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Abstract

A typical approach to the joint analysis of two high-dimensional datasets is to decom-
pose each data matrix into three parts: a low-rank common matrix that captures the shared
information across datasets, a low-rank distinctive matrix that characterizes the individual
information within a single dataset, and an additive noise matrix. Existing decomposition
methods often focus on the orthogonality between the common and distinctive matrices, but
inadequately consider the more necessary orthogonal relationship between the two distinc-
tive matrices. The latter guarantees that no more shared information is extractable from the
distinctive matrices. We propose decomposition-based canonical correlation analysis (D-
CCA), a novel decomposition method that defines the common and distinctive matrices from
the £2 space of random variables rather than the conventionally used Euclidean space, with
a careful construction of the orthogonal relationship between distinctive matrices. D-CCA
represents a natural generalization of the traditional canonical correlation analysis. The pro-
posed estimators of common and distinctive matrices are shown to be consistent and have
reasonably better performance than some state-of-the-art methods in both simulated data and
the real data analysis of breast cancer data obtained from The Cancer Genome Atlas.
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1 Introduction

Many large biomedical studies have collected high-dimensional genetic and/or imaging data and
associated data (e.g., clinical data) from increasingly large cohorts to delineate the complex ge-
netic and environmental contributors to many diseases, such as cancer and Alzheimer’s disease.
For example, The Cancer Genome Atlas (TCGA; Koboldt et al., 2012)) project collected human
tumor specimens and derived different types of large-scale genomic data such as mRNA expres-
sion and DNA methylation to enhance the understanding of cancer biology and therapy. The
Human Connectome Project (Van Essen et al., [2013) acquired imaging datasets from multiple
modalities (HARDI, R-fMRI, T-fMRI, MEG) across a large cohort to build a “network map”
(connectome) of the anatomical and functional connectivity within the healthy human brain.
These cross-platform datasets share some common information, but individually contain dis-
tinctive patterns. Disentangling the underlying common and distinctive patterns is critically im-
portant for facilitating the integrative and discriminative analysis of these cross-platform datasets
(van der Kloet et al., 2016; Smilde et al., 2017).

Throughout this paper, we focus on disentangling the common and distinctive patterns of two
high-dimensional datasets written as matrices Y, € RP**" for £ = 1,2 on a common set of n
objects, where each of the p; rows corresponds to a mean-zero variable. A popular approach to

such an analysis is to decompose each data matrix into three parts:
Yk:Ck+Dk+Ek for k:1,2, (1)

where C,’s are low-rank “common” matrices that capture the shared structure between datasets,
Dy’s are low-rank “distinctive” matrices that capture the individual structure within each dataset,
and E;’s are additive noise matrices. Model (1)) has been widely used in genomics (Lock et al.,
2013; |O’Connell and Lock, [2016), metabolomics (Kuligowski et al., 2015), and neuroscience
(Yu et al., 2017), among other areas of research. Ideally, the common and distinctive matrices
should provide different “views” for each individual dataset, while borrowing information from
the other. A fundamental question for model (1)) is how to decompose Y,’s into the common and
distinctive matrices within each dataset and across datasets.

Most decomposition methods for model (1)) are based on the Euclidean space (R, -) endowed
with the dot product. Such methods include JIVE (Lock et al., 2013)), angle-based JIVE (AJIVE;



Feng et al., 2018)), OnPLS (Trygg, |2002; [Lofstedt and Trygg, [2011), COBE (Zhou et al., 2016),
and DISCO-SCA (Schouteden et al., 2014). A common characteristic among all these methods is
to enforce the row-space orthogonality between the common and distinctive matrices within each
dataset, that is, CkD;r = 0 for k = 1,2. With the exception of OnPLS, these methods impose
additional orthogonality across the datasets, that is, C, D, = 0 for all £ and . A potential issue
associated with these methods is that they inadequately consider the more desired orthogonal-
ity between the distinctive matrices D; and D5, which guarantees that no common structure is
retained therein. Specifically, the first four methods do not impose any orthogonality constraint
between D; and D,. Although DISCO-SCA and a modified JIVE (O’Connell and Lock (2016);
denoted as R.JIVE) have considered the row-space orthogonality between the distinctive matri-
ces, it may be incompatible with their orthogonal condition that C;D, = 0 for all k,¢ = 1,2
even as p; = py = 1.

Rather than the conventionally used Euclidean space (R",-), the aim of this paper is to de-
velop a new decomposition method for model based on the inner product space (L2, cov),
which is the vector space composed of all zero-mean and finite-variance real-valued random
variables and endowed with the covariance operator as the inner product. Specifically, model

is a sample-matrix version of the prototype given by
Yy, =cp+dp+e, € R* for k=12 2)

The Euclidean space (R", -) is hence not an appropriate space for defining the common matrices
C.’s and the distinctive matrices D;’s, because two uncorrelated non-constant random variables
will almost never have zero sample correlation, i.e., the orthogonality in (R™,-). The matrices
{Cy, Dy }2_, defined by the aforementioned methods based on (R", -) are, in fact, estimators of
the counterparts defined through model on (£3,cov). Instead, for model , we introduce
a common-space constraint for the common vectors {c;}7_,, an orthogonal-space constraint
for the distinctive vectors {dj}7_,, and a parsimonious-representation constraint for the signal

vectors Ty, = Yy, — ek, k = 1,2 as follows:

span(c; ) = span(c, ), 3)
span(d] ) L span(d, ), 4



span((z{, 2, ) = span((¢], ¢; . d] . dy ), (5)

where span(v') = span({v;}7_;) = { >-7_; a;u; : Ya; € R} is the vector space spanned by
entries of any random vector v = (vy,...,v,)', and L denotes the orthogonality between two
subspaces and/or random variables in (L3, cov). The orthogonal relationship between distinctive
matrices D and D is now described by ().

To illustrate the advantage of our proposed constraints over those imposed by the six existing
methods mentioned above, we consider a toy example based on model with p; = p, = 1.
Suppose z; and zy are two standardized signal random variables with the same distribution
and corr(zy,29) € (0,1), ie., their angle on (L3, cov), denoted as 6, in (0,7/2) (see Fig-
ure . We want to decompose them as z, = ¢ + dj for & = 1,2. The constraints of JIVE,
AJIVE, OnPLS, and COBE translated into space (Eg,cov) do not guarantee d; L d, ie.,
corr(dy,dy) = 0. DISCO-SCA and RJIVE impose d; L dy and ¢; L dj, for all j,k = 1,2.
Restrict span({z1, 22}) = span({cx,dx};_,) as in our (5) to avoid the signal space being rep-
resented by a higher dimensional space. Then their orthogonal constraints result in either (i)
dy = dy = 0 or (ii) that only one of d; and d; is a zero constant, since a two-dimensional space
does not tolerate three nonzero orthogonal elements. Scenario (i) indicates z; = ¢; # 23 = ¢
and fails to reveal the distinctive patterns of z; and z,. Scenario (ii) implies unequal distributions
of dy and ds, which contradicts the symmetry of z; and z; about 0.5(z; + 25). However, our
proposed constraints and developed method will achieve the desirable decomposition shown in
Figure where d; L ds, ¢; = ¢ = ¢ < 0.5(21 + 22), and moreover, ||c|| indicates the extent of
1/6 or corr(zy, 23).

Motivated by the toy example above, we introduce a novel method, decomposition-based
canonical correlation analysis (D-CCA), which generalizes the classical canonical correlation
analysis (CCA; Hotelling, [1936) by further separating common vectors {ck}izl and distinctive
vectors {dy }7_, between signal vectors {zx; }7_, subject to constraints (3)-(3). In contrast, clas-
sical CCA only seeks the association between two random vectors by sequentially determining
the mutually orthogonal pairs of canonical variables that have maximal correlations between the
vector spaces respectively spanned by entries of the two random vectors. Another related but dif-
ferent method, the sparse CCA (Chen et al., 2013;|Gao et al., 2015} 2017)), focuses on the sparse

linear combinations of original variables for representing canonical variables with improved in-
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Figure 1: The geometry of D-CCA for two standardized random variables.

terpretability, which is neither required nor pursued by our D-CCA.

The “low-rank plus noise” model y,, = = + e for each single k£ can be naturally formulated
by a factor model as y,, = By f, + ex, where the latent factor fg is an orthonormal basis of
span(:z:,j) with By being the coefficient matrix. In factor model analysis (Bai and Ng, 2008),
x; = By f, is called the “common component”, and e;, the “idiosyncratic error”. These two
terms should not be confused with our considered common vectors {¢; }7_, and distinctive vec-
tors {d}}7_, that are solely based on signals {x;}7_, excluding noises {e;}7_,. For general
dynamic factor models (Forni et al., 2000), Hallin and Liska (2011) proposed a joint decom-
position method, which divides each dataset into strongly common, weakly common, weakly
idiosyncratic, and strongly idiosyncratic components (also see Forni et al. (2017) and Barigozzi
et al. (2018))). Applying their method to our considered scenarios with no temporal dependence,
and additionally assuming no correlations between signals {x;, }?_, and noises {e;, }?_,, then for
each y,, x 1s the sum of strongly common and weakly common components, e, is the strongly
idiosyncratic component, and no weakly idiosyncratic component exists. One may treat their
strongly common and weakly common components as the common vector ¢;, and the distinctive
vector dj, respectively, but the desired orthogonality is still not imposed. Especially when
span(z| ) Nspan(zxy ) = {0}, x} is entirely a weakly common component, and thus the orthog-
onality (4) fails for the toy example shown in Figure [I] See Remark S.1 in the supplementary
material for more detailed discussions.

Our major contributions of this paper are as follows. The proposed D-CCA method appro-



priately decomposes each paired canonical variables of signal vectors x; and x5 into a common
variable and two orthogonal distinctive variables, and then collects all of them to form the com-
mon vector ¢;, and the distinctive vector d; for each a;,. The common matrix C,, and the dis-
tinctive matrix Dy, are defined with columns as n realizations of ¢, and dy, respectively. Three
challenging issues that arise in estimating the low-rank matrices defined by D-CCA are high di-
mensionality, the corruption of signal random vectors by unobserved noises, and the unknown
signal covariance and cross-covariance matrices that are needed in CCA. To address these issues,
we study the considered “low-rank plus noise” model under the framework of approximate fac-
tor models (Wang and Fan, 2017), and develop a novel estimation approach by integrating the
S-POET method for spiked covariance matrix estimation (Wang and Fan, 2017) and the construc-
tion of principal vectors (Bjorck and Golub, |1973). Under some mild conditions, we systemati-
cally investigate the consistency and convergence rates of the proposed matrix estimators under
a high-dimensional setting with min(p;, p2) > kon for a positive constant .

The rest of this paper is organized as follows. Section [2| introduces the D-CCA method
that appropriately defines the common and distinctive matrices from the inner product space
(L2, cov). A soft-thresholding approach is then proposed for estimating the matrices defined by
D-CCA. Section 3|is devoted to the theoretical results of the proposed matrix estimators under a
high-dimensional setting. The performance of D-CCA and the associated estimation approach is
compared to that of the aforementioned state-of-the-art methods through simulations in Section 4]
and through the analysis of TCGA breast cancer data in Section [5| Possible future extensions
of D-CCA are discussed in Section [6] All technical proofs are provided in the supplementary
material.

Here, we introduce some notation. For a real matrix M = (M,;)1<i<p 1<;<n, the {-th largest
singular value and the ¢-th largest eigenvalue (if p = n) are respectively denoted by o,(M) and
Ae(M), the spectral norm |[M||s = o1(M), the Frobenius norm ||M||r = \/Zle >y M,

and the matrix £ norm [|[M||o, = maxi<i<p, Y5, [My;]. We use Mbstuel Mst] and MEwl

to represent the submatrices (M;;)s<i<tu<j<vs (Mij)s<i<t1<j<n and (M;;)1<i<pu<j<vo Of the pxn
matrix M, respectively. Denote the Moore-Penrose pseudoinverse of matrix M by M. Define
0, to be the pxn zero matrix and I,,,, to be the px p identity matrix. Denote diag(My, ..., M,,)

to be a block diagonal matrix with My, ..., M,, as its main diagonal blocks. For signal vec-



tors x;’s, denote X, = cov(xy), 1o = cov(xy, T2), 1, = rank(Xy), rmin = min(ry, o),
Tmax = max(ry, o) and 1 = rank(3;,). For a subspace B of a vector space A, denote its
orthogonal complement in A by A\ B. We write a b if a is proportional to b, i.e., a = kb for
some constant x. Throughout the paper, our asymptotic arguments are by default under n — oo.
We reserve {c,c;},{cy} and {Cy} for the common variables, common vectors and common

matrices, respectively, and use other notation for constants, e.g., K.

2 The D-CCA Method

Suppose the columns of matrices Y, X and E; are, respectively, n independent and identically
distributed (i.i.d.) copies of mean-zero random vectors y,, Ty and e for £ = 1, 2. We consider

the “low-rank plus noise” model for the observable random vector y,, as follows:
Y, =z + ey = By f + ey, (6)

where B, € RP**"™ is a real deterministic matrix, f; € R"™ is a mean-zero random vector of
71, latent factors such that cov(f,) = I,, x,, and cov(f, ex) = 0,,xp,, and ry is a fixed number

independent of {n, py, po}. Write the model in a sample-matrix form by
Y, = X + E;, = ByF, + Ey, (7

where the columns of F, are assumed to be i.i.d. copies of f,. We assume that the model given
in (6) and (7) is an approximate factor model (Wang and Fan, [2017) that allows for correlations
among entries of e, in contrast with the strict factor model (Ross, 1976) and has cov(y,) =
B:B, + cov(ey) be a spiked covariance matrix for which the top 7, eigenvalues are significantly
larger than the rest (i.e., signals are stronger than noises). Detailed conditions for consistent
estimation will be given later in Assumption (1} Although approximate factor models are often
used in econometric literature (Chamberlain and Rothschild, [1983; Bai and Ng, 2002; Stock
and Watson, 2002; Bai, 2003) with temporal dependence on {Fg’t], Eg’t]} across t’s, we assume
independence across the n samples as in [Wang and Fan| (2017) since no temporal dependence
is quite natural in our motivating TCGA datasets and considered in the six competing methods

mentioned in Section



2.1 Definition of common and distinctive matrices

We define the common and distinctive matrices of two datasets based on the inner product space
(L2, cov). The low-rank structure of x;, in (6) indicates that the dimension of span(x; ) is ry.
One natural way to construct the decomposition of X, = Cy + Dy, for £ = 1,2 is to decom-

pose the signal vectors as

Tk L2 Ly,
c
Ty = E Brezke = ¢k + dj, = E 5;(65)04 + E 5;(5)651@& (8)
—1 —1 =1

subject to the constraints (3)-(5) with space dimensions L1y < rp, and Ly < ry, where 3,
B\ and B are real deterministic vectors, and random variables {z }7- |, {c,}222 and {dj, } 2%,

T

are, respectively, the orthogonal basis of span(z; ), span(c] )

— span(c,y ) and span(d, ). The

desirable contraints (3)-(5) are now equivalent to

span({z1e}yt, U {z20}i2,) = span({ce}22 U {due} 2y U {dac}2)),

de, L dy, for s#t or u#w.

®)

We call {¢,}*2 the common variables of &, and x,, and {d,},*, the distinctive variables of
. The columns of common matrix Cy, are defined as the i.i.d. copies of ¢, and those of dis-
tinctive matrix D, are the ones of dj.. The space span({c,};*2) represents the common structure
of , and x,, or datasets X; and Xy, and the spaces {span({di};*,)}3_, correspond to their
distinctive structures.

To achieve a decomposition of form (8], our D-CCA method adopts a two-step optimization
strategy given in and below. The first step uses the classical CCA to recursively find the

most correlated variables between signal spaces {span(x; )}s_, as follows: For £ = 1,...,71s,

{710, 220} € argmax corr(z1,22) subject to
iy (10)

var(z,) = 1 and 2 € span(z; ) \ span({zim }52)),

where span(z; ) \ span({z, }°,_,) = span(x; ). Variables {z,}2_, are called the (-th pair of

canonical variables, and their correlation is the /-th canonical correlation of «; and 5. Augment
{2k }}2, with any (rj, — r12) standardized variables to be 2 = (2x1, ..., 2k, ) such that z; is

an orthonormal basis of span(z, ). A detailed procedure to obtain a solution of {z;}7_, will be



presented later after Theorem |2} An important property of these augmented canonical variables

is the bi-orthogonality shown in the following theorem.
Theorem 1 (Bi-orthogonality). The covariance matrix of z, and z5 is

A12 07’12><(7‘2—T12)
cov(zy,29) = ;

0(7"1 —T12)XT12 0(7"1 —r12)X(r2—"r12)

where A5 is a 115 X112 nonsingular diagonal matrix.

Theorem [1| implies that all correlations between span(z; ) and span(zx, ) are confined be-
tween their subspaces span({zi¢};!%) and span({z2¢};% ), and moreover, span({zis, z2¢}) L
span({zim, zom }) holds for 1 < ¢ # m < r15. We hence only need to investigate the correlations
within each subspace span({zis, z9¢}) for 1 < ¢ < ry5. The second step of our D-CCA defines

the common variables {c;},*% by

¢y X arg max {COI”I”2(2’1@, w) + corr?(zq, w)} (11)
we (L2 cov)
with the constraints
she = o+ dyg for k=1,2, (12)
corr(dyg, doy) = 0, (13)
var(cy) increases as p; == corr(zyy, z2¢) increases on [0, 1]. (14)

Constraints and are actually the special case of (8) and (9) for two standardized random
variables. Constraint indicates that ¢, explains more variances of 21, and 2y, when their
correlation p, increases. Although py, here referring to the ¢-th canonical correlation of {x; }7_,,
is always positive for 1 < ¢ < ry5, we include p, = 0 to enable as a general optimization

problem for any two standardized variables with nonnegative correlation. The unique solution of

is given by

o (1 Jlmpey etz (O] 2t 2 (15)
¢ 1+ py 2 2 2

where 0, = arccos(py) is the angle between 21, and zy in (L3, cov). More desirable than con-

straint (14)), it easily follows from (15)) that var(c,) is a continuous and strictly monotonic in-

creasing function for p, € [0, 1]. We defer the detailed derivation of to the supplementary



material (Proposition S.2 and its proof). This solution is geometrically illustrated in Figure
with ¢ omitted in the subscriptions. Simply let dpy = zx for 112 + 1 < £ < ri. The two-step

optimization strategy arrives at the following decomposition of form (8): For k = 1, 2,

Tk 712 "k

T = Z Brezke = i +dy, = Z BreCe + Z Bredre, (16)
=1 =1 =1

with  B,, = cov(xy, 2xe). (17)

Constraints (3)-(5) or equivalently (9) are satisfied due to the bi-orthogonality in Theorem I|and
the constraints in (12) and (13).

The workflow of D-CCA can be interpreted from the perspective of blind source separation
(Comon and Jutten, 2010). Jointly for £ = 1,2, D-CCA first uses CCA to recover the input
sources { 2}, , and the mixing channel {3,,},-, that generate the output signal vector ;. Then
by the constrained (11), D-CCA discovers the common components {c,};:? and the distinctive
components {dx}y*,, k = 1,2 of the two sets of input sources {zx};*,,k = 1,2. Finally, D-
CCA separately passes {c/};: and {dy.},*, through the mixing channel {3,,},%, to form the
common vector ¢, and the distinctive vector dj, of each k-th output signal vector xj. Figure
illustrates such interpretation of the D-CCA decomposition structure.

The solution to the CCA problem in may not be unique even when ignoring a simulta-

neous sign change, but all solutions yield the same ¢, and dj. as shown in the following theorem.

Theorem 2 (Uniqueness). All solutions to the problem in for canonical variables { z14, 200},
give the same ¢, and dy, defined in (16).

We now present a procedure to obtain the augmented canonical variables {z,z2}. For
k = 1,2, let a singular value decomposition (SVD) of 3, be X} = VkAkV,I, where A, =
diag(oq(Xg), ..., 0., (Xk)) and Vy, is a py X7, matrix with orthonormal columns. Let z} =

A,;l/zV,;ra:k, then we have cov(z}) = I, «,, . Define
© = cov(z],z3) = A; PV E, VoA, 2

The rank of © is also 715. Denote a full SVD of ® by ® = UglAgU;rg, where Uy; and Uy,

are two orthogonal matrices, and Ay is a r; X7, rectangular diagonal matrix for which the main

10



diagonal is (01(@®),...,0,,(©), 015 (... —r)). We then define
2o =Ujzi =T]aw,  with Ty := VA Uy, (18)

which satisfies cov(zy) = I, «, and corr(zy, 23) = Ay. Note that 04(®) = p, for ¢ < ry5 are
the canonical correlations between x; and @».

Now look back to ¢, = >, By, that is defined in (16). Plugging and for 3,

and ¢, in the formula together with {2;}3_, given in (18], we obtain

2
e = cov(mp, 2 A Y 2 (19)
j=1

1-0,(®)
1+0,(©)

where Ao = diag(ay,...,a,,) and ay = %[1 — ( )1/2} for ¢ < ry5. Replacing random

vector zj, = '} x;, by its sample matrix Zj, := I'} X, in the rightmost of (19) yields

2
Cy = cov(zy, zg:m])Ac Z ZBLT”’:}. (20)
j=1
d11 d?l
! !

21147@%01 —»@—»Zzl

: d1‘7'12 d2‘T12
' v v
AN e @ ——Crz > @4'/72#12\

e

22+l = dl,"’12+1 d2,7'12+1 = 22,r15+1

Ny

21 = dl,'r‘l d2,7‘2 = Z2,r

L]

1

By

2

T «—OP P—> x2
I /dn d21\ I
di«—{B1}| = du doy —> [{Ba}—>ds

\ dl,rl d2,r/

Figure 2: The decomposition structure of D-CCA.
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This equation is useful to our design of estimators for Cy, and D, =X} —C;, in the next subsection.

2.2 Estimation of D-CCA matrices

In this subsection, we discuss the estimation of the matrices defined by D-CCA under model (1))
for two high-dimensional datasets. For simplicity, we write the proposed estimators with true
ranks rq, 7 and r15. In practice, we can replace those unknown true ranks by the estimated ranks
given in Subsection [2.3| with a theoretical guarantee provided in Section

Recall that Y, = X + E; with £ = 1, 2. Our first task is to obtain a good initial estimator,
denoted by X, of X;.. Under the approximate factor model given in (6)) and (7)), our construction
of ik is inspired by the S-POET method (Wang and Fan, 2017) for spiked covariance matrix
estimation. Let the full SVD of Y, be

Y = UnA, UL, (21)

where Uy, and Uy, are two orthogonal matrices and A, is a rectangular diagonal matrix with
the singular values in decreasing order on its main diagonal. The matrix X, is then obtained via

soft-thresholding the singular values of Y by

X, = UBY™ diag(55(Y), . .., 55 (V) (UL (22)

ey Tk

with 67 (Y}) = /max {c2(Yy) — Txpx, 0} and 73, = > 7% 4100 (Y)/ (np, — nry, — pery). Let
Tk = rank(f(k,). Under Assumptionthat will be given later, it can be shown that 7, = r;, with
probability tending to 1 (see the proof of Theorem 3)).

We next use )”ik to develop estimators for Cy, in and D;,=X,—Cj. Define the esti-
mators of X, and Xy as 5, = n”f(k)z; and $1, = n~1X, X/, respectively. Then, based
on ilk and 212, we obtain estimators \A/'k,f&k,ﬁgk: diag(ﬁgf’“l:?’“},I(,qk_;k)x(rk_;k)) and zAXg

in the same way as their true counterparts Vi, Ag, Ug, and Ay with a r{ Xry matrix © =

(AD)2V £1,Vo(A))V2. Define Z;, = (IAXL)UQ{/',I)N(;C and Zj, = U], Z;. We have
nVZHZE) T =0 Z(Zy) " = diag(I5, x7 > O(rp—) x (re—7) )+

O = UpAyUL =n'Z5(Z3)7 and n'Z1(Zo)T = A,.

12



From Theorem 1 in [Bjorck and Golub) (1973), it follows that _1/22 I'and n_l/QZ ] for ¢ <
Tmin are the principal vectors of the row spaces of )NQ and )N(Q, and moreover, 05(9) < 1. Let
NGRS TIOZS ~ s~ 1 1-04(©)\1/2 ~ A :
Al’ = diag(ay,...,a,) witha, = 3 [1 — (HU—E(@)) } for ¢ < 715 = rank(©) and otherwise
ay = 0. Define estimators of Cy, D, and X, by

2

Cr = n "Xy (Z ") TAZ Y "zl (23)
7j=1
~ ~ ~ ~ 2 ~
Dy, = Xj — n ' Xp(Z N TAGS Yzl e (24)
j=1
and
X, = C; + Dy. (25)

Here, we substitute }A(k for ik as the estimator of X;,. The latter can be written as

X, = C"™ 1 D, (26)

with )
CY) = n""X(Z " TAL Yz 27)

7j=1

Note that ék = 6,(:12). When 715 > 719, we have (A}k = a,(j”). But when 715 < 79, (A?,(f”)
redundantly keeps the nonzero approximated samples of the zero common variable of 21, and zy
for rio < £ < 719.

Similar to the decomposition of {x; }7_, given in that is built on the inner product space
(L2, cov), the decomposition of {X;}2_, in is constructed by an analogy of and
on the R™ space with the inner product (u,v) = u'v/n for any u,v € R™. We thus have the
appealing property IA)lIA)QT = 0,, xp,, Which corresponds to the orthogonal relationship between
the distinctive structures given in (4).

Throughout our estimation construction, the key idea is to develop a good estimator of { X, Z. }2_, .
Thus, the S-POET method (Wang and Fan, 2017) may be replaced by any other good approach,
but with possibly different assumptions. For example, given the cleaned signal data X;’s, Chen
et al. (2013) and |Gao et al.| (2015} 2017) showed that sparse CCA algorithms can consistently
estimate the canonical coefficient matrix Ty, for Z; = I’} X} by imposing certain sparsity on

I';’s and that all eigenvalues of cov(x;) are bounded from above and below by positive con-

13



stants. These two conditions are not assumed for our proposed method. In particular, their
bounded eigenvalue condition contradicts our low-rank structure of signal x;, that introduces the
spiked covariance matrix cov(y, ). The sparse CCA algorithms need the cleaned signal data X;,’s
available beforehand. Alternatively, they may be directly applicable to the observable data Y}’s
by assuming zero Ey’s, if the bounded eigenvalue condition holds for cov(y,). For the TCGA
datasets in our real-data application, the scree plots given later in Figure [6| favorably suggest our
spiked eigenvalue assumption. Moreover, the approximate factor model with spiked covariance
structure has been widely used in various fields such as signal processing (Nadakuditi and Sil-
verstein, 2010) and machine learning (Huang, 2017), and fits the low-rank plus noise structure
considered in the six competing methods mentioned in Section [I| Our paper hence focuses on

this spiked covariance model and leaves the extension to sparse CCA models for future research.

2.3 Rank selection

In practice, matrix ranks 71,7, and r15 are usually unknown and need to be determined. There
is a rich literature on determining 7,k € {1,2}, which is the number of latent factors for the
high-dimensional approximate factor model. Examples of consistent estimators include but are
not limited to |Bai and Ng (2002), Onatski (2010), and |Ahn and Horenstein (2013). Several
heuristic approaches for selecting 712, the number of nonzero canonical correlations for the high-
dimensional CCA, have been proposed by Song et al. (2016)). In this paper, we apply the edge
distribution (ED) method of |Onatski (2010) to determine r; for £k = 1,2 by

7, = max{l < T} : At — Xk,é+1 >0}, (28)

where ng is the (-th eigenvalue of Y'Y, /n. The upper bound is chosen as T}, = min (#{zmym >
mLk Yok :\\M}, my/10) with my, = min(n, p;), which is recommended by Ahn and Horenstein
(2013)), and parameter 0 is calibrated as in Section IV of|Onatski (2010). It is believed that 15 > 0
if two variables from different cleaned datasets have a significant nonzero correlation detected by,
e.g., the normal approximation test of DiCiccio and Romano (2017). Otherwise, it is unnecessary

to conduct the proposed matrix decomposition. We select the nonzero 715 by using the minimum
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description length information-theoretic criterion (MDL-IC) proposed by Song et al. (2016):

Ti2 = argmin {nZlog(l —s7)+r(ry+ro—1) log(n)}, (29)

re€[l,min(71,72)] —1

where s, is the (-th singular value of (UY™)TUL ™! with Uy, and Us, defined in (21). The
ranks 71, 1y, and r15 determined by and perform well in our numerical studies.

3 Theoretical Properties of D-CCA Estimators

In this section, we establish asymptotic results for the high-dimensional D-CCA matrix estima-

tors proposed in Subsection
Assumption 1. We assume the following conditions for model given in (6)) and (7).

(I) Let \ig > -+ > Moy > Mpt1 = -+ > gy, > 0 be the eigenvalues of cov(yy,).
There exist positive constants k1, ke and 0y such that k1 < Ay < kg for £ > 1 and

ming<,, (Ake — Age+1)/ ke > 0o

(1) Assume py, > ron with a constant kg > 0. When n — oo, assume Ay, ., — 00, pr/(nAge) is
upper bounded for { < 1y, g1/ Ay, is bounded from above and below, and . /py.(log n)t/ e =
o( Ay, ) with vyio given in (V) below.

(Ill) The columns on,(fy) = (A,(ﬁy))*l/Q(V,(fy))TYk arei.i.d. copies ofzggy) = (A;y))*l/z(V,(gy))Tyk,
where VW A (VINT is the full SVD of cov(y,,) with A = diag(A1, ..., Ak, ). The
entries of 2\, 2\, ... ,z,(f;k are independent with E(z2Y)) = 0, var(z\¥)) = 1, and the

sub-Gaussian norm sup s, q_l/Q(E|zg) |9)Y/9 < K with a constant K > 0 for all i < py.

(IV) The matrix B] By, is a diagonal matrix, and \BLM” < M/ Ao/ pr with a constant M > 0
holds for all 1 < py, and ¢ < 1.

(V) Denote e, = (€1, --,¢kp,) and f, = (fe1,---, for,) . Assume || cov(er)||eo < So
with a constant sq > 0. For all i < py and { < 1y, there exist positive constants
Vit Yrzs br1 and byy such that for t > 0, P(|ex;| > t) < exp(—(t/bg1)"™) and P(| fre| >
t) < exp(—(t/br2)"2).
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Assumption [I] follows assumptions 2.1-2.3 and 4.1-4.2 of [Wang and Fan| (2017) which guar-
antee desirable performance of the initial signal estimators X,’s defined in (22). The diverging
leading eigenvalues of cov(y,) assumed in conditions (I) and (II), together with the approxi-
mate sparsity constraint || cov(ex)||« < So in condition (V), indicate the necessity of sufficiently
strong signals for soft-thresholding. Although Wang and Fan (2017) considered p > n, it is not
difficult to relax it to pr > Kon, as given in our condition (II). A random variable is said to be
sub-Gaussian if its sub-Gaussian norm is bounded (Vershynin, 2012). Condition (IIT) imposes the
sub-Gaussianity on all entries of z,gy) with a uniform bound. Simply letting f, = 2z} can lead to
a diagonal matrix B/ B, that is required by condition (IV). In condition (V), the approximately
sparse constraint is imposed on cov(ey) rather than E;. See Wang and Fan (2017) and also |[Fan
et al. (2013) for more detailed discussions of the above assumption.

We consider the relative errors of the proposed matrix estimators in the spectral norm and

also in the Frobenius norm. For convenience, we use || - || as general notation for one of these

two matrix norms. Define ac, ) = ||Ck|() /|| X&) and ap, ) = [[Dxll o) /1 Xkl -

Theorem 3. For k = 1,2, assume (Ajk, ﬁk, )A(k and © defined in Subsection are constructed
with true 1y, and 1. Suppose that r1o > 1 and Assumptionhold. Define A = (5;/ * and

2
. | P 1og pi
dp = min +
o { Zl n)\1 Ek }

Then, we have the following relative error bounds of the matrix estimators

C, — C.ll,. A D, — Dy, A X, — X,
1Cs k“():OP( )’ IDy, k“():OP( )7 1 X5 ’“H():OP(A),
1Crllc ac,,() Dkl ap, () 1 Xkl

and the error bound of canonical correlation estimators

max |0¢(©) — 0,(®)| = Op(6y).

1<0< min

Provided that matrix ranks 1,79 and 75 are correctly selected, Theorem [3| shows the con-
sistency of the proposed matrix estimators in the relative errors that are the norms of estimation
errors divided by the norms of true matrices, with associated convergence rates. The ratios ac, ()
and ap, (. in the convergence rates of Cy, and Dy, can be removed if the relative errors are instead

scaled by the norms of the signal matrices.
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Although the ED estimators of 7, and r, given in (28) are consistent under some mild con-
ditions (Onatski, 2010), the consistency of the MDL-IC estimator in (29) for 7y is still unclear.
However, the following corollary indicates the robustness of our proposed matrix estimators given

in (23) and when 715 is misspecified but r; and r, are appropriately selected.

Corollary 1. For k = 1,2, assume 6,(;), f)k and © defined in Subsection are constructed
with the unknown 1y, replaced by an estimator 7y, satisfying 7y R rg. Define }A(,(J) = 65;”) + ﬁk
with min(ri2,712) < 7 < ry, and Ug(@) = 0 for ¢ > min(7, 7). Suppose that r15 > 1 and
Assumption[I| hold. Then, with A and 6, defined in Theorem|[3| we have

ICY — Cully A 1D — Dill(y A
= Op , ———=0p ,
1Ckll () Ay, () [Dxll () ap,,()

X = Xkl _ -
IXilly Op (A), and 1< |06(©) — 0¢(©)| = Op(dy).

Corollary [I| provides an acceptable range, [min(r12,712), *mi], for the choice of 715 when
r1 and ry are consistently estimated, which can theoretically lead to the same convergence rates
(up to a constant factor) as those in Theorem Note that the distinctive matrices ﬁk’s are

independent of 715.

4 Simulation Studies

We consider the following three simulation setups to evaluate the finite sample performance of the
proposed D-CCA estimators comparing with the six competing methods mentioned in Section
and also the decomposition of Hallin and Liska|(2011) (denoted as GDFM).
e Setup 1: Let x; 4 Xo, with 1 = 3, 112 = 1, and \(X;) = 500 — 200(¢ — 1) for £ < 3.
Set zp1, Zk2, 2k3 EC (0,1) for each k = 1,2. Randomly generate V; with orthonormal
columns, which is the same for all replications. Let x; = VlA}/ sz. Generate ey;, k <

2,i < pr %" N(0,02) that are independent of {x;}2_,. Vary dimension p; from 100 to
1,500, the first canonical angle #; = arccos(p;) from 0° to 75° with p; = corr(z11, 291),

and the noise variance ¢ from 0.01 to 16.

e Setup 2: Use the same settings for ; and {ek}izl as in Setup 1. For xo, fix po = 300,

and set ro = 5 and A\y(Xy) = 500 — 100(¢ — 1) for ¢ < 5. Simulate x5 = VQA;/QzQ with
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291, - .y 225 N (0,1) and a randomly generated V, that is the same for all replications.

Let o = 1. Vary py, 6, and Jf according to Setup 1.

e Setup 3 is for visual purposes: Fix p; = 3py, = 900, 0; = 45°, and 02 = 1. Generate two
independent variables v; and v, such that v; ~ Unif({0, £1/v/2, ++/2}) and vy ~ N(0, 1).
Let 211 = [v;4vy tan(0;/2)]/4/1 + tan?(6,/2) and 29, = [v;—vy tan(6,/2)]/+/1 + tan?(6, /2).
Set VL:’H = —+(1,1,...,1)" and randomly generate V,E’M” for k = 1,2. The other set-

VPy,
tings are the same as those in Setup 2.

We fixed the sample size n = 300 and conducted 1,000 replications for Setups 1 and 2.
Setup 3 is only used for the purpose of visually comparing D-CCA with the seven other methods.
Setup 3 is similar to Setup 2, but it has the common variable of the first pair of canonical variables
following a discrete uniform distribution instead of a Gaussian distribution. We ran a single
replication of Setup 3 for the visual comparison in Figure To determine the ranks 71, 79,
and r15, we respectively used the ED method given in and the MDL-IC method in (29).
Additional simulations with AR(1) matrices for {cov(e;)}7_, are given in the supplementary
material (Section S.2).

The results obtained by D-CCA for Setups 1 and 2 are summarized in Figures 3| and 4| and
Table The first rows of the two figures show the average relative errors (AREs) for 6; =
45°, 0% = 1 and varying p;; the second rows are for p; = 900,02 = 1 and varying 6;; and the
third rows are for p; = 900, 6; = 45° and varying o2. Both figures reveal that the curves based
on the estimated ranks almost overlap with those based on the true ranks. The ranks are selected
with very high accuracy (>99.7%).

Consider Figure 3| of Setup 1 as an example. We have nearly identical plots for the two
datasets that are generated from the same distribution. From the first row, where all considered
cases have almost the same set of average ratios {ac, (), @p, ()} all the AREs become bigger
as the dimension p; increases. For the second row, the increasing canonical angle ¢, results in a
change in the average ratios ac, 2 from 0.997 down to 0.18 and in o, from 0.74 down to 0.14;
ap, 2 is stable around 0.78 for the first 5 values of #; and then increases to 0.87 at ¢, = 75°;
and ap, r changes from 0.67 to 0.93. Meanwhile, this leads to increasing AREs of (A]k and
decreasing AREs of D ., but does not affect the AREs of )A(k The third row shows that all the

ARE:s increase as the noise variance o becomes bigger. Note that increasing o2 is equivalent to
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decreasing the eigenvalues of 3 by scaling o2 to 1. These results agree with the influence of
p1, « and A\; (X ) on the convergence rates given in Theorem

For Setup 2, with similar arguments, we find a similar pattern of estimation performance for
D-CCA, as shown in the second and third rows and the plots of the first dataset in the first row
of Figure |4} For the first row of Figure |4} the considered cases of the second dataset have a fixed
dimension p, and stable ratios {ac,,(., @n,,(.) }. The corresponding AREs are still acceptable and
interestingly are not much impacted by the change in the dimension p; of the first dataset. From
Table |1} we see that the estimated canonical angles and correlations perform well for Setups 1
and 2 even in the presence of strong noise levels.

The comparison of D-CCA and the seven other methods is shown in Tables [2 and |3} and
Figure First consider these methods other than GDFM (Hallin and Liska, 2011). Table
reports the results for Setups 1 and 2 when we set p; = 900, §; = 45° (i.e., p; = 0.707), and
02 = 1. All methods except OnPLS have comparably good performance for the estimation of
signal matrices. As expected, D-CCA outperforms all the six competing methods in terms of
estimating the common and distinctive matrices. In particular, AJIVE and COBE are unable to
discover the common matrices. Figure |5| visually shows a similar comparison based on a single
replication of Setup 3. The signal, common, and distinctive matrices are recovered well by the
D-CCA method. In contrast, the common matrix estimators estimated from the six state-of-the-
art methods significantly differ from the ground truth. AJIVE and COBE still yield zero matrices
as the estimators of the common matrices, which appears not reasonable when the first canonical
correlation p; has a high value of 0.707. Table [3| shows the proportion of significant nonzero
correlations among the p; Xp, pairs of variables between d; and d, that were detected by the
normal approximation test (DiCiccio and Romano, 2017) using each method’s estimates of D,
and D,. The procedure of Benjamini and Hochberg (1995) was applied to the multiple tests to
control false discovery rate at 0.05. Results are omitted for AJIVE and COBE with (A?k =0,
and also for D-CCA and R.JIVE due to zero correlation estimates by IA)lIA)QT = 0. All the other
methods have a large amount of significant nonzero correlations retained between their distinctive
structures.

Now consider the GDFM method (Hallin and Liska, 2011). We set the sample temporal

cross-covariances to be zero in GDFM estimation for our simulated data and TCGA datasets
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that have no temporal dependence. GDFM decomposes each data matrix by Y, = x; + & =

(Pr+ 1)+

(vi+&r)

= X, + & with each component’s name shown in Table[6] By Remark S.1

(in the supplementary material), theoretically for our simulated i.i.d. data with no correlations

between signals and noises, the weakly idiosyncratic matrix vy, is zero, and the joint common ma-

trix x ;. and the marginal common matrix 7, are both equal to the signal matrix X. Moreover, the

strongly common matrix ¢, is zero, when span(x; ) N span(zx, ) = {0}, i.e., the first canonical

correlation p; between x; and x5 is smaller than 1. The above theoretical results are evidenced

by our simulations. In Table |2} the relative errors of estimators X; and X, to signal X are as

comparably small as those of )A(k by our D-CCA and the other five well performed methods. The

similarly small norm ratios of vy, to x; numerically support v, = 0. The squares of these quan-

tities are much smaller, and especially in the Frobenius norm are equivalent to matrix-variation

ratios. The strongly common matrix estimate (/]Sk is zero for the setups, with p; = 0.707 < 1,

considered in the table. These numerical evidences are more clearly seen in Figure [5(b) under a

similar setup.

Table 1: Averages (standard errors) of D-CCA estimates for the first canonical angle/correlation.

(p1,02) 0,=0°/p=1 0, = 45°/py = 0.707 0, =60°/p; = 0.5 01 =75°/p1 = 0.259
Setup 1
(100, 1) 3.59°(0.21°)/0.998(0.000) 44.7°(2.38°)/0.710(0.029) 59.3°(2.88°)/0.509(0.043) 5°(3.06°)/0.284(0.051)
(600, 1) 3.61°(0.21°)/0.998(0.000) 44.7°(2.39°)/0.710(0.029) 59.4°(2.89°)/0.509(0.043) 73 5°(3 07°)/0.284(0.051)
(900, 1) 3.61°(0.21°)/0.998(0.000)  44.7°(2.39°)/0.710(0.029)  59.4°(2.90°)/0.509(0.043)  73.5°(3.09°)/0.283(0.052)
(1500, 1) 3.61°(0.21°)/0.998(0.000)  44.7°(2.39°)/0.710(0.029)  59.3°(2.89°)/0.509(0.043)  73.5°(3.08°)/0.284(0.051)
(900,0.01) 0.36°(0.02°)/1.000(0.000) 44.6°(2.38°)/0.711(0.025) 59.3°(2.89°)/0.508(0.038) 73.5°(3.08°)/0.280(0.046)
(900, 1) 3.61°(0.21°)/0.998(0.000)  44.7°(2.39°)/0.709(0.026)  59.4°(2.90°)/0.507(0.038)  73.5°(3.09°)/0.280(0.046)
(900, 9) 11.0°(0.66°)/0.992(0.001)  45.6°(2.43°)/0.705(0.026)  59.9°(2.92°)/0.504(0.039) 73.7°(3.08°)/0.279(0.046)
(900, 16) 14.9°(0.91°)/0.966(0.004) 46.4°(2.47°)/0.688(0.028) 60.4°(2.93°)/0.492(0.040) 73.9°(3.06°)/0.273(0.047)
Setup 2
(100, 1) 3.58°(0.21°)/0.998(0.000) 5°(2.36°)/0.712(0.029)  59.0°(2.83°)/0.514(0.042) 72.7°(2.90°)/0.296(0.048)
(600, 1) 3.59°(0.21°)/0.998(0.000) 44.5°(2 36°)/0.712(0.029)  59.0°(2.83°)/0.514(0.042) 72.7°(2.89°)/0.297(0.048)
(900,1) 3.60°(0.21°)/0.998(0.000) 44 50(2 37°)/0.712(0.029) 59.0°(2.84°)/0.514(0.043) 72.7°(2.90°)/0.296(0.048)
(1500, 1) 3.60°(0.21°)/0.998(0.000) 5°(2.36°)/0.712(0.029)  59.0°(2.82°)/0.514(0.042) 72.7°(2.89°)/0.296(0.048)
(900,0.01) 0.36°(0.02°)/1.000(0.000) 44.4°(2 35°)/0.714(0.029)  59.0°(2.82°)/0.515(0.042) 72.7°(2.89°)/0.297(0.048)
(900, 1) 3.60°(0.21°)/0.998(0.000)  44.5°(2.37°)/0.712(0.029)  59.0°(2.84°)/0.514(0.043) 72.7°(2.90°)/0.296(0.048)
(900, 9) 10.9°(0.64°)/0.982(0.002)  45.4°(2.41°)/0.701(0.030)  59.6°(2.87°)/0.506(0.043) 73.0°(2.93°)/0.292(0.049)
(900, 16) 14.6°(0.87°)/0.967(0.004) 46.3°(2.45°)/0.691(0.031) 60.0°(2.89°)/0.499(0.044) 73.2°(2.93°)/0.289(0.049)
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Table 2: Averages (standard errors) of norm ratios when p; = 900, 6; = 45° and 02 = 1.

Ratio Method Spectral norm Frobenius norm Spectral norm Frobenius norm
Setup 1 Setup 2
k=1/k=2 k=1/k=2 k=1/k=2 k=1/k=2

D-CCA 0.088(0.010)/0.088(0.010)  0.120(0.006)/0.120(0.006) 0.097(0.012)/0.087(0.017)  0.125(0.007)/0.093(0.006)
JIVE 0.108(0.005)/0.109(0.005) 0.141(0.004)/0.141(0.004) 0.116(0.005)/0.067(0.004)  0.145(0.004)/0.090(0.002)
IR —Xkll( RJIVE 0.109(0.018)/0.089(0.015)  0.139(0.013)/0.140(0.009) 0.108(0.018)/0.102(0.026) 0.139(0.012)/0.105(0.011)
Xkl AJIVE 0.080(0.004)/0.081(0.004)  0.116(0.003)/0.116(0.004) 0.081(0.004)/0.051(0.002)  0.116(0.003)/0.082(0.002)
OnPLS 0.390(0.111)/0.399(0.112)  0.315(0.076)/0.321(0.077) 0.397(0.111)/0.550(0.116)  0.320(0.077)/0.331(0.064)
DISCO-SCA  0.083(0.003)/0.083(0.004)  0.154(0.004)/0.154(0.005) 0.084(0.004)/0.053(0.002)  0.174(0.005)/0.093(0.002)
COBE 0.080(0.004)/0.081(0.004)  0.116(0.003)/0.116(0.004) 0.081(0.004)/0.051(0.002)  0.116(0.003)/0.082(0.002)
D-CCA 0.117(0.028)/0.120(0.027)  0.134(0.028)/0.136(0.027) 0.123(0.028)/0.133(0.036)  0.143(0.029)/0.153(0.038)
JIVE 0.996(0.009)/0.996(0.008) 1.024(0.014)/1.024(0.013) 0.998(0.009)/0.990(0.015)  1.037(0.025)/1.013(0.019)
1€—Crll(, R.JIVE 1.000(0.043)/0.576(0.032)  1.003(0.043)/0.588(0.031) 1.003(0.049)/0.576(0.041)  1.006(0.052)/0.589(0.042)

Ckll¢y AJIVE 1(0)/1(0) 1(0)/1(0) 1(0)/1(0) 1(0)/1(0)
OnPLS 0.787(0.112)/0.777(0.113)  0.817(0.143)/0.805(0.142) 0.779(0.105)/0.796(0.071)  0.804(0.117)/0.815(0.098)
DISCO-SCA  1.023(0.065)/1.023(0.066) 1.057(0.087)/1.058(0.089) 0.772(0.183)/1.052(0.112)  0.826(0.227)/1.190(0.237)

COBE 1(0)/1(0) 1(0)/1(0) 1(0)/1(0) 1(0)/1(0)
D-CCA 0.121(0.016)/0.122(0.016)  0.148(0.010)/0.149(0.009) 0.133(0.018)/0.112(0.019)  0.156(0.011)/0.113(0.009)
JIVE 0.703(0.040)/0.703(0.040)  0.541(0.023)/0.541(0.023) 0.704(0.040)/0.599(0.036)  0.546(0.024)/0.371(0.016)
[Bx—Dyll(.) R.JIVE 0.689(0.040)/0.405(0.032)  0.535(0.019)/0.337(0.020) 0.690(0.041)/0.350(0.031)  0.536(0.022)/0.238(0.017)
Dl AJIVE 0.706(0.040)/0.706(0.040)  0.538(0.022)/0.539(0.022) 0.705(0.040)/0.605(0.035)  0.538(0.022)/0.369(0.015)
OnPLS 0.655(0.093)/0.654(0.095)  0.574(0.064)/0.576(0.066) 0.656(0.094)/0.658(0.113)  0.574(0.063)/0.476(0.057)
DISCO-SCA  0.704(0.049)/0.704(0.049)  0.558(0.041)/0.559(0.041) 0.532(0.114)/0.628(0.067)  0.462(0.092)/0.432(0.078)
COBE 0.706(0.040)/0.706(0.040)  0.538(0.022)/0.539(0.022) 0.705(0.040)/0.605(0.035)  0.538(0.022)/0.369(0.015)
Hx“kx_ki)‘(‘il)‘“ GDFM 0.080(0.004)/0.081(0.004)  0.116(0.003)/0.116(0.004) 0.081(0.004)/0.052(0.002)  0.116(0.003)/0.082(0.002)
% GDFM 0.083(0.003)/0.083(0.004)  0.154(0.004)/0.154(0.005) 0.084(0.004)/0.053(0.002)  0.174(0.005)/0.093(0.002)
12l GDFM 0.080(0.003)/0.080(0.004)  0.099(0.003)/0.099(0.003) 0.082(0.003)/0.047(0.002)  0.128(0.004)/0.044(0.001)

Xl

Table 3: The proportions of significant nonzero correlations between d; and d» for simulation setups (with p; =
900, 6;=45° and 02 = 1) and TCGA datasets. Averages (standard errors) are shown for Setups 1 and 2. Significant
correlations are detected by the normal approximation test (DiCiccio and Romano!|2017) using ]31 and ]32, with
false discovery rate controlled at 0.05.

Method Setup 1 Setup 2 Setup3  EXP9O/METHO0b EXP90/METH90a

D-CCA D,D;] =0 DDJ=0 D,D]=0 D,D] =0 D,D] =0
JIVE 69.9%(2.5%) 60.8%(3.0%)  98.7% 85.0% 58.2%

RJIVE D,D;]=0 DDJ=0 D,D]=0 D,D] =0 D,D] =0
AJIVE CrL=0 CrL=0 Cr=0 CrL=0 Cr=0
OnPLS 56.6%(11.1%) 32.7%(8.2%)  52.5% 72.9% 68.6%
DISCO-SCA 50.3%(4.6%) 25.2%(6.7%)  25.1% 67.8% 64.2%
COBE Cr.=0 Cr.=0 Ci=0 Cr.=0 Cr=0
GDFM (Dy=t,)  703%(2.4%) 61.5%(2.7%)  98.6% 100% 100%
GDFM (D)=, +0;) 73.8%(1.8%) 64.8%(2.3%)  97.0% 85.8% 87.0%

S Analysis of TCGA Breast Cancer Data

In this section, we apply the proposed D-CCA method to analyze genomic datasets produced

from TCGA breast cancer tumor samples. We investigate the ability to separate tumor subtypes

for matrices obtained from D-CCA in comparison to those obtained from the six competing
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Figure 5: Color maps for a single replication of Setup 3.

methods as well as GDFM that are mentioned in Section [II We consider the mRNA expres-
sion data and DNA methylation data for a common set of 660 samples. The two datasets are
publicly available at https://tcga-data.nci.nih.gov/docs/publications and have been respectively
preprocessed by (Ciriello et al. (2015) and |[Koboldt et al.|(2012). The 660 samples were classified
by (Ciriello et al.| (2015) into 4 subtypes using the PAMS50 model (Parker et al., 2009) based on
mRNA expression data. Specifically, the samples consist of 112 basal-like, 55 HER2-enriched,
331 luminal A, and 162 luminal B tumors.

To quantify the extent of subtype separation, we adopt the standardized within-class sum of
squares (SWISS;|Cabanski et al., 2010)
i1 2o (A — i)’

i1 g (Aij — Ap)?

for matrix A = (A;;)pxn, Where fliys(j) is the average of the j-th sample’s subtype on the i-th

SWISS(A) =

row and A;. is the average of the i-th row’s elements. The SWISS score represents the variation
within the subtypes as a proportion of the total variation. A lower score indicates better subtype
separation. For the mRNA expression data, we filtered out the subset consisting of the 1,195
variably expressed genes with marginal SWISS<0.9 from the original 20,533 genes, and denote
this subset as EXP90. The 2,083 variably methylated probes of the DNA methylation data, orig-
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Figure 6: The scree plot of the sample covariance matrix %YkY; for each TCGA dataset.

inally with 21,986 probes, are included in the analysis. We denote the 881 probes with marginal
SWISS<0.9 as METH90b and the remaining 1,202 probes as METH90a. We conducted the
analysis for the pair of EXP90 and METHO90b as well as the pair of EXP90 and METH90a.

The ranks and proportions of explained signal variation for the matrix estimators obtained by
D-CCA and the six competing methods (except GDFM) are given in Table 4, and their SWISS
scores are shown in Table We see in Table {4 that D-CCA, AJIVE and COBE give much
lower ranks for the estimated signal matrices {)A(k}izl than the other methods. Particularly for
the EXP90 dataset, the rank of )Ail obtained by the remaining four methods is inconsistent for
the two pairs. As shown in the scree plots of Figure [6] the ranks of signal matrices selected by
D-CCA and AJIVE look reasonable because the few most leading principal components of the
observed data are captured for denoising, while the signal matrix ranks for the METH90b and
METH90a datasets seem to be underestimated by COBE. Using D-CCA, the estimated canon-
ical correlations and angles of signal vectors are (0.934,0.431) and (20.9°,64.4°) between the
EXP90 and METH90b datasets, and are (0.610,0.275) and (52.4°,74.0°) between the EXP90
and METHO90a datasets.

From Table |5} for the pair of EXP90 and METH90b datasets, the matrix )A(k obtained by all
the seven methods gains an improved SWISS score compared to the noisy data matrix Y. Other
than AJIVE and COBE with ék = 0, a clear pattern of increasing SWISS scores, from (Ajk to
)A(k and then to f)k, can be seen for the remaining methods except JIVE. This indicates that an
enhanced ability to separate the tumor samples by subtype can be expected when integrating two

datasets that can exhibit such a distinction to a moderate extent. Also note that the estimated
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Table 4: Ranks (and proportions of explained signal variation, i.e.,

Il - 112/11X]|2) of matrix estimates for TCGA datasets.

Matrix Method EXP90 / METH90b EXP90 / METH90a
D-CCA 2/3 2/3
JIVE 35/18 41/29
- RJIVE 40 /27 44149
X AJIVE 2/3 2/3
OnPLS 13/10 12/10
DISCO-SCA 13/13 17/17
COBE 2/1 2/2
D-CCA 2(0.472)/2(0.301)  2(0.120)/2 (0.062)
JIVE 1(0.068) /1 (0.086)  3(0.236) /3 (0.167)
& RJIVE 1(0.212)/1(0.505)  3(0.274) /3 (0.602)
k AJIVE 0/0 0/0
OnPLS 3(0.516)/3 (0.510) 2 (0.455)/2 (0.166)
DISCO-SCA 6 (0.732) /6 (0.571) 8 (0.745) / 8 (0.363)
COBE 0/0 0/0
D-CCA 2(0.223)/3 (0.506) 2 (0.564) /3 (0.797)
JIVE 34 (0.932) /17 (0.914) 38 (0.764) / 26 (0.833)
5 RJIVE 39 (0.788) / 26 (0.495) 41 (0.726) / 46 (0.398)
k AJIVE 2(1)/3 (1) 2(1)/3 ()
OnPLS 10 (0.484) /7 (0.490) 10 (0.545) / 8 (0.834)
DISCO-SCA  7(0.268)/7 (0.429) 9 (0.255)/9 (0.637)
COBE 2(1)/1(1) 2(1)/2(1)

Table 5: SWISS scores for TCGA breast cancer subtypes. Lower
scores indicate better subtype separation.

Matrix Method EXP90/METH90b EXP90/METH90a

Y. For all 0.77370.814 0.77370.952

D-CCA 0.313/0.623 0.313/0.925

JIVE 0.632/0.698 0.643/0.920

N R.JIVE 0.642/0.689 0.647/0.931

Xy AJIVE 0.314/0.623 0.314/0.925

OnPLS 0.523/0.669 0.515/0.905

DISCO-SCA 0.526/0.663 0.553/70.904

COBE 0.314/0.545 0.314/0.926

D-CCA 0.240/0.269 0.528 /0.606

JIVE 0.831/0.831 0.639/0.736

~ R.JIVE 0.373/0.373 0.564 /0.885
Cr AJIVE NA /NA NA /NA

OnPLS 0.398/0.312 0.419/70.494

DISCO-SCA 0.447/0.400 0.470/0.717
COBE NA /NA NA /NA

D-CCA 0.623 /0.940 0.320/0.979

JIVE 0.691/0.741 0.830/0.963

~ R.JIVE 0.833/0.997 0.87470.998

Dy AJIVE 0.314/0.623 0.314/0.925

OnPLS 0.878/0.978 0.871/0.989

DISCO-SCA 0.935/0.992 0.944/0.995

COBE 0.314/0.545 0.314/0.926
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Table 6: Ranks, variation ratios (VR=|| - ||%/|X;||%), and SWISS scores of GFDM matrix estimates for TCGA datasets.

Matrix Estimate EXP90 / METH90b EXP90 / METH90a
Rank (VR) SWISS Rank (VR) SWISS

X (joint common) 4/4 0.373/0.569 4/4 0.378 /0.850
X, (marginal common) 3 (0.986) / 3 (0.986) 0.364 /0.566 3(0.990) /3 (0.974) 0.372/0.851
(2),C (strongly common) 2 (0.755) / 2 (0.626) 0.288/0.348 2 (0.770) /2 (0.372) 0.302/0.613
17’1“ (weakly common) 1(0.231) /1 (0.360) 0.764 /0.991 1(0.220) / 1 (0.602) 0.811/0.996
Uy, (weakly idiosyncratic) 1(0.014)/1 (0.014) 0.987/0.760 1(0.010) /1 (0.026) 0.997/0.812
'l//\Jk + Uy, 2(0.245) /2 (0.374) 0.77710.982 2(0.230) /2 (0.628) 0.819/0.988

E: (strongly idiosyncratic) 656 (2.070) / 656 (1.196) 0.985/0.987 656 (2.151) /656 (1.764) 0.977/0.989
&, (marginal idiosyncratic) 657 (2.084) /657 (1.211) 0.985/0.983 657 (2.160) / 657 (1.790) 0.977 /0.987

common matrices of our D-CCA have the lowest SWISS scores. While considering the pair of
EXP90 and METHO90a datasets, for all the seven methods we find a big gap between the SWISS
scores of the two estimated signal matrices, and that the denoised matrix of the METH90a dataset
still has nearly no discriminative power with SWISS close to 1. The ability on subtype separation
seems more likely to be a distinctive feature of EXP90 dataset comparing to METH90a dataset.
The estimated distinctive matrix of EXP90 is thus expected to have a lower SWISS score than
its estimated common matrix. However, only D-CCA meets this point, except that AJIVE and
COBE yield zero common matrices. The failure of the six competing methods may be caused by
their inappropriate decomposition constructions, which are mentioned in Section (1| In particular,
from Table |3, we see that a lot of significant nonzero correlations exist among all gene-probe
pairs based on the estimated distinctive matrices, respectively, obtained by JIVE, OnPLS and
DISCO-SCA.

The GDFM method (Hallin and Liska, 2011) was also applied to the TCGA datasets. Table E]
summarizes the results of GDFM matrix estimates. As estimators of signal matrix X, matrix
has comparable rank and SWISS score as those of our D-CCA estimator X given in Tables
and Besides, x; = X, 1.e., vy = 0, is numerically suggested by the remarkably small
variation ratios of Uy, to X that are likely just induced by estimation errors. With very large ranks
and uninformative SWISS scores, both Ez and Ek appear to be noises. One may let ék = (/;Sk,
f)k = sz (or f)k = 1//;k +vy,), and f(k = X, (or )/Zlk = x.) for GDFM. Inspecting Table@reveals

that the discussion given in the preceding paragraph also holds even when we include GDFM.
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6 Discussion

In this paper, we study a typical model for the joint analysis of two high-dimensional datasets.
We develop a novel and promising decomposition-based CCA method, D-CCA, to appropriately
define the common and distinctive matrices. In particular, the conventionally underemphasized
orthogonal relationship between the distinctive matrices is now well designed on the £? space
of random variables. A soft-thresholding-based approach is then proposed for estimating these
D-CCA-defined matrices with a theoretical guarantee and satisfactory numerical performance.
The proposed D-CCA outperforms some state-of-the-art methods in both simulated and real data
analyses.

There are many possible further studies beyond the current proposed D-CCA. The first is
to generalize the D-CCA for three or more datasets. We may assume that at least two datasets
have mutually orthogonal distinctive structures. An immediate idea starts from substituting the
multiset CCA (Kettenring, 1971) for the two-set CCA in D-CCA. However, the challenge is that
the iteratively obtained sets of canonical variables are not guaranteed to have the bi-orthogonality
given in Theorem |1, Hence, we cannot follow the proposed D-CCA to simply break down the
decomposition problem to each set of canonical variables, and need a more sophisticated design
to meet the desirable constraint. Another direction is to incorporate the nonlinear relationship be-
tween the two datasets. The D-CCA only considers the linear relationship by using the traditional
CCA based on Pearson’s correlation. It is worth trying the kernel CCA (Fukumizu et al., 2007)
or the distance correlation (Székely et al., 2007) to capture the nonlinear dependence. Inspired by
the time series analysis of [Hallin and LiSka/ (2011) and Barigozzi et al.|(2018)), we also expect to
generalize D-CCA to general dynamic factor models with comparisons to their methods. These

interesting and challenging studies are under investigation and will be reported in future work.
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Supplementary Material to “D-CCA: A
Decomposition-based Canonical Correlation Analysis
for High-Dimensional Datasets”

Hai Shu, Xiao Wang, and Hongtu Zhu

Abstract

Two important propositions and all technical proofs are given in Section S.1. Additional
simulations are included in Section S.2.

S.1 Propositions and Technical Proofs

T T

Tx))', e = (e],e))', and r, = rank(cov(x)). Assume that

Proposition S.1. Ler x = (x, , x,
ranks 1 and ry are constants. When p = min(py, p2) — 00, if minge(1 2y A, (cov(xy)) diverges

and maxye(1,2y A1(cov(ey)) is bounded, then X, (cov(x)) diverges and A (cov(e)) is bounded.

Remark S.1. Hallin and Liska (2011) proposed a decomposition method under a general dy-
namic factor model that includes our approximate factor model given in (6) and (7) as a special
case. Their decomposition method divides each of two observed vector processes into four com-
ponents that are called strongly common, weakly common, weakly idiosyncratic, and strongly
idiosyncratic, respectively. Consider applying their method to our approximate factor model that
has i.i.d. samples. By their Assumption A3 and Proposition I(a) and (b) as well as Weyl’s inequal-
ity, ranks {ry };_, are constant, and minge 1 2y Ay, (cov(xy)) diverges but maxye (1 23 A1 (cov(ex))
is bounded when p — oo. Then with the additional condition cov(x, e) = 0, it follows from our
Proposition S.1 and their Proposition 1(c) that for each y,, xy is the sum of strongly common
and weakly common components, ey, is the strongly idiosyncratic component, and no weakly id-
iosyncratic component exists. Furthermore, if span(zx| ) N span(xy ) = {0}, i.e., the first signal
canonical correlation py < 1, then there is no strongly common component, and xy, is entirely

the weakly common component of y,,.



Proof of Proposition S.1. Recall that 33, = cov(xy,) = VA, V] and 15 = cov(xy, x5). Using

(S.4) that will be shown later, we have

@ | B Ze| oW A Up L Ao
T s s | \% ALY Up| | A] I
12 2 2 2 02 0 o X T2
Uy, A \a
Uy, Ay \4
= VoA U@, UJ A V] (S.1)

According to Theorem 3.3.16(d) in Horn and Johnson (1994), we have

07 (UpoUg ) = 0, (Ag A *Up@oUj Ay * A1)
< 01(Ag )0, (AY VB0 U AY )0 (A7),

Since rj, and 0,(©) = py are constant for k < 2 and ¢ < 19, 0,, (U@ U} ) = 0,, (D) is a

positive constant. Thus, when p — oo, we have

Ar, (cov(x)) = 0y, (cov()) = or, (Ay *UpBoUg Ag'?)
> 0, (Up®oUy] ) /03 (Ag %) = 0, (Us Uy ) Jmin A (cov(i)) = o0,

For the noise covariance matrices, we denote their compact SVDs by cov(ey) = V. ;A kV;r’k

for £ = 1, 2. Similar to (S.1), we have

1/2 1/2 T
Veyl Ae,l Ire,1 XTe,1 Acia T Ae,l Ve,l
e

cov(e) = 12 U, . 12 .
VS,Q Ae,2 A612 ITe,z XTe,2 Ae,2 Ve,2

= VAU @ U[ AV,

where U, is an orthogonal matrix, r.; = rank(cov(ey)) for k = 1,2, and Agjpisa .y X 7eo
rectangular diagonal matrix with the canonical correlations between e;’s on its main diagonal.

Finally, as p — co, we have

= < . <2 .
Ai(cov(e)) = || cov(e)lls < [|[Pe]1 klel}{élié} A(cov(eg)) <2 kg?{??;} A1 (cov(eg)) < oo

We finish the proof of Proposition S.1. [



Proposition S.2. Equation (15) is the unique solution to the problem in (11) subject to (12)-(14).

Proof. Let (-, -) denote the angle between two elements in space (L3, cov). Then, cosf(-,-) =
corr(+, -). Hereafter, we use these two operators exchangeably. Note that Zi:l cos? 0(zpe, 210) >
L If w L span({zi, zor}), then 37_, cos?B(zp, w) = 0, and thus such a w is not an opti-
mal solution to the right-hand side of (11). When w [/ span({zis, 290 }), since cos 0(zge, w) =
cos 0( zxe, wo) cos O(wy, w), where wy denotes the projection of w onto span({zys, 290} ), we only
need to consider w € span({zi, 22¢}). Let w = azyy + bzgp with var(w) = a® + b* + 2abp, = 1.

Then, we have

2
Z cort?(zgg, w) = (a + bpe)? + (ape + b)*
k=1

= a® + b* + dabpy + pj(a® + b*) = 1+ 2abp, + p; (1 — 2abpy)

=1+ p} + 2abpe(1 — p?). (S.2)

We first consider p, € (0, 1). Equation (S.2) is maximized only when ab > 0. Without loss of
generality, we assume a and b are nonnegative. Since 2ab < a? + b?> = 1 — 2abp,, the maximizer
of ab satisfies a = b = (24 2p;) /2. Thus, ¢; o 210 + 2a0. Let ¢; = a(z1y + 2o¢). From (13), we

have

0 = corr(dig, dag) = corr (1 — a)z1 — cvzap, (1 — @) 200 — a21¢)

=2(pe +1)a” = 2(pe + 1)+ py,
1 1-—
a==>(1+ Pey .
2 14+ pe

2
1 / 2

To satisfy (14), ¢, must be the one in (15) when p, € (0, 1).

Hence, we obtain

It follows that

Now we consider the solution of ¢, when p, € {0,1}. By (S.3), for ¢, that is defined in (15)

when p, € (0,1), we have lim var(c,) = 0and lim var(c,) = 1. Then by (14), when p, = 0,
pe—0F pe—1~

then var(c,) = 0, and thus ¢, = 0 which satisfies (15) as well as (11) and (13). We also obtain

var(cg) = 1 when p, = 1. Now consider p, = 1. By (S.2), we have max S22 corr?(zpe, w) = 2,
weLy

3



and thus ¢, < z1p = z9. If var(c)) > lore, = —2zypy = —29, then dyy = dyy # 0 and
corr(dyg, dag) = 1. Thus, to satisfy (13), ¢y = 21, = 22, which is equivalent to (15).

From the above, we have that ¢, must be the one in (15) when p, € [0, 1]. O

Lemma S.1. When n — oo, if a,, = Op(b,) holds on a given event A, that has P(A,) — 1,

then we have a,, = Op(by,).

Proof. By the given assumptions, for any ¢ > 0, there exist constants M. and N. such that
P (|an| < Moby|A,) > 1 —cand P(A,) > 1 — e forall n > N.. Then, P(|a,| < M.b,) >
P (lan| < M.b,|A,) P(A,) > (1 —€)? > 1 — 2e. Hence, we obtain a, = Op(by). O

Proof of Theorem 1. First, we show rank(@®) = rq5. Since

* * —1/2 T * 1/2 *
xy, = cov(xk, 25) 2 = cov(zy, A, "V xp)z, = VA 2],

we obtain

S1p = cov(ViAY 25 VoAY?25) = ViAPOAY V] . (S.4)

Hence by rank(M;M;) < min(rank(M;), rank(Ms)) for real matrices M; and M, we have
rank(®) > rip. Again using the above inequality of the rank of matrix product, by @ =
Al_l/QVlTElQVgAQ_l/Q, we have rank(®) < ryy. Thus, rank(©) = 71,.

Now temporarily replace the constraint ¢ < 715 by ¢ < 7, for (10) . Let {Z14, 220}, be
an arbitrary solution of (10). We will later see that corr(zy,, zo¢) = 0 for all £ > ry5. Augment
(Zkts - - Zhrs, ) | With any (rj, — ri,) standardized variables to be Zj, = (241, ..., 25, ) | Such
that Z;| is an orthonormal basis of span(z; ). Denote e = cov(Zy, 22). When £ = 11in (10), 21,
must be proportional to the projection of zo; onto span(x, ). Hence, 2, L span(z; )\span(z1;),

and ©271:1 is a zero vector. Similarly, Q2]

is a zero vector. Using the same argument
for ¢ = 2,..., ryy yields that the only nonzero entries of © are located on the diagonal of
@!Lrmin,Lirmin] - Note that there exists an orthogonal matrix Q; such that 2, = Qiz;. Then,
e = Q&)Q;r has rank ;5. Hence, the only nonzero entries of © are the first r19 €lements of its
main diagonal. We thus only need ¢ < ry5 in (10).

The proof is complete. 0

Proof of Theorem 2. We only need to show the uniqueness of c;.



Let {Z)}r—12 be another set of augmented standardized canonical variables. Then, there
exists an orthogonal matrix Qy such that Z, = Qz; with 2, = I’/ x; defined in (18). By
Theorem 1 and the fact that cov(z1, z5) = QlAQQ;— has the same singular values of Ay, we
have cov(zy, z2) = Q1AgQ) = Ay. Let m be the number of distinct nonzero singular values
of Ag. Then for k = 1,2, we have Q;, = diag(Myy, ..., My, My 11), Where My, £ < m is
an orthogonal matrix with column dimension equal to the repetition number of the /-th largest
distinct nonzero singular value of Ay, and My, ,,+1 might be an empty matrix. By A@Q;r =
Q/ Ay, we obtain My, = My, for all £ < m.

By the expression of ¢; in (19), we only need to show

COV(wl,leng] A Z~[1T12]_Covw zl ir12] A Zz[lrﬂ]‘
k=1

This is true because

cov (@, zl1 i1z JAc Z~[1 i1z

= cov(xy, zl)(Q[lmlz’:])TAc Z QE:W’:}z
k=1

2
= cov(@1, 2 ") (diag(Myy, ..., My)) T Ac Y diag(Miy, ..., My,)z; "
k=1
2

1:
= cov(xy, zl m] E [ r2],

k=1

]

Proof of Theorem 3. Under Assumption 1, by the proof of Theorem 4.1 in Wang and Fan (2017)

(see the bound for their A;), we have
Ss, = ||Z1 — Zkll2 = Op(Me1/Vn). (S.5)
From Weyl’s inequality [see Theorem 3.3.16(c) in Horn and Johnson (1994)],

|)\kﬁ — )\K(Ekz” S || Cov(ek)||2 S So fOI‘ 1 S f S Tk.



This implies
)\ké/)%(z]k) —1 for 1< 14 < 7.

Together with the assumption that Ag; /A, is bounded from above and below, we have
)\g(zk) = /\m(Ek) for 1 < E,m < TL.
By Weyl’s inequality, (S.5) and (S.6),

1Kl /n = A (Be)| =

M (S) = ()| < 85, = Op(0(Z0) V7).

Thus,

(S.6)

(S.7)

(S.8)

(S.9)

Under Assumption 1, by the proof of Theorem C.1 in Wang and Fan (2017) (see the bound for

their max;<, T—! Zthl Wi — uie|*), we have

| = Ul ding(01 (Vi) -0 (YD) (U™ = Op(v/prTog ).

(S.10)

Also under Assumption 1, by the proof of Theorem 3.1 and the argument in the third paragraph

on page 1355 in Wang and Fan (2017), for 1 < ¢ < ry,
TPk Dk 1
=0p|—)=0p| —+—| =0p(1
P (n/\kg) P (n/\kg + n) P< )

P, ().

NG
:op<

_ pe 1
) - Or <n>\k6+n>'

of(Ye)  [67(Yi))?
’rl/\kg ’I’L/\kg

and

Hence,

oY)  57(Yy)

vV n)\kg vV n)\kg

o7 (Yy)  [07(Yy))?
n)\kg n)\kg

(S.11)



By (S.11) and (S.10), we have
R -], = R
F

”U[ L7l diag (@7 (Y) = o1(Yi), -, 00 (Yi) — 00, (Y1) (UE’;:M)THF

+ X = Ul diag(on (Y, o <Yk>><UE;’;"‘”>THF

< 4/7p max ‘az Yk) - Ug Yk ‘ + HXk - ZUZ Yk UlEié]<U/[7;2€])TH

1<e<ry, F
Pk Akl
=0 )=+ 1
P (\/Wkl n Pk ngk)
A (X
=0Op ( 1(71 r) + Dk logpk> : (S.12)

It is easy to show E( f;},) is upper bounded for all 1 < ¢ < ry. Thus, var( frsfxm) is upper bounded
forall 1 < ¢, m < ry. Then from the central limit theorem, || FiF} /n—1,, xr, |lmax = Op(1//1).

Hence,
1

1
EHFkap = trace (EFkF;) =71+ Op(1/y/n).
Then by Lemma 1 in Lam and Fan (2009), the fact 0,(By) = A%Q(Ek) for1 < ¢ <ry,and (S.7),

there exists a constant k3 € (0, 1] such that

\/ v (%) [|Fr]| 7
ks /x4 op(1) —
1 k
< | Xsllr

IBrFxllr _ v Ai(Z) | Fillr
= /i + op(1). (S.13)
\/m Vi (Zk)

By [ Xgll2 < [IXk||r < /Tl X2, we have

I Xlle

K3 + Op(l) <

< k4 op(1), (S.14)



From (S.12), (S.13), (S.9) and || X||r < /7%||Xx||2, we obtain
o= [ X, S = [Rei],

= Op(min{ @ + \/pk log s, \/n)\l(Ek)}). (S.15)

From Weyl’s inequality and (S.8), forall 1 < ¢ < py,
A(Zk) = M(Z0)| < 185 = Billa = Op (M (Sk)/vn). (S.16)
Then by (S.7),
A (Z0) > A (25) = (A () = A (Z)| = (1= 0p(1) A, (). (S.17)

It follows that 7, = r, with probability tending to 1 as n — oo. Due to Lemma S.1, we simply

assume 7 = 17 in the rest of the proof.

By the mean value theorem and (S.16), uniformly for / = 1, ... r, we have
~ 1 ~
A (5) = A0 < 510 = 0p (A (ZO)e(E8) = Me(Za)] = Op (A (Bi)n ™),
(S.18)
S1/2,Q _ 1 = _
A2 (E0)=A (0] < S [A-0p (M)A (B0] 2 IMe(E0)=M(E0)] = Op (A (S ),
(S.19)

A ER) = A E0] < (1 = 0p(1)AL (B0 A Ek) = M(Er)| = Op(A (Zp)n 7).

By the uniqueness given in Theorem 2, we let V, satisfy (\A/_E’e])TV,E’Q >0forallk =1,2
and? =1,..., 7 By Corollary 1in Yuetal. (2015), (S.6), (S.7) and min,<,, (Agr—Ae1)/Aee >

0o, we have

19~ Valle =0 (118~ Zell/ mintAd ) - den(20) )
STk

= Op(1/v/n). (S.20)



Note that
— [[AB — AB + AB — AB|); < |A|]2|B — Bll2 + | B[2]|A — A,

|AB — AB|, . T A
= |BTAT —BTAT|j, < |B|ls]|A — Al + |All2| B — BlJ2.

(S.21)

Now we consider the error bounds for the columns of Uy, We first consider ||© — ©||,. By

(S.21), (S.20), (S.19) and (S.7), we have

k T —=1/2<> —1/2
V= APV AV
SAEOIVE = Ville + [V [l max [372(S0) = (5]

= Op(A *(Zp)n~'12). (5.22)

By (S.21), (S.17), (S.22), (S.14), (S.15) and (S.7),
3z, = [|A; PV Xy — A PVIXG 2

< SNX 2 + 0x, 2| AL
= Op(61 | Xy|2 + 0%, 2 A 2 (28))

= Op (min {1 + \/pk)\l_l(Ek) log pr., ﬁ}) .

Define Z; = A, /*V] X,. Then by (S.21), (S.17), (S.9), (S.14) and (S.7), we have

< (5222 S Kol + 82,0, 2SI K ]
_ : P log pr
= Op (mm{ —1—2 n)\1 Ek }) .

Since z} and f, are both orthonormal bases of span(z} ), z; = Q.;, f, with arj, xr; orthogonal

* A* 1 * *
732 - —7i(7))

2

matrix Q.. Since E(f},) is upper bounded for all ¢ < ry and k < 2, var(fisfon) is upper

bounded for all ¢ < r; and m < r9. Then, we can use the central limit theorem to obtain

o)

1
= Hth (EFngT — cov(fy, f2)> sz2
2
1
AT 2

1
~Zi(Z3)" —©
Hn 1(23) 2

1
—FleT —cov(fy, fa)
n 2

<11Q:pl2



Therefore,

1-, = 1 1
@ @ _Z* Z* T__Z* Z* T _Z* Z* T_@
18-l < |12 - sz + |z -e|
1 2 log p
<pmin{ — + k1
g {\/_ ; nA(Zy) }

Here and also in the following text, for simplicity, we write A <p B if and only if A = Op(B).

From Wey!’s inequality, we have the bound for canonical correlation estimators

Jnax |04(8) —01(©) <[ — Ol|> Sp 6. (S.23)

Using (S.21), we obtain

max{||©0" — 007|076 —0Te|,}
< (|8l +[1©])]© - e
Sp (28]l + 00)ds Sp (01(©) + 6p)de

SJP 60‘

Let {fjgk}k:m be one pair of orthogonal matrices such that @ = ﬁ@lA@ﬁJQ. Define op; >
- > 09y, to be the distinct nonzero singular values of ©, and 0y ,,4+1 = 0. By Lemma 1 in Lam
and Fan (2009) and Theorem 2 in Yu et al. (2015), there exists a matrix Qi = diag(Qu1, - - - , Qkry)

where Qy, is an orthogonal matrix with column dimension equal to the repetition number of oy ¢,
such that

||U ,1i71g)] U[e,:m]QkH < HU[ 1m]Qk _ ”12]||F||Qk||2
<Sp min {50/ 21<n {‘704 Ug,eﬂ}v 1}
Sp de.

NOte that -Ej—g,lli’rlz]QlA[91:7’1271:1”12]Qir(ﬁgéltrlg])T — 6[:,1:T12}A[91:T12,1:7”12](ﬁ[:,llrlz])T — 9. By

the uniqueness given in Theorem 2, we let Uy, = (UL!"2Q,, ULy - Define U3, =

10



(fjgél:nQ]Qg, ﬁgé(rmﬂ)m). We have
(5l — Ul e <p 6 (S.24)

and

Hﬁ[@:él:mz] . U;[Q:,l:rlz]”F SP 5y (S.25)

Then by (S.21) and (S.23),

Hﬁgilleg]K[elzrlg,l:le} (ﬁgél:rl2])T . U[@:iltle]A[elleg,l:T‘lg](U;g,l:rlz})T

2

S ||ﬁ[6:i127‘12]x[01:7‘12,1:7'12] _ U[ezil:r12]AE01:T12’1:Tl2]H H(ﬁ[eél/rlz})THQ
UG A o[ (T ™) T — (U ) T

S ||-[/j‘[9:711:7"12] _ Ug,ll:mg]H ||A[1:r12,1:7’12]||2 + ||U9:,11:7“12 ||2||A[91:r12,1:7“12] _ A[@l:mg,l:rlg]”Q
+ 147 (T ™) T = (U ) T

<p 01(@)(59 + 0

~Y

NVE

By the above inequality, the inequality H(:) — O||2 <p Jy, and the triangular inequality of matrix

norms, we have

||U911 7"12]A[1 12,1 7’121(U[ JLiria] U;g’lzrlﬂ)THQ <p 0y

It follows that

|Ag T (U — U T

< VAT U - U e T

< V| (UG Tl [ Ug; e A el (ugtnel — bty T

<p Jp. (S.26)

Define I'; = VoA, /*U?,. Note that

Cy = S TP AP X + 2P A () T,
+ 3Tl A phtmel _prltrely T (S.27)

11



Let Ty = VA, *Uyy, for k = 1,2. By (S.21), (S.22) and (S.24), we have

||f[1:,1:'r12] o F[1:,1:r12]||2

_ i\/' 371/2-6—[:,1:7’12] -V A*1/2U[3712T12]

=1V o1 144 or I

< [ TEE [ VAT Y2 = VAT Y2y + Vi AT 2o T ) — wltered

=: otV (S.28)
and similarly,

JEG el g,
= [V, PTG VoA, U

Sp A (B2 4 AT (20)d

=6 (S.29)

2l
By (S.21), (S.20) and (S.18),
||{\71K1/2 _ V]_ 1/2“2
< NAB) IV = Ville + [Vl max [3(51) = 37 (2)

= Op(\*(Zy)n7172). (S.30)
Then by (S.24),

|85, TbmE s bl

— [V, ATl v AUl

< (| TL [V, AY2 = VAV [V A2 )| Tk - gl

S AAS)n 2 + 0205

o (S.31)

Now consider the error bound for ;‘;(CT) Let f(x) = 1 —.. We notice that the derivative of

f %(x) is unbound near x = 1. Thus, rather than using the mean value theorem directly for

12



£2(04(©)) — f2(04(©))], we use the following technique:

[N

®>

2 (o4

2(04(©)) — f2(04(©)) )+ f2(0e(©))
= |/01(8) - re(@)|

< swp |f'(@)|[0(8) ~ 7(©)|

(@) <

f2(0u(©)) — f

0<z<1
9 .
< su 0(®) — o @‘
S o Ve ((©) — 0¢(O)
SP 697

where the last inequality holds uniformly forall ¢ =1, ... ru;, due to (S.23). Hence,

 Jnax |ay — ae] <p 51/2 (S.32)

From (S.21), (S.31), and (S.32),

|E.T ALY — 2T A,
< ||K<c”2>|| =T s e, v AU | ALY — A

= Oora (S.33)
Then by (S.21), (S5.28), (S.17) and (S.7),
IS f[ﬂ”l?b&(m)(f“”m])T — 3 AP T
< IO TAL PV [l ST AR — STy A
- ||V1A1/2U5’111’“12]A | (TF72h T — (Tt T,
P AL (1005 + N2 (210
<P A 2(21)0m0 + A2 (21)00Y
<p bp+6,"
<p
=: 01, (S.34)

13



Similarly, from (S.29),

Hi‘]lf[l:,lsrm]gg‘m)(fg,l:rm])"r _ er[lt,lﬂ“m]AC(P;[%l:TlQ})T||2
Sp A2 (8)00m0 + N (B1)0))

Sp NP (B0 ()
= (5172. (835)

By (S.21) and its variant under the Frobenius norm following from Lemma 1 in Lam and Fan

(2009),

||ilf[l:71:T12]Kgl2)(f[1:71:7n12])szl . 21F[1:71:T12}Ac<r[1:’1:m2])TX1||(~)
S Hglf\gf,l:rlg];&g12)(f\g-:,l:Tlﬂ)T o Elrgj,l:Tlg]AC(I\gf,lile})TH2||X1”(.)
S R[] K (re) (R e
IS AL @) X~ Xl

A~

1 ~
S Ol Xl + ZA 7 (E0AL (S0 0%, )

T

<Sp ol Xl + AP (SO A(E)0x, )

_. s
=5 (S.36)
and similarly,
Hilf[lz,lzrm]’ggl?)(fg,lzru])T}zZ o 211—\[117157"12]AC<I‘;[371:T12])TX2H(.)
<SP 01l Xall ) + AN A(B)AL 2 (B2)0x, )
=: 3. (S.37)
By the fact that 1 — }jr—i <1- }jr—i < 2z for x € [0, 1] and inequality (S.26), we have

JAC(UL2 U e T e < Ao - U T e <p gy

14



It follows that

[Sirf A - Ty T )

< [ ViAPUR A (U — URE e TAG Y2V o] Xl

<P MBS (Z0) Xl ()0

Sp 01l Xall)- (S.38)

By the definition of @1, (8.27), (8.36), (S.37) and (S.38), we obtain

11— Cilly S degy + 3¢, (8.39)

Together with (S.15), (S.13) and (S.14), we obtain the claimed bound for ||C; — C; I/ ICall -

Now consider the relative error bound for ]31. Write (AJY) equivalently by

2
(7 JLir r Ll
Cg) _ I‘[ ]Aé Z ]
k=1
Note that X, = C ("2) L 15, We have
1Dy = Dyfy < [CT™ = Cill) + Xy = Xl (S.40)

When 75 < 119, 61 = 6?12) and thus ||]51—D1||(.) < ||61—C1||(.)+||)N(1—X1||(.), immediately
leading to the bound for Hf)1 — Dy||(y/[|D1]|(y. Now consider the case when 715 > ry5. Let
7 € (r1g, Tmin). We first look at [|C!”) — C,|). Define T\ = VA, V2 (Ullmel gllma+i
and T} = VA2 (usltmel glre Dy we have

C, =S, AT TX, + =, TV AD([ ) TX,
+ 3, it g el ol Ty (S.41)

with A" := diag(ay, ..., a,) and a, = 0 for £ > r15. By (S.24) and (S.25),

max { || (O, ORr07) — (U], e

J(O e, O — e TR o} Sp oo (S42)
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Then following the proof lines for (S.28), (S.29), (S.31) and (S.33)-(S.35), we can obtain

AlLLir ~(r
|5 =T 5P oY

o,
IT5 ) — 15, <p (552),
=05 = =T, Sp s,
1= AL — ST AL 2P Gara,
IS EPTAD @) - STV AD T2 Sp o

and

IZ LA @ T - BTV AL T s Sp b
Following the derivation of (S.36) and (S.37), we can obtain
«Q LR () w1 < ~(r r) (T 1
IS, TPIAL @ TR, - S TVAS @)X ) Sp o),

and

S LR () R < ~(r r) (Tax(r 2
IS/ AL T X, = STV AG 7)ol Sp 07,
By the above two inequalities, (S.38), the definition of 65’"), and (S.41), we obtain
~(r 1 2
ICY = Cilley Sp 8ty + 0ey, (S.43)
which has the same bound for ||C; — C; l|(y given in (S.39). Then using (S.40) gives
S 1 2
1Dy —Dyly Sp oLy, + 050, (S.44)

and the claimed bound for ||D; — D, l(y/1 D1y in the theorem.

The relative error bound for )Ail immediately follows from
S -~ ~ 1 2
1X: =Xl < 11Cx = Cilley + 1Dy = Dully S dergy + dcry.
Similarly, we can obtain the bounds for estimated matrices of the second dataset. [

Proof of Corollary 1. For k = 1,2, since 7, it i, and 7, is an integer, we have P(7, = ry) — 1
as n — 0o. Due to Lemma S.1, in this proof we simply assume 7, = r. Hence, we only need to

prove the relative error bounds for 6;” and )A(,(:), and refer the other two bounds to Theorem 3.
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When ?12 S 12, WE have ?12 = min(ru, ?12) S r S Tmin and thus 6](:)

_ 6](312)

= CA)k Then,

the result stated in the corollary has been given in Theorem 3. On the other hand, when 715 > 719,

we have rjo = min(r12,712) < r < ruyi. Then by (S.43), we can immediately obtain the claimed

result in the corollary.

S.2 Additional Simulations

]

We consider Setups 1* and 2* which have the same settings as those in Setups 1 and 2, re-

spectively, except for the noise covariance matrices cov(e;) =

Note that A\;(cov(ey)) €

(0.7 02 )1<ij<ps b =
(5.6202%,5.6702) for 100 < pr < 1500. Especially when o2

1,2.
= 16,

A1(cov(er)) ~ 90 is quite close to 100 that is the minimum nonzero eigenvalue of X, resulting

in challenging cases for estimation (see conditions (I), (I) and (V) in Assumption 1, and also the

result in (S.6)). The finite sample performance of our D-CCA estimates shown in Table S.1 and

Figures S.1 and S.2 is similar to that in Table 1 and Figures 3 and 4.

Table S.1: Averages (standard errors) of D-CCA estimates for the first canonical angle/correlation.

(p1,0?) 0, =0"/p; =1 6, = 45°/p, = 0.707 0y = 60°/p1 = 0.5 01 = 75°/p1 = 0.259
Setup 1*
(100,1)  4.15°(0.24°)/0.997(0.000) 44.7°(2.39°)/0.710(0.029) 59.4°(2.89°)/0.509(0.043) 73.5°(3.08°)/0.283(0.051)
(600,1)  3.65°(0.22°)/0.998(0.000) 44.7°(2.39°)/0.710(0.029) 59.4°(2.89°)/0.509(0.043)  73.5°(3.08°)/0.283(0.051)
(900,1)  3.65°(0.22°)/0.998(0.000) 44.7°(2.39°)/0.710(0.029) 59.4°(2.89°)/0.509(0.043)  73.5°(3.07°)/0.283(0.051)
(1500,1)  3.64°(0.22°)/0.998(0.000) 44.7°(2.38°)/0.710(0.029) 59.4°(2.89°)/0.509(0.043)  73.5°(3.08°)/0.283(0.051)
(900,0.01)  0.36°(0.02°)/1.000(0.000) 44.6°(2.38°)/0.712(0.029) 59.3°(2.89°)/0.510(0.043)  73.5°(3.08°)/0.284(0.051)
(900,1)  3.65°(0.22°)/0.998(0.000) 44.7°(2.39°)/0.710(0.029) 59.4°(2.89°)/0.509(0.043)  73.5°(3.07°)/0.283(0.051)
(900, 9) 12.1°(0.81°)/0.978(0.003)  45.9°(2.46°)/0.696(0.031)  60.1°(2.92°)/0.499(0.044) 73.9°(3.05°)/0.277(0.051)
(900,16)  17.6°(1.28°)/0.953(0.007) 47.4°(2.57°)/0.676(0.033) 61.1°(2.98°)/0.482(0.046) 74.9°(3.16°)/0.260(0.053)
Setup 2*
(100,1)  3.97°(0.24°)/0.998(0.000) 445°(236°)/0.712(0.029) 59.0°(2.82°)/0.514(0.042)  72.7°(2.88°)/0.296(0.048)
(600,1)  3.72°(0.23°)/0.998(0.000) 44.5°(2.36°)/0.712(0.029)  59.0°(2.82°)/0.514(0.042) 72.7°(2.88°)/0.296(0.048)
(900,1)  3.72°(0.22°)/0.998(0.000) 44.5°(2.36°)/0.712(0.029) 59.0°(2.83°)/0.514(0.042) 72.7°(2.88°)/0.297(0.048)
(1500,1)  3.72°(0.23°)/0.998(0.000) 44.5°(2.37°)/0.712(0.029) 59.0°(2.84°)/0.514(0.043)  72.7°(2.89°)/0.296(0.048)
(900,0.01)  0.37°(0.02°)/1.000(0.000) 44.4°(2.35°)/0.714(0.029)  59.0°(2.82°)/0.515(0.042)  72.7°(2.89°)/0.297(0.048)
(900,1)  3.72°(0.22°)/0.998(0.000) 44.5°(2.36°)/0.712(0.029) 59.0°(2.83°)/0.514(0.042) 72.7°(2.88°)/0.297(0.048)
(900, 9) 12.0°(0.79°)/0.978(0.003)  45.6°(2.42°)/0.698(0.030)  59.7°(2.86°)/0.505(0.043)  73.0°(2.89°)/0.292(0.048)
(900,16)  17.3°(2.73°)/0.954(0.030) 47.1°(2.53°)/0.680(0.032) 60.7°(2.90°)/0.488(0.044)  74.0°(2.97°)/0.275(0.050)
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