pairwise stable network via a public signal v that is
16



measurable with respect to a sigma field G but need not be observable to the researcher. (iii)

Unobserved taste shocks (MCi, εij)i,j are independent of G.

The selection rules permitted by this assumption can be viewed as mappings λ : (v,L∗) 7→
∆(L∗) where L∗ denotes the random set of networks that are pairwise stable given attributes

and payoff shocks, and ∆(L∗) is the probability simplex of distributions over L∗. One

possible interpretation of such a selection rule with the properties in (ii) and (iii) is a myopic

tâtonnement process from a network that is initialized at a random network L0 that is

selected independently of (MCi, εij)i,j, and at each stage of the adjustment process the

order in which edges Lij are revised is determined independently of unobserved taste shocks

as well.

There is no restriction to the dimension of the coordinating signal v which only enters

the theory through the sigma field G, and by Assumption 2.2 this assumption allows in

particular for attributes xi to be included with v. Importantly, the set L∗ of pairwise stable

networks obviously depends on the realization of taste shocks (MCi, εij)i,j, so part (ii) of

this condition rules out the possibility of agents using those taste shocks to coordinate on a

particular outcome in that set.

3. Asymptotic Representation of Network Moments

This section presents the limiting model for the network for the leading case in which the

local structure of the network is uniquely determined by payoffs in a manner to be made

more precise below. The main result in this section is contained in Theorem 3.2, an outline

of the formal argument, including the main intermediate steps, is given in Section 3.5. This

asymptotic approximation to the model can then be used for identification analysis, or to

construct likelihoods and probability bounds for parametric estimation. We derive analytic

characterizations for various specifications of the payoffs in (2.3) in Section 4.

3.1. Dyadic Network Counts. The focus of this paper is on generalized dyadic counts,

which are moments of the form

m̂n(θ) := n

(
n

2

)−1∑
i ̸=j

Lijh(xi, xj, si, sj; θ) (3.1)

that are indexed by a finite-dimensional parameter θ ∈ Rk. In a typical application, θ

parameterizes a random utility model for link preferences, and the researcher is interested

in understanding what equality or inequality restrictions the link formation model implies

on population analogs of these subgraph counts. In words, generalized dyadic counts are

averages of functions h(xi, xj, si, sj; θ) of node attributes over the connected edges ij of

the network L. One important application of our results is estimation of structural payoff

parameters based on moments of this form. The scaling factor in this definition is chosen
17



to match the link formation rates that result from the sparse asymptotic sequence assumed

below, under which the probability of a link among each of the
(
n
2

)
dyads goes to zero at the

rate n−1 as the network grows.

We consider the problem of evaluating the population expectation for a network moment

of the form (3.1) under a random utility model for network payoffs when L ≡ L∗ is a pairwise

stable network. Our results concern the joint probability of a link L∗
ij with values s∗i , s

∗
j for

the (endogenous) network statistics given xi, xj. We provide an asymptotic approximation

f ∗
0 (s1, s2|x1, x2) := lim

n
nP(L∗

ij = 1, s∗i = s1, s
∗
j = s2|xi = x1,xj = x2) (3.2)

which we refer to as the link intensity. Under the sparse asymptotic sequence considered

in our analysis (see Assumption 3.1 below) it is more efficient to encode the information

contained in the sparse adjacency matrix L∗ as a labelled list of links, i.e. the collection of

dyads (i, j) with Lij = 1. So while our approximation arguments could also be applied to

the complementary event Lij = 0, f ∗(·) assumes the role of a (Poisson-type) intensity that

turns out to be sufficient to characterize the asymptotic likelihood.

For a given link intensity f(s1, s2|x1, x2), the asymptotic analog to the moment in (3.1) is

given by

m0(θ; f) :=

∫
X 2

h(x1, x2, s1, s2; θ)f(s1, s2|x1, x2)w(x1)w(x2)dx1dx2 (3.3)

where w(x) denotes the population distribution of attributes x. The main contribution

of this paper is to show that f ∗
0 (s1, s2|x1, x2) can be characterized analytically for a given

stochastic model of link payoffs. This allows to derive asymptotic empirical restrictions on

the population moment m∗
0(θ) := m0(θ; f

∗
0 ) from a structural model for link payoffs, when it

is not practically feasible to compute the exact expectation of the finite-network moment in

(3.1) directly.

3.2. Approximating Sequence. We need to specify the approximating sequence of net-

works. Here it is important to emphasize that the main purpose of the asymptotic analysis is

a reliable approximation to the (finite) n-agent version of the network rather than a factual

description how network outcomes would change if nodes were added to an existing network.

Hence our approach is to embed the n-agent model into an asymptotic sequence whose limit

preserves the main qualitative features of the finite-agent model.

Specifically, we design the asymptotic sequence to match the following properties of a finite

network: (1) the network should remain sparse in that degree distribution does not diverge

as the size of the market grows. (2) The limiting conditional link formation frequencies given

node-level attributes should be non-degenerate, and depend non-trivially on the systematic

parts of payoffs. For the first requirement, it is necessary to increase the magnitude of

marginal costs MCi as the number of available alternatives grows, whereas to balance the

relative scales of the systematic and idiosyncratic parts we have to choose the scale parameter
18



σ ≡ σn at an appropriate rate. Specifically we are going to assume the following in the

context of the reference model:

Assumption 3.1. (Sequence of DGP)(i) The number n of agents in the network grows

to infinity, and (ii) the random draws for marginal costs MCi are governed by the sequence

J =
[
n1/2

]
, where [x] denotes the value of x rounded to the closest integer. (iii) The scale

parameter for the taste shifters σ ≡ σn = 1
a(bn)

, where bn = G−1
(
1− 1√

n

)
, and a(s) is the

auxiliary function specified in Assumption 2.2 (ii).

The rate conditions for marginal costs and the scale parameter in parts (i) and (ii) are

analogous to the matching case and discussed in greater detail in Menzel (2015). Specifically,

the rate for J in part (ii) is chosen to ensure that the degree distribution from a pairwise stable

network will be non-degenerate and asymptotically tight as n grows. The construction of the

sequence σn in part (iii) implies a scale normalization for the systematic parts U∗
ij = U∗

ij(L),

and is chosen as to balance the relative magnitude for the respective effects of observed and

unobserved taste shifters on choices as n grows large. Rates for σn for specific distributions

of taste shifters are also given in Menzel (2015).

The requirement that the sequence of networks remains sparse is primarily needed to

obtain the limiting characterization of link opportunity sets with inclusive value functions,

where the some of the arguments break down for a network that is more dense than what

is implied by the asymptotic sequence in Assumption 3.1 (ii). However, asymptotic (condi-

tional) independence of subnetworks across distinct network neighborhoods does not rely on

sparsity but continues to hold for dense or semi-sparse network sequences.

3.3. Limiting Model F∗
0 . The limit of this sequence of network formation models will be

given in terms of the set F∗
0 of limits for the link intensity of network links. In general

the limit of the link intensity is not uniquely defined, due to multiplicity of pairwise stable

networks in the finite-n model. Instead, we can give a sharp characterization of the set F∗
0

of distributions such that any empirical link intensity resulting from some pairwise stable

network can be approximated by some element f ∗
0 ∈ F∗

0 . While decisions about whether

to form (or eliminate) a link are interrelated across nodes, the asymptotic approximation

developed in this paper allows to characterize the link intensity in terms of “global” aggregate

states at the network level, and a “local” response to those aggregate states.

The model F∗
0 characterizes the marginal probability of dyadic network outcomes, that is

outcomes regarding the variables L∗
ij, s

∗
i , s

∗
j for any pair of nodes i, j. By Assumption 3.1,

the network is sparse in the sense that for each node i a link with j is mutually acceptable

only for a stochastically bounded number of nodes j ∈ {1, . . . , n} \ {i}.
The asymptotic representation then treats edges of the pre-network Lij0 as a random

sample of node pairs with attributes and potential values S∗
ij(0) and S∗

ij(1) drawn at random
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from a common distribution. Specifically, for the case of discrete exogenous attributes x we

define the potential value distribution as the conditional p.d.f.

M∗
l (s1|x1, x2) := P(S∗

ij(l) = s|xi = x1,xj = x2,Lij = l) (3.4)

for l = 0, 1 where P(·) denotes an asymptotic equilibrium distribution for a node pair (i, j)

sampled from N uniformly at random. The distribution pair M∗ := [M∗
0 ,M

∗
l ] is an equilib-

rium outcome which furthermore depends on which pairwise stable network was selected in

the data.

Our results find that link acceptance probabilities on the edge ij given potential values

are asymptotically of the form

lim
n

n1/2 P
(
U∗(x1, x2; s1, s2) + σεij ≥ MCi|S∗

ij(l) = s1,S
∗
ji(l) = s2,xi = x1,xj = x2

)
=

s11 exp {U∗(x1, x2; s1, s2)}
1 +H∗(x1; s1)

(3.5)

for each l = 0, 1, where following our previous convention, si1 :=
∑n

j=i Lij is degree centrality

of node i. Here, H∗(x; s) is a nonnegative function of the attributes x, s which is also

determined in equilibrium across nodes in the network. This asymptotic probability can be

interpreted as a generalization of Logit conditional choice probabilities, where H∗(x; s) is

the (properly scaled) average inclusive value of the set of link opportunities for a node with

attributes x, s. We show below that the particular functional form of these probabilities

results from extreme-value convergence, where Assumption 2.2 ensures that the distribution

of idiosyncratic taste shocks belongs to the domain of attraction of the distribution of type

I (see Resnick (1987)). It is also important to note that independence of taste shocks εij, εji

from potential values S∗
ij(l),S

∗
ji(l) is not assumed, but a result obtained under Lemmas 3.1

and 3.2.

To characterize pairwise stability of a link Lij, we let

Lij(s1, s2) := 1l {U∗(xi, xj; s1, s2) + σεij ≥MCi, U
∗(xj, xi; s2, s1) + σεji ≥MCj}

denote an indicator whether the payoff inequalities in Definition 2.1 hold at the edge ij given

potential values S∗
ij(l) = s1,S

∗
ji(l) = s2. We then define the edge response L∗

ij as the set

L∗
ij :=

{
l ∈ {0, 1} : Lij(S

∗
ij(l),S

∗
ji(l)) = l

}
We say that the edge response is unique if L∗

ij is singleton with probability one.
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By independence of draws for i, j, the probability that the outcomes L∗
ij = 1, s∗i = s1, s

∗
j =

s2 are supported by a pairwise stable network can be approximated by

lim
n

n P
(
1 ∈ L∗

ij,S
∗
ij(1) = s1,S

∗
ji(1) = s2

∣∣xi = x1,xj = x2
)

=
s11s21 exp {U∗(x1, x2; s1, s2) + U∗(x2, x1; s2, s1)}

(1 +H∗(x1; s1))(1 +H∗(x2; s2))
M1(s1|x1, x2)M1(s2|x2, x1)

after conditioning on xi,xj, where potential values for the network statistics are evaluated

at l = 1 and H∗(x; s) is the same function as in 3.5. The normalization by the rate n - and

n1/2 in (3.5) respectively - reflects sparsity in the asymptotic sequence, where i would agree

to a link to a given node j with probability of the order n−1/2, and a link ij is pairwise stable

only if both i and j agree to that link.

Limits for the respective probabilities of events
{
0 ∈ L∗

ij,S
∗
ij(0) = s1,S

∗
ji(0) = s2

}
and{

L∗
ij = {0, 1},S∗

ij(0) = s10,S
∗
ji(0) = s20,S

∗
ij(1) = s11,S

∗
ji(1) = s21

}
are obtained in a similar

fashion.

In general the limiting model F∗
0 is a set of probabilities of events regarding (L∗

ij, s
∗
i , s

∗
j),

together with fixed point (equilibrium) conditions for the potential value distributionM∗
l (s1|x1, x2)

and inclusive value function H∗(x, s).

This section gives a characterization of the limiting distribution only for the special case

of a unique edge response: We say that the edge response for a node i is unique for a set of

payoffs if there exists no other pairwise stable network L◦ such that L◦
kl = L∗

kl for all k, l ̸= i, j,

but L◦
ik ̸= L∗

ik or L
◦
jk ̸= L∗

jk for at least one k ∈ N . That is, the edge response is unique given

a network L∗ if there exists a unique pairwise stable subnetwork on the edges connecting to

i and j, holding all other edges fixed at their values under the network L∗. Examples with

a unique edge response include models with payoffs that depend exclusively on exogenous

attributes, as well as a many-to-many matching model with capacity constraints.

The basic approximation arguments continue to apply in the case of non-unique edge

responses, but the limiting distribution can in general only be described in terms of bounds

unless additional assumptions are placed on the equilibrium selection mechanism. Separate

discussions on how these bounds can be implemented for estimation can be found in Section

4.3 in this paper, as well as in Menzel (2021).

The resulting limiting model can be characterized as follows:

• The link intensity is given by

f ∗
0 (s1, s2|x1, x2) =

s11s12 exp{U∗(x1, x2; s1, s2) + U∗(x2, x1; s2, s1)}
(1 +H∗(x1, s1))(1 +H∗(x2, s2))

×M∗
1 (s1|x1, x2)M∗

1 (s2|x2, x1) (3.6)

where again si1 :=
∑n

j=i Lij is degree centrality of node i. f ∗
0 (·) can therefore be

characterized in closed form given the aggregate state variables H∗,M∗
1 .
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• The inclusive value function H∗(x1, s1) is a nonnegative function satisfying the fixed-

point condition

H∗(x; s) = Ψ0[H
∗,M∗](x; s) (3.7)

where the fixed-point mapping Ψ0 is defined as

Ψ0[H,M ](x; s) :=

∫
s12 exp{U∗(x, x2; s, s2) + U∗(x2, x; s2, s)}

1 +H(x2; s2)
M0(s2|x2, x1)w(x2)ds2dx2

• The potential value distributionM∗(s1|x1, x2) := (M∗
0 (s1|x1, x2),M∗

1 (s1|x1, x2)) must

solve the equilibrium condition

M∗(s|x1, x2) = Ω0[H
∗,M∗](s|x1, x2) (3.8)

where Ω0 maps H,M to conditional distributions for the network statistic si given

xi,xj resulting from the edge response l = 0, 1 in the cross section. Since X and S
were assumed to be finite, H∗ is of dimension |S||X |. andM∗ is of dimension 2|S||X |.

The set F∗
0 then corresponds to the set of all distributions satisfying (3.6)-(3.8) for some

inclusive value function H∗ and potential value distributionM∗. We also denote the domains

of the mappings Ψ0 and Ω0 with H and M, respectively, which under Assumption 2.1 below

can be taken to be compact subsets of Euclidean spaces. We show below that for any

fixed potential value distribution M∗(s1|x1, x2), the fixed point of (3.7) is generally unique.

However for a given value of H∗, the solution to the fixed-point condition (3.8) may admit

multiple solutions, so that the resulting link intensity need not be uniquely defined even in

the case of a unique edge response.

In the case of no endogenous interaction effects, the fixed-point mapping for the degree

distribution is given by

Ω0[H,M ](s11|x1, x2) :=
H∗(x1)

s11

(1 +H∗(x1))s11+1

where according to the convention introduced earlier in section 2.1, s11 denotes the network

degree of node 1.

In general, Ω0 has to be derived separately for each type of payoff-relevant network statis-

tics, and we therefore only give high-level conditions on that mapping. Let Ω̂n[H,M ] denote

the empirical analog of the mapping Ω0[H,M ] in (3.8), where we take xi to be distributed

according to its empirical distribution in the cross-section across nodes.7

We can now formulate the main assumptions on the fixed-point mappings Ω̂n and Ω0 for

the potential value distributions in the finite network and the limiting economy, respectively:

7In the general case of set-valued edge responses, Ω0 maps to a capacity rather than a single probability
distribution, where we can represent its image as the subset of elements M̃ of the probability simplex ∆S
for distributions over S satisfying the constraints∫

S

M̃(s|x1)ds ≤ Ω0[H,M ](S|x) for all S ⊂ S
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Assumption 3.2. (i) The mapping Ω0 is compact and continuous in H,M for all x ∈ X
and S ⊂ S, and (ii) supx,s

∣∣∣Ω̂n[H,M ](s1|x1, x2)− Ω0[H,M ](s1|x1, x2)
∣∣∣ → 0 uniformly in H

and distributions M ∈ M.

Uniform convergence of Ω̂n with respect toM in part (ii) is only stated only as a high-level

condition in order to keep the result as general as possible. As the case of the conditional

distribution of degree centrality si1 in section 4 illustrates, for some cases of applied interest

the mapping Ω0 does in fact not depend on the sampling distribution of types, in which case

uniform convergence as in part (ii) trivially holds.

Since the taste shifters εij are independent across nodes j = 1, . . . , n, link formation deci-

sions are also conditionally independent. As a result, for a given pairwise stable network the

selected potential value distributionM∗(s1|x1, x2) coincides with the conditional distribution

of s1 given that node 1 is directly linked to at least one other node. This observation is useful

for estimation since that conditional distribution can be estimated directly from the cross-

sectional sample of nodes i = 1, . . . , n, without having to solve the fixed-point condition (3.8)

and explicitly addressing the multiplicity of solutions to that problem.8 Furthermore, under

the maintained assumption of bounded systematic payoffs and unbounded taste shifters, the

probability of a link between nodes with attributes x1, x2 is nonzero, so that this conditional

distribution is always well-defined.

As can be seen from this representation, our results achieve two important simplifications

that, taken together, make the finite-player problem tractable:

• While link preferences are clearly non-anonymous, the asymptotic approximation

converts the problem into one that is essentially anonymous, where link opportunities

are random draws from a common equilibrium distribution. In other words, local

interactions are entirely governed by global aggregate state variables that are shared

by the entire network.

• The Logit form of asymptotic link acceptance probabilities is also crucial for our

results, with location shifts in random payoffs resulting in a multiplicative adjustment

to conditional probabilities, as well as using network degree and inclusive values as

sufficient statistics for marginal costs and link opportunity sets, respectively.

In the more general setting considered in Menzel (2021), a local subnetwork among a set

of nodes N0 ⊂ {1, . . . , n} is consistent with pairwise stability if we can find a combination of

That subset is generally referred to as the core of Ω0. Since this paper restricts attention to the case of
unique edge responses for greater clarity, Ω0 can be taken to be singleton-valued. The set-valued case was
discussed in an earlier version of this paper.
8As pointed out in Menzel (2016), an approach of this form can be justified as conditional estimation or
inference given a sufficient statistic for the selected equilibrium. The strategy of replacing equilibrium
quantities with sample analogs in order to side-step a nested fixed-point problem has already been fruitfully
applied in dynamic discrete choice Hotz and Miller (1993) and dynamic games Bajari, Benkard, and Levin
(2007).
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potential outcomes for the network variables (si : i, j ∈ N0) that jointly satisfy the stability

conditions given the realized types and payoff shocks. The fully general case has to deal

with the added complication that such a combination need not be unique - we briefly discuss

construction of bounds for that problem in Section 4, and more general results are also given

in the companion paper Menzel (2021). Nevertheless the baseline case of a unique edge

response already represents the main conceptual and theoretical ideas, while avoiding some

additional technical challenges that are not central to this approach.

3.4. Main Asymptotic Results. We can now state the main formal results of this paper.

One potential concern is that the limiting distribution in (3.6) may not be well defined if there

exists no fixed point for the population problem (3.7) and (3.8). We find that the assumptions

on the fixed-point mapping Ω0 are sufficient to guarantee existence of an equilibrium inclusive

value function and potential value distribution, as stated in the following proposition.

Theorem 3.1. (Fixed Point Existence) Suppose that Assumptions 2.1 and 3.2 (i)-(ii)

hold. Then the mapping (H,M) → (Ψ0,Ω0)[H,M ] has a fixed point.

See the appendix for a proof. Theorem 3.1 ensures that the limiting model is always

well-defined. We can now state our main asymptotic result, which establishes convergence

to the limiting model described in Section 3.

Theorem 3.2. (Convergence) Suppose that Assumptions 2.1-2.3 and 3.1-3.2 hold, and

that the function h(·) in (3.1) is bounded. Then, for the set F∗
0 of distributions characterized

by (3.6)-(3.8), we have

inf
f∗
0∈F∗

0

∥m̂n(θ)−m0(θ; f
∗
0 )∥

p→ 0

where convergence is uniform with respect to selection among pairwise stable networks.

We describe the main ideas behind this convergence result in Section 3.5, a formal proof of

the theorem is given in the appendix. This limiting model gives a tractable characterization

of the link distribution. By considering only dyadic averages rather than the full adjacency

matrix, we do not need to characterize the structure of the full network explicitly, but the

model is closed via equilibrium conditions on the aggregate state variables H∗ and M∗. In

contrast, the expressions in Chandrasekhar and Jackson (2011) and Mele (2017) can only be

approximated by simulation over all possible networks, the number of which grows very fast

as n increases.

Finally, we want to give conditions under which the characterization of the limiting model

is sharp in the sense that all distributions satisfying the fixed-point conditions (3.7) and

(3.8) can be achieved by a sequence of finite networks. To this end, we rely on the notion

of regularity for the solutions of the fixed-point problem which correspond to standard local

stability conditions in optimization theory.
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To simplify notation, we define the mapping

Υ0 :

[
H

M

]
→

[
Ψ0[H,M ]

Ω0[H,M ]

]
Using the notation z = (H,M) ∈ Z := H ×M, the fixed-point conditions (3.7) and (3.8)

can be written in the more compact form z∗ ∈ Υ0[z
∗]. We also define the sample fixed point

mapping Υ̂n in a completely analogous manner.

The following theorem states that for equilibrium points that are regular in a specific

sense, the characterization of the limiting model is sharp in that any solution of (3.7) and

(3.8) can be achieved as the limit of a sequence of solutions to the finite-agent network.

Theorem 3.3. Suppose that Assumptions 2.1-2.3 and 3.1-3.2 hold. Furthermore, suppose

that for each point z∗ satisfying z∗ = Υ0[z
∗], the Jacobian of Υ0[z] has full rank. Then for

any z∗0 := (H∗
0 ,M

∗
0 ) solving z∗ = Υ0[z

∗], there exists a sequence ẑn := (Ĥ∗
n, M̂

∗
n) solving

ẑn = Υ̂n[ẑn] such that d(ẑn, z
∗
0)

p→ 0.

See the appendix for a proof.

3.5. Outline of the Limiting Argument. We now give a summary of the formal argu-

ment behind Theorem 3.2. One of the challenges in characterizing the exact model for the

finite-player network is that the set of available link opportunities to each of the n nodes are

unobserved and endogenous to that node’s own choices. Furthermore, the pairwise stability

conditions depend on the potential values for the relevant network attributes for each node

(edge, respectively) under all possible configurations of the network. Clearly, the correspond-

ing latent state space grows in dimension with the size of the network and contains both

discrete and continuous components. Our argument relies on the inclusive value function and

the potential value distribution as aggregate state variables that are asymptotically sufficient

to represent that state space.

There are three additional aspects that complicate the formal argument: For one, strategic

externalities across links may lead to long-range dependence of link decisions and result in

simultaneity problems that do not exist in models without strategic interdependencies. Here

we rely on a novel argument based on symmetric dependence which does not require any type

of ergodicity or weak dependence. Furthermore, network formation allows for several, rather

than just one direct connection to each node, so that not only the maximum, but other ex-

tremal order statistics of marginal benefits are relevant for link formation decisions. Finally,

pairwise stability allows for multiple edge responses to a given set of link opportunities, so

that even in the limit the link intensity need not be unique.

Independence. Given the potential values for the network statistics s∗i , s
∗
j , s

∗
k, we also let

D∗
kij(l, Di, Dj) := 1l

{
U∗(xk, xi;S

∗
kij(l, Di, Dj),S

∗
iij(l, Di, Dj)) + σεki ≥MCk

}
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and define D∗
kji(l, Di, Dj) in analogous fashion. In order to characterize a local response, we

then stack the variables

Z∗
kij(l, Di, Dj) :=

(
S∗
kij(l, Di, Dj), D

∗
kij(l, Di, Dj), D

∗
kji(l, Di, Dj)

)
These potential values are constructed in a way such that support of the potential values

S∗
kij(l;Di, Dj) is determined by node attributes X and taste shocks for nodes k /∈ {i, j}. We

therefore have the following result:

Lemma 3.1. (Independence) Suppose Assumption 2.2 holds. Then for any pair i, j

and conditional on X, the taste shocks {εik, εjk,MCi,MCj : k /∈ {i, j}} are independent of

whether the potential values
{
Z∗

kij(l;Di, Dj) : k /∈ {i, j}
}
are supported by a pairwise stable

network for any fixed Di, Dj and l ∈ {0, 1}.

See the appendix for a proof. Most importantly, independence will allow us to evaluate

stability of proposals in Di, Dj conditional on the potential values for network statistics of

adjacent nodes that are supported by a pairwise stable network. Note that this result relies

crucially on the assumption that taste shocks are independent across nodes ex ante, and is

therefore distinct from classical simultaneous equations models in econometrics in which the

researcher also wants to allow for correlated unobservables in structural responses.

Invariance. As a second important step, we establish that potential values satisfy a certain

symmetry or “anonymity” property, at least in a stochastic sense. In order to abstract from

equilibrium selection among multiple pairwise stable networks, we characterize this property

in terms of the probability that particular network events are supported by at least one

pairwise stable network. Specifically, suppose that Aijk ≡ Aijk(L,X) is a property of the

adjacency matrix L and node attributes X that is invariant to any permutations of nodes

other than i, j, k. We then define the probability that the event is supported by a pairwise

stable network as

P̄ (Aijk) := P (∃L∗ ∈ L∗ : Aijk(L
∗,X) is true) ,

where L∗ denotes the set of all networks for which all unconstrained edges satisfy the pairwise

stability conditions in Definition 2.1. Whenever appropriate, we also define conditional prob-

abilities accordingly, where for any eventsAijk,Bikj, P̄ (Aijk|Bijk) := P̄ (Aijk ∩Bijk) /P̄ (Bijk)

whenever P̄ (Bijk) > 0.

We now consider permutations τ of the indices {1, . . . , n} and show that after conditioning

on “local” information, potential outcomes follow a common distribution, even if realizations

generally differ between “comparable” nodes:
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Lemma 3.2. (Invariance) Suppose Assumptions 2.1-2.3 hold. Then for any i, j = 1, . . . , n,

l, Di, Dj, and arbitrary permutation τ of {1, . . . , n},

P̄
(
S∗
kij(l, Di, Dj) = sk

∣∣xi = x1,xj = x2,xk = x3
)

= P̄
(
S∗
τ(k)ij(l, Di, Dj) = sk

∣∣ ∃τ ′ : D∗
τ ′(i)τ(k) = Dik, D

∗
τ ′(j)τ(k) = Djk,xτ ′(i) = x1,xτ ′(j) = x2,xτ(k) = x3

)
The analogous conclusion holds for the conditional probability that two potential values

S∗
kij(l, Di, Dj) = sk and S∗

lij(l, Di, Dj) = sl are simultaneously supported by a pairwise stable

network.

See the appendix for a proof. The main practical implication of this lemma for our purposes

is that it will allow us to derive marginal probabilities for “local” events based on a conditional

distribution for potential outcomes given “local” information alone. Most importantly, while

proposals in Di are directed at particular nodes that may in turn affect the network position

for specific other nodes, this Lemma shows that those indirect, “equilibrium” effects of

proposals by i and j equally affect potential values with respect to any other edges in the

network. That symmetry then allows to capture dependence through strategic interaction

effects using the potential value distribution as an aggregate state variable which affects all

nodes in the network symmetrically.

Conditional Choice Probabilities. The next step of our asymptotic argument takes the limit

of the conditional probability that agent i is willing to form a link to agent j given xi,

potential values for network statistics, and her other links. We find that given our specifi-

cation the number of links “accepted” by agent i is substantially smaller than the number

of “proposals” j ∈ Wi(L
∗), so that the conditional probability of proposing or accepting a

link depends only on the upper tail of G(·), the distribution for the taste shifters εij. The

assumption that G(·) has tails of type I can then be used to establish that conditional choice

probabilities can be approximated by those implied by the Logit model with taste shifters

generated by an extreme-value type-I distribution. This finding is similar to the analysis

of matching markets in Menzel (2015), where the chosen match corresponds to the most

preferred available matching partner. Here a new complication arises from the fact that all

links (and availability to j) are determined simultaneously, so that it is necessary to consider

joint probabilities over multiple link proposals.

We then define

Φn(i; j1, . . . , jr) = P̄
(
D∗

ijDji = 1lj∈{j1,...,jr}
∣∣Z∗

kij1
(1, Di,D

∗
j1
) = (sk, Dki, Dkj), k = 1 . . . n

)
whereDi =

(
1lj∈{j1,...,jr}

)
. We can interpret Φn as the conditional probability of link proposals

by i to j1, . . . , jr given potential values for network statistics with respect to those proposals.

Notice that marginal benefits Uij depends on si and sj, so that Φn(i; j1, . . . , jr) cannot be

directly interpreted as a conditional choice probability, but equals the probability that the
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configuration Lij1 = · · · = Lijr = 1 and Lij′ = 0 for all other j′ ∈ Wi satisfies the pairwise

stability conditions regarding player i and j’s payoffs. Such a configuration is not necessarily

unique, but externalities among links emanating from i and j may support several stable

outcomes for a given realization of random payoffs.

We find that under our assumptions, we can approximate the conditional probability

Φn(i; j1, . . . , jr) with its analog under the assumption of independent extreme-value type-I

taste shifters. To this end, we first prove the following general result about limits of non-

exclusive multiple choice under our setup, where we treat options as exogenously given.

Lemma 3.3. Suppose marginal benefits are generated according to Uij := Ũij + σεij, j =

1, . . . , J and MCi where Ũij are bounded constants and (εij)
J
j=1 and MCi are drawn in-

dependently according to Assumption 2.2.Then as
∑

j ̸=iDji → ∞, we have for any fixed r

that ∣∣∣∣∣∣∣JrΦn(i, j1, . . . , jr)−
r!
∏r

q=1 exp{Ũijq}(
1 + 1

J

∑
q≥r+1Djqi exp{Ũijq}

)r+1

∣∣∣∣∣∣∣→ 0 (3.9)

if Dj1i = . . . ,= Djri = 1, and JrΦn(i, j1, . . . , jr) → 0 otherwise.

It follows from the previous two steps that we can approximate the distribution of the

edge response using the inclusive value of agent i’s link opportunity set W , which we defined

as

Ii[W ] :=
1

n1/2

∑
j∈W

exp{U∗(xi, xj; s
∗
ij(0), s

∗
ji(0))}

This means in particular that the composition and size of the set of link opportunities

affects the conditional choice probabilities only through the inclusive value, which is a scalar

parameter summarizing the systematic components of payoffs for the available options, see

Luce (1959), McFadden (1974), and Dagsvik (1994).

Law of Large Numbers. The third step of the argument establishes a conditional law of

large numbers for the inclusive values I∗i := Ii[Wi(L
∗)] which are sample averages over the

characteristics of agents in the link opportunity setWi(L
∗), where the size of the set |Wi(L

∗)|
grows at a rate

√
n for any PSN.

Lemma 3.4. Suppose Assumptions 2.1-2.3 and 3.1 hold. Then, (a) there exists a function

Ĥ∗
n(x; s) such that for any pairwise stable network, the resulting inclusive values satisfy

I∗i − Ĥ∗
n(xi, si) = op(1)
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for each i drawn from a uniform distribution over {1, . . . , n}. Furthermore, (b), if the weight

functions ω(x, x′, s, s′) ≥ 0 are bounded and form a Glivenko-Cantelli class in (x; s), then

sup
x∈X ,s∈S

1

n

n∑
j=1

ω(x, xj, s, sj)(I
∗
j − Ĥ∗

n(xj, sj)) = op(1)

See the appendix for a proof. The result implies that up to sampling error, for all but a

vanishing share of nodes, inclusive values only depend on agents’ own characteristics xi, si,

so that we do not need to account for the node-specific link opportunity sets separately as

we take limits. In the following, we refer to Ĥ∗
n(x; s) as the inclusive value function in the

finite network. Note also that part (a) still allows for some nodes to have inclusive values

that differ substantially from the respective value of the inclusive value function even for

large n, however their share among the n nodes vanishes as the network grows.

In the two-sided matching case an analogous result could be derived relying on bounds

exploiting the ordinal structure of the set of stable matchings (see Lemma B.5 in Menzel

(2015)), where the inclusive value was shown to converge to the inclusive value function for

each agent. For pairwise stable networks with a non-unique edge response, this is in general

not the case so that our argument relies on a different strategy: To illustrate the difficulty,

suppose that there exists a stable network in which both values sj = s and sj = s̄ ̸= s are

supported by the edge response for a nontrivial share of nodes. Then switching between a

network in which sj = s to another in which sj = s̄ may make j more likely to be available to

i, or increase the marginal benefit to i of forming a link with j. For a given realization of taste

shifters εji it may then be possible to construct a pairwise stable network in which nodes

j with high values of εji choose sj = s, whereas nodes with high values of εjk for another

node k choose sj = s̄. Hence, if selection of pairwise stable networks is allowed to depend

on the idiosyncratic taste shifters εji, the inclusive values I∗i , I
∗
k could deviate substantially

from the average for a small number of nodes. However, we find that for any pairwise stable

network the share of nodes whose inclusive values differ substantially from the respective

conditional average must vanish as the size of the network grows. In particular, we find

that the problematic term in the characterization of the “worst-case” selection from edge

responses can be bounded by the eigenvalue of a symmetric random matrix that is known

to converge to a finite limit.

Fixed-Point Mapping for Inclusive Value Functions. Next, we derive an (approximate) fixed-

point condition for the inclusive value function H(x; s) resulting from the law of large num-

bers in the previous step. For any conditional distribution M(s1|x1, x2), define the mapping

Ψ̂n[H,M ](x; s) :=
1

n

n∑
j=1

∫
sj1 exp{U∗(x, xj; s, sj) + U∗(xj, x; sj, s)}

1 +H(xj; sj)
M0(sj|xj, x)dsj (3.10)
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If we let M̂∗
0n(s1|x1, x2) denote the empirical distribution of potential values given exoge-

nous traits in the PSN, the next Lemma states that the inclusive value function is a fixed

point of the mapping Ψ̂n[·, M̂∗
n]:

Lemma 3.5. Suppose Assumptions 2.1-2.3 and 3.1 hold. The inclusive value function

Ĥ∗
n(x; s) resulting from a PSN has to satisfy the approximate fixed-point condition

Ĥ∗
n(x; s) = Ψ̂n[Ĥ

∗
n, M̂

∗
n](x; s) + op(1) (3.11)

where the remainder converges in probability uniformly in the arguments x, s.

See the appendix for a proof. The analog of the fixed-point mapping in (3.10) for the

limiting model is given by

Ψ0[H,M
∗](x; s) :=

∫
s∗1j,+1 exp{U∗(x, xj; s, sj) + U∗(xj, x; sj, s)}

1 +H(xj; s∗1j,+1)
M∗

0 (s
∗
1j,+1|xj, x)w(xj)dxjdsj

(3.12)

for a potential value distributionM∗ satisfying (3.8). Given that potential value distribution,

we then let H∗(x; s) be a solution of the fixed-point problem

H∗ = Ψ0[H
∗,M∗]

We next give conditions under which for any given potential value distribution, the fixed

point exists and is unique:

Proposition 3.1. Suppose that Assumptions 2.1-2.3 and 3.1 hold. Then (i) for any given

potential value distributionM∗(s1|x1, x2) for which the network degree si1 satisfies E[si1|xi] <
Bs < ∞ almost surely, the mapping logH 7→ log Ψ[H] is a contraction mapping with con-

traction constant λ < Bs exp{2Ū}
1+Bs exp{2Ū} . Moreover, (ii) the fixed points in (3.7) are continuous

functions that have bounded partial derivatives at least up to order p.

The formal argument for this result closely parallels the proof of Theorem 3.1 in Menzel

(2015) with contraction constant equal to Bs exp{2Ū}
1+Bs exp{2Ū} , a separate proof is therefore omitted.

One case of particular interest for which the contraction property holds without additional

assumptions is that of no endogenous interaction effects, as shown by the following corollary:

Corollary 3.1. Suppose Assumptions 2.1-2.3 and 3.1 hold, and U∗(x1, x2; s1, s2) = U∗(x1, x2).

Then the solution H∗(x; s) = H∗(x) to the fixed point problem (3.7) is unique.

The proof of this corollary is given in the appendix.

Fixed Point Convergence. The cross-sectional distribution M̂∗
n(s1|x1, x2) of potential values

for si among nodes in the n-agent network can also be characterized with the equilibrium

conditions

M̂∗
n(s1|x1, x2) = Ω̂n[Ĥ

∗
n, M̂

∗
n](s1|x1, x2) + op(1) (3.13)
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We can now combine the previous steps to show joint convergence for the potential value

distribution M̂∗
n and the inclusive value function Ĥ∗

n(x; s) to solutions of the population

fixed-point problem (3.7) and (3.8). Specifically, Lemmata 3.3 and 3.4 imply that link

opportunity sets can be parameterized with the inclusive value functions, whereas the fixed-

point mappings for the inclusive value function and potential value distribution converge

to their respective population analogs. Finally, under our assumptions convergence of the

fixed-point mappings also implies convergence of the (set of) fixed points, where we prove

the following in the appendix:

Lemma 3.6. Suppose that Assumptions 2.1-2.3 and 3.1-3.2 hold. Then for any stable net-

work, the inclusive value function Ĥ∗
n(x; s) and potential value distribution M̂∗

n(s1|x1, x2) sat-
isfy the fixed-point conditions in (3.11) and (3.13). Moreover, there exist (H∗,M∗) jointly

satisfying the population fixed-point conditions in (3.7) and (3.8) such that ∥Ĥ∗
n −H∗∥∞ =

op(1) and ∥M̂∗
n −M∗∥∞ = op(1).

Link Formation Probability Conditional on Sij(l),Sji(l). Taken together, convergence of

conditional link acceptance probabilities to a generalized Logit form, and convergence of

node-specific inclusive values to their conditional expectation, imply that the conditional

probability of a link can be expressed in closed form as in (3.6).

Lemma 3.7. Suppose that Assumptions 2.1-2.3 and 3.1 hold. Then the conditional proba-

bility of a proposal D∗
ij = D∗

ji = 1 is approximated by

lim
n
nP̄
(
D∗

ij = D∗
ji = 1

∣∣S∗
ij(l) = s1,S

∗
ji(l) = s2,xi = x1,xj = x2

)
=

(s11 + 1)(s21 + 1) exp {U∗
12 + U∗

21}
(1 +H∗(x1; s1))(1 +H∗(x2; s2))

where U∗
12 := U∗(x1, x2; s1, s2) and U

∗
21 := U∗(x2, x1; s2, s1).

See the appendix for a proof. Note that the link proposalsD∗
i are dependent conditional on

attributes and potential values through the common shock MCi. One important implication

of this lemma is that nevertheless,D∗
ij is asymptotically independent of potential values S∗

ij(l)

after we condition on network degree. This is entirely due to the asymptotic Logit structure

of the conditional link proposal distribution, where the conditional expectation of the factor

(s11 + 1)/(1 +H∗(x1; s1)) given xi = x1, si = s1 equals one.

Since in the limit the state variables Ĥ∗
n, M̂

∗
n fully capture the effect of “global” changes in

the network on the conditional probability of link acceptance for the dyad (i, j), convergence

of the fixed points in Lemma 3.6 together with the Logit representation of the link acceptance

probabilities in Lemma 3.7 imply convergence of the link intensity as claimed in Theorem

3.2.

To summarize our results, interdependence of link formation decisions can be split into

a “local” component at the level of a given pair of nodes which is characterized through
31



the edge response, and a “global” component that acts on all units symmetrically. This

global component is captured entirely by the inclusive value function H∗ and potential

value distribution M∗ in our formulation, which serve as aggregate state variables. The

same applies to multiplicity of stable outcomes, where “local” multiplicity is resolved by

selecting from a multi-valued edge response corresponding to an individual potential link,

and “global” multiplicity corresponds to selecting among multiple roots solutions for the

equilibrium conditions for the inclusive value function and potential value distribution.

4. Identification, Estimation, and Welfare Analysis

We can now use the limiting approximation in Theorem 3.2 to analyze identification of

the model and develop a strategy for estimating structural payoff parameters from network

data. We also establish an analytic formula for agents’ expected surplus from participating

in the network. In the following we assume that all payoff-relevant attributes xi and network

characteristics si are observed for all n nodes in the network. The arguments below can be

easily extended to various protocols for sampling nodes at random from the network, and

certain cases in which some components of xi are not directly observed but generated from a

distribution that is known up to a parameter to be estimated. We first present an approach

to parametric estimation for the case of a unique edge response. In the general case of a non-

unique edge response, only inequality restrictions on the expectations of network moments

may be available, which are discussed in Section 4.3. While our asymptotic representation

greatly simplifies the construction of such bounds, a practical approach to set estimation in

that case will be left for future research.

4.1. Identification. We first consider nonparametric identification of the payoff functions

U∗(x1, x2; s1, s2), where we assume that the researcher observes either the full network L,X,

or a random sample of edges, i.e. K ≤ n(n − 1)/2 pairs i, j together with the variables

Lij, xi, xj, si, sj. Note that in this case, the link intensity f(si, sj|xi, xj) is nonparametrically

identified. These arguments can be adjusted for other sampling protocols with known sam-

pling weights.9 In the case of knowledge of the complete network L and perfectly observable

attributes xi, the network statistics Si can also be computed from the available data.

Nonparametric Identification of the Reference Distribution. The potential value distribution

M∗
l (s1|x1, x2) is the conditional distribution of potential values S∗

ij(l) conditional on xi =

x1,xj = x2, and Lij = l. Conditional on Lij = l, the potential value S∗
ij(l) is realized, so that

the potential value distribution M∗
l (s1|x1, x2) corresponding to the selected pairwise stable

network is point-identified as long as the network data is sampled in a way that allows us to

9For example, the researcher may sample nodes at random and eliciting all links emanating from each node
(“induced subgraph”), or only the links among the nodes included in the survey (“star subgraph”), see
Chandrasekhar and Lewis (2011) for a discussion.
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recover the network statistics si for a random sample of nodes i ∈ N . Moreover, we can use

the implied nonparametric estimator for the marginals of M∗ for estimation which obviates

the need to solve the fixed-point problem for M∗(s1|x1, x2) explicitly.

Nonparametric Identification with no Endogenous Interaction Effects. We first give a non-

parametric identification result for the baseline case of no endogenous interaction effects

between links, the marginal benefit of link ij is given by

Uij ≡ U∗(xi, xj) + σεij

From our results in Section 3, it follows that we can fully characterize the limiting distribu-

tion of links in pairwise stable networks in terms of the pseudo-surplus function V ∗(x1, x2) :=

U∗(x1, x2) + U∗(x2, x1), so that the function U∗(x1, x2) is not separately identified. Specif-

ically, if we let si1 denote the degree of node i, the density for the limiting distribution is

given by

f ∗
0 (s1, s2|x1, x2) =

s11s12 exp{V ∗(x1, x2)}M∗(s11|x1, x2)M∗(s12|x2, x1)
(1 +H∗(x1))(1 +H∗(x2))

where the inclusive value function H∗(x) satisfies the fixed-point condition

H∗(x) = Ψ0[H
∗,M∗](x) :=

∫
X×S

s
exp{V ∗(x, x2)}
1 +H∗(x2)

M∗(s|x2, x)w(x2)dsdx2

and the degree distribution M∗(s1|x1, x2) is given by

M∗(s1|x1, x2) =
H(x1)

s1

(1 +H∗(x1))s1+1

and does not depend on x2. In particular, we have for any r = 0, 1, . . . that

P(si1 ≥ r|xi = x) =
∞∑
s=r

H∗(x)s

(1 +H∗(x))s+1
=

(
H∗(x)

1 +H∗(x)

)r

resulting in the hazard rate

P(si1 = r|xi = x)

P(si1 ≥ r|xi = x)
=

1

1 +H∗(x)

for any natural number r, including zero. Hence for any arbitrarily chosen r = 0, 1, . . . , we

can write the pseudo-surplus function in terms of log differences of link frequencies,

V ∗(x1, x2) = log
f ∗
0 (s1, s2|x1, x2)

s11s12M∗(s11|x1, x2)M∗(s12|x2, x1)

− log
P(si1 = r|xi = x1)

P(si1 ≥ r|xi = x1)
− log

P(sj1 = r|xj = x2)

P(sj1 ≥ r|xj = x2)
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Note that all quantities on the right-hand side are nonparametrically identified from the

observed network. Hence, the pseudo-surplus function V ∗(x1, x2) is nonparametrically iden-

tified for the “pure homophily” model. Note that the identification argument is constructive

and does not require knowledge of the (unobserved) inclusive value function H∗(x).

4.2. Parametric Estimation. We now turn to estimation of parametric models for link

preferences when the edge response is unique. We assume that systematic utilities are

specified as

U∗(xi, xj; si, sj) ≡ U∗(xi, xj; si, sj|θ)

for a finite-dimensional parameter θ. We also define the resulting pseudo-surplus function

V ∗(xi, xj; si, sj|θ) = U∗(xi, xj; si, sj|θ) + U∗(xj, xi; sj, si|θ)

Estimation and inference for θ in the network model are complicated by the presence

of multiple stable outcomes. However, while the fixed-point conditions in (3.7) and (3.8),

respectively, may admit multiple solutions, as discussed before the distributionM∗(s1|x1, x2)
resulting from the equilibrium chosen in the data is identified from the observed network.

Our approach is therefore conditional on the, possibly non-unique, equilibrium distribution

M∗, which we replace by a consistent estimate. This strategy for dealing with multiple

equilibria is analogous to Menzel (2016)’s approach for the case of discrete action games. A

theoretical justification for this approach is given by Menzel (2021).

The other potential difficulty is that the limiting distribution in (3.6) depends on the

(unobserved) inclusive value function. Following the approach in Menzel (2015) for the case

of matching markets, we suggest to treat H∗(x; s) as an auxiliary parameter in maximum

likelihood estimation of the surplus function V ∗(x1, x2; s1, s2|θ) satisfying the fixed-point

condition (3.7).

We propose maximum likelihood estimation of θ, where the log-likelihood contribution for

node i,

ℓi(θ,H) :=
n∑

j=1

dij log f
∗(si, sj|xi, xj; θ,H)

is obtained from the limiting model. Hence, when the researcher observes the full network

with n nodes, the log-likelihood function corresponding to the limiting distribution is

Ln(θ,H) :=
n∑

i=1

ℓi(θ,H)

We also estimate the fixed-point mapping Ψ0[H,M
∗] by its sample analog

Ψ̂n(·) :=
1

n

n∑
i=1

ψi(θ,H)
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where the node-level contributions ψi(θ,H) are again derived from the limiting representa-

tion. We derive expressions for ℓi(θ,H) and ψi(θ,H) for various examples below. When

only a random sample of nodes or edges of the network is observed according to some known

sampling protocol with uniformly bounded qualification probabilities, the formulae for Ln(·)
and Ψn(·) can be adjusted using weights.

An estimator for θ is then obtained by maximizing the pseudo-log-likelihood, where

H∗(x; s) is treated as an auxiliary parameter that has to satisfy the sample analog of the

fixed-point condition (3.7). That is, the estimator solves the constrained maximization prob-

lem

max
θ,H

Ln(θ,H) s.t. H = Ψ̂n(H) (4.1)

The structure of this optimization problem, with a nuisance function that is defined by a

fixed-point problem, is very similar to that of maximum likelihood estimation of dynamic

discrete choice models where the value function has to be recomputed for each candidate

value of the preference parameters. Popular approaches for estimating these models are

nested fixed-point algorithms (Rust (1987), Ishakov, Lee, Rust, Schjerning, and Seo (2016))

and the MPEC algorithm (Su and Judd (2012)).

We conclude this section by giving expressions for the log-likelihood L̂n and the fixed-

point mapping Ψ̂n for a few illustrative examples which form the basis for the Monte Carlo

experiments in the last section of this paper. We only consider cases for which the edge

response is unique, or we specify the equilibrium selection rule since the main purpose of

these examples is to illustrate our convergence results, abstracting from potential issues with

partial identification in the general case. In each case the likelihood function is derived from

the corresponding limiting model F∗
0 , assuming that the researcher observes the relevant

exogenous characteristics for all nodes, x1, . . . , xn, and the full adjacency matrix L.

4.2.1. No Endogenous Interaction Effects. We first consider the case of no endogenous inter-

action effects, with systematic marginal utility functions of the form U∗(x1, x2) = U∗(x1, x2; θ).

For this case, the only relevant network variable is the network degree si1 :=
∑n

j=1 Lij, and

the inclusive value function does not depend on endogenous network characteristics, so that

H(x; s) = H(x) for all s ∈ S.
Then the information in the sample can be summarized by the degree sequence s11, . . . , s1n

together with the non-zero link indicators, and the limiting model implies that the log-

likelihood contribution of the ith node is given by

ℓi(θ,H) =
1

2

n∑
j=1

Lij (V
∗(xi, xj|θ)− log(1 +H(xi))− log(1 +H(xj)))

+ log si1 − log(1 +H(xi))
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Note that the first term of the log-likelihood only receives weight one half to avoid double-

counting of non-zero link indicators as we sum the log-likelihood contributions over the

nodes i = 1, . . . , n. The constrained maximum likelihood estimator maximizes the net-

work log-likelihood Ln(θ,H) :=
∑n

i=1 ℓi(θ,H) subject to the fixed-point condition H(x) =
1
n

∑n
i=1 ψi(θ,H) with

ψi(θ,H) = wisi1
exp{V (x, xi|θ)}

1 +H(xi)

where wj :=
1l{sj1>0}

1
n

∑n
k=1 1l{sk1>0} . The importance weights wj are used to obtain an unbiased

estimator for Ψ0 in (3.7), noting that the potential value distribution for the potential value

of sj1 from setting Lij = 1 is equal to the conditional distribution of sj1 given sj1 > 0 in the

cross-section over nodes in the network.

4.2.2. Many-to-Many Matching and Capacity Constraints. Next, we state the likelihood for

a many-to-many matching model that assumes the same preferences as in the previous case,

but allows each node to form at most s̄ direct links, i.e. capping the network degree at

s̄. Furthermore, in accordance with classical matching models, we modify the notion of

pairwise stability for networks (PSN, Definition 2.1) to allow for deviations in which a node

simultaneously severs one link and forms another:

Definition 4.1. (Pairwise Stability, PSN2) The undirected network L is a pairwise

stable network according to PSN2 if for any link ij with Lij = 1,

Uij(L) ≥ max{MCi(L), Uik(L− ij)}, and Uji(L) ≥ max{MCj(L), Ujl(L− ij)}

and for any link ij with Lij = 0,

Uij(L) < min{MCi(L), Uik(L− ij)}, , or Uji(L) < min{MCj(L), Ujl(L− ij)}

for any k such that Uki(L) ≥MCk(L) and l such that Ulj(L) ≥MCl(L).

The log-likelihood contribution of the ith node resulting from the limiting model is then

obtained as

ℓi(θ,H) =
1

2

n∑
j=1

Lij (V
∗(xi, xj|θ)− log(1 +H(xi))− log(1 +H(xj)))

+ log si1 − 1l{si1 < s̄} log(1 +H(xi))

and the fixed-point mapping for the inclusive value function is the average of contributions

ψi(θ,H) := wisi1
exp{V (x, xi|θ)}

1 +H(xi)

where wj :=
1l{sj1>0}

1
n

∑n
k=1 1l{sk1>0} as in the previous case.

36



4.2.3. Strategic Complementarities in Network Degree. Next, we consider the case in which

link preferences depend on the respective network degrees of nodes i and j, si =
∑n

k=1 Lik ≡
si1 and sj =

∑n
k=1 Ljk ≡ sj1. For simplicity, we assume that si, sj are strategic complements

with Lij, that is the systematic part U∗(xi, xj; si, sj|θ) is nondecreasing in si and sj.

With preferences of this form, the edge response is generally not unique. To illustrate

how to perform the calculations under the limiting model, we first assume a particular rule

for selecting among multiple pairwise stable networks and discuss bounds in Section 4.3.

For the selection mechanism we assume that for any realization of payoffs, the observed

network is selected as the maximal pairwise stable network under the partial order L ≥ L′ if

Lij ≥ L′
ij for all i, j. It follows from standard arguments for monotone comparative statics

(see Milgrom and Roberts (1990)) that the maximal stable network is well-defined and can

be obtained from myopic best-response dynamics starting at the complete graph Lij = 1 for

all i ̸= j.

Under these assumptions the probability that a given network L is generated by this

selection mechanism is equal to the probability that L is pairwise stable times the conditional

probability that payoffs do not support any larger network L′ > L given that L is pairwise

stable. After some standard calculations, we find that under F∗
0 , the probability that the

values s0 < s1, · · · < sr for si1 are jointly supported is equal to

p(s0, . . . , sr) =
H(x; s0)

s0
∏r

q=1(H(x; sq)−H(x; sq−1))
(sq−sq−1)

(1 +H(x; sr))r+1

If we define

π∗(s0; r) :=
∑

s0<..<sr

p(s0, s1 . . . , sr)

p(s0)

= 1−
∑

s0<..<sr

(1 +H(x; s0))
s0+1

∏r
q=1(H(x; sq)−H(x; sq−1))

(sq−sq−1)

(1 +H(x; sr))r+1

the conditional probability that s0 is the largest network degree for node i given that s0 is

supported by a pairwise stable network is given by

π∗(s0) = 1 +
∞∑
r=1

(−1)rπ∗(s0; r)

For an implementation of the MLE in the Monte Carlo experiments in the appendix, we

partially vectorize computation of π∗(s0). Specifically, if H(x; s) only changes its value at a

finite number r of values for s, then π∗(s0) can be computed by a double loop with a total

of 2r iterations.

37



The log-likelihood contribution of the ith observation can then be written as

ℓi(θ,H) =
1

2

n∑
j=1

Lij (V
∗(xi, xj; si, sj|θ)− log(1 +H(xi; si))− log(1 +H(xj; sj)))

+ log si1 − log(1 +H(xi; si)) + log π∗(si)

and the fixed-point condition for the inclusive value function is obtained from the sample

average of

ψi(θ,H) := wisi1
exp{V (x, xi; s, si|θ)}

1 +H(xi; si)

where wj :=
1l{sj1>0}

1
n

∑n
k=1 1l{sk1>0} as in the previous case.

4.3. Set Estimation and Bounds. In the general case of a non-unique edge response, the

limiting model provides bounds on the link intensity. In complete analogy to estimation

of discrete games, probability bounds of this type can then be used to construct moment

inequalities to estimate identification regions for the payoff parameters, see Tamer (2003),

Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011), and Galichon and

Henry (2011).

We consider a parametric specification for payoffs,

U(xi, xj; si, sj) = U(xi, xj; si, sj|θ0)

and will now focus on those cases in which the edge response is non-unique, so that the limit-

ing model F∗
0 consists of a non-trivial set of distributions even conditional on M∗(s1|x1, x2).

This set can be described in terms of lower and upper bounds for probabilities of events Aij

in the variables Lij, si, sj for a dyad ij in the n-player network. That is, denoting for some

set A the probability of the event Aij := {(Lij, si, sj) ∈ A} in the selected pairwise stable

network with Pn(Aij|xi,xj), we can derive functions QL(·), QU(·) from the limiting model

such that

QL(A|xi,xj; θ0, H
∗) ≤ lim

n
Pn(Aij|xi,xj) ≤ QU(A|xi,xk; θ0, H

∗) (4.2)

As in the single-valued case, the bounds QL(·) and QU(·) depend on the aggregate states

H∗,M∗ where the inclusive-value function satisfies the fixed-point conditionH∗ = Ψ[H∗,M∗],

and the potential value distribution M∗ ∈ Ω0[H
∗,M∗] with the mappings Ψ0[·],Ω0[·] are de-

fined as before.

For singleton events Aij, the bounds (4.2) only depend on the marginal distributions of

potential outcomes,M∗
0 (s1|x1, x2),M∗

1 (s1|x1, x2) which are point-identified from full-network

data as discussed before. Hence, the corresponding bounds QL(·), QU(·) can be computed

directly using a nonparametric estimator of M∗
l (s1|x1, x2).10

10As shown by Galichon and Henry (2011) and Beresteanu, Molchanov, and Molinari (2011), sharp bounds for
F∗

0 typically also have to account for composite events Aij , i.e. events of the form Aij = {(Lij , si, sj) ∈ Z}
for certain non-singleton sets Z ⊂ {0, 1} × S2. The asymptotic bounds (4.2) for composite events could
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Given these probability bounds, the identified set for the payoff parameter θ is

ΘI :=
{
θ ∈ Θ : QL(A

(r)|xi,xj; θ0, H
∗) ≤ lim

n
Pn(A

(r)|xi,xj) ≤ QU(A
(r)|xi,xk; θ0, H

∗) a.s.

for each r = 1, . . . , R and for some H∗ solving H∗ = Ψ0[H
∗,M∗](θ)

}
where A(r) := {(dij, si, sj) ∈ Z(r)} and Z(1), . . . , Z(R) denote the subsets of {0, 1} × S2 × T ,

and the event A(r) :=
{
(dij, si, sj) ∈ A(r)

}
.

Estimation and inference regarding the identified set ΘI can be implemented using moment

functions of the form

m(A(r)|θ,H) :=

(
1l{A(r)

ij } −QL(A
(r)|xi, xj; θ,H)

QU(A
(r)|xi, xj; θ,H)− 1l{A(r)

ij }

)
From our convergence results and the definition of the probability bounds, we then have the

asymptotic conditional moment restriction

lim
n

E[m(A(r); θ0)|xi, xj] ≥ 0 a.s.

These conditional restrictions can then be transformed into systems of unconditional

moment equalities and inequalities for set estimation and inference, see e.g. Beresteanu,

Molchanov, and Molinari (2011) for a description for the case of finite discrete games. Since

the bounds in (4.2) are only satisfied as n → ∞, these procedures can only be consistent

(asymptotically valid, respectively) under the many-player limit. We conclude this section

by giving an example for how to derive the probability bounds QL(·), QU(·) from the limiting

model F∗
0 .

4.3.1. Strategic Complementarities in Network Degree. Consider the payoffs from Example

4.2.3 with payoffs Uij(L) depending on si :=
∑n

j=1 Lij and sj :=
∑n

i=1 Lji. We now show how

to construct probability bounds for dyad-level outcomes in (Lij, si, sj) which do not assume

a particular selection mechanism.

Similar to the discussion for the case of a specific selection mechanism, let

p(s1, . . . , sr|x) :=
H(x; s1)

s1
∏r

q=1(H(x; sq)−H(x; sq−1))
(sq−sq−1)

(1 +H(x; sr))r+1

for any s1 < · · · < sr, and define

τ ∗(s̄; r|x) :=
∑

s1<..<s̄<..<sr

p(s1, . . . , s̄, . . . , sr|x)
p(s̄|x)

also depend the joint distribution of potential values Sij(0),S
∗
ij(1). That joint distribution is not directly

observed but would have to be obtained from the fixed point mapping Ω instead, resulting in a finite but
large system of equality and inequality restrictions. We are not aware of a practical method for solving that
problem as part of an estimation algorithm, but note that bounds based on singleton events alone, while not
sharp, sidestep that difficulty.
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where the summation is over any ordered tuple of r values for si1, one component of which

equals s̄. Then the conditional probability that s̄ is the unique pairwise stable value of si

given that it is supported by a pairwise stable subnetwork is

π∗(s̄|x) = 1 +
∞∑
r=1

(−1)rτ ∗(s̄; r|x)

Since the sharp upper bound for the probability of the outcome Lij, si, sj corresponds

to the probability that these values are supported by some pairwise stable subnetwork, we

obtain

QU(s1, s2|x1, x2; θ,H) := lim
n
nP(Lij = 1, si = s1, sj = s2 supported |xi = x1,xj = x2)

=
s1s2 exp{V (x1, x2; s1, s2)}H(x1; s1)

s1H(x2; s2)
s2

(1 +H(x1; s1))s1+1(1 +H(x2; s2))s2

Sharp lower bounds for specific values of these network outcomes correspond to the event

that no other values of Lij, si, sj are supported by payoffs, and can be obtained by multiplying

the upper bound with the conditional probability that the given pairwise stable outcome is

unique. Specifically, we let

QU(s1, s2|x1, x2; θ,H) := QU(s1, s2|x1, x2; θ,H)π∗(s1|x1)π∗(s2|x2)

These bounds for singleton events are not sharp, but following Beresteanu, Molchanov, and

Molinari (2011) and Galichon and Henry (2011), we can obtain additional constraints by

considering composite events consisting of several distinct values of these network variables.

4.4. Welfare and Surplus. Our limiting framework also yields a straightforward analytic

approximation to expected surplus from being connected to the network. Surplus calculations

of this type are necessary e.g. to characterize ex ante incentives to participate in the network

and exert search effort (as e.g. in the setting described by Currarini, Jackson, and Pin

(2009)), or to evaluate welfare consequences of policies affecting the composition or structure

of the network.

Focusing on the case of no edge-specific endogenous interaction effects, let Uij(s) :=

U∗(xi,xj; s, sj(L
∗)) + σεij and let Ui;r(s) denote the rth (largest) order statistic of the

sample {Uij(s) : j ∈ Wi(L
∗)} corresponding to the link opportunity set Wi(L

∗) defined in

(2.4). Then if the sequence s1, . . . , ssi1 = si of values for si results from successively adding

links corresponding to the 1, . . . , rth order statistics, agent is surplus can be obtained by

integrating the marginal utilities,

Πi(L
∗) =

si1∑
r=1

(Ui;t(sr)−MCi) (4.3)
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Note that if marginal link utilities are indeed derived from a benefit function Bi(L) as in

Section 2.1, the expression for Πi(L
∗) does not depend on the particular choice of such a

sequence s1, . . . , sr.

For the Logit model it is known that the expected value of the first order statistic of

such a sample is equal to a function of the inclusive value (see e.g. Train (2009)). We first

show an analogous result for any other finite order statistic as Wi(L) grows in size, and then

derive limiting expressions for the expected net surplus in (4.3). In order to characterize the

expectation of Πi(L
∗), we also let Ai(r; s) denote the event that payoffs support si = s and

network degree si1 = r. We can then derive the following limiting expressions for expected

link surplus:

Proposition 4.1. Suppose that the assumptions of Theorem 3.2 hold. Then for any r′ ≥ r,

lim
n

E[Ui;r|Ai(r
′; s)]− 1

2
log n = log(1 +H∗(x; s)) + γ −

r−1∑
q=1

1

q

lim
n

E[MCi|Ai(r
′; s)]− 1

2
log n = log(1 +H∗(x; s)) + γ −

r′∑
q=1

1

q

where H∗(x; s) is the inclusive value function and γ ≈ 0.5772 denotes the Euler-Mascheroni

constant.

See the appendix for the derivation of these expressions. Given this result, we can compute

the expected surplus from being connected in the network. Conditional onAi(si1, s), we have

lim
n

E[Πi(L
∗)|Ai(si1, s)] = lim

n

si1∑
r=1

(E[Ui;r|Ai(si1; s)]− E[MCi|Ai(si1; s)])

=

si1∑
r=1

(log(1 +H∗(x; sr))− log(1 +H∗(x; ssi1))) +

si1∑
r=1

(
si1∑
q=1

1

q
−

r−1∑
q=1

1

q

)

=

si1∑
r=1

(log(1 +H∗(x; sr))− log(1 +H∗(x; ssi1))) + si1 (4.4)

For the case where link preferences in exogenous attributes alone, H∗(x; s) ≡ H∗(x), so

that by the law of iterated expectations

lim
n

E[Πi(L
∗)] = E[si1] = H∗(x)

where in the case of a non-unique edge response, the expectation is taken given the equilib-

rium selection rule. On the other hand, with preferences depending on network degree, the

sum in (4.4) is taken along the sequence s1 = 1, . . . , ssi1 = si1, so that

lim
n

E[Πi(L
∗)] = E

[
si1∑
r=1

(log(1 +H∗(x; r))− log(1 +H∗(x; si1))) + si1

]
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where the expectation with respect to si1 also depends on the selection rule.

5. Empirical Application: Segregation in Friendship Networks with

Endogenous Search Effort

In this section, we use the many-player approximations derived in this paper to estimate

a model of friendship formation where agents can choose how much effort to spend on

socializing and meeting potential friends. Currarini, Jackson, and Pin (2009) proposed a

model for a matching process where individuals have homophilous preferences with respect

to race, i.e. prefer to be friends with individuals of the same race (“baseline homophily”),

but also choose how long to remain in a market in which they are matched at random to

other available partners. They show that in combination, these two mechanisms may give

rise to patterns of racial segregation in friendship networks which also depend on the relative

population shares of different racial groups (“relative homophily”). Currarini, Jackson, and

Pin (2010) found evidence supporting this theoretical model in social networks in the Add

Health study sample of students in US high schools.

Since their empirical conclusions were obtained by calibrating a very stylized model with-

out controlling for any other relevant node attributes, this leaves open the possibility that

race may proxy for other omitted variables affecting the probability of friendship forma-

tion. For example, in the presence of residential segregation with respect to race, a higher

likelihood of friendships among students of the same race may in fact be the result of a

preference for forming friendships based on geographic proximity (e.g. based on after school

activities) rather than race. Similarly, residential segregation may result in students of the

same race being more likely to have attended the same primary or middle school prior to

the high school that was surveyed under Add Health. In that event, a higher likelihood of

friendships among students of the same race may simply reflect longer exposure rather than

homophilous preferences.

If the patterns observed in the data are due to mechanical effects of residential segregation

rather than racial preference, the policy implications are clearly different: while homophilous

preferences can not be directly influenced through outside intervention, a search friction can

be overcome more easily by creating more opportunities for students of different groups to

socialize.

We show that our approach makes it straightforward to incorporate this problem into a

model of pairwise stable network formation with endogenous search, allowing to control for

rich covariate information. We show that our techniques allow us to make efficient use of more

granular information on residential location and demographics in the restricted-use sample

for the Add Health study. We also address measurement issues in constructing the social

graph from incomplete “nomination” data, where the likelihood-based approach used in this
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paper is very versatile and can be easily adapted to meet those challenges. Otherwise we

deliberately keep the problem as simple as possible so that we can mostly work with closed-

form expressions and avoid additional numerical complications that would be incidental to

the main contribution of this paper.

More broadly, this empirical application also illustrates the usefulness of our many-agent

asymptotic framework for real-world network data. The Add Health sample contains high-

quality network data for only 16 communities, which would not warrant asymptotics over the

number of observed networks. Furthermore, while we find an effect for geographic distance

on the likelihood of link formation, the observed friendship networks at the schools in the

sample are relatively tightly knit. Arguably, students who commute from distant locations

in the school district still have ample opportunities to socialize with most of their classmates

in the classroom, sports teams, and other activities around the school. “Large domain”

asymptotics which require that interactions between spatially distant components of the

network are negligible to first order may therefore be less plausible for this particular context

than “infill” asymptotics based on a fixed domain for relevant node attributes.

5.1. Specification. We introduce a search friction into the model by assuming a separate

meeting stage before the friendship graph forms. That meeting stage consists of a process

during which node pairs i, j meet independently at random. Each agent controls the intensity

at which these meetings occur by choosing a level ei ≥ 0 of search effort. The meeting process

is assumed to be unbiased with respect to types, and we assume that the probability that

agents i and j meet is given by πij := eiej. Search effort is chosen by the agent at the outset

of the meeting process, at which stage the agent is assumed to know her own type xi and

the distribution w(x) of types among the other agents in the network.

In the subsequent friendship formation stage, agents i and j can only form a link if they

already met at the meeting stage. Our model assumes that conditional on a meeting, students

have (ex post) link preferences depending on exogenous attributes xi, xj including gender,

race, and residential location. We use a linear index specification,

Uij(L) = x′iβego + x′jβalter + |xi − xj|′βedge + εij (5.1)

where we let |xi − xj| denote a vector of absolute differences that are taken component by

component. The parameters βego captures type-specific link productivity, i.e. general propen-

sity for seeking to form links, βalter type-specific link attractiveness, i.e. general desirability

to be connected to, and βedge captures homophily with respect to the attributes included

in xi and xj. The timing structure of this model is similar to Lee and Schwarz (2012)’s

model of interviews in two-sided matching markets but differs from Currarini, Jackson, and

Pin (2009) in that friendships are not accepted/formed instantaneously as meetings occur,

but that we require the observed network to be pairwise stable given payoffs and meeting
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outcomes. Also, their model does not allow agents to accept or reject specific friendship

proposals based on homophilous preferences as meetings occur, but instead allow for biases

in the meeting process to allow the model to reproduce homophilous network patterns for

subgroups of any size.

This problem is strategic in that each agent chooses their effort level e∗i optimally, and we

can use the asymptotic approximation to expected network surplus to solve for the (unique)

Nash equilibrium at the meeting stage.

5.2. Model Solution. The search friction results in a slight modification of (3.6), so that

the p.d.f. of the link intensity becomes

f ∗
0 (s1, s2|x1, x2; e1, e2) =

s11s12 exp{U∗(x1, x2; s1, s2) + U∗(x2, x1; s2, s1)}e1e2
(1 +H∗(x1; e1))(1 +H∗(x2; e2))

×M∗(e1, s1|x1, x2)M∗(e2, s2|x2, x1) (5.2)

where the inclusive value function and potential value distribution satisfy fixed-point con-

ditions analogous to the case without a search friction, and the fixed-point mapping for

H∗(x; e) becomes

Ψ0[H,M ](x; e) :=

∫
s12 exp{U∗(x, x2) + U∗(x2, x)}e1e2

1 +H(x2; e2)

×M∗(e2, s2|x2, x1)w(x2)ds2de2dx2 (5.3)

From this expression we can see immediately that H∗(x; e) ≡ eH∗(x; 1), so that we can

parametrize the fixed point conditions in terms of H∗(x; 1) alone, where

Ψ0[H,M ](x; 1) :=

∫
s12 exp{U∗(x, x2) + U∗(x2, x)}e2

1 +H(x2; 1)e2

×M∗(e2, s2|x2, x1)w(x2)ds2de2dx2

Furthermore, if e2 is stochastically bounded, this fixed-point mapping remains a contraction

in logs, so that in the baseline case the equilibrium is unique.

To determine the optimal effort level e∗i , we assume that cost is a power function of search

effort,

c(e) =

(
1 +

1

δ

)−1

e1+
1
δ

for some δ > 0. The return to search effort derives from the agent’s expected surplus from

the pairwise stable network. Specifically, from Proposition 4.1 and the expression in (4.4), it

follows that the ex ante expected payoff for network links resulting from search effort level e

is

Wi(e) = lim
n

E [Πi(L
∗)|ei = e] = H∗(xi; e, s) ≡ eH∗(xi; 1)
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We can then solve the agent’s maximization problem to obtain

e∗i := argmax
e

[Wi(e)− c(e)] = H∗(xi; 1)
δ

For the case of endogenous interaction effects, no closed-form solution for optimal effort

exists, but instead we would need to impute e∗i based on the general expression for Vi(e).

Hence we can estimate this model based on the following specification for pseudo-surplus:

Ṽ ∗(xi, xj) := (xi + xj)
′β̃ + |xi − xj|′β̃2 + δ (logH∗(xi; 1) + logH∗(xj; 1))

where β̃1 := βego + βalter and β̃2 := 2βedge.

Since the search friction is assumed to be static in that the meeting probability does not

depend on the structure of the network L, an alternative version of the model could allow

for meetings to continue taking place while the network is being formed without changing

the resulting distribution of links. However we need to maintain that each agent commits to

the search effort level e∗i chosen at the outset of the process.

5.3. Data. Our empirical analysis is based on the National Longitudinal Study on Adoles-

cent to Adult Health (Add Health, Harris (2009)) restricted-use data on friendship networks.

The questionnaire and supplemental data also includes information about respondents’ de-

mographic characteristics, residential location, and educational history.

The data set covers 80 schools in communities across the US; 16 schools were selected for

a saturation sample for which the entire relevant student population was included in the

survey. This saturation sample includes 2 schools that are large, and 14 that are small. For

each of the 64 remaining communities (“main sample”), only 200 students were selected at

random to participate in the survey. For the main sample, most friendship nominations are

students outside the the sample, so that no demographic or other information other than

gender is available for most nominees in the main sample. While our results can also be

used to derive the likelihood for those partially observed networks, we expect that data from

those communities does not provide much additional information on network preferences. We

therefore restrict our analysis to the 16 saturation samples that were specifically designed to

obtain information about students’ social networks.

We construct the social network within schools from friendship nominations in the data,

where each student in the survey was asked to nominate up to five female and five male

friends. Those nominations are not necessarily reciprocal, and a substantial fraction of

students nominate the permissible maximum of five friends for at least one gender. This

record of the friendship network is therefore likely incomplete. For our analysis we assume

that a link between students i and j is present whenever i nominated j, j nominated i, or

both (send and receive network). We furthermore allow for the possibility that additional

friendship links may not be recorded if both i and j make all five nominations of the respective
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gender but fail to nominate each other. We operationalize this using the auxiliary assumption

that the five recorded nominations correspond to the five most preferred friends of that

gender.

In addition to students’ demographic attributes, we also compute the geodesic distance

between any pair of students from the GPS coordinates of a student’s home relative to central

reference point of community. Geographic distances within a community can be quite large,

where the catchment areas of some schools in the sample consist of several clearly separated

clusters which may be more than 20 miles apart.

5.4. Results. We estimated the model by maximizing the pseudo log-likelihood based on

(5.2) using a nested fixed point algorithm. The school-specific inclusive value functions

are treated as a nuisance parameter, where we solve for a fixed point in (5.3) by iterating

the contraction mapping to convergence. We also adjust the log-likelihood contributions to

account for the fact that recorded friendships are truncated at five friend nominations of

each gender. That adjustment is obtained from the general approximation in (3.9) under

the auxiliary assumption that student i’s nominees of each gender are among her five most

preferred friends of that gender.

We can apply the asymptotic theory in Menzel (2021) to the score equations defining the

resulting maximum likelihood estimator and conclude that it is consistent and asymptotically

normal (Theorems 5.1 and 5.2 in his paper). The estimator was computed using a standard

constrained optimizer in Matlab (fmincon). Reported standard errors are based on the

asymptotic distribution derived in Theorem 5.2 in Menzel (2021). According to that theory,

point estimators are guaranteed to be consistent but should also expect to see an asymptotic

bias of the order O(n−1/2).11

We estimated four partially nested specifications - a baseline specification which only

accounts for link productivity and homophily in demographic student attributes (gender

and race), followed by a version of the endogenous search model controlling only for these

discrete characteristics. The third specification again accounts only for exogenous student

attributes but also controls for the geographic distance between student i and j’s home, and

the full specification includes endogenous search effort, controlling both for demographics

and geographic distance. For the definition of the inclusive value function, we discretize

each community into 100 representative “locations” based on the respective percentiles for

geographic latitude and longitude within each community. Random utilities in (5.1) are

evaluated directly in terms of the underlying, continuously distributed GPS coordinates.

11The proof of Lemma 5.1 in Menzel (2021) identifies two first-order bias contributions, the first of which
can be eliminated by subtracting the contribution of realized links from the inclusive values. The second
contribution derives from the curvature of a mapping of individual inclusive values, suggesting an analytical
correction based on the conditional variance of I∗i . However at present an asymptotically valid correction
for that bias is not yet available.
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(1) (2) (3) (4)

const -0.5990 -2.6043 -0.8180 -0.7138

(0.0516) (0.0443) (0.0114) (0.0093)

white -2.3222 -3.0019 -2.4068 -1.3075

(0.0432) (0.0354) (0.0188) (0.0194)

black -2.0900 -2.3830 -2.0433 -1.3067
(0.0132) (0.0159) (0.0087) (0.0088)

hispanic -1.4002 -1.1987 -1.3972 -1.0670
(0.0109) (0.0268) (0.0100) (0.0102)

female 0.0202 -0.6834 0.5779 0.9724

(0.0238) (0.0358) (0.0159) (0.0148)

both white 2.8905 4.4617 2.9774 1.7747

(0.0258) (0.0344) (0.0191) (0.0209)

both black 2.1667 2.2980 2.1788 1.5642

(0.0149) (0.0141) (0.0084) (0.0085)

both hispanic 1.4464 1.4374 1.4454 1.2159

(0.0145) (0.0254) (0.0095) (0.0099)

both female 0.2001 0.5774 0.0876 0.2254
(0.0146) (0.0271) (0.0147) (0.0145)

both male 0.3147 0.0269 0.5738 0.8201
(0.0269) (0.0243) (0.0152) (0.0152)

log distance -0.1454 -0.1342
(0.0498) (0.0497)

log e∗i -0.5989 0.2506

(0.0222) (0.0428)

Table 1. Estimation results for the Network Formation Model (5.1) based
on the 16 saturation samples from Add Health.

Estimation results are reported in Table 5.4. Across all specifications, results support

strong homophilous patterns according to racial categories, with large positive coefficients

for the indicators “both white,” “both black,” and “both hispanic.” We can also see a less

pronounced effect of gender that is nevertheless fairly consistent across specifications. As

expected, the effect of log distance in specifications (3) and (4) is also negative.

The sign for log e∗i predicted by our theory should be positive, so the result in specification

(2), which fails to control for distance, is not consistent with that interpretation. However,

after controlling for distance, we do obtain a positive coefficient corresponding to an effect

that is of a comparable order of magnitude as the “baseline” patterns of homophily doc-

umented before. It is also interesting to note that after accounting for distance and the

relative homophily effect in specification (4), the baseline link productivity parameters for
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the racial groups become more similar to each other in magnitude, suggesting that abso-

lute and relative homophily may be the main drivers of degree heterogeneity between these

groups.12

More broadly, this empirical example illustrates how we can incorporate additional co-

variate information into a parametric random utility model at little additional cost, where

estimates of main effects may be sensitive to whether we succeed in controlling for relevant

confounders. The estimation problem in (5.2) and (5.3) is isomorphic to parametric dynamic

discrete choice problems, so the cost of including additional attribute information or allow-

ing for certain types of unobserved heterogeneity will be comparable to those more familiar

settings.

6. Conclusion

This paper develops an asymptotic representation of the link intensity resulting from a

network formation game. In this limiting approximation, interdependence of link formation

decisions can be split into a “local” component at the level of a given pair of nodes which

is characterized through the edge response, and a “global” component, which is captured

entirely by the inclusive value function H∗ and potential value distribution M∗ which serve

as aggregate state variables. The same applies to multiplicity of stable outcomes, where

“local” multiplicity is resolved by selecting from a multi-valued edge response corresponding

to an individual potential link, and “global” multiplicity corresponds to selecting among

multiple roots solutions for the equilibrium conditions for the inclusive value function and

potential value distribution.

These results give us a simplified representation of the limiting moments for network

moments, and we show how to use that representation for identification and estimation. A

subsequent paper by Menzel (2021) provides a (many-agent) asymptotic distribution theory

that allows for inference based on this approach. For greater clarity we restrict our attention

to the case of models with a unique edge response - at least in principle the approximations

provided by our approach could be used to construct asymptotic bounds in a similar fashion,

however we leave this for future research.

Appendix A. Simulation Study

This section reports results from Monte Carlo experiments to illustrate the performance of the limiting

approximations for the case of a unique best response. We focus on simulation designs with discrete types,

where the only exogenous covariate xi ∈ {0, 1} (e.g. “red” nodes vs. “blue” nodes) is a Bernoulli random

variable with success probability 0.4. The taste shifters εij are i.i.d. draws from an extreme-value type-I

distribution.

12Note that the model does not include a homophily effect for the omitted racial category “other,” so that
the link productivity parameter for the omitted category cannot be taken to be normalized to zero.

48



Design 1 Design 2

E[si|xi = x] E[Ii|xi = x] E[si|xi = x] E[Ii|xi = x]
n x = 0 x = 1 x = 0 x = 1 x = 0 x = 1 x = 0 x = 1

100 1.971 1.948 2.307 2.300 7.540 6.560 10.557 8.955
(2.128) (2.106) (0.531) (0.535) (6.018) (5.353) (1.538) (1.364)

500 2.435 2.439 2.613 2.610 11.082 9.334 13.087 10.965
(2.740) (2.726) (0.413) (0.412) (9.945) (8.560) (1.334) (1.175)

1000 2.403 2.395 2.523 2.524 11.530 9.812 13.005 10.920
(2.745) (2.767) (0.344) (0.344) (10.725) (9.332) (1.153) (1.022)

5000 2.579 2.577 2.637 2.636 13.294 11.128 14.072 11.721
(2.989) (2.993) (0.241) (0.241) (13.088) (11.069) (0.854) (0.753)

10000 2.632 2.637 2.675 2.675 13.836 11.580 14.406 12.008
(3.055) (3.061) (0.206) (0.206) (13.815) (11.661) (0.738) (0.651)

DGP 2.660 2.664 2.718 2.718 13.883 11.617 15.012 12.463

Table 2. Average degree (left) and average inclusive value (right).

A.1. Convergence of the link intensity. We first simulate pairwise stable networks without endogenous

interaction effects (“pure homophily” case). Link preferences are given by

Uij = β0 + β1xi + β2|xi − xj |+ εij

A nonzero coefficient for β1 allows for the propensity to form links to vary between the two types, whereas

β2 can be interpreted as a complementarity between nodes of the same type. We use two different designs

in our simulation experiments which set the preference parameters equal to (β0, β1, β2) = (0.5, 0, 0) and

(1.5, 0,−0.5)}, respectively. All simulation results were obtained using 200 Monte Carlo draws.

To illustrate the formal results on convergence of the link intensity, we compare summary statistics of

the simulated distribution and their theoretical counterparts from the limiting distribution in Table 2: The

first set of columns reports the conditional mean and standard deviation (in parenthesis) of the degree of a

node si :=
∑

j ̸=i Lij given the covariate xi = 0, 1, and the second set of columns the conditional mean and

standard deviation of the inclusive value Ii := n−1/2
∑

j ̸=i 1l{Uji ≥ MCj} exp{U∗(xi, xj)}. The DGP values

in Table 2 correspond to the inclusive value function (left) and the expected degree conditional on xi under

the limiting distribution (right).

The first simulation design results in a very sparse network in which nodes have an average degree of

around 2.6, whereas for the second design, the degree distribution is centered around 12-14 links per node,

which may be more typical for real-world social networks. In the first design, types do not matter for agents’

preferences since β1 = β2 = 0, so that, at least up to sampling and numerical errors, inclusive values and

degree distributions do not differ across types xi = 0, 1. For the second design, nodes with xi = 0 have larger

inclusive values and degree distributions than nodes with xi = 1 since the complementarity β2 is positive

and the share of nodes with xi = 1 was set to 0.4. This leaves nodes of the type xi = 0 with a larger number

of link opportunities within their own type category than nodes with xi = 1.

The simulation results replicate by and large the theoretical predictions for large networks. In particular,

the conditional means of Ii and si converge to their asymptotic counterparts, and the cross-sectional variance
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n β̂ML
0 β̂ML

1 β̂ML
2 β̂ML

0 β̂ML
1 β̂ML

2

100 0.442 0.027 0.006 1.116 -0.018 -0.371
(0.203) (0.249) (0.120) (0.460) (0.804) (0.061)

500 0.564 0.002 0.004 1.413 -0.022 -0.432
(0.077) (0.099) (0.046) (0.229) (0.444) (0.022)

1000 0.542 0.004 0.003 1.451 -0.024 -0.450
(0.053) (0.071) (0.030) (0.177) (0.364) (0.016)

5000 0.535 0.001 0.000 1.512 0.003 -0.476
(0.027) (0.032) (0.013) (0.024) (0.031) (0.007)

10000 0.531 -0.002 -0.000 1.521 0.004 -0.483
(0.016) (0.022) (0.009) (0.016) (0.022) (0.004)

DGP 0.500 0.000 0.000 1.500 0.000 -0.500

Table 3. Model without capacity constraints - mean and standard deviation
(in parentheses) of MLE

of Ii decreases, although at a fairly slow rate.13 Note also that the conditional distribution of si given xi

remains non-degenerate in the limit.

A.2. Parameter Estimation with no Endogenous Interaction Effects. We next turn to estimation

of the preference parameter β := (β0, β1, β2)
′. We estimate β via pseudo-maximum likelihood, using the

asymptotic log-likelihood given in Section 4.2.1. Note also that in the absence of strategic interaction effects

E[si|xi = x] = H∗(x) in the limiting model, so that we can use any consistent nonparametric estimator for

E[si|xi = x] to obtain starting values for H∗(x). We use the same design values for the parameter vector β,

and results are for 200 Monte Carlo replications.

One source for small-sample bias in the likelihood results from the use of the inclusive value function

H∗(x) in the limiting representation for the distribution of the edge response when the node forms more

than one link. The derivation for Lemma 3.2 suggests a (partial) bias correction in which we replace H∗(xi)

with Ĩi := H∗(xi) − n−1/2
∑n

j=1 Lij exp{U∗(xi, xj)}. Since the degree distribution remains stochastically

bounded as n increases, the correction term becomes negligible in a very large network. However our

simulation results suggest that such a correction substantially reduces bias for networks of moderate size,

especially in the second design for which the average degree is larger than 10.

The simulation results suggest that the estimators indeed converge to the population values of the param-

eter β, where both bias and standard deviation of the estimator decrease as n grows. However, in contrast

to standard nonlinear estimators for i.i.d. samples from a fixed DGP, the bias of the MLE in our simulation

results appears not to vanish at a rate faster than its standard deviation - in fact the simulation results

are consistent with a root-n rate for both bias and standard error, similar to the findings for the two-sided

matching model in Menzel (2015). This behavior is primarily a result of the slower convergence rate of the

inclusive value functions.

A.3. Parameter Estimation with Capacity Constraints. For another set of simulation results we

modify the previous design by adding a capacity constraint, where the degree of each node is not permitted

to exceed s̄ = 5. We also impose the modified stability notion PSN2 introduced in Definition 4.1 rather than

13Based on the argument for Lemma 3.4, we conjecture that the rate of convergence is n−1/4.
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n β̂ML
0 β̂ML

1 β̂ML
2 β̂ML

0 β̂ML
1 β̂ML

2

100 0.375 0.033 0.011 1.455 0.088 -0.434
(0.279) (0.287) (0.132) (0.337) (0.437) (0.095)

500 0.526 -0.009 0.004 1.521 0.153 -0.471
(0.116) (0.115) (0.053) (0.185) (0.276) (0.037)

1000 0.491 0.013 0.002 1.517 0.079 -0.477
(0.086) (0.091) (0.036) (0.140) (0.221) (0.029)

5000 0.503 0.002 -0.000 1.517 0.026 -0.491
(0.038) (0.038) (0.015) (0.066) (0.098) (0.013)

10000 0.509 -0.003 -0.001 1.514 0.018 -0.493
(0.024) (0.028) (0.011) (0.045) (0.062) (0.009)

DGP 0.500 0.000 0.000 1.500 0.000 -0.500

Table 4. Model with capacity constraints - mean and standard deviation (in
parentheses) of MLE

pairwise stability. This setup can be interpreted as a model of many-to-many matching where each node can

be matched with at most 5 partners.

The constrained MLE maximizes the asymptotic log likelihood given in Section 4.2.2. Since in this design

the degree of any node is capped at s̄ = 5, we omit the bias correction of inclusive values used in the first

set of results, which produces less precise (higher-variance) estimates for networks of moderate sizes. The

starting values for H∗ were obtained by solving the fixed-point equations with the preference parameters β

held fixed at their respective starting values. The simulation results for the MLE for the preference parameter

β are reported in Table 4 and are by and large comparable to those for the baseline model.

A.4. Endogenous Interactions based on Network Degree. For the last simulation design, we allow

for complementarities in network degree, where nodes with greater degree centrality are regarded as more

“attractive” link prospects. Specifically we consider link preferences of the form

Uij = β0 + β1xi + β2|xi − xj |+ β3 min{10, 2 ∗ ⌈sj1/2⌉}+ εij

where sj1 :=
∑n

k=1 Ljk denotes the network degree of node j, and ⌈x⌉ is the value of x ∈ R rounded up

to the next integer. This specification groups agents into 6 discrete categories in terms of network degree,

partitioning S into {{0}, {1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10, . . . }}. This design follows the setup in Section

4.2.3, where the pairwise stable network is obtained from myopic best-response dynamics starting at the full

network graph, Lij = 1 for all i ̸= j, in order to select the largest stable network.

We assume throughout that β3 ≥ 0 and choose the other design parameters β0, β1, β2 in a way that

generates a degree distribution with a reasonable amount of variation across these categories. Specifically,

we use two different designs in our simulation experiments which set the preference parameters equal to

(β0, β1, β2, β3) = (1,−0.5, 0, 0.1) and (0.5, 0,−0.5, 0.1)}, respectively.14 All simulation results were obtained

using 100 Monte Carlo draws.

14A back of the envelope calculation and simulation evidence suggest that both specifications exhibit cas-
cading adjustments to small local changes to the network and do not meet the “subcriticality” condition of
Assumption 6 in Leung (2019).
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n β̂ML
0 β̂ML

1 β̂ML
2 β̂ML

3 β̂ML
0 β̂ML

1 β̂ML
2 β̂ML

3

200 0.820 -0.009 -0.387 0.045 0.956 -0.399 0.009 0.079
(0.357) (0.173) (0.040) (0.039) (0.405) (0.124) (0.024) (0.041)

500 0.711 -0.008 -0.424 0.071 0.965 -0.426 0.003 0.093
(0.256) (0.101) (0.023) (0.028) (0.264) (0.089) (0.014) (0.026)

1000 0.640 0.008 -0.447 0.080 0.973 -0.462 0.001 0.098
(0.203) (0.077) (0.017) (0.021) (0.112) (0.069) (0.009) (0.010)

5000 0.528 -0.002 -0.482 0.097 1.042 -0.536 -0.001 0.100
(0.059) (0.031) (0.007) (0.006) (0.096) (0.074) (0.004) (0.007)

DGP 0.500 0.000 -0.500 0.100 1.000 -0.500 0.000 0.100

Table 5. Model with degree externalities - mean and standard deviation (in
parentheses) of MLE

Simulation results are reported in Table 5. Bias and dispersion of the MLE appear to be of a comparable

order of magnitude as the previous cases, where the bias on the constant β0 is particularly large for smaller

networks. Separate maximization over (β0, β1, β2) and β3, respectively, constraining the remaining parame-

ters to DGP values yield much more accurate partial estimates (not reported here), suggesting that for small

n the likelihood may be fairly flat in the direction of some linear combination of the two parameters.

Appendix B. Proofs

We first give the proofs for the results from Sections 2 and 3. The proof of Theorem 3.2 relies on the

auxiliary results from Section 3.5 which are proven separately in Appendix B.5 below.

B.1. Proof of Lemma 2.1. To verify that the statement in Lemma 2.1 is indeed equivalent to the usual

definition of pairwise stability, notice that if L∗ is not pairwise stable, there exists two nodes i, j with L∗
ij = 0

such that Uij(L
∗) > MCij(L

∗) and Uji(L
∗) > MCji(L

∗). In particular, j is available to i under L∗, i.e.

j ∈ Wi(L
∗), violating (2.5). Conversely, if (2.5) does not hold for node i, then there exists j ∈ Wi(L

∗) such

that Uij(L
∗) ≥ MCij(L

∗). On the other hand, j ∈ Wi(L
∗) implies that Uji(L

∗) ≥ MCji(L
∗), where all

inequalities are strict in the absence of ties. □

B.2. Proof of Theorem 3.1. We give a proof for a more general version of the result which allows for

set-valued edge responses, in particular the fixed-point mapping Ω0 may be set-valued. Specifically Ω0 maps

H∗,M∗ to the subset of the probability simplex ∆S for distributions over S satisfying the constraints∫
S

M̃(s|x1)ds ≤ Ω0[H,M ](S|x) for all S ⊂ S

Formally, the images of Ω0 are Choquet capacities and the set of distributions M̃ satisfying these inequality

constraints is called the core of Ω0[H,M ](·|x1, x2) (see Molchanov (2005) for definitions).

Note first that the conditions of Proposition 3.1 ensure that Ψ0[H,M ] is a continuous, single-valued com-

pact mapping. Next, notice that for any two distributionsM1(s1|x1, x2),M2(s1|x1, x2) satisfying
∫
S
Mj(s1|x1, x2)ds ≤

Ω0(S|x1, x2) for all core-determining sets S ⊂ S × T d∩ , the convex combination λM1 + (1 − λ)M2 satis-

fies the same inequality constraints. Hence, the core of Ω0 is a convex subset of the probability sim-

plex. Furthermore, if M3 is in the complement of the core, there exists at least one set S ∈ S◦ such that
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∫
S
M3(s1|x1, x2)ds > Ω0(S|x1, x2)+ ε, where ε > 0. Then for any distribution M ′ with ∥M ′ −M3∥∞ ≤ ε/2,

we have
∫
S
M ′(s|x)ds > Ω0(S|x1, x2) + ε/2. Hence the complement of the core is open, implying that the

core is also a closed subset of the relevant probability simplex with respect to the L∞-norm. Hence, given

the conditions on Ω0 in Assumption 3.2 (i)-(ii), existence of a fixed point is a direct consequence of the

Kakutani-Fan fixed point theorem for Banach spaces (Theorem 3.2.3 in Aubin and Frankowska (1990)) □

B.3. Proof of Theorem 3.2. We start by deriving the conditional probability of a link L∗
ij for an arbi-

trarily chosen dyad ij given xi,xj , si, sj . By Lemma 3.2, for an any permutation π the potential values

for the network statistics Sij(l) := Siij(l;D
∗
i , D

∗
j ),Sji(l) := Sjij(l;D

∗
i , D

∗
j ) follow the same distribution as

Sπ(i)ij(l;D
∗
i , D

∗
j ),Sπ(j)ij(l;D

∗
i , D

∗
j ) conditional on xi,xj . In particular, the lemma implies that potential

values Sij(l),Sji(l) are finitely exchangeable. Therefore using Theorem 3.1 in Kallenberg (2005) probabili-

ties of events in Sij(l),Sji(l) can be approximated to order n−1 with conditionally independent draws from

a common marginal distribution.

From the definition of the potential value distribution, it follows that node l’s attributes, including the

potential values for sl, are distributed according to M̂∗
l (sl|xijl)w(xl), where M̂∗

l satisfies (3.13). By Lemma

3.6, d(M̂l,M
∗
0 ) = oP (1) for some M∗

0 satisfying the condition (3.8), and d(Ĥ∗
n, H

∗) = oP (1) for an inclu-

sive value function H∗ satisfying condition (3.7). Finally, by Lemma 3.7, the conditional link formation

probability given potential values is given by (3.5). This establishes the stochastic representation of F∗
0 .

In order to establish convergence in probability for m̂n(θ), we first show that the conditional variance of

the appropriately centered moment converges to zero. To this end, let

mn(θ, f
∗
0 ) :=

(
n

2

)−1∑
i<j

h(xi,xj ; si, sj)f
∗
0 (si, sj |xi,xj)

and

ξij := (nL∗
ij − f∗

0 (si, sj |xi,xj))h(xi,xj ; si, sj)

Using this notation, m̂n(θ) − mn(θ, f
∗
0 ) =

(
n
2

)−1∑
i<j ξij . We now show that the conditional variance of

m̂n(θ)−mn(θ, f
∗
0 ) converges to zero.

Using the formula for the variance of a sum,

Var (m̂n(θ)−mn(θ, f
∗
0 )) =

(
n

2

)−2

Var

∑
i<j

ξij


=

(
n

2

)−2
∑

i<j

Var(ξij) +
∑

i<j<k<l

Cov(ξij , ξkl)

+
∑

i<j<k

(Cov(ξij , ξik) + Cov(ξij , ξjk) + Cov(ξij , ξkj) + Cov(ξij , ξki))


=

(
n

2

)−1

Var(ξ12) +

(
n

2

)−2(
n

4

)
Cov(ξ12, ξ34) (B.1)

+4

(
n

2

)−2(
n

3

)
Cov(ξ12, ξ13)

We next determine the first two moments of ξij , ξkl for any index pairs (i, j), (k, l). By the stochastic

representation of F∗
0 , first note that nP(L∗

ij = 1, si, sj |xi,xj) − f∗
0 (si, sj |xi,xj)

p→ 0 for some f∗
0 ∈ F∗

0 as

established before. So in particular E[ξij ] → 0 by the law of iterated expectations.
53



Furthermore, by Assumption 2.1 the systematic part of payoffs is bounded by Ū , and by Assumption 3.1

(ii), J =
[
n1/2

]
. It then follows from Assumption 2.2 that

f∗
0 (si, sj |xi,xj) ≤ f̄ :=

exp{2Ū}
(1 + exp{Ū})2

< ∞

We can therefore bound (
n

2

)−1

Var(ξ12) ≤
(
n

2

)−1

n2f̄/n(1− f̄/n)h̄2 ≤ 2f̄ h̄2

n− 1

where h̄ := supx1,x2,s1,s2 h(x1, x2; s1, s2) < ∞.

By Corollary B.1, we furthermore have that for any edges (ij), (kl),

n2
(
E[L∗

ijL
∗
kl|xi,xj ,xk,xl; si, sj , sk, sl]− E[L∗

ij |xi,xj ; si, sj ]E[L∗
kl|xk,xl; sk, sl]

)
→ 0

almost surely whenever {i, j} ≠ {k, l}. In particular this last statement also holds when the two edges have

one node in common. Since h(·) is bounded, Cov(ξ12, ξ13) → 0, and Cov(ξ12, ξ34) → 0. This rate is not

sharp, but Menzel (2021) finds that Cov(ξ12, ξ34) = O(n−1). Since the present result does not make claims

regarding the convergence rate, we do not replicate that argument here.

We therefore have(
n

2

)−2(
n

3

)
|Cov(ξ12, ξ13)| =

2(n− 2)

3n(n− 1)
|Cov(ξ12, ξ13)| = o(n−1)(

n

2

)−2(
n

4

)
|Cov(ξ12, ξ34)| =

(n− 2)(n− 3)

6n(n− 1)
|Cov(ξ12, ξ34)| = o(1)

Substituting these rates into (B.1), Var (m̂n(θ)−mn(θ, f
∗
0 )) = o(1), so that from Chebyshev’s inequality,

m̂n(θ)−mn(θ, f
∗
0 )

p→ 0. Since x1, . . . , xn are assumed to be i.i.d., we also have mn(θ, f
∗
0 )−m0(θ, f

∗
0 )

p→ 0,

given the bounds on h(·) and f∗
0 stated before □

We next give a proof for a more general version of Theorem 3.3 which allows for set-valued edge responses,

in particular the fixed-point mapping Ω0 may be set-valued. In that scenario, the fixed point mapping

Ω0[H,M ] will generally be set valued, so we first introduce the notion of a Choquet capacity and its core to

describe its formal properties:

A mapping Q̄ : 2S → [0, 1] is called a Choquet capacity (upper probability) on the set S if (a) Q̄(∅) = 0,

Q̄(S) = 1, (b) Q̄ is monotone with respect to set inclusion, i.e. Q̄(S′) ≤ Q̄(S) whenever S′ ⊂ S ⊂ S, and (c)

for any increasing sequence of subsets (Sn)n≥0 of S, limn Q̄(Sn) = Q̄
(⋃

n≥0 Sn

)
, whereas for any decreasing

sequence of subsets (Sn)n≥0, limn Q̄(Sn) = Q̄
(⋂

n≥0 Sn

)
. The core of the capacity Q̄ is then defined as the

set of all probability distributions Q(s) over S such that∫
S

Q(s)ds ≤ Q̄(S) for all subsets S ⊂ S

B.4. Proof of Theorem 3.3. The joint mapping Υ0 : (H×M) ⇒ (H×M) then generalizes to

Υ0 :

[
H

M

]
→

[
Ψ0[H,M ]

core Ω0[H,M ]

]
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Following Aubin and Frankowska (1990), the contingent derivative of Υ0 at (z′0, y0)
′ ∈ gph Φ is defined as

the set-valued mapping DΥ0(z0, y0) : Z ⇒ Z such that for any u ∈ Z

v ∈ DΥ0(z, y)(u) ⇔ lim inf
h↓0,u′→u

d

(
v,

Υ0(z0 + hu′)− y

h

)
= 0

where d(a,B) is taken to be the distance of a point a to a set B (see their Definition 5.1.1 and Proposition

5.1.4 in Aubin and Frankowska (1990)). For the special case of a unique edge response, note that if the

correspondence Υ0 is singleton-valued and differentiable, the contingent derivative is also single-valued and

equal to the derivative of the function Υ0(z). The contingent derivative of Υ0 is surjective at z0 if the range

of DΥ0(z0, y0) is equal to Z.

Furthermore, recall that the tangent cone to a setK ⊂ Z (say) is defined as the set TK(z) := lim suph↓0
1
h (K−

z) where K−z := {(y−z) : y ∈ K}. In particular, the tangent cone at a point z in the interior of K relative

to Z is all of Z. The proof of the Theorem then relies on a fixed point theorem for inward mappings, where

the mapping Υ0 is said to be inward on a convex set K ⊂ Z if Υ0[z] ∩ (z + TK(z)) ̸= ∅ for any z ∈ K and

TK(z) denotes the tangent cone to K in Z. Since the mapping Υ0[H,M ] is well-defined for any non-negative

function H and distribution M , we can furthermore Z take to be convex without loss of generality.

Since the contingent derivative of the mapping Υ0[z]− z is surjective by assumption, we can use Lemma

C.1 in Menzel (2016) to conclude that Υ0 is an inward mapping when restricted to a neighborhood of any

of its fixed points. Furthermore, Υ0 and Υ̂n are also convex-valued mappings since the sets Ψ̂n and Ψ0 and

core Ω0 are convex by standard properties of the core. Finally, Υ̂n converges uniformly to Υ0 by Lemma

B.2, so that w.p.a.1 Υ̂n is also locally inward. In complete analogy to the proof for Theorem 3.1 part (b)

in Menzel (2016), local existence of a fixed point then follows by Theorem 3.2.5 in Aubin and Frankowska

(1990), noting that this fixed point result applies to general Banach spaces □

B.5. Proofs for Results in Section 3.5. We next prove the Lemmas from section 3.5, which are then

used to establish the conclusion of Theorem 3.2.

Proof of Lemma 3.1. By construction, support of the potential values Z∗
kij(l;Di, Dj) for a fixed proposal

network Di, Dj and l ∈ {0, 1} is fully determined by node attributes X and taste shocks for nodes k /∈ {i, j}.
Since there are no common components of these variables with {εik, εjk,MCi,MCj : k /∈ {i, j}}, indepen-
dence follows from the fact that taste shocks were assumed to be i.i.d. conditional on X by Assumption

2.2 □

Proof of Lemma 3.2. We first prove the assertion for a pairwise permutation, where τ(k) = h, and then argue

that the pairwise argument extends to arbitrary permutations of indices. For this pairwise permutation, we

now compare the probability that potential values S∗
kij(l,Di, Dj) = sk are supported by a pairwise stable

network to that of the permuted analog S∗
τ(k)ij(l,Di, Dj) = sk being supported.

We establish the conclusion by induction, where we start from a pairwise stable network supporting

proposals D∗
i , and then restrict elements of Di, one by one. For the start of induction, we can immediately

see that the conclusion of the Lemma holds for Di = D∗
i since node attributes and taste shocks are identically

distributed, and payoffs are therefore jointly exchangeable. Therefore we only need to establish the inductive

step where for Di differing in at most r − 1 components from D∗
i , we alter an additional proposal Dijr :=

1−D∗
ijr

.

Specifically, suppose that the assertion of the lemma holds for any Di such that there exists a set of

proposals D∗
i that is supported by a pairwise stable network and ∥Di−D∗

i ∥ ≤ r− 1. For such a pair Di, D
∗
i ,

we now change Dijr := 1 − D∗
ijr

, while leaving all other entries unchanged. Without loss of generality,
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we assume that the proposal is changed from zero to Dijr = 1. Given the inductive hypothesis, it now

suffices to show that the effect of this change is the same for the probability that the potential values

S∗
kij(l,Di, Dj) = sk, or S

∗
τ(k)ij(l,Di, Dj) = sk respectively, are supported by a pairwise stable network.

To this end, we need to distinguish whether or not there may be indirect “interference” effects from

a changing Dijr on the potential values for sk that are supported by a pairwise stable network holding

fixed l and the other entries of Di, Dj . Adapting the terminology from Leung (2019), we say that a link

ij is not robust if there exist values of s1, s2 and s′1, s
′
2 such that U∗(xi, xj ; s1, s2) + σεij ≥ MCi and

U∗(xj , xi; s2, s1) + σεji ≥ MCj , but also either U∗(xi, xj ; s
′
1, s

′
2) + σεij < MCi or U

∗(xj , xi; s2, s1) + σεji <

MCj . That is, a link is not robust given realized payoffs if there exist one configuration of values of si, sj

such that Lij = 1 is pairwise stable, and another such that it is not.

To make this argument precise, we now characterize events regarding whether a switch of Dijr blocks

a chain of non-robust link formation decisions given the network L∗ that was pairwise stable given the

restrictions on l,Di, Dj . For any l /∈ {i, jr}, let Akl denote an indicator for the event that there exists a

collection of proposals D∗ := (Dij)i,j≤n satisfying the pairwise stability conditions given the link proposals

Di, Dj such that for the resulting network L∗ :=
(
D∗

ijD
∗
ji

)
i,j
,

1l{Ukl(L
∗ + (ijr)) ≥ MCk,Ulk(L

∗ + (ijr))−MCl} ≠ 1l{Ukl(L
∗ − (ijr)) ≥ MCk,Ulk(L

∗ − (ijr))−MCl}

In words, Akl is an indicator for whether a change to the link Lijr changes whether the link kl is pairwise

stable.

For h ∈ {1, . . . , n} we then let Bh(q;F ) be an indicator for the event that there exists a collection of

proposals D∗ := (Dij)i,j≤n satisfying the pairwise stability conditions given the link proposals Di, Dj such

that D∗
jri

= 1,
∑

l Ahl = q and the conditional empirical distribution of xl, s
∗
l given Ahl = 1 is equal to F .

By Assumptions 2.1 (iii) and 3.1 (ii), q is stochastically bounded. We then define Bh,ijr as the sigma-field

generated by {Bh(q;F ) : q = 0, 1, . . . , n− 1, F is a c.d.f.}.
Now conditional on the two nodes τ(k) = h and k satisfying D∗

τ ′(i)h = Dik, D
∗
τ ′(j)h = Djk for some

permutation τ ′, possibly different from τ , we have by the inductive hypothesis that for each q and F ,

Bh(q;F ) and Bk(q;F ) have the same probability. We then distinguish all possible cases whether or not

a change to Dijr triggers a chain of adjustments through h or k, or neither, corresponding to the events

Bh,ijr (qh, Fh) and Bk,ijr (qk, Fk) for all combinations of (qh, Fh) and (qk, Fk). If we can show that conditional

on a partition in terms of these events, the distribution of network statistics is the same for nodes h and k,

then conditional invariance given xi,xj ,xk and D∗
τ ′(i)k = Dik, D

∗
τ ′(j)k = Djk follows from the law of total

probability.

Specifically we first consider the (potentially overlapping) events

C(q1, q2, F1, F2) := {Bh(q1, F1) = Bk(q2, F2) = 1}

as the arguments q1, q2 and F1, F2 vary freely. We first consider the case q2 = q1 and F2 = F1: by definition

of the event C(q1, q1, F1, F1), a switch in Dijr triggers q1 chains of adjustments starting at node h. Any such

chain may reach node k after a change to l, and depending only on the signs of U∗(xl, xk; sl, sk)+σεlk−MCl

and U∗(xk, xl; sk, sl)+σεkl−MCk. Similarly, the chain reaches h after that same change depending only on

the signs of U∗(xl, xh; sl, sh) + σεlh −MCl and U∗(xh, xl; sh, sl) + σεhl −MCh. By inspection, conditional

on BE1,h and BE1
τ ,k the distributions of (εlk, εkl,MCk,xk) and (εlh, εhl,MCh,xh) are the same, so that

for sh = sk, the probability that the chain proceeds to h is equal to that of the chain proceeding to k.

Finally, conditional on D∗
τ ′(i)h = Dik,D

∗
τ ′(j)h = Djk, the resulting changes on whether Shij(l,Di, Dj) = sk

and Skij(l,Di, Dj) = sk are supported are the same.
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Hence, given D∗
τ ′(i)h = Dik,D

∗
τ ′(j)h = Djk, the conditional probability that Shij(l,Di, Dj) = sk is sup-

ported given C(q1, q1;F1, F1) is equal to that of Skij(l,Di, Dj) = sk being supported given C(q1, q1;F1, F1).

For the case (q1, F1) ̸= (q2, F2), we can follow an analogous line of argument to conclude that conditional

on D∗
τ ′(i)h = Dik,D

∗
τ ′(j)h = Djk, the conditional probability that Shij(l,Di, Dj) = sk is supported given

C(q1, q2;F1, F2) is equal to that of Skij(l,Di, Dj) = sk being supported given C(q2, q1;F2, F1). Since the

events C(q2, q1;F2, F1) and C(q2, q1;F2, F1) have equal probability, it follows from the law of total proba-

bility that the conditional distributions are the same given the union C(q1, q2;F1, F2) ∪C(q2, q1;F2, F1). A

similar line of reasoning gives us the analogous conclusion conditional on any intersections of “symmetrized”

events C(q1, q2;F1, F2)∪C(q2, q1;F2, F1), . . . ,C(qR, qR+1;FR, FR+1)∪C(qR+1, qR;FR+1, FR), allowing us to

construct a partition of the event D∗
τ ′(i)h = Dik,D

∗
τ ′(j)h = Djk such that invariance with respect to τ holds

conditional on each element in that partition. By the law of total probability, this completes the inductive

step from r − 1 to r.

This establishes the claim of the Lemma for a binary permutation τ such that τ(k) = h. Since an arbitrary

permutation can be generated by a sequence of pairwise swaps of indices, this is sufficient to establish the

main conclusion of the Lemma. The generalization of this argument to two (or any finite number of) potential

values is immediate □

Proof of Lemma 3.3. This result is a generalization of Lemma B.1 in Menzel (2015). We therefore refer to

the proof of that result for some of the intermediate technical steps below.

By independence of εi1, . . . , εiN ,

JrΦn(i, j1, . . . , jr) = Jr

∫ ( r∏
q=1

P(Uijq ≥ σw)

) ∏
q≥r+1

P(Uijq < σw)Djqi

 JG(w)J−1g(w)dw

= Jr

∫ ( r∏
q=1

(1−G(w − σ−1Ũijq ))

) ∏
q≥r+1

G(w − σ−1Ũijq )
Djqi

 JG(w)J−1g(w)dw

=

∫ ( r∏
q=1

J(1−G(w − σ−1Ũijq ))

)
J
g(w)

G(w)

× exp

J logG(w) +
1

J

∑
q≥r+1

JDjqi logG(w − σ−1Ũijq )

 dw

Now let bJ := G−1
(
1− 1

J

)
and aJ = a(bJ), where a(·) is the auxiliary function in Assumption 2.2 (ii).

By Assumption 3.1 (iii), σ = 1
a(bJ )

, so that a change of variables w = aJ t+ bJ yields

JrΦn(i, j1, . . . , jr) =

∫ ( r∏
q=1

J(1−G(bJ + aJ(t− Ũijq )))

)
J
aJg(bJ + aJ t)

G(bJ + aJ t)

× exp

J logG(bJ + aJ t) +
1

J

∑
q≥r+1

JDjqi logG(bJ + aJ(t− Ũijq ))

 dt

By Assumption 2.2 (ii), J(1−G(bJ + aJ t)) → e−t and

JaJg(bJ + aJ t) = Ja(bJ)g(bJ + a(bJ)t) = a(bJ)
1−G(bJ + aJ t)

a(bJ + aJ t)(1−G(bJ))
→ e−t
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where the last step uses Lemma 1.3 in Resnick (1987). Also, following steps analogous to the proof of Lemma

B.1 in Menzel (2015), we can take limits and obtain

r∏
q=1

J(1−G(bJ + aJ(t− Ũijq ))) → exp

{
−rt+

r∑
q=1

Ũijq

}
J logG(bJ + aJ(t− Ũijq )) → −e−t exp{Ũijq}

Combining the different components, we can take the limit of the integrand in (B.2),

RJ(t) :=

(
r∏

q=1

J(1−G(bJ + aJ(t− Ũijq )))

)
J
aJg(bJ + aJ t)

G(bJ + aJ t)

× exp

J logG(bJ + aJ t) +
1

J

∑
q≥r+1

JDjqi logG(bJ + aJ(t− Ũijq ))


= exp

−e−t

1 +
1

J

∑
q≥r+1

Djqi exp{Ũijq}

− (r + 1)t+
r∑

q=1

Ũijq

+ o(1) (B.2)

for all t ∈ R. Using the same argument as in the proof of Lemma B.1 in Menzel (2015), pointwise convergence

and boundedness of the integrand imply convergence of the integral by dominated convergence, so that we

obtain

JrΦn(i, j1, . . . , jr) →
∫ ∞

−∞
exp

−e−t

1 +
1

J

∑
q≥r+1

Djqi exp{Ũijq}

− (r + 1)t+

r∑
q=1

Ũijq

 dt

=

∫ 0

−∞
exp

s

1 +
1

J

∑
q≥r+1

Djqi exp{Ũijq}

+

r∑
q=1

Ũijq

 srds

=
r! exp{

∑r
q=1 Ũikq

}(
1 + 1

J

∑
q≥r+1 Djqi exp

{
Ũikq

})r+1

where the first step uses a change of variables s = −e−t, and the last step can be obtained recursively via

integration by parts. Furthermore, if r
J → 0, boundedness of the systematic parts from Assumption 2.1

implies that ∣∣∣∣∣∣ 1J
J∑

j=1

exp
{
Ũij

}
− 1

J

J∑
q=r+1

exp
{
Ũikq

}∣∣∣∣∣∣→ 0

so that

JrΦn(i, j1, . . . , jr|z∗i ) →
r!
∏r

q=0 exp{Ũikq}(
1 + 1

J

∑J
j=1 exp

{
Ũij

})r+1

which completes the proof □

Proof of Lemma 3.4. For completeness, we give the following proof explicitly for the general case of a

(potentially) non-unique edge response. Without loss of generality, we develop the formal argument only

for the case in which the payoff-relevant network characteristic is binary, S = {s, s̄}, where U∗(x, x′; s, s′) ≤
U∗(x, x′; s̄, s′) and U∗(x, x′; s, s) ≤ U∗(x, x′; s, s̄) for all values of x, x′, s′.

Let S∗
i ⊂ S denotes the set of values for si supported by the edge response for i, and let

B0 := {j : S∗
j = S}
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denote the set of nodes for whom both values for sj are supported by j’s edge response. For each node i we

also define

Ai := {j : U∗(xj , xi; s, si) ≥ MCj − σεji} ∩B0

and

Bi := {j : U∗(xj , xi; s, si) < MCj − σεji ≤ U∗(xj , xi; s̄, si)} ∩B0

be the set of nodes with a non-unique edge response that are available to i for any value of sj . As a notational

convention, i /∈ Ai ∪Bi. Note that by Assumption 3.1 and Lemma 3.3, P(j ∈ Ai),P(j ∈ Bi) = O(n−1/2).

Define aij := 1l{j ∈ Ai} exp{U∗(xi, xj ; si, s)}, bij := 1l{j ∈ Bi} exp{U∗(xi, xj ; si, s̄)}, and cij := 1l{j ∈
Ai}(exp{U∗(xi, xj ; si, s̄)} − exp{U∗(xi, xj ; si, s)}), and gij := bij + cij . Note that given xi,xj , (bij , cij)

are conditionally independent across i, j. We also let ∆iaij := aij − E[aij |xi = x, s ∈ S∗
i ] and ∆igij :=

gij − E[gij |xi = x, s ∈ S∗
i ].

We now introduce the allocation parameter αj ∈ [0, 1] corresponding to the probability with which node

j is assigned to choose the edge response sj = s̄, so that sj = s will be chosen with probability 1 − αj . In

particular, for a given choice of α := (α1, . . . , αn)
′, the inclusive value for agent i is given by

Ii[α] = n−1/2
n∑

j=1

(aij + αjgij) ,

and the inclusive value function

Ĥ∗
n(x, s;α) := n−1/2

n∑
j=1

(E[aij |xi = x, s ∈ S∗
i ] + αjE[gij |xi = x, s ∈ Si])

Hence, we can write

Ii[α]− Ĥ∗
n(x, s;α) = n−1/2

n∑
j=1

(aij − E[aij |xi = x, s ∈ S∗
i ] + αj(gij − E[gij |xi = x, s ∈ Si]))

= n−1/2
n∑

j=1

(∆iaij + αj∆igij)

We can now quantify the average dispersion of Ii about its conditional mean by

V̂n[α] :=
1

n

n∑
i=1

(Ii[α]− Ĥ∗
n(xi, si;α))

2

for a given value of α. To find an upper bound for a given realization of payoffs, we can solve the problem

max
α

V̂n[α] subject to α1, . . . , αn ∈ [0, 1]. (B.3)

This upper bound is generally not sharp since for some nodes j only either value of sj may be supported by

the edge response. Multiplying out the square, we obtain

V̂n[α] =
1

n

n∑
i=1

n−1/2
n∑

j=1

(∆iaij + αj∆igij)

2

=
1

n

n∑
i=1

n−1/2
n∑

j=1

∆iaij

2

+ 2

n−1/2
n∑

j=1

∆iaij

n−1/2
n∑

j=1

αj∆igij

+

n−1/2
n∑

j=1

αj∆igij

2
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where by a LLN, n−1/2
∑n

j=1 ∆iaij
p→ 0 (see also Lemma B.5 in Menzel (2015) for a detailed proof), so that

max
α

V̂n[α] =
1

n
max
α

n∑
i=1

n−1/2
n∑

j=1

αj∆igij

2

+ op(1)

=
1

n2
max
α

n∑
j=1

n∑
k=1

αjαk

n∑
i=1

∆igij∆igik + op(1)

where in the last step we multiplied out the square and changed the order of summation.

Now, for j ̸= k,

Var(∆igij∆igik) = E[(∆igij)
2(∆igik)

2]− (E[∆igij∆igik])
2
= O(n−1)−O(n−2)

and

Var(∆ig
2
ij) = E[(∆igij)

4]−
(
E[∆ig

2
ij ]
)2

= O(n−1/2)−O(n−1)

Since ∆igik is bounded for all i, k, we can use a CLT to conclude that for any j ̸= k

Zjk,n :=

n∑
i=1

∆igij∆igik = Op(1), and Zjj,n := n−1/4
n∑

i=1

∆ig
2
ij = Op(1)

where Assumption 2.1 implies that the asymptotic variances of Zjk,n and Zjj,n are bounded. Furthermore,

E[Zjk] = 0 for j ̸= k, and Zjk,n are independent across 1 ≤ j ≤ k ≤ n.

Next, we can bound the sum corresponding to the “diagonal” elements Zjj,n by

1

n2

n∑
j=1

α2
j

n∑
i=1

∆ig
2
ij ≤

1

n2
max
α

n∑
j=1

α2
jn

1/4Zjj,n = n−7/4
n∑

j=1

Zjj,n = Op(n
−3/4)

noting that Zjj,n ≥ 0 a.s., so that the maximum in the second expression is attained at α1 = · · · = αn = 1.

In the following, we let Zn be the symmetric matrix whose (j, k)th element is Zjk,n for j ̸= k, and where we

set Zjj equal to zero.

Given these definitions, we can express the maximum in matrix notation and bound

max
α

V̂n[α] =
1

n
max
α

1

n
α′Znα+ op(1) ≤

1

n
max
α

α′Znα

α′α
+ op(1) ≡ n−1/2λmax(n

−1/2Zn) + op(1)

where λmax(A denotes the largest eigenvalue of a symmetric matrix A. For the second step, notice that

|αj |2 ≤ 1 for each j, so that the scalar product α′α ≤ n for each permissible α.

Also, Zn is a symmetric matrix with entries which, conditional on x1, . . . , xn, are independent although in

general not identically distributed, bounded, mean zero random variables. Furthermore, if we pre- and post-

multiply the matrix Zn with the diagonal matrix H := diag(1/σi), where σ2
i := 1

n

∑
j ̸=i Var(∆ig

2
ij |xi), then

the entries also have constant variance. It therefore follows from Theorem 2 of Füredi and Komlós (1981)

that the maximal eigenvalue of n−1/2HZnH is bounded from above by a finite constant with probability

approaching 1, so that

E
[
max
α

V̂n[α]
]
= O(n−1/2) (B.4)

which converges to zero.
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Now let j̃ be drawn uniformly at random from the set {1, . . . , n}. For any η > 0 we can use Chebyshev’s

Inequality to bound

P
(
(Ij̃ − Ĥ∗

n(xj̃ , sj̃))
2 > η2

)
=

1

n

n∑
i=1

P
(
(Ii − Ĥ∗

n(xi, si))
2 > η2

)
≤ 1

η2
1

n

n∑
i=1

E[(Ii − Ĥ∗
n(xi, si))

2]

≤ 1

η2
E
[
max
α

V̂n[α]
]
= o(1)

for an arbitrary selection from the edge responses, where the right-hand side bound is uniform across all

possible selections from pairwise stable networks and converges to zero by (B.4). This establishes convergence

that is pointwise in x, s but uniform in all selections from the best response.

This establishes claim (a) of the Lemma for the case in which S has only two elements. An generalization to

the case in which S hasK < ∞ elements follows the exact same steps but requires additional case distinctions

and an allocation parameter α in the K-dimensional probability simplex. Finally, for the general case in

which S may have infinitely many elements, note that by Assumption 2.1, the systematic part of payoffs

only varies over a bounded interval [−Ū , Ū ] as s1, s2 vary. Furthermore, U(x1, x2; s1, s2) is Lipschitz in s2,

so that by compactness of S, we can cover the set of functions {exp{U(x1, x2; s1, s)} : s ∈ S} with a finite

number K of L2-norm brackets of width η/2, using standard arguments (see e.g. Example 19.7 in van der

Vaart (1998)). Identifying the kth bracket with an element exp{U(x1, x2; s1, s
(k))}, for any s ∈ S we can

therefore find s(k) ∈ {s(1), . . . , s(K)} ⊂ S such that∫
| exp{U(x1, x2; s1, s)} − exp{U(x1, x2; s1, s

(k))}|w(x1)w(x2)dx1dx2 < η

for each s1 ∈ S. A simple calculation then shows that the difference between the analogs of the worst-case

bounds in B.3 for the discrete set s(1), . . . , s(K) ⊂ S and the full set S is less than ε, which can be made

arbitrarily small.

For claim (b), note however that the argument for point-wise convergence in part 1 still goes through

after multiplying the contribution of node i with bounded weights ω(xi; si). Uniformity with respect to ω(·)
then follows from the GC condition and using arguments that are analogous as for part (b) of Lemma B.5

in Menzel (2015). For the case of 2 < |S| < ∞, the argument is identical except that allocation parameter

αj is now (|S| − 1)-dimensional which increases the bounding constant by a finite multiple □

Size of Opportunity Sets. The next auxiliary result concerns the rate at which the number of available

potential spouses increases for each individual in the market. For a given PSN L∗, we let

J∗
i := Ji[L

∗] :=

n∑
j=1

1l {Uji(L
∗) ≥ MCj}

denote the size of the link opportunity set available to agent i. Similarly, we let

K∗
i := Ki[L

∗] :=

n∑
j=1

1l {Uij(L
∗) ≥ MCi}

so that K∗
i is the number of nodes to whom i is available.

Lemma B.1 below establishes that in our setup, the number of available potential matches grows at a

root-n rate as the size of the market grows.
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Lemma B.1. Suppose Assumptions 2.1-2.2 and 3.1 hold. Then for any pairwise stable network and each

i = 1, . . . , n,

exp{−Ū} ≤ n−1/2J∗
i ≤ exp{Ū}

exp{−Ū} ≤ n−1/2K∗
i ≤ exp{Ū}

with probability approaching 1 as n → ∞.

Proof of Lemma B.1: Notice that in the absence of interaction effects across links, Dji does not depend

on the number of “proposals” that can be reciprocated, but only the magnitude of MCi. Furthermore, by

Assumption 2.1, the systematic parts of payoffs are uniformly bounded for all values of si, sj . Hence the

proof closely parallels the argument for the matching case, and the conclusion of this lemma follows the same

sequence of steps as in the proof of Lemma B.2 in Menzel (2015) □

Proof of Lemma 3.5. Aggregating over j ̸= i, we define

Ĥ∗
n(xi; si) := n−1/2

∑
j ̸=i

exp{U∗(xi, xj ; si, sj)}P(Dji = 1|Wj(L
∗))

= n−1/2
∑
i∈Wj

exp{U∗(xi, xj ; si, sj)}P(Dji = 1|Wj(L
∗) = Wj)

+n−1/2
∑
i/∈Wj

exp{U∗(xi, xj ; si, sj)}P(Dji = 1|Wj(L
∗) = Wj)

The asymptotic approximation to the edge response in Lemma 3.3 implies

n1/2P(Dji = 1|Wj(L
∗) = Wj) = n1/2E[Φ(j, i1, . . . , ir|z∗j )|Wj(L

∗) = Wj ]1l{i ∈ {i1, . . . , ir}}

= n1/2
∑
r≥0

∑
i1,...,ir

Φ(j, i1, . . . , ir|z∗j )1l{i ∈ {i1, . . . , ir}}

=
∑
r≥0

(r + 1)!

r!

exp{U∗(xj , xi; (r, s
′
2j)

′, si) + U∗(xi, xj ; si, (r, s
′
2j)

′)}(I∗j )r

(1 + I∗j )
r+2

+ op(1) < ∞

Since the last expression is uniformly bounded in si and I∗j ≥ 0, it follows that

n−1/2
∑

i∈Wj(L∗)

exp{U∗(xi, xj ; si, sj)}P(Dji = 1|Wj(L
∗)) = op(1)

noting that by Lemma B.1, |{j : i ∈ Wj(L
∗)}|/n → 0 almost surely. Hence the contribution of nodes j such

that i ∈ Wj(L
∗) to the inclusive value is negligible to first order.

Next consider the nodes j such that i /∈ Wj(L
∗). Note that in that case, a link proposal to i does not

result in a new link, and therefore Dji does not affect the network structure. Hence, for given values of si, sj

and payoff shocks, the link proposal indicator Dji is uniquely determined. Hence, using Lemma 3.3 again,

Ĥ∗
n(xi; si) = n−1/2

∑
i/∈Wj

exp{U∗(xi, xj ; si, sj)}P(Dji = 1|Wj(L
∗) = Wj) + op(1)

=
1

n

n∑
j=1

s∗1j,+i exp{U∗(xi, xj ; si, sj) + U∗(xj , xi; sj , si)}
1 + I∗j

+ op(1)

where the last expression depends on the empirical distribution of endogenous network characteristics given

exogenous traits. We can therefore write

Ĥ∗
n(xi; si) =

1

n

n∑
j=1

s∗1j,+i exp{U∗(xi, xj ; si, sj) + U∗(xj , xi; sj , si)}
1 + Ĥ∗

n(xj ; sj)
+ op(1) (B.5)
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Substituting in the definition of Ψ̂n in (3.10), we obtain pointwise convergence in x, s. Uniformity follows

from the Donsker property of the fixed point mapping (see Example 2.10.25 in van der Vaart and Wellner

(1996)), noting that I∗j and Ĥ∗
n are guaranteed to be nonnegative □

Proof of Corollary 3.1: Given part (i) of Proposition 3.1, it is sufficient to show that E[si1|xi = x] is

uniformly bounded for x ∈ X . To this end, notice that for payoffs of the form U∗(x1, x2; s1, s2) = U∗(x1, x2),

the inclusive value function only depends on x, i.e. H∗(x; s) = H∗(x). Furthermore, the edge response is

unique so that the conditional degree distribution given xi = x has p.d.f. P(si1 = s|xi = x) = H∗(x)s

(1+H∗(x))s+1 .

Hence, the conditional expectation of si1 is given by

E[si1|xi = x] =

∞∑
s=0

s
H∗(x)s

(1 +H∗(x))s+1
=

1

1 +H∗(x)

∞∑
s=0

s

(
H∗(x)

1 +H∗(x)

)s

=:
1

1 +H∗(x)

∞∑
s=0

sδs =
1

1 +H∗(x)

δ

(1− δ)2
= H∗(x)

where δ := H∗(x)
1+H∗(x) . Finally, it remains to be shown that H∗(x) is uniformly bounded: from the fixed-point

condition (3.7),

Ψ[H,M ](x) =

∫
sj1 exp{U∗(x, xj ; s, sj) + U∗(xj , x; sj , s)}

1 +H(xj)
M(sj |xj , x)w(xj)dsjdxj

=

∫
H∗(xj) exp{U∗(x, xj ; s, sj) + U∗(xj , x; sj , s)}

1 +H(xj)
M(sj |xj , x)w(xj)dsjdxj

≤ exp{2Ū}

where Ū < ∞ is the bound in Assumption 2.1. Hence the range of Ψ0 is uniformly bounded, so that the

fixed point H∗ also has to satisfy this bound □

Proof of Lemma 3.6. For the first claim of the Lemma, notice that the fixed point condition (3.11) is a direct

consequence of Lemmas 3.4 and 3.5. Furthermore, (3.13) holds by construction of the mapping Ω̂n, where

the exact form of the fixed-point mapping has to be derived separately for the problem at hand. For the

proof of the second claim, we first state the following Lemma:

Lemma B.2. Suppose the conditions for Proposition 3.1 hold. Then the mapping

Ψ̂n[H,M ](x; s)
p→ Ψ0[H,M ](x; s)

uniformly in H ∈ H, M ∈ M, and (x′, s)′ ∈ X × S as n → ∞.

This result is a straightforward extension of Lemma B.6 in Menzel (2015), a separate proof will therefore

be omitted.

Now let

Z∗ := {(H∗,M∗) : H∗ ∈ Ψ0[H
∗,M∗],M∗ = Ω0[H

∗,M∗]}

be the set of fixed points of (3.7) and (3.8). Since the respective ranges of Ψ0 and Ω0 are contained in H
and M, respectively, any fixed points must be in H×M, so that it is sufficient to consider the fixed-point

mapping restricted to that compact space.

Now fix δ > 0 and define

η := inf

{
sup

x1,x2,s
|M(s1|x1, x2)− Ω0[H,M ](s1|x1, x2)|+ sup

x,s
|Ψ0[H,M ](x; s)−H(x; s)| : d((H,M),Z∗) ≥ δ

}
.

(B.6)
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By definition of Z∗, we must have that either

sup
x1,x2,s

|M(s1|x1, x2)− Ω0[H,M ](s1|x1, x2)| > 0

or

sup
x,s

|Ψ0[H,M ](x; s)−H(x; s)| > 0

for any (H,M) /∈ Z∗. Furthermore the δ-enlargement (Z∗)
δ
:= {(H,M) ∈ H ×M : d((H,M),Z∗) < δ} is

open, so that its complement is closed. Since any closed subset of a compact space is compact, the set

{(H,M) ∈ H ×M : d(H,M) ≥ δ} is compact. Since furthermore the quantities supx1,x2,s |M(s1|x1, x2) −
Ω0[H,M ](s1|x1, x2)| and supx,s |Ψ0[H,M ](x; s)−H(x; s)| are continuous in H,M , the infimum in the defi-

nition of η in (B.6) is attained, which implies that η > 0.

Finally, by Lemma B.2 and Assumption 3.2 (iii), the fixed-point mappings Ω̂n and Ψ̂n converge uniformly

to the respective limits, Ω0 and Ψ0. In particular, for any ζ > 0, we can find nζ < ∞ such that for all

n ≥ nζ , supM,H ∥Ω̂n[H,M ]−Ω0[H,M ]∥ < ζ/2 and supM,H ∥Ψ̂n[H,M ]−Ψ0[H,M ]∥ < ζ/2 with probability

greater than 1 − ζ. It follows that as n increases, any point (Ĥ∗, M̂∗) satisfying the fixed point conditions

(3.11) and (3.13) is contained in (Z∗)
δ
w.p.a.1, establishing the second claim □

Proof of Lemma 3.7. We establish the conclusion by considering the conditional probability of link propos-

als D∗
i , D

∗
j given potential outcomes S∗

kij(l,D
∗
i , D

∗
j ). D

∗
i , D

∗
j are determined by potential values Ski(l, di, dj)

where di, dj ∈ {0, 1}n. Whether those potential values are supported by a pairwise stable network is in-

dependent from payoff shocks {εik, εjk,MCi,MCj : k /∈ {i, j}} by Lemma 3.3. Furthermore, S∗
ij(l) :=

Sij(l,D
∗
i , D

∗
j ), where Sij(l, di, dj) and Sji(l, dj , di) are independent of {εik, εjk,MCi,MCj : k /∈ {i, j}} for

each di, dj by Lemma 3.1.

Now, let D∗
i ∈ {0, 1}n denote the vector of indicators (D∗

ik)
n
k=1 and consider any values di, dj ∈ {0, 1}n

that support the potential values S∗
ij(l, di, dj) = si,S

∗
ji(l, dj , di) = sj . Without loss of generality, we set dik =

djk = 0 for k = i, j. Define Φn(di, dj) as the conditional probability of the event D∗
ikDki = dik, D

∗
jkDkj = djk

for all k /∈ {i, j} given potential values Zkij(l,D
∗
i , D

∗
j ) = (sk, Dki, Dkj).

Then by Lemmas 3.3 and 3.4,

lim
n

rnΦn(di, dj) = Φ(di, dj) := ∥di∥!∥dj∥!
exp

{∑n
k=1(dikU

∗
ik + djkU

∗
jk)
}

(1 +H∗(xi; si))(1 +H∗(xj ; sj))

where rn := n(∥di∥+∥dj∥)/2 and ∥d∥ :=
(∑n

k=1 d
2
k

)1/2
denotes the Euclidean norm.

By the same argument, nrn times the conditional probability of that same elementary outcome regarding

D∗
i,−j , D

∗
j,−i together with availability D∗

ij , D
∗
ji is

Φ(di + (ij), dj + (ji)) := (∥di∥+ 1)(∥dj∥+ 1)
exp

{
U∗
ij + U∗

ji

}
(1 +H∗(xi; si))(1 +H∗(xj ; sj))

Φ(di, dj)

Taking ratios, n times the conditional probability that D∗
ij = D∗

ji = 1 given D∗
ikDki = dik, D

∗
jkDkj = djk for

all and potential outcomes for sk for k /∈ {i, j} converges to

Φ(di + (ij), dj + (ji))

Φ(di, dj)
= (∥di∥+ 1)(∥dj∥+ 1)

exp
{
U∗
ij + U∗

ji

}
(1 +H∗(xi; si))(1 +H∗(xj ; sj))

(B.7)

Since network statistics include degree centrality si1, sj1 by assumption, ∥di∥+ l = si1 and ∥dj∥+ l = sj1.

For any of these events we have ∥di∥ + l = si1 and ∥dj∥ + l = sj1, respectively, so that the claim follows
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immediately from (B.7) after summing over elementary outcomes supporting si, sj and integrating out po-

tential values Skij(l,D
∗
i , D

∗
j ), noting that the right-hand side expression is constant across the conditioning

event with ∥di,−j∥+ l = si1 and ∥dj∥+ l = sj1 □

By inspection of the previous proof, we can generalize the conclusion of Lemma 3.7 to pairs of links and

state the following corollary:

Corollary B.1. Suppose that Assumptions 2.1-3.1 hold. Then for i, j, k, l and v := |{(ij), (kl)}| denoting the
number of distinct edges, the conditional probability of proposals D∗

ij = D∗
ji = D∗

kl = D∗
lk = 1 is approximated

by

limn nvP̄
(
D∗

ij = D∗
ji = D∗

kl = D∗
lk = 1

∣∣S∗
ij(l) = si,S

∗
ji(l) = sj ,S

∗
kl(l) = sk,S

∗
lk(l) = sl,xi,xj ,xk,xl

)
=

∏
q∈{i,j,k,l}

(
sq1 + 1

1 +H∗(xq; sq)

) ∏
(qr)∈{(ij),(kl)}

exp
{
U∗
qr + U∗

rq

}
where U∗

ij , U
∗
ji, U

∗
kl, U

∗
lk are defined as in Lemma 3.7.

This Corollary can be established using steps analogous to the proof of Lemma 3.7 with minor changes

requiring additional notation. Note also that this corollary allows for the edges (ij), (kl) to have one or both

nodes in common, in which case the products on the right-hand side skip any duplicate factors.

B.6. Proof of Proposition 4.1. For notational simplicity, we let Ui0 := MCi which we can approximate

by Ui0 = log J+σε∗i0 as J grows large, where ε∗i0 is a random draw from the same distribution as εi1, . . . , εiJ .

We therefore let Ũi0 := log J . Consider the case in which degree is equal to s, so that MCi is the (s + 1)

highest order statistic. Following Assumption 3.1 (ii), let J = n1/2 and denote the number of elements in

Wi(L
∗) with JW . Note also that by Lemma B.1, JW = OP (n

1/2), and by Lemma 3.1, taste shifters εij are

asymptotically independent of Wi(L
∗).

In the following we let A+
i (r; s) denote the event that payoffs support si = s and network degree si1 ≥ r.

From the law of iterated expectations, the partial mean of the rth order statistic Ui;r given A+
i (r; s) is

E
[(

Ui;r −
1

2
log n

)
1l{A+

i (r; s)}
]
=

JW∑
j=1

E[(Ũij + σεij − log J)1l{A+
i (r; s),Ui;r = Ũij + σεij}]

=
1

Jr−1

JW∑
j=1

∑
j1 ̸=... ̸=jr−1 ̸=j

∫ ∞

−∞
w

(
r∏

q=1

J(1−G(w − σ−1Ũijq ))

)(
JW∏

q=r+1

G(w − σ−1Ũijq )

)
×g(σ−1(w − Ũij + log J)dw + o(1)

=
1

(r − 1)!

∫ ∞

−∞
w

 1

J

JW∑
j=1

exp{Ũij}

r

exp

{
−rw − e−w

(
1 +

1

J

JW∑
k=1

exp{Ũik}

)}
dw + o(1)

where the last step follows from the approximation in equation (B.2).
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Now note that for any λ ≥ 0, d
dλv

λ
∣∣
λ=r

= log(v)vr. Hence, if we define a := 1
J

∑JW

j=1 exp{Ũij}, and after

a change of variables v = e−w, we have

E
[(

Ui;r −
1

2
log n

)
1l{Ai(r; s)}

]
=

1

(r − 1)!

∫ ∞

−∞
arw exp{−rw − (1 + a)e−w}dw + o(1)

= − 1

(r − 1)!

(
a

1 + a

)r ∫ ∞

0

[log(v)− log(1 + a)] vr−1e−vdv + o(1)

=

(
a

1 + a

)r (
1

(r − 1)!
(log(1 + a)Γ(r)− Γ′(r)) + o(1)

)
=

(
a

1 + a

)r
(
log(1 + a) + γ −

r−1∑
q=1

1

q
+ o(1)

)

where Γ(r + 1) :=
∫∞
0

vre−vdv denotes the Gamma function. Since P(A+
i (r; s)) =

(
a

1+a

)r
, it follows that

lim
n

E
[(

Ui;r −
1

2
log n

)∣∣∣∣A+
i (r; s)

]
= log(1 + a) + γ −

r−1∑
q=1

1

q

Finally note that by Lemmas 3.4 and 3.6, 1
J

∑JW

j=1 exp{Ũij}
p→ H∗(xi; si). Since the draws Ui:1, . . . ,Ui:JW

are independent, this also establishes the first claim of the Lemma.

Similarly, the partial mean of MCi given that MCi is the (s+ 1)th order statistic is given by

E
[(

MCi −
1

2
log n

)
1l{Ai(t; s)}

]
=

1

s!

∫ ∞

−∞
asw exp{−(s+ 1)w − (1 + a)e−w}dw + o(1)

=
as

(1 + a)s+1

(
log(1 + a) + γ −

s∑
q=1

1

q
+ o(1)

)

where P(Ai(r; s)) =
as

(1+a)s+1 , which establishes the second claim □
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