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Abstract

We describe differences between the commonly used version of the U.S. Census of

Manufactures and what establishments themselves report. The originally reported

data has substantially more dispersion in measured establishment inputs, output,

and productivity. Even after trimming, measured allocative efficiency is substantially

higher in the cleaned data than in the raw data: around 5x higher in 2002 and 2007,

and 50x in 2012. Without trimming, the changes are substantially larger. We describe

a Bayesian approach for editing and imputation that can be used across contexts, dis-

cussing how to incorporate analysts’ manual edits and tax records, as the Census

currently does.
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I Introduction

Over the past twenty years, many economists (including us) have written papers and

lecture notes highlighting that the within-industry misallocation of factors can help ex-

plain cross-country differences in productivity (Restuccia and Rogerson, 2008; Hsieh and

Klenow, 2009). The source of this belief is a robust stylized fact that developing countries

like China and India have more measured within-sector dispersion in establishment be-

havior than wealthier countries like the US. This paper describes some challenges with

the measurement of this stylized fact.

The confidence we have in our claims about dispersion in establishment behavior -

either the “true” values for a particular country, or of cross-country differences - depends

on how worried we are about measurement error (Bartelsman et al., 2021). In principle,

measurement error has an ambiguous effect on measured dispersion, since non-classical

noise can either push establishments’ reported values towards or away from what is typ-

ical in their sector. In this paper, we discuss two potential sources of measurement error:

establishments potentially misreporting their own characteristics, and subsequent data

processing potentially introducing new errors. Across a variety of methods to clean the

data, we find that measured allocative efficiency is multiple times higher in the cleaned

data.

Most statistics agencies initially ask establishments to verify (or send in) information,

but the subsequent steps vary across surveys. Many statistical agencies in developed

countries, including the U.S. Census Bureau, both edit and impute responses. The exact

procedures vary across industries and time (White, 2014), but broadly take two forms.

First, the Census Bureau edits some outliers. If a reported variable fails one or more edit

rules, then it may be temporarily replaced with a missing value. Second, the Census

Bureau imputes missing information, using other information reported by the plant (both
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in that year and, when available, in previous years) and other plants in the same industry.1

For 2002, 2007, and 2012 we have access to the original values and cleaned values for

plants in the Census of Manufactures, as well as the relevant edit flags.

First, we describe extensive margin changes: the extent of edit flags for total value of

shipments,2 capital, payroll, and materials is large: around 80 percent of plants have a

value in the final data that is different than in the raw “captured” data.3 Both fixes of

obvious reporting errors (around half of plants have at least one missing value, around

10 percent report distinct values for the same outcome, which leads to a “logical” edit), as

well as more subjective changes (such as manual edits by industry experts, which affect

five percent of plants) have large effects on measured dispersion. Across all four prim-

itives, the captured data has thicker upper and lower tails than the final data, although

the final values tend to be larger than the captured ones. Around a third of plants have

an edited value that is at least 10% larger or smaller than the originally reported value.

We then turn to describing how measures of productivity change. Many measures

of misallocation use statistics that are broadly similar to the spread in revenue produc-

tivity (Bartelsman and Wolf, 2018; Asker et al., 2019).4 We show visually that cleaning

has large effects on the distribution of TFPR, dramatically lowering the mass in the tails.

1 Editing a variable normally involves deleting the original response, and then treating it as if it had never
been reported.

2 Correctly specified, gross output is not equal to total value of shipments but needs to be adjusted for
changes in inventories (this adjustment also should be made for materials). However, because inventories
are often missing (White et al., 2015) and their contribution to output is normally fairly small, we do not
make this correction for the U.S. data. Otherwise the share of plants affected by editing and imputation
would be much larger.

3 There are well-known conceptual and practical concerns with the measurement of capital (Hicks, 1981;
Hulten, 1991; Kehrig, 2015; Collard-Wexler and De Loecker, 2016). Capital measurement does affect our
results, but it is not the primary driver. A majority of establishments have at least one characteristic
besides capital which is affected by the cleaning process.

4 Revenue productivity (TFPR) and quantity productivity (TFPQ) are somewhat complicated to measure,
since neither production function elasticities nor quality-adjusted quantities are directly reported by
plants (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Demirer, 2020). We focus on simple meth-
ods to estimate TFPQ and TFPR (Foster et al., 2008): using cost shares by 6-digit-NAICS industry to back
out production functions, and using the structure of CES demand to translate from revenues to quantities
(Hsieh and Klenow, 2009).
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Some distribution statistics are unambiguously sensitive to tails, and indeed we find that

the standard deviation of TFPR falls by half in the cleaned data. However, the data pro-

cessing undertaken by the U.S. Census Bureau does not only affect the tails: it lowers the

measured interquartile range of TFPR by almost as much. Both the effect of data process-

ing and measured dispersion (in the raw & cleaned data) are increasing over time.5

The average absolute difference between captured and cleaned TFPR for the largest

(or oldest) plants is around 2/3 of that for the smallest (or youngest) plants, with a fairly

monotonic relationship in between. Nevertheless, there is still a large difference between

captured and cleaned productivity even for the largest and oldest plants. Across the

distribution, around a third of plants have a TFPR value that is lower in the final data,

and around a sixth have a larger value in the final data.

In order to translate the raw variance and covariance numbers into aggregate produc-

tivity losses, we use the same type of model as in Bils et al. (2021) and Blackwood et al.

(2021), where establishments have Cobb-Douglas production functions and face idiosyn-

cratic distortions on their inputs, while consumers have CES demand.6 This generates

relatively intuitive relationships between aggregate productivity losses and frictions or

distortions. Without trimming, using the originally reported data instead of the final data

lowers measured allocative efficiency by a factor of a thousand (with 1 percent trimming,

the captured value is about twenty times different than the final data). The exact mea-

sured productivity loss is sensitive to institutional assumptions, for instance the extent

of roundabout production and the returns to scale (Haltiwanger et al., 2018; Blackwood

et al., 2021). Across a variety of such specifications, we continue to find large changes in

5 We cannot say with certainty if the Census Bureau’s data cleaning is getting us closer or farther from the
truth. However, we do know that treating singly-imputed data as if it were true data underestimates the
amount of uncertainty in the resulting estimates (Rubin, 2004).

6 There are other reasonable and commonly used measures of productivity dispersion as well, such as the
covariance of TFPQ and TFPR (Hopenhayn, 2014) and the relationship between the size-weighted and
unweighted average productivity in the economy (Baily and Hulten, 1992; Olley and Pakes, 1996; Foster
et al., 2001). We also show how data processing affects those measures.
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measured U.S. misallocation between the captured and final data. We do not take this

result literally - we do not think that captured data gives compelling evidence that the

U.S. manufacturing sector is characterized by a thousand (or twenty) times more misallo-

cation than had been previously understood. Instead, we consider our results a “smoking

gun” that measurement (and data processing in particular) is important to the study of

misallocation.

Given that the overall cleaning effort has a large effect on measured misallocation,

we return to describing the specific process of cleaning the data, by measuring how much

each type of edit affects measured dispersion. We do so by describing their Shapley (1953)

value; essentially the share of the total change that can be attributed to each type of edit.

The most important edits are the logical and analyst edits, which jointly explain around

two fifths of the total change.

Given the importance of these edits, it is difficult to interpret measured cross-country

differences that use different processing methods. Many types of edits done by the U.S.

Census Bureau are infeasible in many other countries. For instance, administrative data

on payrolls requires a broad payroll tax base. However, even across Europe, only some

countries augment their manufacturing surveys with tax data (Bartelsman and Wolf,

2018). Even beyond administrative edits, the Indian data is not edited at all in the central

office.7

Given the extent of measurement error, it is also difficult to trust differences in un-

processed data. Since we are not nihilists, we describe the effect of methods which com-

7 We have confirmed that there was no editing or imputation of the Indian data both in the data documen-
tation, and in email communications with the Ministry of Planning and Statistics. O.P. Sharma, a former
Deputy Director of Census Operations in India, writes “although the data are thought to be characteristic
of firms in the organized sector, there are important caveats. ASI [Annual Survey of Industries] survey
data are presented in raw form without adjustments to the ways that employers reported them; there are
no attempts to contact employers to fill in missing or incomplete data or to correct for data that seem out
of line with other data” (Sincavage et al., 2010). There is some imputation of prices in the Indian data
post-2006, but we do not use the price information in our results.
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monly clean data across contexts. Trimming is a popular and straightforward approach

to data cleaning. However, it varies paper to paper, even within datasets. Hsieh and

Klenow (2009) trim static measured distortions, while Bils et al. (2021) trim both produc-

tivity measures and growth rates.8 Trimming is also a blunt instrument, and may remove

correct responses from the data. For instance, in the U.S., the analyst-verified values are

often relatively extreme values. When we trim the final data,9 we are around twice more

likely to remove observations that have been verified by a professional analyst, raising

doubts if trimming the data brings us closer to or farther from the truth.10

We describe and implement a more reproducible approach than trimming: a theoretically-

motivated data cleaning exercise which could then be used across establishment-level

datasets without further need for data processing (Kim et al., 2015). Unlike trimming,

which drops outliers from the sample, the Kim et al. (2015) method uses a Bayesian sta-

tistical model to simultaneously edit and impute the data. First, we look at the ratios of

reported variables and flag the outliers of the ratios–this is a standard first step in the lit-

erature (Fellegi and Holt, 1976; Thompson et al., 2004). This step unfortunately remains a

little ad-hoc across countries. We use the actual bounds used by the U.S. Census Bureau,

and try to approximate their equivalents in the Indian data.11 We then impute entries in

order for the cleaned data to pass the edit checks. Unlike the imputation methods the

Census Bureau uses most frequently in the Census of Manufactures, the Kim et al. (2015)

method uses a Bayesian nonparametric approach (Ishwaran and James, 2001; Kim et al.,

8 Nishida et al. 2015, Allcott et al. (2016) and Martin et al. (2017) also trim growth rates in the Indian ASI,
but using different rules.

9 We trim the extremes of TFPR and TFPQ.
10Laws governing access to confidential Census Bureau and IRS data prohibit confirming or denying the

existence of any particular firm in the data. However, given what we know from publicly disclosed
research, it seems plausible that outliers in business microdata (not just in Census data) may be especially
important in an era of “rising superstar firms” (Autor et al., 2020).

11There are many reasons why it is impossible and unhelpful to use the same bounds in the US and India.
One reason is that the US bounds are industry specific, and the industry classifications are different across
countries. Another is that some of the bounds are nominal (e.g. wage bill per worker), for which the
underlying units are different across countries.
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2014) to favor making edits that are likely given the model for misreporting, and similarly

impute values that are likely given the underlying model for the data. The imputation

step works for missing values as well as those which are flagged as outliers. Because the

model uses probabilistic imputation, we can draw many implicates from the estimated

model in order to show uncertainty in our results (Rubin, 2004). We find that the amount

of uncertainty in the Bayesian-edited data has been increasing over time.12

While the baseline Bayesian editing and imputation approach does not take advan-

tage of the entire set of resources available to the U.S. Census Bureau, it nevertheless has

some appealing properties. Around a third of plants in the data have at least one of ma-

terials or total value of shipments imputed using regression methods. Both for the edits

and imputes, the resulting variance in the final data is smaller in the regression imputed

data than for the rest (White, 2014). This is less true for the data imputed following Kim

et al. (2015), suggesting, perhaps not surprisingly, that the regression-based imputation

methods under-state the variance in the data (White et al., 2018; Van Buuren, 2018).

An important addendum to our results: there are also large undocumented differences

in enumeration across countries. In the United States plants can fill out the form online,

13 while in India (especially in the early 2000s), the vast majority of plants do not report

having a computer, and many plants need the help of enumerators.14 In neither coun-

try is it documented in the data when statistics agencies contact plants to get updated

responses (in the U.S. it is considered an unedited response if, after being prompted, a

12The method can handle richer data generating processes than we use in our main results. We show how
the results change when we feed in additional sources of data for the U.S., in particular the high-quality
administrative information available for revenues and labor, and a “hybrid” that additionally allows for
the manual analyst edits.

13Until the 2017 Economic Census, smaller plants also had the option to fill out paper questionnaires. Start-
ing in 2017 the Economic Census moved to all-online data collection except in Puerto Rico and other
island areas.

14For the relevant variables, the US survey autofills units as in thousands of dollars, which some respon-
dents may not notice and therefore effectively overstate their size for those variables.
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plant responds with updated values),15 so we do not know either the extent of verifica-

tion (although, in general, analysts in the U.S. try to get validated responses from the

biggest plants in lieu of editing). We also do not know the extent to which bookkeeping

practices vary across contexts (Barrios and Gallemore, 2021; Zwick, 2021; Almunia et al.,

2021).

Economists have a long tradition of studying (mis)measurement (Frisch, 1934; Griliches,

1974). Our paper is firmly in the spirit of Romer (1986a,b, 1988, 1989) and Balke and Gor-

don (1989), who study how differences in data quality matter for understanding the his-

torical incidence of business cycles and unemployment (Burns, 1960).16 We also comple-

ment current efforts to understand measurement error in labor force surveys (Abowd and

Stinson, 2013; Kambourov and Manovskii, 2013; Meyer and Mittag, 2019; Medalia et al.,

2019; Vom Lehn et al., 2020). In the misallocation (Banerjee and Duflo, 2005; Restuccia

and Rogerson, 2008; Hopenhayn, 2014) literature in particular, Velayudhan (2018), Gollin

and Udry (2019), and Esfahani (2019) study the role of measurement. Their approaches

use economic theory to distinguish between measurement and “true” misallocation, for

instance by arguing that farmers are unlikely to misallocate resources across their own

plots, or that firms misreport to avoid additional taxes. Bils et al. (2021) explicitly stud-

ies measurement error in manufacturing, leveraging theory and panel data in order to

argue that measurement error is increasing in the U.S. (using the already-processed final

data).17 One value of our approach is we provide direct evidence of measurement er-

ror. Furthermore, researchers can use our proposed data cleaning procedure regardless

15Sincavage et al. (2010) say that re-contacting never happened in India during the sample period of our
data, although informally we have been told that it does happen currently.

16Similar issues have recently been discussed in the asset pricing literature, since measuring the correlation
of consumption with asset prices is difficult (Savov, 2011; Kroencke, 2017). Data from international tests
also can be imputed (Jerrim et al., 2017; Troccoli, 2020).

17The intuition of their theoretical result is that measurement error lowers the correlation of changes in
inputs and revenue, which they can then use to correct the naive cross-sectional measurement of misallo-
cation. The captured data for the annual panel surveys that Bils et al. (2021) use are not available, so we
cannot speak directly to their results. We describe in Section IV.F other differences.
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of their question, and even in settings with less extensive data collection and cleaning

efforts than the US.

II A Theory of Misallocation

In this section, we briefly recap the theory of misallocation that underpins our empirical

results (Bils et al., 2021; Blackwood et al., 2021). In order to introduce the notation and

the intuition, in the main text we focus on describing the main outcomes in the paper.

In Appendix D we describe how the calculation changes when we include sector-specific

demand elasticities, non-constant returns to scale in production, and roundabout produc-

tion. (Blackwood et al., 2021).

The wage, rental rate, and intermediate price are constant in the economy, but plants

in each sector s ∈ S face idiosyncratic distortions on each input.18 As a result, each plant’s

profits are:19 πsi = PsiQsi −
(
1 + τLsi

)
wLsi −

(
1 + τKsi

)
RKsi − (1 + τMsi)pM Msi.

Demand is CES, so profit maximization implies that the plant’s output price is a fixed

markup over its marginal cost. Within a sector, the input share of each input will be

proportional to the distortion, and there is complete pass-through of improvements in

Asi to prices. As a result, revenue productivity, TFPRsi =
PsiQsi

((rK)αs
si (wL)1−αs

si )
γs
(pM M)1−γs

si
, only

varies due to the distortions. In particular,

TFPRsi =
σ

σ− 1

((1 + τKsi

)
R

γsαs

)α((
1 + τLsi

)
w

γs (1− αs)

)1−α
γs [(

1 + τMsi

)
pM

(1− γs)

](1−γs)

. (1)

18We try to keep our notation standard - plant i in sector s produces quantity Qsi which it sells at a price of
Psi. It uses three inputs, labor (Lsi), capital (KLsi), and intermediate materials (MLsi), which respectively
have prices w, r, and pM. Plant si faces an exogenous multiplicative distortion for each input x (1 + τxsi )
which generates a wedge between the national input price and the price paid by plant si.

19While we focus most of our attention on gross-output production functions, Hsieh and Klenow (2009) use
a value added specification, and we show results for value added models as well. Without roundabout
production, there is no conceptual difference between materials and the other inputs.
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TFPQ can be inferred by taking advantage of the fact that the markup is known:

TFPQsi≡Asi ∝
(PsiQsi)

σ
σ−1(

(RK)αs
si (wL)1−αs

si

)γs
(pM)1−γs

(2)

Aggregate productivity is a CES aggregator of TFPQ and (relative) TFPR,20

TFPs =

(
∑
i∈s

Aσ−1
si T̃FPRsi

1−σ
) 1

σ−1

. (3)

Since we know from Equation 1 that T̃FPRs is equal to TFPRsi unless plants have id-

iosyncratic distortions, the “efficient” counterfactual TFP is As =
(

∑M
i=1 Aσ−1

si

) 1
1−σ . The

ratio of observed to potential TFP is our measure of aggregate productivity:

T̃FPs =

(
∑
i∈s

T̃FPQ
σ−1
si T̃FPRsi

1−σ
) 1

σ−1

. (4)

For our main outcomes, we calculate a Cobb-Douglas aggregator over the sectors using

the gross output share of each sector (θs):

T̃FP = ∏
s∈S

T̃FPs
θs

(5)

The three main outcomes that we describe in the paper are ln(T̃FPRsi), ln(T̃FPQsi),

and T̃FP. For notational convenience, although we present results for log and industry-

scaled productivity measures, we describe them as “TFPR” and “TFPQ” in our results.21

We also describe the distributions of inputs, output, and the input shares (which we nor-

20We define sectoral T̃FPRs as the revenue weighted harmonic mean of TFPR, and T̃FPRsi ≡ TFPRsi

T̃FPRs
. See

Equation A. 3 for the formal expression.
21When we report distributional 90/10 and 75/25 “ratios,” we calculate the log-differences within each

industry for the respective percentiles and report the average across all industries.
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malize using industry averages). We describe which types of establishments experience a

larger change in measured characteristics when comparing the captured to the final data.

We focus on two measures, the age and the number of employees of the business. For

both, we run a local polynomial regression comparing the difference (either regular dif-

ference or the absolute value of the difference) between TFPR measured in the cleaned

data vs. the captured data.

Instead of measuring how sensitive the measures of aggregate productivity are to

different underlying economic assumptions, which has been the primary focus of much

of the recent methodological literature on misallocation (Asker et al., 2014; Haltiwanger

et al., 2018), we focus on calculating productivity using different versions of the data, in-

cluding introducing several alternative edited and imputed datasets. In Appendix D, we

describe how data cleaning affects the measured aggregate productivity under alterna-

tive assumptions on demand elasticities, roundabout production and the returns to scale,

following Blackwood et al. (2021).

II.A Alternative Measures of Misallocation of Factors

While our focus is in the Hsieh and Klenow (2009) tradition, there are several other mea-

sures of dispersion which also relate to the allocation of factors. The most well-known

alternative approach uses the revenue-share weighted average of productivity as a mea-

sure of aggregate productivity (Baily and Hulten, 1992; Foster et al., 2001; Bartelsman and

Wolf, 2018), and then decomposes it into “within” and “between” terms, where the latter

is interpreted as a measure of allocation (Olley and Pakes, 1996). We consider the sim-

plest version of this measure: the share of the weighted average productivity driven by

the unweighted average:
1
N ∑ TFPRi

∑
PiQi

∑ PjQj
TFPRi

.

We additionally consider two somewhat more model-free correlations in the data: be-

tween labor expenditures and output, and between TFPR and TFPQ (for both measures,
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we show the R2 of a regression after residualizing six-digit-industry fixed effects). The

former is a measure of dispersion in labor productivity (inspired by Cunningham et al.

2018, although they report output per hour instead of output per wage expenditure), the

latter is a simpler way of thinking about what is driving Equation 5, inspired by the dis-

cussion in Blackwood et al. (2021).

III Data Cleaning in the United States

We primarily use micro-data from the United States, from the 2002, 2007 and 2012 U.S.

Censuses of Manufactures (CMF), augmented with capital constructed by Cunningham

et al. (2018).22 We describe the data sources in more detail in Appendix Section A, and

present sample sizes for our main tables in Appendix Table 25.

As in most surveys, not all respondents to the CMF answer all of the questions, and

some responses are inconsistent with each other or inconsistent with administrative records

data (e.g., IRS payroll tax records) from the same firms. The Census Bureau has created

imputation and edit rules for this data, the development of which are described in Sig-

man (1997) and Thompson and Sigman (1999). However, until recently, it was difficult

for researchers to identify which, if any, responses for a given plant were imputed.23 We

go beyond the imputation flags and use the newly available actual responses from the

establishments themselves.

We focus on the four variables used in Section II to measure plant-level total factor

productivity: total value of shipments, total cost of materials (which includes the cost of

22For some of our analysis, we use data from the Annual Survey of Manufactures (ASM) subsamples in the
CMFs, revenue data from the Census Bureau’s Business Register, and employment and annual payroll
from the Longitudinal Business Database (LBD).

23There is a tradition of researchers trying to back out imputations from the final data, see for instance
Davis and Haltiwanger (1991), Roberts and Supina (1996) ,Syverson (2004a,b), and Collard-Wexler (2011).
It was easiest to identify “hot deck” imputes, which led to duplicated observations. There are no hot
deck imputes in the data we use, but item-level edit/impute flags for the 1987 and later censuses are
available to researchers in the Federal Statistical Research Data Centers (FSRDCs) (White, 2014). It is
worth noting that when Hsieh and Klenow (2009) was published, neither imputation flags nor the original
plant responses were available.
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energy), total wages, and the capital stock. The first three variables are directly measured

in the Census of Manufactures, and are present in both the raw data and the final data.

Capital is more difficult to measure: the plants report fixed assets at the beginning and

end of the year, but for productivity what matters is the flow of capital services. We use

the measures of real stock of capital carefully constructed by Cunningham et al. (2018),

multiplied by nominal rental rates to measure capital flows (Kehrig, 2015).24

The captured data differs from the final data in two respects. First, missing values due

to non-response in the reported data are imputed in the cleaned data,25 using a variety

of industry-specific regression-based and other imputation strategies. Second, responses

which fail edit rules in the reported data are normally imputed or changed in the final

data. The Census Bureau primarily uses two types of edit rules: balance rules, which

require entries to add up26 and a set of ratio edit rules which bound the ratios of any

two variables. For the CMF, the Census Bureau develops upper and lower bounds for

12 contemporaneous variables (9 ratios) in every industry; these so-called explicit ratio

bounds imply other implicit bounds (Fellegi and Holt, 1976).27

Edit-rule-failing responses are replaced using a variety of methods, described in Ap-

pendix Table 1. There are too many types of edit categories for us to describe the effects

of them individually (plus several are fairly rare), so we group them into in eight cate-

gories (plus three residual categories) in Table 1, describing the categories in more detail

in Appendix Section B. We define “replicable” edits as ones which (generously) could be

24We use the ratio of captured and final book assets to calculate an equivalent measure for the captured
data. See Appendix A for more details.

25Throughout the paper we use “final data” and “cleaned data” or “Census-cleaned data” interchangeably.
Likewise we use “raw data”, “captured data”, and “reported data” interchangeably.

26The balance rules cover total cost of materials (must equal the sum of five other variables), total inven-
tories beginning and end of year (sum of three components each), average number of production work-
ers (sum of quarterly production workers divided by 4), total employment (sum of production workers
and non-production workers), and total salaries and wages (sum of production worker wages and non-
production worker wages).

27The Census Bureau does statistical analysis of outliers in the data itself to determine the industry-specific
ratio bounds for pairs of highly correlated variables (Thompson and Sigman, 1999).
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done in the Indian data.28 Table 1 additionally describes the share of plants affected by

each edit category.29 The most common types are imputes for missing, logical edits for

payroll,30 and analyst edits.31 Including both edits and imputes for missing data, around

a third of plants have at least one variable in the final data which is calculated using

regression-based methods. We formally describe the logic of data cleaning in Section V.

Table 2 Panel A describes the overall exposure of plants to edits and imputes. Around

80 percent of plants have at least one value in the final data that differs from its captured

counterpart.32 Around a quarter of the plants with any change have exactly one change.

Half of plants have a missing value.33 The any-missing share is around 10 percent larger

in 2012 than 2002. Appendix Table 5 shows that conditional on no missing values, around

two fifths of plants have no edited values.

There are a few important parameters that are not directly reported in the data: the

production function elasticities and the demand elasticity of substitution. We use cost

shares for the former (and do not update the elasticities when using different cuts of the

data), and 4 for the latter (Redding and Weinstein, 2020).34

28Just because an edit type is possible does not mean in practice that it would be used. For instance Bar-
telsman and Wolf (2018) note that only some European countries use administrative records to clean
manufacturing census data, and even the ones who do use different approaches.

29Table 1 shows the average share over 2002, 2007, and 2012. The underlying year-specific values are in
Appendix Table 2.

30Logical edits are described more formally in Appendix Section B, but are related to the balance rules -
with redundant question, some values can be imputed with a linear combination of others.

31The flags indicate the type of model but not the finer details, for instance while the “B” flag denotes a
regression edit, it does not indicate the relevant coefficients, which can vary within industry-years.

32White et al. (2018) and Foster et al. (2017) report different values. They do not consider capital but do
consider edits to inventories (the former) and production hours (both).

33While our sample is the mail sample of plants that are supposed to fill out a survey, around a fifth of
plants are entirely imputed. See Gauthier (2011) for a discussion of efforts the U.S. Census Bureau made
to prevent delinquency in the 2007 Economic Census.

34We use an elasticity of substitution of 3 for the Value Added results, as in Hsieh and Klenow (2009), and
show our results are similar using industry-specific elasticities of substitution (Ahmad and Riker, 2019).
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IV Changes in Reported Variables

We start by describing changes to the primitives: the book value of assets (capital), the

cost of materials, payroll, and the total value of shipments.35 The results are in Table 2

Panel B, where we describe the changes at the variable level. Capital is the most likely to

be changed, especially in 2007, although all variables are changed for at least ten percent

of plants.36 While capital is most commonly changed, Panel A shows that in every year

over half of plants have a value changed for a characteristic besides capital. A large share

of the changes are sizeable: around a third of plants have at least one change that is over

10% away from the originally reported response. While the capital changes are most

likely to be big, for all characteristics the edits are larger than ten percent around five

percent of the time.

IV.A Trimming the final data

It is not uncommon for researchers to trim outliers, even in the already-cleaned final data.

For instance, Hsieh and Klenow (2009) trim the tails of plant productivity and distortions

in each country-year.37 When we explore trimming, we follow Blackwood et al. (2021).38

Worryingly, trimming drops data that seems fairly reliable; plants with analyst-verified

information are about about twice as common in the “trimmed” part of the data.39 One

value of having the administrative flags now available in the FSRDCs is that even naive

35Throughout the paper we use the terms ”payroll”, ”salaries and wages” and ”total wages” interchange-
ably, and use ”payroll” in the tables.

36In 2007 in particular, many respondents did not respond that their end of year assets were equal to begin-
ning of year assets plus capital expenditures less capital retirements and depreciation (due to a misinter-
pretation of the questions) (White, 2014). As a result, almost every plant has an edit flag for capital that
year.

37Bils et al. (2021) and Blackwood et al. (2021) only trim the productivity outliers, although (Bils et al. 2021
additionally trim plants with big changes and update the production function elasticities after trimming.

38Trimming the 1 percent upper and lower extremes for TFPQ and TFPR shrinks removes around 3 percent
of the plants and trimming 2 percent removes around 6 percent of plants. This is because there isn’t
perfect overlap at the extremes of each distribution.

39This value has been falling over time: the share of analyst-verified values is about 2.5 times as common
in the trimmed portion of the data in 2002, and around 1.5 times as common in 2012.
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trimming can be supplemented by refusing to change analyst-verified values.

IV.B Changes in Dispersion of Inputs and Output

Table 3 reports the distribution of the captured/final ratios calculated for Table 2.40 Across

all variables, when different, the captured values tend to be lower than their cleaned

counterparts: The tenth percentile tends to be lower than one, while only the ninety-fifth

tends to be above. For all variables —especially payroll and capital —the captured and

final values are the most different in 2012.

In Table 4 we describe the effect of data processing on the dispersion of the plant

characteristics themselves. We report the dispersion of each characteristic, normalized by

the industry mean.41 Table 4 shows the value in the captured data divided by the value

in the final data, Appendix Table 3 shows the underlying dataset-specific values. It is

perhaps not surprising that the standard deviation of the variables is consistently around

20 percent larger in the captured data, shown in Column 3. Columns 1 and 2 show that

this is not just the behavior of extremes in the data, as the 90/10 ratio and interquartile

range are also substantially larger in the captured data.

The Census Bureau’s decisions about which variables are in error are based on ratios,

not levels, of characteristics. So too does the model of misallocation - what matters is

the input/output ratios, which are proportional to the distortions in Section II. Appendix

Table 4 shows the same dispersion statistics as Table 4, but for the input/output ratios

(so, for instance, Panel C of Appendix Table 4 shows the results for labor productivity

pQ/wL.) The input shares have relatively more dispersion in the captured data than in

the final data, and their dispersion is also increasing over time. Column 4 of Table 4 shows

how related the same variable is in the captured and final data. We ran a regression of

40In order to prevent disclosure of information for any particular plant or firm, when we report the value
“xth percentile”, we calculate the average value of all plants in the xth centile.

41For instance, for total value of shipments we report the dispersion of PsiQsi
1

Ns ∑ PsiQsi
.
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the (ln) variable in the captured data on its final counterpart, with industry fixed effects,

and reporting the within R2. The R2 is lowest for capital, and highest for payroll and

shipments, and for all four is falling over time.

IV.C The Distribution of TFPR

We now turn to the main object of interest: productivity. Before quantifying the changes,

it is useful to give a visual sense of how they change. In Figure 1, we plot the density

of TFPR in 2002, 2007, and 2012.42 The difference in the distributions is not limited to

outliers. There is substantially more spread of TFPR in the captured tails (especially in

the upper tail), with the spread increasing in 2012.

In Figure 2, we plot the relationship between the absolute difference in measured TFPR

between the captured and final data, focusing on firm age and firm-level employment

since those are well measured at the firm level (Decker et al., 2020).43 The pattern is

similar for the three years for which we have data; the absolute difference is consistently

falling in both firm age and firm size. The average absolute difference for the largest firms

is large - and is often around 50% - but it is larger for the younger and smaller firms. The

absolute gap could be positive even if the cleaning were mean zero.44

42Since we normalize by T̃FPRs, it is not mechanically the case that the distribution be centered around 0
(nor centered around the same value across datasets). In the interest of space, we only plot figures for
TFPR.

43To comply with Census Bureau disclosure avoidance practice, we drop the 5% left and right tails from
these graphs. We use firm characteristics on the x-axis. Firm age comes from the Census Bureau’s Lon-
gitudinal Business Database (Chow et al., 2021). That dataset begins in the year 1976, so the age of firms
born before 1976 is censored. According to the Census Bureau’s Business Dynamics Statistics (which are
tabulated from the LBD) 23% of manufacturing firms’ ages were censored in 2002, 20% were in 2007, and
18% were in 2012.

44Appendix Figure 1 shows that the edited data consistently has larger measured TFPR than the captured
data. The size of the average gap is decreasing in firm size and age, although the pattern for both, espe-
cially firm age, is somewhat flatter than for the absolute difference.
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IV.D Dispersion of Measured Productivity

In this section, we describe the effects of data cleaning on alternative measures of produc-

tivity dispersion. As in Table 4, the values are the ratio of the value in the captured data

to the corresponding value in the final data. The underlying values are in Appendix Ta-

ble 6. The first two columns in Table 5 report the 90/10 ratio and the interquartile range,

and the third shows the standard deviation. The relative dispersion is much bigger for

measured productivity than it was for any of the directly reported inputs shown in Ta-

ble 4. For TFPR, the standard deviation in the cleaned data is around half of that in the

original data, and it’s around a third for TFPQ. For all three measures, and for both TFPQ

and TFPR, the ratio is largest in 2012 (Appendix Table 6 shows that this is mostly due

to changes in the captured data, although TFPR dispersion is also increasing in the final

data). Column 4 of Table 5 shows the within R2 of a regression of (ln) variable in the cap-

tured data on its final counterpart, with industry fixed effects.45 The R2 for productivity

are substantially lower than those for the directly reported inputs, with only around a

third of the residual variance in captured TFPR explained by final TFPR.

Taken together, Tables 4 and 5 show that the cleaning undertaken by the U.S. Census

Bureau is more nuanced than trimming tails, since it affects ratios of interior quantiles.

Bartelsman and Wolf (2018) explicitly justify focusing on quantiles in order to avoid mea-

surement issues. Our results suggest that in the U.S. data, this may not be sufficient.

IV.E Measured Misallocation in the Raw U.S. data: alternative approaches

Appendix Table 7 shows how data cleaning affects a few alternative measures of factor

allocation, outside of the Hsieh and Klenow (2009) tradition. Panel A shows the effect

on the “within” Olley and Pakes (1996) measure:
1
N ∑i TFPRi

∑i si×TFPRi
, where si is plant i’s share of

aggregate gross output. This value is essentially zero in the captured data, and close to

45Since there are industry fixed effects, the normalization doesn’t affect the R2.
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one in the final data, leading to opposite implications about the role that the covariance

of size and productivity (the residual of the value shown in the table) has for aggregate

TFP.

In many models with no distortions (e.g. Melitz 2003; Boar and Midrigan 2021),46

within a sector inputs and output are strongly (often perfectly) correlated, since for any

given size the more productive plant will have a higher marginal product of labor. Ap-

pendix Table 7 Panel B shows the relationship between (ln) payroll and (ln) shipments

and Panel C shows the relationship between all three (ln) inputs and (ln) shipments. For

both panels, we run regressions with 6-digit-NAICS fixed effects, and report the within-

R2. Payrolls are around 20 percentage points worse at explaining shipments in the cap-

tured and final data, the difference is about 10 percentage points for all inputs. For both

outcomes, the gap between datasets is growing over time.

Panel D of Appendix Table 7 shows the within-R2 of an equivalent regression com-

paring TFPQ and TFPR. As Hsieh and Klenow (2009) point out, with constant markups,

TFPQ and TFPR are uncorrelated within sectors, since falling prices cancel out rising pro-

ductivity. We find this this pattern is substantially stronger in the final data: the within-R2

is around 50 percent larger in the captured data.47

IV.F Measured Misallocation in the Raw U.S. data

For our final set of results comparing the cleaned and captured data, we use the model

described in Section 2. While further removed from the raw data than Tables 4 and 5, the

advantage of the calculation is that it gets closer to thinking about (measured) welfare

costs: in most models, frictions are particularly important if they affect establishments’

plant size ranking (Hopenhayn, 2014), which in the undistorted equilibrium is a func-

tion of (only) TFPQ. First, we consider the effects on measured misallocation of replacing
46See, for instance, Holmes and Stevens (2014) for an alternative to what they call the “standard model.”
47See Haltiwanger et al. (2018) for a discussion about the correlation between TFPQ and TFPR and model

misspecification.
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captured data with cleaned data in the U.S. manufacturing sector in 2002, 2007 and 2012.

Papers in this literature (Hsieh and Klenow, 2009; Bils et al., 2021; Blackwood et al., 2021)

tend to calculate the extent of misallocation in trimmed data. For comparability, we cal-

culate aggregate productivity not only in the untrimmed data, but also after trimming the

extremes of TFPR and TFPQ.48 Table 6 shows the results of calculations across a range of

trimming percentages, showing the ratio of allocative efficiency in the captured to final

data (the underlying dataset-specific values are in Appendix Table 8). Panel A shows the

values for a gross-output model, Panel B for a value-added model, and Panel C uses only

plants in the Annual Survey of Manufacturers sample (with the weights).49 In the Census,

for both Panel A and B, measured allocative efficiency in the captured data is never above

.1 percent of the value in the final data (the ratio is somewhat higher in the ASM). In 2012,

the gap is the largest: gross output allocative efficiency in the captured data is 0.00007 of

the value in the final data. Trimming outliers increases the ratio by over a factor of 100,

but measured allocative efficiency in the captured data is never above a third of its final

data counterpart in the Census (again, the ratios are higher in the ASM), and the gap is

largest in 2012. The difference between the final and captured data are substantially larger

than the change from the U.S. to any South American (Busso et al., 2013) or Sub-Saharan

African (Cirera et al., 2020) country found in the literature. It is also substantially larger

than the gap found by Bils et al. (2021) comparing the U.S. to India, both before and after

48Differences in sample selection, industry definitions, and exact trimming definitions (see subsection IV.A)
means in practice that our measured values in the final data are different than others. For instance, we
use current 6-digit-NAICS codes, Bils et al. (2021) use constant Fort and Klimek (2016) 3-digit NAICS,
and Blackwood et al. (2021) use 4-digit SIC codes (which correspond to 6 digit NAICS, but there have
been classification changes). Similarly, our sample in the final data is larger than in earlier working paper
versions of this paper, since we no longer constrain the data to be as balanced across samples.

49In the Annual Survey of Manufactures, plants above a certain size are sampled with certainty every year.
Below the size threshold, plants are sampled with probability roughly proportional to size in a 5-year
rotating panel. Due to Census Bureau disclosure avoidance rules, we cannot disclose the 2002 gross
output number with 0% trimming.
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applying their corrections.50

A potentially important difference between the final and captured data is the sample:

the captured sample is around half of the final sample (since we cannot calculate produc-

tivity for plants with missing values). Intuitively, the effect of imputation is ambiguous.

The data may not be missing completely at random (for instance smaller firms may have

more missing data than larger firms), and the plants with missing data may have higher

or lower dispersion in the unobserved true data. Similarly, the imputations themselves

have an ambiguous effect relative to the true distribution (although the current Census

methods likely lead to spuriously low measured dispersion, see White et al. 2018 and

subsection V.A).

In Appendix Table 9, we calculate productivity and dispersion measures only for the

plants in the final data that are also in the captured sample (reporting the ratio of the value

in the final data in the captured sample to the value in the final data full sample, and with-

out trimming). None of the differences are close to explaining the overall final/captured

gap, although on average there is slightly more dispersion in just the captured sample

(especially for materials). Measured allocative efficiency is around twice as high in the

final data when constraining only to the captured sample.

In addition to sampling, another important set of considerations are details about

model assumptions. In Appendix Table 10, we show how the change in measured mis-

allocation is a function of underlying data assumptions, in particular the returns to scale

and if production is roundabout (creating a knock-on effect of misallocation: improving

the allocation of factors increases the materials available for everyone to use, further in-

creasing aggregate productivity, similar to the logic of Hulten 1978). Using reported capi-

tal values instead of those in the BLS-Census Multifactor Productivity project on average

50As in Bils et al. (2021), we find in that allocative efficiency fell after 2002 in the final data. The decline is
much larger in the captured data.
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doubles the gap between the captured and final values. Allowing for heterogeneous de-

mand elasticities (following Ahmad and Riker 2019) lowers relative allocative efficiency

in the captured data. Using Demirer (2020) production function elasticities raises the rel-

ative gains in the captured data a little, and using Blackwood et al. (2021)’s elasticities has

a similar effect.51 Raising the returns to scale raises (relative) allocative efficiency in the

captured data, roundabout production dramatically lowers it.

IV.G Quantifying the effects of different types of edits and imputations in the U.S.

data

The results of Table 6 are unsatisfying - cross-country comparisons of measured misallo-

cation in datasets which have been cleaned differently potentially may be driven by the

quantitatively important data processing. However, while comparing raw data solves the

latter problem, it does so at the expense of introducing new errors, since there are trans-

parently incorrect responses in the raw data (such as what gets changed by the divide-

by-1000 edit). The natural solution is to compare datasets which have been commonly

cleaned (Romer, 1986a,b, 1988, 1989).

There are some relatively common edits done by the Census Bureau (shown in Table

1) that cannot even conceptually be replicated in India. For example, the U.S. Census

Bureau makes use of payroll tax data, but India’s Ministry of Statistics does not have

access to comparable information. We quantify the extent to measure the contribution

of each category of the edits shown in Table 1, using a Shapley (1953) decomposition.

That is to say, we calculate allocative efficiency for every possible combination of the

flags, and report the average marginal contribution.52 We report the values for the gross

51Demirer (2020) report estimates at the two digit level. Blackwood et al. (2021) estimate production func-
tions for detailed industries, but only use a subset of the economy. We also show that the sample isn’t
driving the results using the Blackwood et al. (2021) elasticities.

52When we turn on a flag, we change all of an affected plant’s values to the final value, not just the one
targeted by the particular flag.
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output allocative efficiency values in Table 7, keeping the same order as Table 1.53 As

in Appendix Table 9, imputing missing values has the opposite sign effect as the actual

change from captured to final.

The most important edit, especially in 2012, is the Analyst Edits, followed by the log-

ical edits.54 On the whole, around around 2/3 of the total change in measured misallo-

cation is due to changes that are difficult if not impossible to replicate in other contexts

(changes due to logical imputes, analyst corrections, administrative record edits, and the

non-replicable not-elsewhere classified set).

In Appendix Table 11, we repeat the Shapley exercise for the standard deviation of

TFPR and TFPQ, as well as the within-R2 of the the regression of TFPR on TFPQ with

industry fixed effects. The analyst and logical edits tend to continue to be the most im-

portant. For these statistics, the imputes for missing values have the same sign as the

actual captured to final change.

Since the details of the data cleaning process matter, and are difficult to replicate, in the

next section we describe and then implement an algorithm for editing and imputing for

raw establishment-level information. We apply this common edit-imputation algorithm

to both the U.S. and Indian data and show how it changes measured misallocation in each

country. For the U.S., we also show how it changes measured productivity dispersion

and other statistics, and how those results change when we include in the editing process

administrative records data that is not available in India.

V A Bayesian Approach to Cleaning Plant-level Data

In this section, we focus on the intuition behind a Bayesian edit-imputation algorithm and

why we think this approach is particularly useful for large datasets with highly skewed,

53We report the share of the total change each edit is responsible for. But for rounding, the columns sum to
one.

54Those flags (and the divide by 1000 edits) are not very common. The correlation of how common each
flag is (from Table 1) and the average magnitude of its Shapley value (from Table 7) is −.1
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highly heterogeneous business data (like the Census of Manufactures). We also highlight

aspects of the Bayesian method that contrast with the Census Bureau’s current editing

and imputation methods. We provide further details of the Kim et al. (2015) algorithm

[for this section, KCKRW] and details of our implementation of it in Appendix C.

For clarity, we begin with a bit of notation. Establishment i reports p characteristics,

yi =
{

yi1, yi2 . . . yip
}

(where items could be missing). The corresponding true values are

xi =
{

xi1, xi2 . . . xip
}

, with an underlying distribution f . sij indicates if response j for

establishment i is incorrect. Given the dataset of reported values Y = {y1, y2, . . . yn}

the goal of data cleaning in principle varies depending on the objective of the statistical

agency or the researcher. For example, the goal of the statistical agency might be to pro-

duce unbiased estimates of industry totals of individual variables, cross-tabulated with

geography and establishment size.55 For studying productivity dispersion, we would

like our edited-imputed data to reflect the underlying joint distribution of plant charac-

teristics X = {x1, x2, . . . xn} . The Bayesian approach of KCKRW is designed to do this

while simultaneously insuring that the data satisfy internal consistency and plausibility

checks provided by the statistical agency or the researcher, in particular that ratios of a

given plant’s variables fall within industry-year specific bounds and that certain sets of

variables that should add up do add up.

The ratio bounds and adding-up constraints (a.k.a., balance edits) determine a feasible

region for the data. If any of a plant’s reported data falls outside the feasible region, then

that plant’s record is considered in error. Once a record is determined to be in error, the

next step is to determine which variable or variables in that record need to be corrected

(“error localization”). In this step, the KCKRW algorithm takes advantage of information

that the Census Bureau’s error localization method does not. By simultaneously using the

55However, see Cunningham et al. (2018) for a description of an joint BLS-Census experimental data prod-
uct which publishes industry level measures of productivity dispersion.
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joint distribution of the edit-passing “good” data and the edit constraints a faulty record

is failing, the KCKRW algorithm chooses probabilisticly (a) which variables in the faulty

record should be replaced with imputations and (b) what those imputations should be.

For example, suppose plant i reports {yi1, yi2, yi3, yi4} where yi1
yi2

fail the ratios bounds.

Depending on the joint distribution of yi, the KCKRW algorithm might replace both yi1

and yi2 with values that are highly likely given the reported values for yi3 and yi4. The

Fellegi and Holt (1976) method that the Census Bureau (and many other statistical agen-

cies) uses seeks to minimize the number of edits, and ignores the joint distribution of

the variables. In this example, if the Census could satisfy all the edit constraints by

replacing only yi1 or only yi2 it would do so, without estimating the distributions of

f̂ {xi1|xi2, xi3, xi4} or f̂ {xi2|xi1, xi3, xi4}. One reason for wanting to minimize the number

of changes to the data rather than preserve the joint distribution may be philosophical: the

statistical agency may wish to keep as much of the originally reported data as possible.56

Once a decision has been made about which variables in a record are in error, the final

step in the Census edit-imputation algorithm is to replace the variables in error with im-

putations.57 In this step the Census Bureau uses a variety of methods, depending on what

data is available for use in imputations. For example, for payroll, the Bureau has access

to alternative data from IRS payroll tax records. For materials, no such administrative

records data are available, so the Bureau most frequently uses the predicted value from

a regression of materials on shipments to predict missing materials. The Census method

is hierarchical, in the sense that it first tries the “best” method in its arsenal, and if that

imputed value does not satisfy all the edit constraints, it moves on to the next method.

One advantage of the Census method is that it is guaranteed to eventually produce im-

56Another reason may be that when the Fellegi and Holt (1976) method was developed, computational
power was a small fraction of what it is today.

57Note that while these are separate steps in the Census algorithm, in the Kim et al. (2015) algorithm, error
localization and imputation are done simultaneously.
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putations for every plant.

In contrast to the Census Bureau’s approach, the KCKRW algorithm uses a statistical

model of the joint distribution of the data for a given sample of plants (normally an in-

dustry or industry-year).58 It does this using a Bayesian non-parametric approach. Rather

that assuming the data come from any particular distribution, the approach uses a trun-

cated Dirichlet process mixture of normals (Ishwaran and James, 2001). The algorithm

takes a finite number of draws of the Dirichlet process, where each realization is itself a

normal distribution with a particular mean and variance. Each of these realizations is a

component distribution of the overall mixture distribution for the given sample. The num-

ber of components is determined probabilistically. This feature of the algorithm allows

it to flexibly model many different types of distributions with little input from the mod-

eller. For example, for a sample with a small number of observations that appear to come

from a gaussian distribution, the algorithm might choose a single component distribu-

tion. For a sample with a large number of observations that appear to come from a highly

skewed multi-modal distribution, the algorithm will draw multiple component distribu-

tions, each with different mean vectors and different variance-covariance matrices to fit

the data.59

In our baseline imputation models, we use four of the variables that are subject to

ratio edits in the CMF (employment, total wages, cost of materials, and total value of

shipments), given our experience that most manufacturing data sets around the world

normally at least record those variables.60 We then use the actual Census ratio bounds

58One potential downside of the KCKRW approach relative to the current Census Bureau approach is that
the KCKRW algorithm requires that at least two variables used in the imputation model are observed
for every plant. (This does not have to be the same two variables for every plant.) For our augmented
models described in subsection V.B this does not create much of a selection bias, since the Census Bureau
has employment and payroll from administrative records data for almost every plant in the CMF.

59There are of course still other researcher choices in the implementation described in Appendix C: for
instance we build separate models for each industry-year, where an industry is defined at the 6-digit
NAICS level.

60One question is what to do with capital. For the US, The Census Bureau edits and imputes the capital
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for those four variables.61 Since we are not including in our model any of the component

variables involved in balance edits (e.g., production workers wages and non-production

worker wages), we do not use the Census Bureau’s balance edits in our implementation.

V.A Implementation of the Bayesian Approach

For each 6-digit NAICS industry-year, we run a single chain of Markov Chain Monte

Carlo with a burn-in of 2000 iterations. In the first step, we estimate a model of the joint

distribution of the edit-rule-passing data. The second step takes draws from the model

to fill in the missing data and edit-failing data. We then re-estimate the model parame-

ters on the combined dataset for each iteration. Note that imputations will differ across

iterations both because the draws for missing data are different and because the draws sij

for which ratio-edit-rule-failing variables are in error may be different across iterations.

For inference, after burn-in, for each industry-year we continue the chain another 50,000

iterations, and sample 100 different implicates (i.e., completed datasets), keeping every

500th iteration.

In Table 8, we show the relationship between the actual final data and the first impli-

cate of the Kim et al. (2015) implementation (called the ”Bayesian Data” in the tables).

Even though we handicapped the Bayesian models by not using the logical, analyst, or

administrative edits, the ratio of measured allocative efficiency in the final vs Bayesian

data is fairly close. For the gross-output specification, the average final value across all

three trimmings is .9 of its Kim et al. (2015) counterpart, and the ratio is 1.1 for value

added (within the ASM sample the gap is larger, the average ratio is around .7). Without

trimming, Kim et al. (2015) measured allocative efficiency is much larger than the final

variables in a separate module from all the other variables we use, and does not use those variables to edit
or impute for capital. In addition, in 2007, the Census Bureau decided that the majority of respondents
had misinterpreted one of the capital asset questions, and decided to make a mass correction to the capital
microdata. To avoid dealing with these issues, we use the final values and leave it out of of the model.

61The relevant ratios that are explicitly bounded (above and below) by Census are shipments
materials , employment

wages and
shipments

wages .
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value - for instance, it is about twice as big for gross output. The gap shrinks with trim-

ming, as the Kim et al. (2015) data is consistently less affected by trimming outliers than

the final data.

In Appendix Tables 12-19 (and Appendix Figures 2-4), we reproduce the main out-

comes of the paper, comparing the Bayesian-edited data to the captured and final data.

The values are broadly in line with the changes to measured productivity shown in Table

8. Three features to highlight: Appendix Table 12 and 13 show that the Kim et al. (2015)

approach suggests changing fewer values than the U.S. Census Bureau,62 Appendix Table

20 Panel A shows that in the Bayesian data the Olley and Pakes (1996) “within” share is

close to one, as in the final data, and Appendix Figures 2 and 3 show similar patterns to

the final data for how the changes vary by age and employment.

By running the chain for our main edited-imputed data for 52,000 iterations and sam-

pling 100 implicates of the U.S. data, we can show the extent of uncertainty driven by the

simulation variance (Rubin, 1978; Schafer and Graham, 2002; Allison, 2009; Van Buuren,

2018). Following Rubin (2004), in Appendix Table 21 we report the coefficient of varia-

tion of the estimates across the different implicates.63 The values are mostly small (less

than one percent), which implies that the model fit is relatively tight. However, this is not

always the case: the estimates for the Olley and Pakes (1996) “within” share have large

(and increasing) uncertainty. The ability to show this type of result cannot be done using

current Census methods (since, for instance, analysts do not provide confidence intervals

for their edits).

62Materials is the same in the Bayesian and captured data 94 percent of the time, and for the other variables
the percentage unchanged is even higher.

63Formally, Rubin (2004) derives two additional terms, one of which is driven by sampling uncertainty (less
of a concern in the Census) and the second of which comes about because of the simulation variance in
the standard deviation of estimates across the different implicates (because the mean is estimated). This
last term is proportional to the (reported) standard deviation, and decreasing in the number of implicates,
so we do not adjust for it. With 100 implicates, the “correct” estimates for the variance in the data are 1
percent larger than the values implied by Appendix Table 21.
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Appendix Table 22 provides a final comparison of the captured, final, and Bayesian-

edited data, where we think that modern editing and imputation methods are unambigu-

ously a promising step forward: as a replacement for regression imputations for materials

and shipments (recall that Table 2 shows that around a third of plants have at least one

value in the final data which is generated using a regression).64 We show the ratio of the

standard deviation of each variable for which the regression flag equals 1 to the plants

for whom the regression flag equals zero (so a value smaller than one implies less dis-

persion in the regression-imputed data). In Panel A, we show the values for the edited

plants: where captured data exists, but is changed in the final data (and which sometimes

is changed by the Bayesian algorithm). Panel B shows the values for the imputes, where

the captured data is missing. For the final data, for both types of plants, there is around

three-quarters as much variance in materials for the regression-imputed plants as for the

rest (and around 90 percent as much for shipments). The Bayesian-imputed data has

much more similar variance in the two datasets. The under-imputing of variance for the

regression-imputed final data is intuitive: values are literally imputed on to a regression

line, leaving little scope for residual uncertainty.

V.B Implementation with Additional Information

While our primary focus is constraining the information in the U.S. data to be the same as

what we can use in the Indian data, it is also valuable to take advantage of the administra-

tive data and Census Bureau analyst corrections available in the U.S.: we still want to edit

(and impute) values, but we know more than what is just reported to the Census Bureau

by the plants themselves. We do this in a few different ways, progressively adding in

more information from administrative records. Administrative tax records are collected

for tax IDs (EINs), and there are many multi-unit EINs in U.S. manufacturing sector, so

64White et al. (2018) show that within-industry TFPR dispersion is significantly smaller in the regression-
imputed final data (which is a subset of all the imputed data) than in the non-imputed final data.
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some care is required when using the administrative records.

Payroll is straightforward to include. Annual payroll and March 12th employment

are available from IRS payroll tax records, and the CMF questionnaire uses the same

definitions of these variables that IRS uses. The Census Bureau’s Business Register (BR)

processing allocates the EIN-level payroll and employment to the plants associated with

those EINs, using allocations for the same EINs in prior years of Census of Manufactures

or ASM data. For imputation we use annual payroll and March 12th employment from

the Census Bureau’s Longitudinal Business Database (LBD), which pulls data from the

BR.

IRS Revenue/receipts are also available in the BR. Revenue on the income tax form

is not always the identical concept as total value of shipments in the CMF, but it is still

potentially useful for imputation. IRS tax data is available only at the EIN level, which

can cover multiple plants. Building on work described in Haltiwanger et al. (2019) we use

IRS income tax data in the BR to construct a plant-level revenue measure. We describe the

construction of this plant-level revenue variable in more detail in Appendix A. When we

include the administrative records, we use the same ratio bounds as in the regular data,

and include the ratio edit that the “truth” is that the administrative and reported values

are within 10% of each other.65

Our first supplement to the CMF data takes seriously the issue the mapping from EIN

to plant-level information is more reliable for EINs only associated with a single unit.

For the ”single-unit administrative records” version of the data, we add in administrative

records only for the single unit plants.

We then add in administrative records for the entire manufacturing sector. The “big

administrative records” version of the data has more observations than the regular edited-

65The value of payroll in the CMF final data is only edited with administrative records if it differs from IRS
payroll by more than 10%; we follow the same type of logic.
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imputed data: there are plants who have too much missing data for us to credibly impute

any values for the rest, but the additional administrative records make imputation possi-

ble. The trade-off is that we have to impute EIN-level revenue data to plants, which we

do assuming that labor productivity is constant within firms (Kehrig and Vincent, 2020).

In our third supplement, we include additional information from the Census final data

creation: the analyst edits. This version of the data supplements the “big administrative

records” version of the data with the analyst edited values when possible. We call this the

“hybrid” data.

In Appendix Figure 4, we augment Figure 1, showing the densities of TFPQ and TFPR

for the baseline Bayesian edited and the “big administrative records” data as well as

captured and final.66 While there is substantially less dispersion in the Bayesian-edited

datasets than in the captured data, the mode is smaller than in the final data (although

the mode is higher in the Bayesian-edited data with administrative records than the one

without).

In Appendix 23, we show the main values in the paper for the three alternative datasets

(comparing to the baseline Kim et al. 2015-imputed model). There is less dispersion of the

plant characteristics, and higher allocative efficiency, in the “single-unit administrative

records” and “big administrative records” datasets. However, adding in the analyst edits

in the “hybrid” data dominates, and lowers the measured allocation of factors relative to

the baseline model.

V.C Validation and Comparison to the Final data

While for the most part we do not have a measure of the “ground truth,” we do have

one source of validation for both the Census-final and our own edited-imputed data: we

can calculate output and output-per-worker from administrative records for the single-

66We also calculated distributions for the other two versions of the Bayesian edits with administrative
records data. The results are available in our project folder on the Census server.
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plant firms (“single-units”), for whom tax data is collected at the plant level. Since output

is not generically collected at the plant level for all of manufacturing, it is not used for

administrative record imputation in the CMF or ASM.67

In Appendix Table 24, we compare labor productivity across the different data ver-

sions described above: captured, final, baseline Bayesian, single-unit administrative records,

big administrative records, and hybrid. Panel A shows the results for the main datasets

(the first three). The captured data is fairly different than mean shipments and labor pro-

ductivity, especially in 2012. The final and baseline Bayesian broadly match the adminis-

trative records, with the final data slightly closer. The final data on average are below the

standard deviation and skew in the administrative records, the baseline Bayesian data is

above. We then show the within R2 of a regression of shipments on employment, with

6-digit-NAICS fixed effects. The final and baseline Bayesian data both slightly overstate

the predictability. Finally, we show the within R2 of a regression of the administrative

values on their corresponding values in the survey data. Again, the final and baseline

Bayesian data perform similarly, and neither are extremely close to the administrative

data, especially for labor productivity.68

V.D Application to the Indian context

We apply the same Kim et al. (2015) algorithim to the Indian Annual Survey of Industries

(ASI) in order to understand how the data cleaning procedure affects measured misallo-

cation in a context outside the U.S. We are not able to replicate the exact method, since

we do not have equivalent ratio bounds for the Indian data. We discuss data processing

in Appendix Subsection A.I. The procedure changes more values in the ASI than it did in
67Annual payroll from administrative records are used by the U.S. Census Bureau for other purposes (Halti-

wanger et al., 2016; Decker et al., 2020).
68Panel B shows the effects for the augmented Bayesian models. Since all of the models use the adminis-

trative data, it is not surprising that the R2s in the last two rows of Panel B are higher than the ones in
Panel A. However, it is worth noting that the datasets are not perfectly correlated with the administrative
records. This is possible to improve in the model, by increasing a “reliability weight” for administrative
data. This approach is a topic of future research.
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the CMF - around 10 percent of each variable is edited, with the most changes for capital.

The results for the change in measured misallocation for 2002 and 2010 are presented in

Appendix Table 26. There are two major differences relative to to the captured/Bayesian

comparison in Appendix Table 19. First, the effect of the editing process is larger by

around a factor of 10. Second, while trimming lowers the relative change in the U.S. data,

it is not as important in the Indian data.69

VI Discussion

In this paper, we use previously unexplored versions of the United States Census of Man-

ufactures for 2002, 2007, and 2012 in order to investigate the role that measurement plays

for estimating misallocation. We have two complementary goals. The first is to quan-

tify the importance of data cleaning done by the Census Bureau. Four fifths plants have

differences between their original responses and the final data, and over half for at least

one difference besides capital. Even trimming generously, in the captured data measured

TFP in the United States manufacturing sector is less than an third of what it is in the

final data normally used by researchers. Measured allocative efficiency in the untrimmed

captured data averages 0.1 percent of the value in the untrimmed final data. We also see

large differences for other measures of dispersion, such as the interquartile range, and the

share of weighted-average TFPR driven by the unweighted average (Olley and Pakes,

1996). While editing matters more for younger and smaller firms, Census Bureau editing

changes measured TFPR on average by 50 percent for even the oldest firms and around a

third for the largest.

Many of the important edits undertaken in the U.S. are infeasible for researchers using

other datasets (especially from developing countries without access to administrative tax

records), because they either use multiple responses for the same information or because

69These results contrast with those of Bils et al. (2021), who find that their measurement error correction
matters more in the U.S. than in India. However, unlike the results we report, they use the same method
in both contexts.
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they rely on U.S. Census Bureau industry experts. We describe a new method which

can be similarly applied across contexts, and show how it dramatically lowers measured

misallocation in both the U.S. and India (relative to the original data). One important

limitation of our approach highlighting the effect of data processing done by the U.S.

Census Bureau is that it does not provide any insight into why there appears to be so

much measurement error in the United States (nor do we have reduced form evidence

that there is more or less measurement error in the U.S. relative to other countries). The

method we propose is also sensitive to implementation details: adding administrative

records as an input to our data-driven algorithmic approach raises measured allocative

efficiency, but it is is lowered if we additionally include the changes made by analysts at

the U.S. Census Bureau.

There is a large scope for different measurement choices to affect the estimation of mis-

allocation and dispersion in manufacturing, and the results are sensitive to those choices:

the differences in across-dataset measured misallocation within the US are orders of mag-

nitude larger than the cross-country differences that are typically found Bils et al. (2021).

Neither ad-hoc approaches nor blissful ignorance are necessary. In this project, and

in ongoing work, we show the value in working with experts in data cleaning (who cur-

rently tend to associate with other disciplines). To that end, we suggest an alternative

approach for cleaning establishment-level data using a hierarchical Bayesian approach.

Part of the success of the ”farm to table” movement was encouraging diners to under-

stand how food gets from farms to dinner tables. Researchers should similarly under-

stand how the data statistical agencies collect from manufacturing plants is processed

before it reaches researchers’ table(s and figures).
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Figure 1: Productivity Density, Captured vs Final

(a) 2002

(b) 2007

(c) 2012

This figure plots the kernel densities for (scaled) TFPR in the captured and final data. For compa-
rability across graphs, and to comply with Census disclosure rules, we trim one percent of the left
tail and five percent of the right tail
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Figure 2: Absolute Difference between Captured and Final Productivity, by
Firm Employment and Age

(a) 2002

(b) 2007

(c) 2012

This figure plots a local polynomial regression, predicting the (absolute) difference between
ln(TFPR) in the final vs captured data, over firm age and (ln) firm employment, as described
in the text. To comply with Census disclosure rules, the 5 percent tails of each graph have been
trimmed.
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Table 1.  Categorization of Changes Made to the U.S. Census of Manufacturers

Edit/Impute Label Share of Plants

(1) (2)

Impute Missing Value 0.485

Logical Edit for Payroll 0.089

Analyst Edits 0.055

Logical Edit for Shipments 0.04

Logical Edit for Materials 0.037

Regression Edit for Materials 0.026

Edit from Administrative 

Records

0.018

Divide by 1000 0.005

Other Capital Edits 0.203

Other Replicable Change 0.018

Any Change, Not Elsewhere 

Classified

0.021

(3)

Underlying Flags

Notes: Flags are defined in Appendix Table 1. Categorization done by authors. The "Share of Plants" is the share of 

plants who have been affected by the corresponding label, averaged over 2002, 2007, and 2012; the year-specific shares 

are reported in Appendix Table 2. The value for "Any Change, Not Elsewhere Classified" could not be disclosed in 

2007, we impute 0 for calculating the average. The sample is plants for whom it is possible to calculate productivity in 

the final data.

Missing Captured Response (other than Capital)

Payroll in (RL)

The remainder

Shipments in {(RB), (RE), (RG), (RH), (RJ), (RM), (RS), (RV), 

(RX)} or Materials in {(RE), (RH), (RM)} or 

Payroll in {R(H), (RHQ), (RJ), (RG), (R2), (R4)}

Changes to Capital (other than those described above)

Any variable in (RN)

Any variable in (RA)

Materials in (RB) or (RW)

Materials in (RL)

Shipments in (RL)

Any variable in (RC)
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Type of Change Share of Plants (2002) Share of Plants (2007) Share of Plants (2012)

(1) (2) (2) (3)

Panel A.  Overall Changes

Any Change 0.722 0.894 .824

Any Change (other than capital) 0.62 0.574 .567

Any Missing 0.464 0.443 0.546

Any Regression Flag 0.376 0.349 0.349

Any Edit >10% 0.287 0.32 0.311

Exactly One Change 0.226 0.363 0.31

All Missing 0.228 0.202 0.243

Panel B.  Characteristic-Specific Changes

Capital:

… Final < Captured 0.031 0.403 0.069

… Unchanged 0.729 0.259 0.499

… Final > Captured 0.24 0.338 0.432

… Edit >10% 0.165 0.208 0.191

Materials

… Final < Captured 0.04 0.047 0.026

… Unchanged 0.894 0.875 0.869

… Final > Captured 0.066 0.078 0.104

… Edit >10% 0.045 0.059 0.059

Payroll:

… Final < Captured 0.046 0.033 0.04

… Unchanged 0.797 0.895 0.883

… Final > Captured 0.157 0.073 0.077

… Edit >10% 0.076 0.063 0.088

Shipments

… Final < Captured 0.014 0.028 0.029

… Unchanged 0.897 0.865 0.899

… Final > Captured 0.089 0.107 0.072

… Edit >10% 0.058 0.07 0.059

Table 2.  Characteristics of Changes Between Final and Captured Data

Notes: The "Share of Plants" is the share of plants who have been affected by the corresponding label in each year. 

Any Regression Flag includes both imputed and edited values. The sample for Panel A is plants for whom it is 

possible to calculate productivity in the final data. The sample for Panel B is plants for whom it is possible to calculate 

productivity in the captured data.
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First Fifth Tenth Ninetieth Ninety-Fifth Ninety-Ninth

Percentile Percentile Percentile Percentile Percentile Percentile

(1) (2) (3) (4) (5) (6)

Panel A.  Capital

2002 0.46 0.498 0.523 1 1 1.918

2007 0.006 0.075 0.217 1.023 1.035 1.514

2012 0.004 0.053 0.135 1 1.01 17.43

Panel B.  Materials

2002 0.012 0.889 1 1 1 1.725

2007 0.008 0.524 1 1 1 2.505

2012 0.011 0.461 0.993 1 1 7.046

Panel C.  Payroll

2002 0.255 0.829 0.994 1 1 1.553

2007 0.222 0.951 1 1 1 2.034

2012 0.201 0.809 1 1 1 403.4

Panel D.  Shipments

2002 0.1 0.812 1 1 1 1.024

2007 0.076 0.755 0.988 1 1 1.163

2012 0.09 0.931 1 1 1 1.608

Notes: We calculate the value in the captured data divided by its final counterpart. This Table reports the distribution of 

those ratios. For disclosure purposes, the reported values are not the cutoff at the exact percentile, but the average value of 

all of the plants within the centile. The sample is plants for whom it is possible to calculate productivity in the captured data.

Table 3.  Distribution of the Captured/Final Ratios
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90/10 ratio 75/25 ratio

Standard 

Deviation R
2

(1) (2) (3) (4)

Panel A.  Capital

2002 1.122 1.178 1.112 0.957

2007 1.361 1.448 1.365 0.783

2012 1.439 1.442 1.446 0.595

Panel B.  Materials

2002 1.083 1.123 1.087 0.839

2007 1.244 1.263 1.275 0.793

2012 1.492 1.419 1.493 0.797

Panel C.  Payroll

2002 1.168 1.19 1.184 0.938

2007 1.144 1.161 1.165 0.901

2012 1.21 1.255 1.218 0.853

Panel D.  Shipments

2002 1.064 1.118 1.063 0.925

2007 1.059 1.097 1.091 0.917

2012 1.279 1.262 1.282 0.861

Table 4.  Dispersion of Plant Characteristics, Captured vs. Final

Notes: The first three column of this table reports moments of the distribution of the inputs and shipments. The 

variables are logged and demeaned within each industry. For each of the statistics in columns 1, 2, and 3, we 

calculate the relevant value in the captured data divided by its final counterpart, and report the ratio. The 

underlying values are in Appendix Table 3. Column 4 reports the within R
2
 of a regression of the 

corresponding (logged) variable in the captured data on its value in the final data, with 6-digit NAICS fixed 

effects. Within each dataset, the samples are balanced (it must be possible to calculate productivity), but the 

samples in the captured and final data are different.

Captured Data / Final Data
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90/10 75/25

Standard 

Deviation R
2

(1) (2) (3) (4)

Panel A.  TFPQ

2002 3.711 5.895 3.776 0.538

2007 2.788 4.179 2.791 0.555

2012 4.141 5.713 4.394 0.527

Panel B.  TFPR

2002 2.14 2.024 2.254 0.334

2007 2.116 2.565 2.192 0.318

2012 3.13 3.082 2.941 0.247

Table 5. Productivity Dispersion, Captured vs. Final

Captured Data / Final Data

Notes: The first three column of this table reports moments of the distribution of TFPQ and TFPR. TFPR and 

TFPQ are calculated using sectoral cost shares (and TFPQ uses the model to convert from revenues to 

quantities). The variables are logged and demeaned within each industry, as described in the text. For each of 

the statistics in columns 1, 2, and 3, we calculate the relevant value in the captured data divided by its final 

counterpart, and report the ratio. The underlying values are in Appendix Table 6. Column 4 reports the within 

R2 of a regression of the corresponding (logged) variable in the captured data on its value in the final data, 

with 6-digit NAICS fixed effects. Within each dataset, the samples are balanced (it must be possible to 

calculate productivity), but the samples in the captured and final data are different.
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No Trimming 1 Percent Trimming 2 Percent Trimming

(1) (2) (3)

Panel A.  Gross Output

2002 0.0004 0.157 0.238

2007 0.001 0.184 0.278

2012 0.00007 0.02 0.037

Panel B.  Value Added

2002 0.004 0.225 0.305

2007 0.006 0.181 0.313

2012 0.0003 0.027 0.032

Panel C.  Annual Survey of Manufacturers (Gross Output)

2002 - 0.283 0.294

2007 0.009 0.38 0.566

2012 0.022 0.251 0.392

Table 6.  Measured Allocative Efficiency, Captured vs. Final

Captured Data / Final Data

Notes: The equations for calculating allocative efficiency are as described in the text. 

For the trimming, we drop the (upper and lower) extremes for TFPQ and TFPR. The 

values are balanced within each dataset (it must be possible to calculate productivity), 

but unbalanced across.  For each of the statistics in the table we calculate the relevant 

value in the captured data divided by its final counterpart, and report the ratio. The 

underlying values are in Appendix Table 8. Panel A uses a gross output specification as 

in Bils et al. (2021) and Blackwood et al. (2021). Panel B uses a value added 

specification as in Hsieh and Klenow (2009). Panel C uses only the ASM plants (and the 

corresponding weights), the ASM value for the captured data with no trimming could not 

be disclosed in 2002.
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Edit/Impute Label Shapley Value (2002) Shapley Value (2007) Shapley Value (2012)

(1) (2) (2) (3)

Impute Missing Value -0.055 -0.054 -.137

Logical Edit for Payroll 0.06 0.022 .027

Analyst Edits 0.154 0.29 0.559

Logical Edit for Shipments 0.186 0.255 0.098

Logical Edit for Materials 0.047 0.049 0.018

Regression Edit for Materials 0.09 0.078 0.096

Edit from Administrative 

Records 0.008 0.009 0.008

Divide by 1000 0.087 0.1 0.035

Other Capital Edits 0.013 0.063 0.102

Other Replicable Change 0.213 0.189 0.196

Any Change, Not Elsewhere 

Classified 0.197 -0.001 -0.00002

Table 7.  Effect of Flags on Measured Misallocation

Notes: Lables are defined in Table 1. We calculate gross output misalloaction (as in Table 6 column 1) with 

no trimming for every possible combination of flags (if a flag is turned on, we use only final values for the 

plant, not just for the particular characteristic affected by the flag). We then calculate the Shapley (1953) 

value for each flag, and report the share of the change from captured to final measured misallocation 

attributable to each flag (so the columns would sum to one if not for rounding). Negative values imply that 

the Shapley (1953) value of the flag is the opposite of the actual captured-to-final difference. The sample is 

plants for whom it is possible to calculate productivity in the final data.
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No Trimming 1 Percent Trimming 2 Percent Trimming

(1) (2) (3)

Panel A.  Gross Output

2002 0.456 1.182 1.279

2007 0.315 0.907 0.813

2012 0.892 1.175 1.178

Panel B.  Value Added

2002 0.975 1.264 1.204

2007 0.235 0.997 1.009

2012 1.399 1.652 1.462

Panel C.  Annual Survey of Manufacturers (Gross Output)

2002 0.396 0.857 0.961

2007 0.724 0.689 0.682

2012 0.767 1.061 1.048

Table 8.  Measured Allocative Efficiency,  Bayesian vs. Final

Final Data / Bayesian Data

Notes: The equations for calculating allocative efficiency are as described in the text. 

For the trimming, we drop the (upper and lower) extremes for TFPQ and TFPR. The 

values are balanced within each dataset (it must be possible to calculate productivity), 

but unbalanced across.  For each of the statistics in the table we calculate the relevant 

value in the final data divided by its Bayesian-edited counterpart, and report the ratio. 

Panel A uses a gross output specification as in Bils et al. (2021) and Blackwood et al. 

(2021). Panel B uses a value added specification as in Hsieh and Klenow (2009). Panel 

C uses only the ASM plants (and the corresponding weights), the ASM value for the 

captured data with no trimming could not be disclosed in 2002.  The Bayesian edited 

data is constructed following Kim et al. (2015), as described in the text.
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Online Appendix
Plant-to-Table(s and Figures): Processed Manufacturing Data and Measured

Misallocation
Martin Rotemberg and T. Kirk White

July 2021

A U.S. Census and IRS Income and Payroll Tax Data

The quinquennial Census of Manufactures (CMF) covers roughly 300,000 manufactur-
ing plants.70 Every year, the Annual Survey of Manufactures (ASM) collects information
on a rotating panel of establishments, with the largest establishments surveyed with cer-
tainty, and smaller plants in the frame with some probability (which is increasing with
size). The sampling weights are available in the U.S. Censuses of Manufactures,71 and we
show how measures of misallocation change when using the ASM sample instead of the
Census.

To measure plant-level TFPQ and TFPR we use four plant-level variables: the total
value of shipments, the total cost of materials (which includes costs of energy), total
salaries and wages (i.e., annual payroll), and capital. In our imputation models (but not
in our measure of plant-level productivity) we also use March 12 employment, because
it is highly correlated with the other variables and because high quality administrative
records data are available to impute it when it is missing.

To measure capital in the final data, we use the real capital stock constructed as part
of the BLS-Census Multifactor Productivity project, as described in Cunningham et al.
(2018).72 We then multiply the real stock values by nominal rental rates (Kehrig, 2015) in
order to measure capital flows. While Cunningham et al. (2018) provide separate mea-
sures of capital for equipment and structures, we use the plant-level sum of the two mea-
sures.

For the captured data, we use the fact that the procedure above provides an implicit
rental rate for each plant in the data: the relationship between the cleaned measured flow
cost of capital services and the final stock value in the Census data.73

70Information for plants with fewer than 5 employees - roughly one third of the sample - are almost entirely
imputed. We follow standard practice of excluding these so-called administrative records plants (Foster
et al., 2016).

71Sample are selected at 5-year intervals beginning in years ending with 4 or 9.
72An internal Census memo (available to researchers with approved access to the manufacturing data in

the FSRDCs) written by Jake Blackwood and Cody Tuttle as part of that project was very helpful for us.
See also Chow et al. (2021) for a description of the Longitudinal Business Database.

73Specifically, we calculate the stock of capital as the average of total assets at the beginning and end of
the year. We then calculate Kflow,captured =

Kflow,BLS
Kstock,final

× Kstock,captured. In the original version of this paper,
we instead multiply the capital stock value in the Census by 10% to impute the flow costs, and we show
measured counterfactual productivity gains for that set-up in Appendix Table 10. In India there is no BLS-
type of information for capital, so we use a 10 percent interest rate. Because the counterfactual we are
interested removes deviations from the industry average, whatever interest rate we pick cancels out and
therefore doesn’t affect our misallocation measure (as long as the chosen interest rate is constant within
each sector).
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For some of our analyses we use revenue data from the Census Bureau’s Business Reg-
ister (BR), ultimately from IRS income tax forms. Haltiwanger et al. (2017) use this data to
construct a firm-level revenue measure using the revenue data from various IRS income
tax forms. The details of the construction of the firm-level revenue variable are described
in the data appendix of Haltiwanger et al. (2017) as well as in Haltiwanger et al. (2019).
There are two revenue data issues worth mentioning. First, Haltiwanger et al. (2019) note
that about 20% of businesses file their payroll and income tax reports under different
EINs, and in these cases the Census Bureau has no direct way of linking the two EINs.
Second, while the Business Register allocates EIN-level employment and payroll to estab-
lishments, the Census Bureau’s Business Register does not do this for revenue. In order
to create plant-level imputations of the administrative revenue data, we first we modified
the underlying code used by Haltiwanger et al. (2019) to aggregate revenue to the EIN
level instead of the firm level.74 We then used the plant-level allocations described in the
previous paragraph to allocate EIN-level revenue to each plant, heroically assuming that
all plants within the same EIN have the same labor productivity (Kehrig and Vincent,
2020).

A.I Indian Data

For India, we use the Annual Survey of Industries (the ASI). Factories with over 100 work-
ers are surveyed every year, while smaller establishments are surveyed every few years
(the ASI is designed to be representative at the State by Industry level, so establishments
without local competitors are more likely to be surveyed). Hsieh and Klenow (2009) and
Bils et al. (2021) use the same dataset, and we follow standard practice in generating mea-
sures of gross output, intermediate inputs, capital, and payroll.75 We use cost shares by
two digit industry to back out production function parameters. Industries are grouped
using India’s NIC (National Industrial Classification) codes, and we report the value of
reallocation for 2002 and 2010, which are the start and end of the dataset we are using.
While there is no administrative data we can use for variable validation in India, there
is at least some direct evidence of measurement error. In the repeated cross-section, if
we observe a plant twice we can calculate both the change in reported age and the time
between observations. Over a third of the time, the change in reported plant age is either
at least 2 years bigger or smaller than the actual change. Some of this is clearly misunder-
standing the question - for instance, in some years reporting age and other years reporting
the year of initial production. Dropping the plants with a gap over 1000, the gap is still
clearly wrong a fifth of the time.

Since the industry codes do not line up with the U.S.’s (not that we would necessarily
think that the same bounds should apply), we cannot use the same feasible region in India
as in the US. We define the feasible region by following the resistant fences method, which
is the starting point for how Census chooses its ratio bounds (Thompson and Sigman,
1999). Within each industry, we calcuate the log ratio rjk for all of the inputs j and only

74We are grateful to Cristina Tello-Trillo for helping us with this.
75We use the code from Rotemberg (2019), which essentially copied the code from Allcott et al. (2016),

whose appendix goes into the data in substantially more detail, as does the appendix of Bils et al. (2021).
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use output for k. We calculate the ratio’s 25th and 75th percentiles, Q25
jk and Q75

jk , and
the interquartile range IQRjk. We then flag all ratios that are either smaller than Q25

jk −
C × IQRjk or larger than Q75

jk + C × IQRjk where C is a pre-specified threshold (for our
application, C = 3, which is relatively large). The variables we use in India are the same
as the ones in the U.S., adding in capital (since we have no external data source) and the
sample weight. We run the estimation separately by 2-digit industry and year, and we
constrain the sample to include only the plants with no missing values.

B Effects of Each Type of Edit on Measured Misallocation and Productivity Disper-
sion

In Table 1 and 7 (as well as Appendix Table 2), we describe the effect of eleven supercat-
egories of the edit flags. We describe the mapping in Table 1, in this section we go into
more detail, in the same order as the tables.

The flag impute missing value applies to all variables (besides capital), and we use it
whenever the final data is not missing, but the captured data is missing.76

We split out logical edits for payroll, shipments, and materials. Logical edits are done
when there are multiple survey questions which ask for the same information. For exam-
ple, the CMF asks respondents for the plant’s production worker wages, non-production
worker wages, and total salaries and wages (which should be the sum of the first two).
To give a simple example, if reported non-production worker wages are, e.g., only half
of the reported total salaries and wages, and both are plausible for the given plant in
the given industry, but non-production worker wages were not reported, then the Bu-
reau will impute non-production worker wages for this plant as total salaries and wages
minus production worker wages.

Analyst corrections rely on the expertise of full-time industry specialists employed by
the U.S. Census Bureau. Note that analysts can try to use primary sources (such as calling
a plant) to verify or edit values, this is not categorized as an analyst correction (or as an
edit at all). In addition to changing values, analysts can also “goldplate” information to
ensure that it does not get edited using other methods. We do not consider “goldplating”
a type of edit for considering the Shapley values, but we do use them in the “hybrid” data
and when comparing the exposure of trimmed and untrimmed data to analyst-verified
values.

Regression Edits (which we report for materials) are used to edit data when alterna-
tive sources of information are not available. The U.S. Census Bureau uses a variety of
industry-specific regression-based imputation strategies. Since they do not require any
observed alternative value, regression imputes are often used to impute missing values
when no other information is available for a given variable, preventing the use of logical-
type imputes. In general, regression edits create predictions using one other variable,
and (for plants surveyed in the Annual Survey of Manufactures), one-year lags of the im-
puted variable. Unlike administrative and logical edits, there is not necessarily any direct

76There are some observations with missing capital data but where the corresponding flag does not corre-
spond to impute missing; we overrule those flags for this categorization.
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evidence that the value reported by the the establishment may be incorrect. Instead the
Census uses the ratio bounds we use in Section V.

Administrative edits are similar to logical edits, but differ in that the alternative source
of information is from administrative records. The administrative records come primarily
from IRS payroll tax data.

The divide by 1000 edits happen when the ratio of a dollar-valued variable (e.g., an-
nual payroll) over employment is 1000 times greater than what is typical for the plant’s
industry. In these cases the Census Bureau suspects that the respondent answered in
dollar units even though the questionnaire asks for values in thousands of dollars.

We separately split out the effect of capital edits from the other residual categories.
This includes all changes to capital that aren’t defined by one of the flags above (besides
impute missing).

We manually categorize the residual changes into ones that are replicable and ones
that are not. For the most part, this is regression-types of edits that we don’t categorize in
the Regression Edits for Materials (such as regressions for the other variables, or directly
imputing the midpoint of the ratio bound).

C Bayesian Simultaneous Edit-Imputation

In this section, we describe how we implement the Kim et al. (2014) approach. First, we
define the feasible region D of plausible reports. In our implementation we define this
region using only a set of ratio edit rules which bound the ratios of any two variables.77

The ratio edit rules can come either from industry specific knowledge, or from outliers in
the data itself. Fellegi and Holt (1976) note that the set of explicit ratio edit rules can imply
additional ones as well.78 While si is not directly observed, Ai indexes the failed ratio edit
rules.If we were using balance edits in our implementation, Ai would also indicate failed
balance edit rules. If, e.g., yi1 fails multiple edits and yi2 fails only one, then, other things
equal, yi1 is more likely to be faulty than yi2.

For the baseline Bayesian model, we use the relevant ratios that are explicitly bounded
(above and below) by the Census Bureau: shipments

materials , employment
wages and shipments

wages . When we add
in the administrative records, we add in the ratio edit rules that the administrative and
corresponding survey values should be within 10% of each other.

The Bayesian model is very much driven by the data, and requires setting only a few
parameters in the R code (which is available on the FSRDC server and in our replication
package). Following Kim et al. (2015), we set the maximum possible number of compo-
nents distributions, K. We set K=50, which is large enough that no data are in the lowest
probability components in any industry-year. For the Markov Chain Monte Carlo, we

77In addition to ratio edit rules, the Kim et al. (2015) algorithm is designed to also use balance edits which
require entries to add up. For instance, total wages = production worker wages + non-production worker
wages, or more generally

(
xiT` −∑j∈β`

xij = 0
)

for xiT` as the total for the `th balance rule for the set of
component variables β`. In their application of the algorithm to one industry in the 2007 CMF, Kim et al.
(2015) use 12 variables that are subject to ratio edits, six of which are totals subject to balance edits, and
15 component variables that are subject to balance edits but not ratio edits.

78For instance, rules x1 ≤ x2 and x2 ≤ x3 imply x1 ≤ x3.
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choose a burn-in of 2000 iterations, which is long enough that even the largest industries’
distributions appear to converge and have good mixing properties.79 Following Kim et al.
(2015) we then run the chain another 50,000 iterations, keeping every 500th iteration so
that we have 100 completed datasets (“implicates”). Other than telling the algorithm the
folder structure, which variables to use, and what ratio and balance edits the variables
are subject to, no other choices need to be made by the modeller.

There is one caveat which applies to any edit-imputation method that uses ratio ed-
its, including the Census Bureau’s methods. In the U.S. CMF, the questionnaires ask the
respondent to report in thousands of dollars. In some cases, the respondents appear to
report in dollars. The Census Bureau determines this by looking at the ratio of each the
dollar-valued variables over employment. If for every dollar-valued variable X, a plant’s
ratio of X

employment fails the ratio edit, but X/1000
employment satisfies the edit, then the Bureau re-

places the dollar-valued variable X with X
1000 . Note that if the Census Bureau did not

do this, its Fellegi and Holt (1976) algorithm would choose to replace the employment
value for this plant and keep all the (very large) reported dollar valued variables, since
that would minimize the number of changes to the data. Before feeding the U.S. captured
data into the Bayesian edit-imputation algorithm, we replace the captured value with the
final value for any variable that was edited by the Census Bureau using this divide-by-
1000 edit. Note that the Indian ASI data does not appear to have this problem.

In our baseline edit-imputation model we have 4 variables subject to 6 ratio edits (3
ratios, each with an upper and lower bound). For the U.S. CMF we have separate models
for each of our 1,412 industry-years. On the FSRDC server, which only allows us to run
up to 10 jobs in parallel, we are able to run all of the MCMC chains (52,000 iterations for
each industry-year) in less than 24 hours.

C.I Motivation for the Editing/Imputed Model

In this subsection, we briefly motivate the approach of the algorithm. Kim et al. (2015)
describe in detail how the method works, in particular in their Appendix A.

The goal of the editing and imputing process is for the cleaned data to be likely given
a model for reporting error, likely given a model for error indicators, and likely given a
model for the underlying data.

More formally,

f (xi, si|yi, Ai) ∝ f (yi|xi, si, Ai) f (si, Ai|xi) f (xi) . (A. 1)

For the model of reporting error, we maintain the U.S. Census Bureau’s (implicit) ap-
proach to ratio and balance edits: data reported with error provides no information on
the true value.80 Therefore, f (yi|xi, si, Ai) is uniform over the support of feasible values

79Note that each iteration for a given industry-year involves taking draws for all of the missing and faulty
data until all the observations we are modelling have been filled in.

80One important exception to this rule is the divide by 1000 edit (also known as units errors or “rounded”
edits), where the original reported value is divided by 1000 and then rounded to the nearest unit. Our
approach did poorly replicating those edits (partially because we imposed a flat prior for which variable
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if yij 6= xij.
However, unlike the Census Bureau, our prior is a uniform distribution for the errors.

That is to say, we do not start with weights on which variables are more likely to be
reported with error, so all candidates si that result in feasible solutions are initially equally
likely.

For the model for the underlying data, we assume that each establishment belongs to
one of K mixture components (z). After assuming K, we need to estimate the probability
of membership in each component (πz), and within each component the mean vector (µ)
and covariance matrix (Σ). In order to ensure that all of the draws will pass the ratio
edits, we impose that the distribution of xi conditional on µ, Σ, zi, given feasible region D
is

f (xi|θi) = N
(

xi|µzi
, Σzi

)
1 [xi ∈ D]

where 1 is the indicator function.

D Measuring Aggregate Productivity

In this section we describe the results of a more flexible model of misallocation than in
the text, using results from Bils et al. (2021) and (particularly) Blackwood et al. (2021).

The first change is allowing heterogeneous sectoral demand elasticities. This turns
out to be fairly straightforward - instead of σ in the expression for sectoral efficiency, each
sector has its own σs

T̃FPs
Sector-specific

=

(
M

∑
i=1

T̃FPQ
σs−1
si T̃FPR

1−σs

si

) 1
σs−1

. (A. 2)

The aggregation to sector-wide aggregate efficiency is the same as in Equation 3. The
second change is to allow for non-constant returns to scale. In this case, expected output

(divided by TFPQ) is
((

Kαs
si L1−αs

si

)γs
M1−γs

si

)ξs
where ξs > 0.

T̃FPRs
NCR

=
∑i∈s A

σs−1
σs−(σs−1)ξs
is TFPR

1−σs
σs−(σs−1)ξs
is

∑i∈s A
σs−1

σs−(σs−1)ξs
is TFPR

σs
(σs−1)ξs−1
is

(A. 3)

ξs = 1 simplifies to the T̃FPRs used for the main results in Equation 3. The new
equation for aggregating to sectoral efficiency is

TFPNCR
s =

∑
i∈s

A
σs−1

σs−(σs−1)ξs
si T̃FPRsi

NCR

ξs(1−σs)
σs−(σs−1)ξs


1

σ−1

. (A. 4)

With fixed prices, aggregate efficiency combines any of the above measures of sectoral

was more likely to be reported with error), and so we accepted all of the Census Bureau’s rounding edits
and otherwise used raw data.
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efficiency with a Cobb-Douglas aggregator using the sectoral gross output shares.

T̃FP = ∏
s∈S

T̃FPs
NCRθ

s (A. 5)

If production is roundabout (so some production gets used as an intermediate good),
then the aggregation essentially scales as a function of the intermediates share.

T̃FP = ∏
s∈S

T̃FPs
NCR

θs

∑k∈S

(
θk

(
1− γs

ξk

)
+θs

γs
ξs

(1−ξs)
)

(A. 6)

The results using these more general models are in Appendix Table 10.
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Figure A. 1: Difference between Captured and Final Productivity, by Firm
Employment and Age

(a) 2002

(b) 2007

(c) 2012

This figure plots a local polynomial regression, predicting the value of ln(TFPR) in the captured
data minus the value in the final, over firm age and (ln) firm employment, as described in the text
(Figure 2 instead shows the absolute difference, so is bounded below by 0 for each plant). To comply
with Census disclosure rules, the 5 percent tails of each graph have been trimmed.
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Figure A. 2: Absolute Difference between Captured and Bayesian edited Pro-
ductivity, by Firm Employment and Age

(a) 2002

(b) 2007

(c) 2012

This figure plots a local polynomial regression, predicting the (absolute) difference between
ln(TFPR) in the Bayesian edited vs captured data, over firm age and (ln) firm employment, as
described in the text. To comply with Census disclosure rules, the 5 percent tails of each graph
have been trimmed.
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Figure A. 3: Difference between Captured and Bayesian edited Productivity, by
Firm Employment and Age

(a) 2002

(b) 2007

(c) 2012

This figure plots a local polynomial regression, predicting the value of ln(TFPR) in the captured
data minus the value in the Bayesian-edited data, over firm age and (ln) firm employment, as
described in the text. To comply with Census disclosure rules, the 5 percent tails of each graph
have been trimmed.
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Figure A. 4: Productivity Density, Captured vs Final vs Bayesian-edited (with
and without administrative data)

(a) 2002

(b) 2007

(c) 2012

This figure plots the kernel densities for (scaled) TFPR in the captured and final data. For compa-
rability across graphs, and to comply with Census disclosure rules, we trim one percent of the left
tail and five percent of the right tail.
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Appendix Table 1.  Changes Made to the U.S. Census of Manufacturers

Edit/Impute

(1)

Administrative (A) 

Cold Deck Statistical (B) 

Analyst Corrected (C) 

Model (Donor) Record (D) 

Receipts (F) 

High/Low (E) 

Historic (H) 

Subject Matter Rule (J) 

Prior Year Ratio (HQ) 

Raked (K) 

Logical (L) 

Midpoint (M) 

Rounded (N) 

Prior Year Administrative (P) 

Direct Substitution (S) 

Trim-and-Adjusted (T) 

Unable to Impute (U) 

Industry Average (V) 

Warm Deck Statistical (W) 

Unusable (X) 

Data Impute (2) 

Payroll Quarterly (4) 

Notes: Edit/imputation descriptions for the U.S. Census of Manufacturers, from Grim (2011) and White et al. (2018), 

with a few additional categories. These flags can be requested at the FSRDCs for the manufacturing data in this paper, 

and explain what changed when the final data disagree with the captured data. There is an additional flag used in the 

paper, (G), which corresponds to "goldplated" data that an analyst ensures is not changed.

The item is imputed by direct substitution of corresponding administrative data (for the 

same establishment/record).

The item is imputed from a statistical (regression/beta) model based on historic data.

The reported value fails an edit, and an analyst directly corrects the value.

The item is imputed using hot deck methods.Receipts posted from the nonemployer universe as a result of the Business Master File 

EIN/SSN cross-reference match or primary SSN (one-for-one match).

The item is imputed with a value near the endpoints of the imputation range.

The item is imputed by using historic ratio data for the same establishment.

The item is imputed using a subject matter defined rule (e.g. y=1/2x).

The item is imputed using a ratio of historic data times current reported values. 

The sum of a set of detail items do not balance to the total. The details are then changed 

proportionally to correct the imbalance.

The item's imputation value is defined by an additive mathematical relationship (e.g., 

obtaining a missing detail item by subtraction).

The item is imputed by direct substitution of midpoint of imputation range.

The reported value is replaced by its original value divided by 1000.

The item is imputed by ratio imputation using corresponding administrative data from 

prior year (for same establishment).

The item was imputed using the Trim-and Adjust balancing algorithm.

The item is imputed by direct substitution of another item's value (from within the same 

questionnaire.)

First quarter payroll reported higher than annual payroll; data adjusted during general 

data prep or legacy edits

(2)

Occurs When…

Data item imputed from a reported data item

The sum of a set of detail items cannot be balanced to the total because none of the 

scripted solutions achieved a balance.

The item is imputed from a statistical (regression/beta) model based on current data.

The item is imputed by ratio imputation using an industry average.

The reported item is blank or fails an edit, and the system cannot successfully substitute 

a statistically reasonable value for the original data.
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Edit/Impute Label Share of Plants (2002) Share of Plants (2007) Share of Plants (2012)

(1) (2) (2) (3)

Impute Missing Value 0.464 0.443 .546

Logical Edit for Payroll 0.133 0.079 .055

Analyst Edits 0.023 0.057 0.085

Logical Edit for Shipments 0.045 0.044 0.03

Logical Edit for Materials 0.035 0.038 0.036

Regression Edit for Materials 0.026 0.033 0.02

Edit from Administrative 

Records 0.002 0.019 0.033

Divide by 1000 0.003 0.006 0.008

Other Capital Edits 0.036 0.336 0.238

Other Replicable Change 0.018 0.02 0.017

Any Change, Not Elsewhere 

Classified 0.063 - 0.0003

Appendix Table 2.  Annual Changes Made to the U.S. Census of Manufacturers

Notes: Lables are defined in Table 1.  The "Share of Plants" is the share of plants who have been affected by 

the corresponding label in each year. The value for "Any Change, Not Elsewhere Classified" could not be 

disclosed in 2007 because fewer than 10 firms are affected. The sample is plants for whom it is possible to 

calculate productivity in the final data.
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90/10 ratio 75/25 ratio

Standard 

Deviation 90/10 ratio 75/25 ratio

Standard 

Deviation

(1) (2) (3) (4) (5) (6)

Panel A.  Capital

2002 4.784 2.546 1.913 4.262 2.161 1.721

2007 5.142 2.702 2.08 3.777 1.866 1.524

2012 5.303 2.686 2.155 3.684 1.863 1.49

Panel B.  Materials

2002 3.39 1.84 1.383 3.129 1.639 1.272

2007 3.946 2.087 1.634 3.172 1.653 1.282

2012 4.652 2.369 1.902 3.119 1.669 1.274

Panel C.  Payroll

2002 4.602 2.373 1.882 3.939 1.994 1.589

2007 4.717 2.441 1.913 4.124 2.103 1.642

2012 4.986 2.644 2.002 4.122 2.107 1.644

Panel D.  Shipments

2002 3.679 2.007 1.501 3.458 1.795 1.412

2007 3.798 2.034 1.577 3.586 1.854 1.446

2012 4.575 2.364 1.852 3.577 1.873 1.445

Appendix Table 3.  Dispersion of Plant Characteristics in the Captured and Final Data

Captured Data Final Data

Notes: Tthis table reports moments of the distribution of the inputs and shipments. The variables are logged and demeaned 

within each industry. Within each dataset, the samples are balanced (it must be possible to calculate productivity), but the 

samples in the captured and final data are different.
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90/10 ratio 75/25 ratio

Standard 

Deviation

(1) (2) (3)

Panel A.  Capital/Shipments

2002 1.452 1.709 1.41

2007 1.888 2.19 1.852

2012 2.038 2.163 2.159

Panel B.  Materials/Shipments

2002 1.596 1.718 1.85

2007 1.996 2.146 2.121

2012 2.401 2.644 2.616

Panel C.  Payroll/Shipments

2002 1.951 2.02 1.977

2007 1.771 2.073 1.833

2012 2.216 2.268 2.171

Appendix Table 4.  Dispersion of Plant Input Shares, Captured vs. 

Final

Captured Data / Final Data

Notes: This table reports moments of the distribution of inputs/shipments. The input 

shares are logged and demeaned within each industry. We calculate the relevant value in 

the captured data divided by its final counterpart, and report the ratio. The underlying 

values are in Appendix Table 3. Column 4 reports the within R
2
 of a regression of the 

corresponding (logged) variable in the captured data on its value in the final data, with 6-

digit NAICS fixed effects.  Within each dataset, the samples are balanced (it must be 

possible to calculate productivity), but the samples in the captured and final data are 

different.

15



Type of Change Share of Plants (2002) Share of Plants (2007) Share of Plants (2012)

(1) (2) (2) (3)

TFPQ:

… Final < Captured 0.312 0.368 0.488

… Unchanged 0.544 0.196 0.391

… Final > Captured 0.144 0.436 0.121

TFPR:  

… Final < Captured 0.313 0.369 0.495

… Unchanged 0.544 0.196 0.39

… Final > Captured 0.144 0.435 0.115

Appendix Table 5.  Characteristics of Changes Between Final and Captured Data, Productivity

Notes: TFPR and TFPQ are calculated using sectoral cost shares (and TFPQ uses the model to convert from revenues 

to quantities). The variables are logged but not demeaned.   The samples is plants for whom it is possible to calculate 

productivity in the captured data
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90/10 75/25

Standard 

Deviation 90/10 75/25

Standard 

Deviation

(1) (2) (3) (4) (5) (6)

Panel A.  TFPQ

2002 7.215 5.606 3.028 1.944 0.951 0.802

2007 6.546 4.651 2.64 2.348 1.113 0.946

2012 7.42 5.165 3.243 1.792 0.904 0.738

Panel B.  TFPR

2002 1.564 0.579 0.906 0.731 0.286 0.402

2007 1.684 0.795 0.947 0.796 0.31 0.432

2012 2.36 0.94 1.197 0.754 0.305 0.407

Appendix Table 6. Productivity Dispersion in the Final and Captured Data

Captured Data Final Data

Notes: This Table reports moments of the distribution of TFPQ and TFPR, logged and demeaned within each industry (as 

described in the text). Within each dataset, the samples are balanced (it must be possible to calculate productivity), but the 

samples in the captured and final data are different.
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Captured Data Final Data Ratio

(1) (2) (3)

Panel A.  OP "within" share

2002 0.003 0.935 0.003

2007 0.011 0.923 0.012

2012 0.001 1.083 0.001

Panel B.  Payroll and Shipments, R
2

2002 0.711 0.855 0.832

2007 0.634 0.836 0.758

2012 0.563 0.846 0.665

Panel C.  All Inputs and Shipments, R
2

2002 0.826 0.899 0.919

2007 0.816 0.897 0.910

2012 0.803 0.921 0.872

Panel D.  TFPQ and TFPR, R
2

2002 0.719 0.458 1.570

2007 0.766 0.488 1.570

2012 0.791 0.446 1.774

Notes: This table reports the distribution of alternative measures of (mis)allocation. We 

calculate the relevant value in the captured data divided by its final counterpart, and report 

the ratio. Panel A reports the ratio of the unweighted-weighted average TFPR over the by 

the shipments-weighted average, inspired by Olley and Pakes (1996). Panel B reports the 

within R2 of a regression of (log) payroll on (log) output, with 6-digit NAICS fixed effects. 

Panel C reports the within R2 of a regression of all three (log) inputs on (log) output, with 6-

digit NAICS fixed effects. Panel D reports the within R
2
 of a regression of (log) TFPQ on 

(log) TFPR, with 6-digit NAICS fixed effects.   Within each dataset, the samples are 

balanced (it must be possible to calculate productivity), but the samples in the captured and 

final data are different. 

Appendix Table 7: Alternative Measures of Factor Allocation
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No Trimming

1 Percent 

Trimming

2 Percent 

Trimming No Trimming

1 Percent 

Trimming

2 Percent 

Trimming

(1) (2) (3) (4) (5) (6)

Panel A.  Gross Output

2002 0.00001 0.023 0.047 0.027 0.147 0.197

2007 0.00001 0.017 0.031 0.01 0.092 0.11

2012 0.000002 0.002 0.005 0.025 0.116 0.14

Panel B.  Value Added

2002 0.00002 0.04 0.08 0.005 0.179 0.262

2007 0.00003 0.022 0.06 0.005 0.124 0.192

2012 0.0000003 0.004 0.007 0.001 0.137 0.214

Panel C.  Annual Survey of Manufacturers

2002 - 0.04 0.058 0.035 0.141 0.197

2007 0.0003 0.036 0.071 0.034 0.094 0.125

2012 0.0007 0.035 0.062 0.033 0.138 0.158

Appendix Table 8.  Measured Allocative Efficiency in the Final and Captured Data

Captured Data Final Data

Notes: The equations for calculating allocative efficiency are as described in the text. For the trimming, we drop the (upper 

and lower) extremes for TFPQ and TFPR. The values are balanced within each dataset (it must be possible to calculate 

productivity), but unbalanced across. Panel A uses a gross output specification as in Bils et al. (2021) and Blackwood et al. 

(2021). Panel B uses a value added specification as in Hsieh and Klenow (2009). Panel C uses only the ASM plants (and the 

corresponding weights), the ASM value for the captured data with no trimming could not be disclosed in 2002. The samples 

are different in the captured and final data.
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2002 2007 2012

(1) (2) (3)

Materials SD 1.076 1.039 1.025

Materials 90/10 1.033 1.004 .993

Materials 75/25 1.499 1.417 1.285

Materials Revenue Share SD 1.23 1.177 1.056

Materials Revenue Share 90/10 1.092 1.065 .976

Materials Revenue Share 75/25 1.024 1.004 .988

Payroll SD 0.998 0.986 0.942

Payroll 90/10 0.961 0.952 0.954

Payroll 75/25 1.238 1.153 1.264

Payroll Revenue Share SD 1.07 1.051 1.133

Payroll Revenue Share 90/10 1.039 1.027 1.094

Payroll Revenue Share 75/25 0.947 0.941 0.93

Shipments SD 0.977 0.975 0.945

Shipments 90/10 1.022 0.998 0.988

Shipments 75/25 0.986 0.967 0.978

TFPQ SD 0.97 0.96 0.961

TFPQ 90/10 0.962 0.921 0.957

TFPQ 75/25 0.922 0.911 0.973

TFPR SD 0.936 0.977 0.974

TFPR 90/10 1.001 1.005 0.963

TFPR 75/25 1.239 1.19 1.122

Weighted OP Productivity 1.153 1.123 1.05

Unweighted OP Productivity 1.065 1.046 0.992

Payroll and Shipments, R
2

1.038 1.033 0.985

TFPQ and TFPR, R
2

0.958 0.982 0.964

Gross Output Allocative Efficiency 1.463 2.636 1.753

Appendix Table 9. Dispersion and Measured Misallocation in the Final Data, Only for 

Plants in the Captured Sample

Notes: We calculate the relevant value in the captured data divided by its final counterpart, and report the ratio. The 

sample is balanced, the plants for whom it is possible to calculate productivity in the captured data. The values for 

the ratios from the unbalanced samples are in Tables 4, 5, 6, and Appendix Table 7.

Final (Captured Sample) / Final (Full Sample)
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Edit/Impute Label 2002 2007 2012

(1) (2) (2) (3)

Baseline 0.0004 0.001 0.00007

Reported Capital Values 0.0003 0.0008 0.00005

Ahmad and Riker (2019) 

demand elasticities 0.00006 0.0009 0.00005

Demirer (2021) pf elasticities 0.0006 0.004 0.008

Blackwood et al. (2021) "OP" 

pf elasticities 0.001 0.00004 0.002

Blackwood et al. (2021) 

"OPD" pf elasticities 0.006 0.00006 0.0001

Baseline, Blackwood et al. 

(2021) sample 0.0003 0.00003 0.00003

Returns to Scale .9 0.0003 0.001 0.00008

Returns to Scale 1.1 0.039 0.028 0.105

Returns to Scale .9, 

roundabout <0.0000001 <0.0000001 <0.0000001

Roundabout (Constant Returns 

to Scale) <0.0000001 <0.0000001 <0.0000001

Returns to Scale 1.1, 

roundabout 0.00005 0.00003 0.01

Appendix Table 10. Measured Allocative Efficiency, Captured vs. Final under 

alternative assumptions

Notes: We calculate the relevant value in the captured data divided by its final counterpart, and report the 

ratio. The values for calculating allocative efficiency are as described in the text, using a gross-output 

specification and all of the plants in the Census of Manufacturers. The values are balanced within each 

dataset (it must be possible to calculate productivity), but unbalanced across. The "reported capital values" 

are the ones directly reported in the data (multiplied by a 10% rental rate), instead of the values from the 

BLS-Census Multifactor Productivity project. Ahmad and Riker (2019) use the revenue share of the flexible 

inputs to back out demand elasticities, we use the average of their estimates. Demirer (2021) and Blackwood 

et al. (2021) present alternative production function elasticities. Blackwood et al. (2021) only calculate 

elasticities for 50 sectors, so we also show how our results change when we use a cost shares but only within 

their sample of plants. The final models estimate the gains under alternative returns to scale, and under 

roundabout production, following  Blackwood et al. (2021).
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Edit/Impute Label

Standard Deviation of 

TFPR

Standard Deviation of 

TFPQ

R
2

TFPQ and TFPR

(1) (2) (2) (3)

Impute Missing Value, 

2002 0.163 0.012 .167

… 2007 0.169 0.019 .144

… 2012 0.127 0.024 .134

Logical Impute for Payroll, 2002 0.085 0.068 .085

… 2007 0.086 0.021 .053

… 2012 0.035 0.023 .05

Analyst Edits, 2002 0.118 0.048 0.077

… 2007 0.13 0.106 0.116

… 2012 0.592 0.79 0.406

Logical Impute for Shipments, 

2002 0.079 0.264 0.119

… 2007 0.097 0.464 0.13

… 2012 0.015 0.031 0.026

Logical Impute for Materials, 

2002 0.117 -0.008 0.077

… 2007 0.035 -0.011 0.049

… 2012 0.01 0.006 0.03

Regression Impute for Materials, 

2002 0.147 0.012 0.166

… 2007 0.122 -0.009 0.161

… 2012 0.045 0.012 0.085

Impute from Administrative 

Records, 2002 0.002 0.018 0.007

… 2007 0.012 0.006 0.012

… 2012 0.025 0.0005 0.015

Divide by 1000, 2002 0.084 0.121 0.038

… 2007 0.109 0.243 0.043

… 2012 0.022 -0.0007 0.02

Other Capital Edits, 2002 0.032 0.028 0.029

… 2007 0.177 0.096 0.2

… 2012 0.119 0.08 0.183

Other Replicable Change, 2002 0.135 0.41 0.129

… 2007 0.0002 -0.001 0.0002

… 2012 0.0002 -0.0002 0.0001

Any Change, Not Elsewhere 

Classified, 2002 0.037 0.027 0.106

… 2007 0.062 0.067 0.092

… 2012 0.011 0.034 0.052

Appendix Table 11.  Effect of Flags on Measured Productivity Dispersion, Shapley Values

Notes: Lables are defined in Table 1. We calculate Gross Output TFPR and TFPQ (as in Table 5) with no 

trimming for every possible combination of flags (if a flag is turned on, we use only final values for the plant, 

not just for the particular characteristic affected by the flag). We then calculate the Shapley (1953) value for 

each flag for each outcome, and report the share of the change from captured to final measured misallocation 

attributable to each flag (so the columns would sum to one if not for rounding). Column 3 reports the within R2 

of a regression of (log) TFPQ on (log) TFPR, with 6-digit NAICS fixed effects. 
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Type of Change Share of Plants (2002) Share of Plants (2007) Share of Plants (2012)

(1) (2) (2) (3)

Panel A: Bayesian vs. Captured

Materials

… Bayesian < Captured 0.006 0.025 0.02

… Unchanged 0.956 0.931 0.938

… Bayesian > Captured 0.038 0.045 0.042

Payroll:

… Bayesian < Captured 0.01 0.018 0.026

… Unchanged 0.982 0.968 0.962

… Bayesian > Captured 0.008 0.014 0.013

Shipments

… Bayesian < Captured 0.009 0.016 0.021

… Unchanged 0.973 0.956 0.959

… Bayesian > Captured 0.018 0.028 0.02

Panel B: Bayesian vs. Final

Materials

… Bayesian < Final 0.176 0.171 0.174

… Unchanged 0.697 0.697 0.725

… Bayesian > Final 0.127 0.132 0.101

Payroll:

… Bayesian < Final 0.212 0.115 0.119

… Unchanged 0.721 0.827 0.823

… Bayesian > Final 0.067 0.058 0.058

Shipments

… Bayesian < Final 0.121 0.134 0.104

… Unchanged 0.832 0.799 0.839

… Bayesian > Final 0.046 0.067 0.057

Appendix Table 12.  Characteristics of Changes Between Bayesian Edited, Captured, and 

Final Data

Notes: The "Share of Plants" is the share of plants who have been affected by the corresponding label in each year. 

Any Regression Flag includes both imputed and edited values. The samples are balanced within each panel, to plants 

for which it is possible to calculate productivity in both relevant datasets. The Bayesian edited data is constructed 

following Kim et al. (2015), as described in the text.
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First Fifth Tenth Ninetieth Ninety-Fifth Ninety-Ninth

Percentile Percentile Percentile Percentile Percentile Percentile

(1) (2) (3) (4) (5) (6)

Panel A.  Materials

2002 0.011 1 1 1 1 1

2007 0.008 0.998 1 1 1 2.868

2012 0.009 0.999 1 1 1 36.42

Panel B.  Payroll

2002 0.994 1 1 1 1 1

2007 0.155 1 1 1 1 2.166

2012 0.185 1 1 1 1 542.2

Panel C.  Shipments

2002 0.095 1 1 1 1 1

2007 0.058 1 1 1 1 1.967

2012 0.07 1 1 1 1 6.337

Appendix Table 13.  Distribution of the Captured/Bayesian Ratios

Notes: We calculate the value in the captured data divided by its counterpart in the Bayesian-edited data. This Table reports 

the distribution of those ratios. For disclosure purposes, the reported values are not the cutoff at the exact percentile, but the 

average value of all of the plants within the centile. The sample is plants for whom it is possible to calculate productivity in 

the captured data. The Bayesian edited data is constructed following Kim et al. (2015), as described in the text.
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First Fifth Tenth Ninetieth Ninety-Fifth Ninety-Ninth

Percentile Percentile Percentile Percentile Percentile Percentile

(1) (2) (3) (4) (5) (6)

Panel A.  Materials

2002 0.057 0.542 0.878 1.406 2.42 9.299

2007 0.048 0.529 0.857 1.355 2.441 10.44

2012 0.029 0.547 0.964 1.229 2.279 10.56

Panel B.  Payroll

2002 0.216 0.869 1 1.018 1.345 2.594

2007 0.135 0.929 1 1.008 1.278 2.674

2012 0.104 0.868 1 1.022 1.385 2.905

Panel C.  Shipments

2002 0.193 1 1 1.033 1.426 3.154

2007 0.144 0.827 1 1.052 1.572 3.617

2012 0.095 0.916 1 1.001 1.295 3.421

Appendix Table 14.  Distribution of the Final/Bayesian Ratios

Notes: We calculate the value in the final data divided by its counterpart in the Bayesian-edited data. This Table reports the 

distribution of those ratios. For disclosure purposes, the reported values are not the cutoff at the exact percentile, but the 

average value of all of the plants within the centile. The sample is plants for whom it is possible to calculate productivity in 

both datasets. The Bayesian edited data is constructed following Kim et al. (2015), as described in the text.
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90/10 ratio 75/25 ratio

Standard 

Deviation

(1) (2) (3)

Panel A.  Materials

2002 1.089 1.114 1.084

2007 1.274 1.274 1.287

2012 1.279 1.249 1.307

Panel B.  Payroll

2002 1.084 1.077 1.108

2007 1.101 1.099 1.119

2012 1.071 1.068 1.078

Panel C.  Shipments

2002 1.052 1.093 1.053

2007 1.082 1.104 1.102

2012 1.15 1.109 1.162

Appendix Table 15.  Dispersion of Plant Characteristics, Bayesian vs. 

Captured

 Captured Data / Bayesian Edited Data

Notes: This table reports moments of the distribution of the inputs and shipments. The 

variables are logged and demeaned within each industry. We calculate the relevant value 

in the captured data divided by its Bayesian-edited counterpart, and report the ratio. 

Within each dataset, the samples are balanced (it must be possible to calculate 

productivity), but the samples in the captured and Bayesian-edited data are different. 

The Bayesian edited data is constructed following Kim et al. (2015), as described in the 

text.
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90/10 ratio 75/25 ratio

Standard 

Deviation

(1) (2) (3)

Panel A.  Materials

2002 1.005 0.993 0.997

2007 1.024 1.009 1.009

2012 0.858 0.88 0.876

Panel B.  Payroll

2002 0.928 0.905 0.935

2007 0.963 0.946 0.961

2012 0.885 0.851 0.885

Panel C.  Shipments

2002 0.989 0.977 0.991

2007 1.021 1.006 1.01

2012 0.899 0.879 0.907

Appendix Table 16.  Dispersion of Plant Characteristics, Final vs. 

Bayesian

 Final Data / Bayesian Edited Data

Notes: This table reports moments of the distribution of the inputs and shipments. The 

variables are logged and demeaned within each industry. We calculate the relevant value 

in the final data divided by its Bayesian-edited counterpart, and report the ratio. Within 

each dataset, the samples are balanced (it must be possible to calculate productivity), but 

the samples in the final and Bayesian-edited data are different. The Bayesian edited data 

is constructed following Kim et al. (2015), as described in the text.
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90/10 75/25

Standard 

Deviation

(1) (2) (3)

Panel A.  TFPQ

2002 3.919 5.809 4.07

2007 3.308 4.679 3.325

2012 3.237 4.407 3.556

Panel B.  TFPR

2002 1.773 1.54 2.059

2007 1.857 2.103 2.1

2012 2.384 2.26 2.433

Appendix Table 17. Productivity Dispersion, Bayesian vs. Captured

Captured Data / Bayesian Data

Notes: This table reports moments of the distribution of distribution of TFPQ and TFPR. 

TFPR and TFPQ are calculated using sectoral cost shares (and TFPQ uses the model to 

convert from revenues to quantities). The variables are logged and demeaned within 

each industry, as described in the text. We calculate the relevant value in the captured 

data divided by its Bayesian-edited counterpart, and report the ratio. Within each 

dataset, the samples are balanced (it must be possible to calculate productivity), but the 

samples in the captured and Bayesian-edited data are different. The Bayesian edited data 

is constructed following Kim et al. (2015), as described in the text.
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90/10 75/25

Standard 

Deviation

(1) (2) (3)

Panel A.  TFPQ

2002 1.056 0.985 1.078

2007 1.186 1.12 1.191

2012 0.782 0.771 0.809

Panel B.  TFPR

2002 0.829 0.761 0.914

2007 0.878 0.82 0.958

2012 0.762 0.733 0.827

Appendix Table 18. Productivity Dispersion, Bayesian vs. Final

Final Data / Bayesian Data

Notes: This table reports moments of the distribution of distribution of TFPQ and TFPR. 

TFPR and TFPQ are calculated using sectoral cost shares (and TFPQ uses the model to 

convert from revenues to quantities). The variables are logged and demeaned within 

each industry, as described in the text. We calculate the relevant value in the final data 

divided by its Bayesian-edited counterpart, and report the ratio. Within each dataset, the 

samples are balanced (it must be possible to calculate productivity), but the samples in 

the final and Bayesian-edited data are different. The Bayesian edited data is constructed 

following Kim et al. (2015), as described in the text.
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No Trimming 1 Percent Trimming 2 Percent Trimming

(1) (2) (3)

Panel A.  Gross Output

2002 0.0002 0.186 0.304

2007 0.0003 0.167 0.226

2012 0.00006 0.024 0.043

Panel B.  Value Added

2002 0.004 0.284 0.368

2007 0.001 0.18 0.316

2012 0.0004 0.044 0.047

Panel C.  Annual Survey of Manufacturers (Gross Output)

2002 0.242 0.283

2007 0.007 0.261 0.386

2012 0.017 0.267 0.41

Table 8.  Measured Allocative Efficiency,  Bayesian vs. Captured

Captured Data / Bayesian Data

Notes: The equations for calculating allocative efficiency are as described in the text. 

For the trimming, we drop the (upper and lower) extremes for TFPQ and TFPR. The 

values are balanced within each dataset (it must be possible to calculate productivity), 

but unbalanced across.  For each of the statistics in the table we calculate the relevant 

value in the captured data divided by its Bayesian-edited counterpart, and report the 

ratio. Panel A uses a gross output specification as in Bils et al. (2021) and Blackwood et 

al. (2021). Panel B uses a value added specification as in Hsieh and Klenow (2009). 

Panel C uses only the ASM plants (and the corresponding weights), the ASM value for 

the captured data with no trimming could not be disclosed in 2002.  The Bayesian edited 

data is constructed following Kim et al. (2015), as described in the text.
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Captured /Bayesian Data Final /Bayesian Data

(1) (2)

Panel A.  OP "within" share

2002 0.002 0.881

2007 0.011 0.921

2012 0.001 1.367

Panel B.  Payroll and Shipments, R
2

2002 0.82 0.986

2007 0.742 0.978

2012 0.661 0.993

Panel C.  TFPQ and TFPR, R
2

2002 1.668 1.063

2007 1.672 1.066

2012 1.669 0.941

Appendix Table 20: Alternative Measures of Factors 

Allocation, Bayesian vs Captured and Final

Notes: This table reports the distribution of alternative measures of 

(mis)allocation. We calculate the relevant value in the captured data divided by 

its Bayesian-edited counterpart, and report the ratio in column 1. Column 2 

shows the equivilent ratio for the final data divided by its Bayesian-edited 

counterpart. Panel A reports the ratio of the unweighted-weighted average 

TFPR over the by the shipments-weighted average, inspired by Olley and Pakes 

(1996). Panel B reports the within R2 of a regression of (log) payroll on (log) 

output, with 6-digit NAICS fixed effects. Panel C reports the within R2 of a 

regression of all three (log) inputs on (log) output, with 6-digit NAICS fixed 

effects. Panel D reports the within R
2
 of a regression of (log) TFPQ on (log) 

TFPR, with 6-digit NAICS fixed effects.   Within each dataset, the samples are 

balanced (it must be possible to calculate productivity), but the samples in the 

captured and final data are different. The Bayesian edited data is constructed 

following Kim et al. (2015), as described in the text.
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2002 2007 2012

(1) (2) (3)

Materials SD 0.001 0.001 .006

Materials 90/10 0.001 0.001 .006

Materials 75/25 0.001 0.001 .006

Materials Revenue Share SD 0.002 0.003 .011

Materials Revenue Share 90/10 0.003 0.004 .009

Materials Revenue Share 75/25 0.002 0.004 .009

Payroll SD 0.0006 0.0007 0.006

Payroll 90/10 0.0007 0.001 0.009

Payroll 75/25 0.0008 0.0009 0.008

Payroll Revenue Share SD 0.002 0.002 0.008

Payroll Revenue Share 90/10 0.002 0.002 0.007

Payroll Revenue Share 75/25 0.002 0.005 0.006

Shipments SD 0.0007 0.001 0.005

Shipments 90/10 0.0007 0.002 0.006

Shipments 75/25 0.001 0.001 0.006

TFPQ SD 0.008 0.02 0.017

TFPQ 90/10 0.009 0.022 0.014

TFPQ 75/25 0.01 0.015 0.014

TFPR SD 0.003 0.004 0.016

TFPR 90/10 0.003 0.006 0.009

TFPR 75/25 0.003 0.006 0.009

Weighted OP Productivity 0.034 0.048 0.19

Unweighted OP Productivity 0.001 0.002 0.001

Payroll and Shipments, R
2

0.0003 0.0004 0.0005

TFPQ and TFPR, R
2

0.004 0.004 0.003

Gross Output Allocative Efficiency 0.05 0.09 0.094

Appendix Table 21. Coefficient of Variation for Bayesian-Edited outcomes

Notes: Within each industry/year, we use a burn-in of 2000 iterations, and the draw 100 implicates with 500 

iterations between implicates. We then calculate the coefficient of variation for each of the statistics from Table 4, 5, 

6, and Appendix Table 7. The Bayesian edited data is constructed following Kim et al. (2015), as described in the 

text, and we use a balanced sample of plants for whom it is possible to calculate productivity in the Bayesian-edited 

data.
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2002 2007 2012

(1) (2) (3)

Panel A.  Captured Reported and Edited

Materials, Captured 1.209 1.274 1.045

Materials, Final 0.703 0.777 0.849

Materials, Bayesian 0.892 0.933 0.956

Shipments, Captured 1.21 1.434 1.363

Shipments, Final 0.81 1.027 0.861

Shipments, Bayesian 0.953 1.254 1.125

Panel B.  Captured Missing and Imputed

Materials, Final 0.791 0.77 0.721

Materials, Bayesian 1.02 0.994 0.922

Shipments, Final 0.939 0.851 0.801

Shipments, Bayesian 1.029 0.964 0.888

Appendix Table 22.  Dispersion for Final Data with Regression Flags

Standard Deviation

Notes: This table reports the standard deviation of materials and shipments in the 

captured, final, and Bayesian-edited data for the plants with a regression flag equal to 1 

relative to the values for the plants with a regression flag equal to 0 (for the 

corresponding characteristic). Panel A is balanced for the plants for whom productivity 

can be calculated in the captured dataset, and Panel B is balanced within each input (to 

the plants for whom productivity can be calculated in the Bayesian-edited data. Across 

the three years, the average (rounded) number of plants represented in Panel A is 56500 

plants a year, the sample for materials in Panel B averages 26000 plants a year, the 

sample for shipments in Panel B averages 5000 plants a year.
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2002 2007 2012 2002 2007 2012 2002 2007 2012

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Materials SD 0.97 0.966 0.884 0.954 0.959 0.867 0.959 0.964 0.868

Materials 90/10 0.959 0.959 0.898 0.954 0.961 0.882 0.959 0.965 0.884

Materials 75/25 0.911 0.929 0.91 0.944 0.942 0.915 0.95 0.953 0.92

Materials Revenue Share SD 0.842 0.87 0.837 0.866 0.859 0.838 0.877 0.878 0.847

Materials Revenue Share 90/10 0.819 0.855 0.815 0.824 0.837 0.81 0.846 0.873 0.841

Materials Revenue Share 75/25 0.956 0.963 0.893 0.956 0.968 0.888 0.962 0.973 0.889

Payroll SD 0.993 0.985 0.868 0.974 0.981 0.85 0.978 0.984 0.852

Payroll 90/10 0.985 0.979 0.838 0.982 0.987 0.833 0.986 0.988 0.833

Payroll 75/25 0.917 0.927 0.907 0.919 0.93 0.89 0.93 0.954 0.909

Payroll Revenue Share SD 0.905 0.915 0.893 0.9 0.918 0.875 0.92 0.95 0.905

Payroll Revenue Share 90/10 0.903 0.921 0.898 0.896 0.923 0.874 0.934 0.99 0.927

Payroll Revenue Share 75/25 0.98 0.988 0.866 0.989 1.004 0.873 0.992 1.005 0.874

Shipments SD 1.022 1.016 1.012 1.023 1.021 1.018 1.015 1.005 1.002

Shipments 90/10 0.987 0.977 0.864 0.96 0.966 0.841 0.966 0.974 0.846

Shipments 75/25 0.979 0.972 0.876 0.974 0.979 0.865 0.983 0.991 0.872

TFPQ SD 0.973 0.971 0.883 0.976 0.986 0.882 0.986 0.999 0.89

TFPQ 90/10 0.808 0.799 0.686 0.802 0.855 0.665 0.939 0.976 0.917

TFPQ 75/25 0.82 0.788 0.706 0.825 0.872 0.681 1.049 0.982 1.141

TFPR SD 0.82 0.81 0.763 0.847 0.875 0.738 1.17 1.065 1.913

TFPR 90/10 0.64 0.712 0.711 0.67 0.692 0.705 0.773 0.847 0.834

TFPR 75/25 0.874 0.896 0.836 0.908 0.904 0.843 0.921 0.92 0.857

Weighted OP Productivity 0.804 0.831 0.768 0.835 0.825 0.769 0.853 0.852 0.787

Unweighted OP Productivity 0.768 0.802 0.752 0.773 0.79 0.731 0.821 0.867 0.792

Payroll and Shipments, R
2

0.909 0.901 0.897 0.906 0.889 0.886 0.92 0.907 1.557

TFPQ and TFPR, R
2

0.839 0.788 0.614 0.832 0.813 0.522 1.034 1.107 0.739

Gross Output Allocative Efficiency 1.692 1.736 1.965 1.55 1.413 2.604 0.621 0.373 0.665

Appendix Table 23. Dispersion and Measured Misallocation Under Alternative Bayesian 

Models

Notes: In addition to the baseline Bayesian-edited data (which uses captured employment, materials, payroll, and 

shipments), we created three alternative datasets, which also use administrative information on payroll and shipments. For 

the "single-unit administrative records" version of the data, we add in administrative records only for the single unit 

plants. The ``big administrative records'' version of the data uses administrative records for the entire manufacturing 

sector, as described in the text. The "hybrid" data supplements the ``big administrative records'' version of the data with 

the analyst edited values when possible. The values reported in the table are the values in the relevant dataset/year divided 

by the corresponding value in the baseline Bayesian-edited dataset, the samples are balanced within datasets but 

unbalanced across.

Single-unit administrative 

records

Big administrative 

records Hybrid
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2002 2007 2012 2002 2007 2012 2002 2007 2012

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Main Data Versions

Shipments, mean 4.03 5.35 50.52 1.04 1 0.99 1 0.98 2.59

Shipments, sd 14.79 15.56 216 0.65 0.5 0.5 1.3 0.98 6.66

Shipments, skew 0.58 0.55 0.5 0.44 0.32 0.23 1.85 1.26 0.38

Labor Productivity, mean 4.75 6.88 81.88 0.86 0.88 0.92 0.88 0.84 0.91

Labor Productivity, sd 20.29 49.51 644 0.29 0.27 0.9 0.32 0.22 0.32

Labor Productivity, skew 0.46 2.28 0.59 0.15 0.34 1.8 0.16 0.14 0.13

R
2
, Shipments on Employment 0.64 0.53 0.29 1.2 1.2 1.13 1.18 1.19 1.17

R
2
, Admin Shipments 0.66 0.56 0.33 0.81 0.81 0.87 0.8 0.81 0.69

R
2
, Admin Labor Productivity 0.29 0.25 0.11 0.29 0.28 0.41 0.36 0.39 0.43

Shipments, mean 0.97 0.95 1 0.97 0.94 1 0.97 0.94 0.97

Shipments, sd 0.63 0.49 0.99 0.63 0.5 1 0.62 0.47 0.49

Shipments, skew 0.45 0.47 1.01 0.43 0.5 1 0.43 0.33 0.23

Labor Productivity, mean 0.85 0.84 0.89 0.85 0.83 0.89 0.85 0.84 0.92

Labor Productivity, sd 0.31 0.22 0.31 0.32 0.22 0.3 0.33 0.23 0.9

Labor Productivity, skew 0.29 0.17 0.14 0.34 0.2 0.14 0.33 0.24 1.81

R
2
, Shipments on Employment 1.27 1.24 1.17 1.27 1.25 1.17 1.26 1.22 1.15

R
2
, Admin Shipments 0.86 0.88 0.89 0.86 0.88 0.89 0.86 0.88 0.89

R
2
, Admin Labor Productivity 0.49 0.57 0.58 0.48 0.55 0.59 0.48 0.53 0.57

Appendix Table 24. Comparing Shipments and Labor Productivity in the Various Datasets to 

the Administrative Records

Captured Final Baseline Bayesian

Notes: This table compares our data to the administrative data from the Business Register for just single-unit plants. Every 

value compares the respective value in the relevant dataset divided by the corresponding value in the Business Register 

(other than the last two rows of each panel). In addition to the baseline Bayesian-edited data (which uses captured 

employment, materials, payroll, and shipments), we created three alternative datasets, which also use administrative 

information on payroll and shipments. For the "single-unit administrative records" version of the data, we add in 

administrative records only for the single unit plants. The ``big administrative records'' version of the data uses 

administrative records for the entire manufacturing sector, as described in the text. The "hybrid" data supplements the 

``big administrative records'' version of the data with the analyst edited values when possible. The sample is balanced 

across all cells. The first six rows look at the mean, standard deviation, and skew for (ln) shipments and (ln) labor 

productivity (not normalized by sector). We then look within each dataset at the within R
2
 of a regression of shipments on 

employment, with 6-digit-NAICS fixed effects, again relative to the value in the Business Register). The second-to-last 

rows in each panel shows the within R
2
 of a regression of shipments in the administrative data on shipments in the 

relevant dataset, with 6-digit-NAICS fixed effects. The final row does the same for labor productivity.

Single-unit administrative 

records

Big administrative 

records Hybrid

Panel B: Alternative Bayesian Datasets
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No Trimming 1 Percent Trimming 2 Percent Trimming

(1) (2) (3)

Panel A.  Captured Data

2002 105,000 102,000 98,000

2007 108,000 105,000 101,000

2012 79,500 77,000 74,500

Panel B.  Final Data

2002 196,000 190,000 183,000

2007 194,000 187,000 180,000

2012 175,000 169,000 163,000

Panel C. Bayesian-edited Data

2002 151,000 146,000 141,000

2007 154,000 148,000 143,000

2012 131,000 127,000 123,000

Appendix Table 25. Sample Sizes

This table presents sample sizes for the results on allocative efficiency, by dataset and 

trimming. Values are rounded following U.S. Census disclosure rules. 
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No Trimming 1 Percent Trimming 2 Percent Trimming

(1) (2) (3)

Panel A.  Gross Output

2002 0.00005 0.00002 0.00004

2010 0.00002 0.00001 0.00001

Panel B.  Value Added

2002 0.00005 0.00005 0.007

2010 0.00006 0.00008 0.011

Appendix Table 26.  Measured Allocative Efficiency,  Bayesian vs. 

Captured in the Indian Annual Survey of Industries

Captured Data / Bayesian Data

Notes: The values for calculating allocative efficiency are as described in the text. For 

the trimming, we drop the extremes for TFPQ and TFPR. The values are balanced within 

each dataset (it must be possible to calculate productivity), but unbalanced across. The 

reported values show the ratio of the value in the captured data over the value in the 

Bayesian-edited data. The underlying samples are plants in the Indian Annual Survey of 

Industries with no missing values.
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