
1

Multirate Systems

Ivan Selesnick

February 6, 2018

1 Introduction

1.1 Applications

1. Used in A/D and D/A converters.

2. Used to change the rate of a signal. When two devices that operate at different rates

are to be interconnected, it is necessary to use a rate changer between them.

3. Interpolation.

4. Some efficient implementations of single rate filters are based on multirate methods.

5. Filter banks and wavelet transforms depend on multirate methods.

2 The Up-sampler

The up-sampler, represented by the diagram,

x(n) -��
��
↑2 - y(n)

is defined by the relation

y(n) =

{
x(n/2), for n even

0, for n odd.
(1)

The usual notation is

y(n) = [↑2]x(n). (2)

The up-sampler simply inserts zeros between samples. For example, if x(n) is the sequence

x(n) = {. . . , 3, 5, 2, 9, 6, . . . }

where the underlined number represents x(0), then y(n) is given by

y(n) = [↑2]x(n) = {. . . , 0, 3, 0, 5, 0, 2, 0, 9, 0, 6, 0, . . . }.



2

Given X(z), what is Y (z)? Using the example sequence above we directly write

X(z) = · · ·+ 3z + 5 + 2z−1 + 9z−2 + 6z−3 + · · · (3)

and

Y (z) = · · ·+ 3z2 + 5 + 2z−2 + 9z−4 + 6z−6 + · · · (4)

It is clear that

y(n) = [↑2]x(n) ⇐⇒ Y (z) = X(z2). (5)

We can also derive this using the definition:

Y (z) =
∑
n

y(n) z−n (6)

=
∑
n even

x(n/2) z−n (7)

=
∑
n

x(n) z−2n (8)

= X(z2). (9)

How does up-sampling affect the Fourier transform of a signal?

The discrete-time Fourier transform of y(n) is given by

Y (ejω) = X(z2)
∣∣
z=ejω

(10)

= X((ejω)2) (11)

so we have

Y (ejω) = X(ej2ω). (12)

Or using the notation Y f (ω) = Y (ejω), Xf (ω) = X(ejω), we have

y(n) = [↑2]x(n) ⇐⇒ Y f (ω) = Xf (2ω). (13)

When sketching the Fourier transform of an up-sampled signal, it is easy to make a

mistake. When the Fourier transform is as shown in the following figure, it is easy to

incorrectly think that the Fourier transform of y(n) is given by the second figure. This is

not correct, because the Fourier transform is 2π-periodic. Even though it is usually graphed

in the range −π 6 ω 6 π or 0 6 ω 6 π, outside this range it is periodic. Because Xf (ω) is

a 2π-periodic function of ω, Y f (ω) is a π-periodic function of ω.

The correct graph of Y f (ω) is the third subplot in the figure.
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Note that the spectrum of Xf (ω) is repeated — there is an ‘extra’ copy of the spectrum.

This part of the spectrum is called the spectral image.

General case: An L-fold up-sampler, represented by the diagram,

x(n) -��
��
↑L - y(n)

is defined as

y(n) = [↑L]x(n) =

{
x(n/L), when n is a multiple of L

0, otherwise.
(14)

The L-fold up-sampler simply inserts L − 1 zeros between samples. For example, if the

sequence x(n)

x(n) = {. . . , 3, 5, 2, 9, 6, . . . }

is up-sampled by a factor L = 4, the result is the following sequence

y(n) = [↑4]x(n)

= {. . . , 0, 3, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 9, 0, 0, 0, 6, 0, . . . }.

Similarly, we have

y(n) = [↑L]x(n) ⇐⇒ Y (z) = X(zL), (15)
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Y (ejω) = X(ejLω), (16)

y(n) = [↑L]x(n) ⇐⇒ Y f (ω) = Xf (Lω). (17)

The L-fold up-sampler will create L − 1 spectral images. For example, when a signal is

up-sampled by 4, there are 3 spectral images as shown in the following figure.

−1 −0.5 0 0.5 1
0

0.5

1

X
f (ω

)

ω/π

−1 −0.5 0 0.5 1
0

0.5

1

Y
f (ω

) 
=

 X
f (L

ω
)

ω/π

Remarks

1. No information is lost when a signal is up-sampled.

2. The up-sampler is a linear but not a time-invariant system.

3. The up-sampler introduces spectral images.

3 The Down-sampler

The down-sampler, represented by the following diagram,

x(n) -��
��
↓2 - y(n)

is defined as

y(n) = x(2n). (18)

The usual notation is

y(n) = [↓2]x(n). (19)

The down-sampler simply keeps every second sample, and discards the others. For example,

if x(n) is the sequence

x(n) = {. . . , 7, 3, 5, 2, 9, 6, 4, . . . }
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where the underlined number represents x(0), then y(n) is given by

y(n) = [↓2]x(n) = {. . . , 7, 5, 9, 4, . . . }.

Given X(z), what is Y (z)? This is not as simple as it is for the up-sampler. Using the

example sequence above we directly write

X(z) = · · ·+ 7z2 + 3z + 5 + 2z−1 + 9z−2 + 6z−3 + 4z−4 + · · · (20)

and

Y (z) = · · ·+ 7z + 5 + 9z−1 + 4z−2 + · · · (21)

How can we express Y (z) in terms of X(z)? Consider the sum of X(z) and X(−z). Note

that X(−z) is given by

X(−z) = · · ·+ 7z2 − 3z + 5− 2z−1 + 9z−2 − 6z−3 + 4z−4 + · · · . (22)

The odd terms are negated. Then

X(z) +X(−z) = 2 ·
(
· · ·+ 7z2 + 5 + 9z−2 + 4z−4 + · · ·

)
(23)

or

X(z) +X(−z) = 2Y (z2) (24)

or

Y (z) =
1

2

[
X(z

1
2 ) +X(−z 1

2 )
]

(25)

How does down-sampling affect the Fourier transform of a signal?

The discrete-time Fourier transform of y(n) is given by

Y (ejω) =
1

2

[
X(z

1
2 ) +X(−z 1

2 )
]∣∣∣∣
z=ejω

(26)

=
1

2

(
X(ej

ω
2 ) +X(−ej

ω
2 )
)

(27)

=
1

2

(
X(ej

ω
2 ) +X(e−jπ ej

ω
2 )
)

(28)

=
1

2

(
X(ej

ω
2 ) +X(ej(

ω
2 −π))

)
(29)

=
1

2

(
Xf (

ω

2
) +Xf (

ω − 2π

2
)

)
(30)

y(n) = [↓2]x(n) ⇐⇒ Y f (ω) =
1

2

[
Xf
(ω

2

)
+Xf

(ω − 2π

2

)]
(31)

where we have used the notation Y f (ω) = Y (ejω), Xf (ω) = X(ejω).

Note that because Xf (ω) is periodic with a period of 2π, the functions Xf (ω2 ) and

Xf (ω−2π
2 ) are each periodic with a period of 4π. But as Y f (ω) is the Fourier transform of

a signal, it must be 2π-periodic. What does Y f (ω) look like? It is best illustrated with an

example.
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Notice that while the two terms Xf (ω2 ) and Xf (ω−2π
2 ) are 4π-periodic, because one is

shifted by 2π, their sum is 2π-periodic, as a Fourier transform must be.

Notice that when a signal x(n) is down-sampled, the spectrum Xf (ω) may overlap

with adjacent copies, depending on the specific shape of Xf (ω). This overlapping is called

aliasing. When aliasing occurs, the signal x(n) can not in general be recovered after it is

down-sampled. In this case, information is lost by the down-sampling. If the spectrum

Xf (ω) were zero for π/2 6 |ω| 6 π, then no overlapping would occur, and it would be

possible to recover x(n) after it is down-sampled.

General case: An M -fold down-sampler, represented by the diagram,

x(n) -��
��
↓M - y(n)

is defined as

y(n) = x(Mn). (32)
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The M -fold down-sampler keeps only every M th sample. For example, if the sequence x(n)

x(n) = {. . . , 8, 7, 3, 5, 2, 9, 6, 4, 2, 1, . . . }

is down-sampled by a factor M = 3, the result is the following sequence

y(n) = [↓3]x(n) = {. . . , 8, 5, 6, 1, . . . }.

Similarly, we have

y(n) = [↓M ]x(n) ⇐⇒ Y (z) =
1

M

M−1∑
k=0

X(W kz
1
M ) (33)

where

W = ej
2π
M , (34)

and

y(n) = [↓M ]x(n) ⇐⇒ Y f (ω) =
1

M

M−1∑
k=0

Xf
(ω − 2π k

M

)
. (35)

Remarks

1. In general, information is lost when a signal is down-sampled.

2. The down-sampler is a linear but not a time-invariant system.

3. In general, the down-sampler causes aliasing.

4 Rate-changing

The up-sampler and down-sampler are usually used in combination with filters, not by

themselves. For example, to change the rate of a signal, it is necessary to employ low-pass

filters in addition to the up-sampler and down-sampler.

The following system is used for interpolation.

x(n) -��
��
↑L - H(z) - y(n)

The combined up-sampling and filtering can be written as

y(n) = ([↑L]x ∗ h)(n) =
∑
k

x(k)h(n− Lk). (36)

The filter fills in the zeros that are introduced by the up-sampler. Equivalently, it is designed

to remove the spectral images. It should be a low-pass filter with a cut-off frequency ωo =

π/L. In this context, the low-pass filter is often called an interpolation filter.

The following system is used for decimation.
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x(n) - H(z) -��
��
↓M - y(n)

The combined filtering and down-sampling can be written as

y(n) = [↓M ] (x ∗ h)(n) =
∑
k

x(k)h(Mn− k). (37)

The filter is designed to avoid aliasing. It should be a low-pass filter with a cut-off

frequency ωo = π/M . In this context, the low-pass filter is often called an anti-aliasing

filter.

A rate changer for a fractional change (like 2/3) can be obtained by cascading an in-

terpolation system with a decimation system. Then, instead of implementing two separate

filters in cascade, one can implement a single filter. Structure for rational rate changer:

x(n) -��
��
↑L - H(z) -��

��
↓M - y(n)

The filter is designed to both eliminate spectral images and to avoid aliasing. The cascade

of two ideal low-pass filters is again a low-pass filter with a cut-off frequency that is the

minimum of the two cut-off frequencies. So, in this case, the cut-off frequency should be

ωo = min
{π
L
,
π

M

}
. (38)

4.1 Interpolation Example 1

In this example (Fig. 1), we interpolate a signal x(n) by a factor of 4, using the interpolation

system described above. We use a linear-phase Type I FIR lowpass filter of length 21 to

follow the 4-fold up-sampler. Note that because the filter is causal, a delay in introduced

by the interpolation system. y(n) could be aligned with x(n) by shifting it.

4.2 Interpolation Example 2

In this example (Fig. 2) we use a filter of length 7,

h(n) =
1

4
· (1, 2, 3, 4, 3, 2, 1). (39)

Note that this filter has the effect of implementing linear interpolation between the existing

samples x(n). The result is rather poor — the signal y(n) is not very smooth. Similarly,

quadratic interpolation can be implemented by using an appropriate filter h(n).
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Figure 1: Interpolation example 1
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Figure 2: Interpolation example 2
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5 Half-band Filters

When interpolating a signal x(n), the interpolation filter h(n) will in general change the

samples of x(n) in addition to filling in the zeros. It is natural to ask if the interpolation

filter can be designed so as to preserve the original samples x(n).

To be precise, if

y(n) = (h ∗ [↑2]x)(n)

then can we design h(n) so that y(2n) = x(n), or more generally, so that y(2n+ no) = x(n) ?

It turns out that this is possible. When interpolating by a factor of 2, if h(n) is a half-

band, then it will not change the samples x(n). A no-centered half-band filter h(n) is a filter

that satisfies

h(n) =

{
1, for n = no

0, for n = no ± 2, 4, 6, . . .
(40)

That means, every second value of h(n) is zero, except for one such value, as shown in the

figure.
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A HALF−BAND FILTER

In the figure, the center point is no = 10. The definition of a half-band filter can be written

more compactly using the Kronecker delta function δ(n).

A half-band filter is one where the impulse response h satisfies

h(2n+ no) = δ(n). (41)

When no = 0, we get simply

h(2n) = δ(n). (42)

Note that the transfer function of a half-band filter (centered at no = 0) can be written

as

H(z) = 1 + z−1H1(z2). (43)

Here H1(z) contains the odd samples of h(n).
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6 Nyquist Filters

When interpolating a signal x(n) by a factor L, the original samples of x(n) are preserved if

the interpolation filter h(n) is a Nyquist-L filter. A Nyquist-L filter simply generalizes the

notion of the half-band filter to L > 2. A (0-centered) Nyquist-L filter h(n) is one for which

h(Ln) = δ(n). (44)

A Nyquist-4 filter is shown in the following figure.
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7 The Noble Identity for the Up-sampler

The two following equivalences are sometimes called the noble identities.

Can you reverse the order of an up-sampler and a filter?

Yes and no — it depends. There are two cases.

1. If the up-sampler comes after the filter, then you can reverse the order of the filter

and the up-sampler, but the filter needs to be modified as shown in the figure.

2. If the up-sampler comes before the filter, then you can not reverse their order unless

the filter is of the special form H(zL).

This can be summarized by the following figure.

x(n) - H(z) -��
��
↑L - y(n)

m

x(n) -��
��
↑L - H(zL) - y(n)

Equivalently:

[↑L] (h ∗ x) (n) = ([↑L]h ∗ [↑L]x)(n) (45)



13

7.1 Proof

This identity is most easily derived using the Z-transform and equation (15). In the following

figure the intermediate signal v(n) is shown.

x(n) - H(z) -
v(n)

��
��
↑L - y(n)

Then, using the Z-transform, we have

V (z) = H(z)X(z) and Y (z) = V (zL)

and therefore,

Y (z) = H(zL)X(zL).

Now consider the system that we claim to be equivalent. In the following figure the inter-

mediate signal w(n) is shown.

x(n) -��
��
↑L -

w(n)
H(zL) - y(n)

Then, using the Z-transform, we have

W (z) = X(zL) and Y (z) = H(zL)W (z)

and therefore,

Y (z) = H(zL)X(zL).

This shows that the systems are equivalent.

8 The Noble Identity for the Down-sampler

Can you reverse the order of an down-sampler and a filter?

Yes and no — it depends. There are two cases.

1. If the down-sampler comes before the filter, then you can reverse the order of the filter

and the down-sampler, but the filter needs to be modified as shown in the figure.

2. If the down-sampler comes after the filter, then you can not reverse their order unless

the filter is of the special form H(zM ).

This can be summarized by the following figure.

x(n) -��
��
↓M - H(z) - y(n)

m
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x(n) - H(zM ) -��
��
↓M - y(n)

Equivalently:

(h ∗ [↓M ]x)(n) = [↓M ] ([↑M ]h ∗ x) (n) (46)

8.1 Proof

For convenience, we prove it just for M = 2. This identity is most easily derived using

the Z-transform and equation (25). In the following figure the intermediate signal v(n) is

shown.

x(n) -��
��
↓2 -

v(n)
H(z) - y(n)

Then, using the Z-transform, we have

V (z) =
1

2
X(z

1
2 ) +

1

2
X(−z 1

2 ) and Y (z) = H(z)V (z)

and therefore,

Y (z) =
1

2
H(z)X(z

1
2 ) +

1

2
H(z)X(−z 1

2 )

Now consider the system that we claim to be equivalent. In the following figure the inter-

mediate signal w(n) is shown.

x(n) - H(z2) -
w(n)

��
��
↓2 - y(n)

Then, using the Z-transform, we have

W (z) = H(z2)X(z) and Y (z) =
1

2
W (z

1
2 ) +

1

2
W (−z 1

2 )

and therefore,

Y (z) =
1

2
H(z)X(z

1
2 ) +

1

2
H(z)X(−z 1

2 ).

This shows that the systems are equivalent.
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9 Polyphase Decomposition

The polyphase decomposition of a signal is simply the even and odd samples,

x0(n) = x(2n) (47)

x1(n) = x(2n+ 1). (48)

Then the Z-transform X(z) is given by

X(z) = X0(z2) + z−1X1(z2) (49)

where X0(z) and X1(z) are the Z-transforms of x0(n) and x1(n).

For example, if x(n) is:

x(n) = {3, 1, 5, 6, 2, 4, −3, 7}

then the polyphase components are

x0(n) = {3, 5, 2, −3} (50)

x1(n) = {1, 6, 4, 7}. (51)

The Z-transforms for this example are given by

X(z) = 3 + z−1 + 5z−2 + 6z−3 + 2z−4 + 4z−5 − 3z−6 + 7z−7

X0(z) = 3 + 5z−1 + 2z−2 − 3z−3

X1(z) = 1 + 6z−1 + 4z−2 + 7z−3.

In general, X0(z) and X1(z) can be obtained from X(z) as,

X0(z2) =
1

2
(X(z) +X(−z)) (52)

X1(z2) =
z

2
(X(z)−X(−z)) . (53)

The polyphase components x0(n), x1(n) can be obtained with the following structure.

x(n) -��
��
↓2 -

x1(n)

?

z

-��
��
↓2 -

x0(n)

General case: An M -component polyphase decomposition of x(n) is given by

x0(n) = x(Mn) (54)

x1(n) = x(Mn+ 1) (55)

... (56)

xM−1(n) = x(Mn+M − 1). (57)
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The Z-transform X(z) is then given by

X(z) = X0(zM ) + z−1X1(zM ) + · · ·+ z−(M−1)XM−1(zM ) (58)

where Xi(z) is the Z-transform of xi(n). The polyphase component Xi(z) can be found

from X(z) with

Xi(z
M ) =

zi

M

M−1∑
k=0

W ikX(W kz) (59)

where

W = ej
2π
M . (60)

10 Efficient Implementation

The noble identities and the polyphase decomposition can be used together to obtain efficient

structures. Consider again the system for interpolation: an up-sampler is followed by a

filter. In this system, the up-sampler inserts zeros between the samples x(n). There are two

disadvantages.

1. Half the samples of the input to the filter are zero. That means the filter is doing

unnecessary computations (multiplications by zero, adding zeros).

2. The filter operates at the higher rate.

A more efficient implementation can be obtained by writing the filter in polyphase form,

and then using the noble identities. This is done through the following transformation of

the block diagram.

x(n) -��
��
↑2 - H(z) - y(n)

x(n) -��
��
↑2 - H0(z2) + z−1H1(z2) - y(n)

x(n) -��
��
↑2 - H0(z2) - l+ -

- z−1H1(z2)

6

y(n)
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x(n) -��
��
↑2 - H0(z2) - l+ -

-��
��
↑2 - z−1H1(z2)

6

y(n)

x(n) -��
��
↑2 - H0(z2) - l+ -

-��
��
↑2 - H1(z2)

6

z−1

y(n)

x(n) - H0(z) -��
��
↑2 - l+ -

- H1(z) -��
��
↑2

6

z−1

6

y(n)

Note that in the last block diagram, the filters operate at the slower rate, and the filter

inputs are not zero. Also note that the filters h0(n), h1(n) are each half the length of the

original filter h(n). The adding node in the last diagram does not incur any actual additions

— it implements an interleaving of the two branches.

10.1 Half-band case

If h(n) is a half-band filter, then the polyphase component H0(z) is 1 (assuming the half-

band filter is centered at no = 0). In this case, the block diagram becomes more simple as

shown.

x(n) -��
��
↑2 - l+ -

- H1(z) -��
��
↑2

6

z−1

6

y(n)
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11 Polynomial Signals

A (discrete-time) polynomial signal x(n) is a signal of the form

x(n) = c0 + c1n+ c2n
2 + · · ·+ cd n

d.

The degree is d. The set of polynomial signals of degree d or less is denoted by Pd.
Consider a system described by the rule

y(n) = x(n)− x(n− 1).

This system gives the first difference of the signal x(n). It has the impulse response

h(n) = δ(n)− δ(n− 1),

and the transfer function

H(z) = 1− z−1

and so we can write

y(n) = (h ∗ x)(n)

or

Y (z) =
(
1− z−1

)
X(z).

Clearly if x(n) is a constant signal (x(n) = c, so we can write x(n) ∈ P0), then the first

difference of x(n) is identically zero,

Y (z) =
(
1− z−1

)
X(z) = 0 for x(n) ∈ P0.

Moreover, the first difference Y (z) is identically zero only if x(n) is a constant signal.

Similarly, if x(n) is a ramp signal (x(n) = c0 + c1n, so we can write x(n) ∈ P1), then

the first difference is a constant signal. Therefore the second difference, (defined as the first

difference of the first difference), must be identically zero. Writing this using the Z-transform

gives (
1− z−1

)2
X(z) = 0 for x(n) ∈ P1.

Moreover, the second difference of x(n) is identically zero only if x(n) is of the form c0+c1n.

Therefore, the set of first degree polynomial signals P1 is exactly the set of signals that is

annihilated by (1− z−1)2.

Similarly, if x(n) is a polynomial signal of degree d, then

Y (z) =
(
1− z−1

)d+1
X(z) = 0 for x(n) ∈ Pd.

or equivalently,

y(n) = h(n) ∗ h(n) ∗ · · · ∗ h(n)︸ ︷︷ ︸
d+ 1 terms

∗ x(n) = 0 for x(n) ∈ Pd.

Moreover, y(n) = 0 only if x(n) has the form x(n) = c0 + c1n+ c2n
2 + · · ·+ cd n

d.

Therefore we have the following result.

x(n) ∈ Pd ⇐⇒
(
1− z−1

)d+1
X(z) = 0 (61)
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11.1 Interpolation of polynomial signals

We saw before that the interpolation of discrete-time signals can be carried out by using an

upsampler together with a filter. For interpolation by a factor of two (2X interpolation) we

have the following diagram.

x(n) -��
��
↑2 - H(z) - y(n)

Suppose x(n) is a polynomial signal of degree d. Then it is natural to ask that y(n) also be

a polynomial signal of degree d. But for just any filter h(n) that will not be the case. What

condition must h(n) satisfy, to ensure that y(n) is also a polynomial signal of degree d?

It turns out that if (1 + z−1)d+1 is a factor of H(z),

H(z) = Q(z) (1 + z−1)d+1

then y(n) ∈ Pd whenever x(n) ∈ Pd. This can be verified using the boxed result on the

previous page together with the noble identity, as we will now show.

We may determine if y(n) ∈ Pd by filtering y(n) with the transfer function (1− z−1)d+1

and checking that the result is zero. If the signal v(n) in the following figure is zero, then

we know that y(n) ∈ Pd as explained earlier.

x(n) -��
��
↑2 - Q(z) (1 + z−1)d+1 -

y(n)
(1− z−1)d+1 - v(n)

We can rearrange the order of the filters to get the following diagram which is an equivalent

structure (end-to-end).

x(n) -��
��
↑2 - (1− z−1)d+1(1 + z−1)d+1 - Q(z) - v(n)

Recognizing that (1− z−1)(1 + z−1) = 1− z−2 we get the following diagram.

x(n) -��
��
↑2 - (1− z−2)d+1 - Q(z) - v(n)

Observing that the transfer function (1 − z−2)d+1 is a function of z2, and using the noble

identity for upsampling, we get the final diagram.

x(n) - (1− z−1)d+1 -
w(n) ��

��
↑2 - Q(z) - v(n)

As explained above, if x(n) ∈ Pd, then w(n) = 0 and therefore v(n) = 0. Because v(n) = 0,

we know that y(n) ∈ Pd.
In other words, if H(z) = Q(z) (1+z−1)d+1 then when it is used for the 2X interpolation,

it preserves Pd, the set of polynomial signals of degree d.
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H(z) = Q(z) (1 + z−1)d+1 ⇐⇒ (h ∗ [↑2]x)(n) preserves Pd (62)

It should be said that in the interpolation structure above, even if H(z) is chosen so that

y(n) is ensured to be a polynomial signal of degree d like x(n) is, it does not mean that

y(2n) = x(n). That is only true when the filter H(z) is in addition a half-band filter, as

discussed above.

11.2 Polynomial interpolation by L

How should the condition above be modified if we are interpolating by a factor L rather than

just by a factor of 2? If we guess thatH(z) should be of the formH(z) = Q(z)R(z) and follow

the same procedure used above, we will see that we will want the product R(z) (1− z−1)d+1

to be equal to (1 − z−L)d+1. For in that case, we could again exchange the order of the

(L-fold) upsampler and this term. This gives

R(z) (1− z−1)d+1 = (1− z−L)d+1

or

R(z) =
(1− z−L)d+1

(1− z−1)d+1
=
[
1 + z−1 + z−2 + · · ·+ z−(L−1)

]d+1

where we have used

(1− z)(1 + z + z2 + · · ·+ zL−1) = 1− zL.

H(z) = Q(z)
[
1 + z−1 + z−2 + · · ·+ z−(L−1)

]d+1

⇐⇒ (h ∗ [↑L]x)(n) preserves Pd

(63)

(64)

It should be said that in the LX interpolation structure, even if H(z) is chosen so that

y(n) is ensured to be a polynomial signal of degree d like x(n) is, it does not mean that

y(Ln) = x(n). That is only true when the filter H(z) is in addition a Nyquist-L filter.

12 Exercises

1. The signal x(n)

x(n) = {. . . , 0, 0, 1, 2, 3, 2, 1, 0, 0, . . . } ,

where 1 represents x(0), is applied as the input to the following system.

x(n) −→ ↑2 −→ H(z) −→ ↓3 −→ y(n)

If the impulse response h(n) is given by

h(n) = {1, 2}

then what is the output signal y(n)?
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2. The signal x(n)

x(n) = {. . . , 0, 0, 1, 2, −1, 0, 1, 0, 0, . . . }

where 1 represents x(0) is applied as the input to the following system.

x(n) −→ ↑2 −→ H(z2) −→ y(n)

If the impulse response h(n) is given by

h(n) = {1, 1}

then what is the output signal y(n)?

3. A signal x(n) is down-sampled by M , and the result is up-sampled by M to yield a

signal y(n). Express Y (z) in terms of X(z). Write the expression also in the special

case when M = 2.

4. If the IIR filter h(n) has the transfer function

H(z) =
1

1− c z−1

find the polyphase components H0(z) and H1(z) so that

H(z) = H0(z2) + z−1H1(z2).

How many poles does each polyphase component have?

5. If h(n) is the impulse response of a linear-phase FIR filter, are the two polyphase

components of h(n) linear-phase as well? Consider separately the case when the

length N is even and odd.

6. (From Mitra 10.20) The running-sum filter, also called the boxcar filter,

H(z) =

N−1∑
n=0

z−n

can be expressed in the form

H(z) = (1 + z−1) (1 + z−2) (1 + z−4) · · · (1 + z−2K−1

)

where N = 2K . Verify this for N = 16. What is the impulse response h(n)? Using a

length 16 boxcar filter, develop a realization of a factor-16 decimator using a cascade of

simple filters with downsampling by two between each filter. (Use the noble identities.)

7. In the following discrete-time multirate system the filter h is a lowpass filter, and the

filter g is a highpass filter. The system produces four subband signals, we can call

them s1(n), . . . , s4(n).
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The path from the input signal to each of the four output signals can be rewritten

using the Noble identities as

x(n) −→ Fk(z) −→ ↓ 4 −→ sk(n)

for 1 6 k 6 4.

(a) What are the four transfer functions Fk(z)?

(b) Given the frequency response of h and g shown below, sketch the frequency

responses of the four transfer functions Fk(z).

(c) Classify each of the four transfer functions Fk(z) as lowpass, bandpass, bandstop,

or highpass.

−π −0.6 π −0.4 π 0 0.4 π 0.6 π π
0

0.2

0.4

0.6

0.8

1

H − FREQUENCY RESPONSE

ω

−π −0.6 π −0.4 π 0 0.4 π 0.6 π π
0

0.2

0.4

0.6

0.8

1

G − FREQUENCY RESPONSE

ω

8. Can you change the order of an up-sampler and a down-sampler with out change the

total system? In other words, are the following two systems equivalent?

System A:

−→ ↓M −→ ↑ L −→

System B:

−→ ↑ L −→ ↓M −→
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Consider the following cases:

(a) M = 2, L = 2.

(b) M = 2, L = 3.

(c) M = 2, L = 4.

Try an example in each case with a simple test input signal.

9. Simplify each of the following systems.

(a)

−→ ↓ 2 −→ ↓ 3 −→

(b)

−→ ↑ 2 −→ ↑ 2 −→

(c)

−→ ↑ 5 −→ ↓ 10 −→ ↑ 2 −→

10. Rewrite the following multirate system

x(n) −→ ↓2 −→ H(z) −→ ↓5 −→ G(z) −→ ↑3 −→ y(n)

in the following form:

x(n) −→ ↑M −→ LTI −→ ↓N −→ y(n)

What is M , N , and what is the transfer function of the LTI system?

11. Rate changing. A discrete-time signal x(n) having a rate of 12 samples per second

must be converted into a new discrete-time signal y(n) having a rate of 9 samples per

second.

Sketch a multirate system that performs the necessary sampling rate conversion.

Sketch the frequency responses of the required filter(s).

12. Suppose the DTFT of x(n) is Xf (ω):

Xf (ω) = 1− |ω|
π
, for |ω| 6 π

Suppose we generate the sequences y(n) and s(n) from x(n) with the following system

x(n) −→ H(z) −→ ↓2 −→ H(z) −→ ↓2
s(n)−→ ↑4 −→ y(n)

where

Hf (ω) =

{
1, |ω| < π/2

0, π/2 6 |ω| < π

Sketch Xf (ω), Hf (ω), Sf (ω) and Y f (ω).
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13. Order of systems.

The sampling rate of a discrete-time signal x(n) is to be reduced to 3/4 its rate. One

way to do this is to concatenate two systems: one that increases the rate by 3, another

that reduces the rate by 4. To increase the rate by 3, we generally use the system

−→ ↑3 −→ H(z) −→

where H is ideally a low-pass filter with cut-off frequency π/3. To reduce the rate by

4, we generally use the system

−→ G(z) −→ ↓4 −→

where G is ideally a low-pass filter with cut-off frequency π/4. These two system could

be concatenated in either order:

A:

−→ ↑3 −→ H(z) −→ G(z) −→ ↓4 −→

B:

−→ G(z) −→ ↓4 −→ ↑3 −→ H(z) −→

Suppose the Fourier transform of the input signal x(n) is

ω
−π 0 π

Xf (ω)
1

(a) Suppose configuration A is used. Find and sketch the spectrum of the final output

signal. In your work, you should also show the spectrum of the intermediate

signals. Assume the filters H and G are ideal.

(b) Repeat, supposing configuration B is used.

(c) Which system (A or B) is better for changing the rate of signal? Explain.

14. Half-band filters. The following process doubles the rate of a signal x.

x(n) −→ ↑2 −→ h(n) −→ y(n)

Suppose h is a half-band filter. Then show that the output y contains as a subset the

input signal values x. Specifically, show that if h is half-band, then

[↓2] y(n) = x(n). (65)

Hint: use multirate identities.
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15. Let h(n) be a low-pass half-band filter with real coefficients. Then show that

Hf (ω) +Hf (π − ω) = 2.

(That means the ripple in the pass-band of Hf (ω) is the same as the ripple in the

stop-band of Hf (ω)). You can assume the Nyquist filter is centered at no = 0.

Here, the DC gain will be about 2, rather than 1 as is usual for a low-pass filter. What

must the cut-off frequency ωo be? (Hf (ωo) = 1) Does this explain the terminology

half-band?

16. Polynomial signal interpolation. The signal consists of two polynomial segments.

0 5 10 15 20 25 30 35

−1

−0.5

0

0.5

1

n

x
(n

)

Interpolate this signal by 2 (upsample by 2 and filter) using each of the following filters

h(n) and plot the new signal. (You should obtain signals which are about twice as

long as the test signal shown above.)

(a) h(n) = [1, 1]/2

(b) h(n) = [1, 2, 1]/4

(c) h(n) = [1, 3, 3, 1]/8

For each filter, give H(z) in factored form.

Explain your observations using the results in the lecture notes concerning the inter-

polation of polynomial signals. That Matlab code to generate the test signal shown

above is available on the course webpage.

17. Half-band filter design. Consider the interpolation of a signal x(n) to increase its

rate by two. This can be done by first up-sampling the signal and then filtering with

a filter H(z). For interpolation by a factor of two, it common to ask that the be

half-band,

h(2n) = δ(n)

where h(n) is centered at n = 0. In addition, if the interpolation process is to conserve a

polynomial signal of degree d, then H(z) must have (1+z−1)d+1 as a factor. Therefore,

we consider the design of a minimal-length symmetric odd-length (Type I) half-band

filter H(z) of the form H(z) = Q(z)(1 + z−1)d+1.

Given an odd integer d, we seek the minimal-length q(n) such that H(z) is a Type I

half-band filter, where H(z) is given by

H(z) = Q(z) (1 + z−1)d+1
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or equivalently,

h = q ∗ [1, 1] ∗ · · · ∗ [1, 1]︸ ︷︷ ︸
d+ 1 terms

.

By symmetry, Q(z) should also be a Type I filter.

Exercise: For d = 1, 3, 5, find Q(z) such H(z) is a Type I half-band filter. For d = 1

the problem is trivial. For d = 3 you can solve the linear equations problem by hand.

For d = 5 you may use a computer to solve the system of linear equations. In each

case, verify that h(n) is a half-band filter, make a plot of h(n), the zero diagram, and

frequency response |Hf (ω)|.
Hint: Given d, the filter q(n) can be obtained by writing h(n) in terms of q(n) and

solving a set of linear equations. If q(n) is chosen with a suitable length, then there

will be the same number of equations and unknowns variables.

18. Design a Type I linear-phase FIR digital half-band filter of minimal length having a

transfer function H(z) of the form

H(z) = Q(z) (1 + z−1)2 (1 + z−1 + z−2).

(a) Find the impulse response h(n) of the filter.

(b) Sketch the zeros of H(z) in the complex z-plane.

(c) Roughly sketch the frequency response |H(ejω)| based on the filter’s zero-diagram

and half-band property.

(d) What particular properties does the filter have, when it is used for interpolation?

19. Design a Type I linear-phase FIR digital half-band filter of minimal length having a

transfer function H(z) of the form

H(z) = Q(z) (1 + 2z−1 + z−2) (1 + 3z−1 + z−2).

(a) Find the impulse response h(n) of the filter.

(b) Sketch the zeros of H(z) in the complex z-plane.

(c) Roughly sketch the frequency response |H(ejω)| based on the filter’s zero-diagram

and half-band property.

(d) What particular properties does the filter have, when it is used for interpolation?

20. Nyquist filters. For a linear-phase half-band filter with impulse response h(n) cen-

tered at n = 0, we have

H(ω) +H(ω − π) = 2.

What is the frequency-domain equivalent condition for a Nyquist-3 filter?

21. Interpolation. Consider the interpolation of a discrete-time signal x(n) by a factor

of three. The new higher rate signal is denoted y(n). It is required that the values

x(n) be preserved in y(n), i.e. y(3n) = x(n) for all n ∈ Z.
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(a) What condition should the impulse response of the interpolation filter satisfy?

(b) Verify that your condition satisfies the requirement.

22. Nyquist filter design. Design a Type I linear-phase FIR Nyquist-3 filter of minimal

length having a transfer function H(z) of the form

H(z) = Q(z) (1 + z−1 + z−2)3.

(a) Find the impulse response h(n) of the filter.

(b) Sketch the zeros of H(z) in the complex z-plane.

(c) What particular properties does the filter have, when it is used for interpolation?

23. Rate changing. To increase the sampling rate of a discrete-time signal x(n), to four

thirds its original rate, the following system is used.

x(n) −→ ↑4 −→ H(z) −→ ↓3 −→ y(n)

where the filter H(z) is a low-pass filter.

If the filter H(z) is furthermore a Nyquist-4 filter, are any samples of the input signal

x(n) preserved in the output signal y(n)? In other words, does the output signal

satisfy:

y(Kn) = x(Ln)

for some integers K and L? If so, show a derivation and identify K and L.

You can assume the Nyquist filter is centered at n = 0, i.e. h(4n) = δ(n).

Demonstrate your answer by a MATLAB example.

24. The wavelet transform. The Haar wavelet transform is implemented using the

system

AVE/
DIFF d(n)

x(n)

AVE/
DIFF d2(n)

AVE/
DIFF

c3(n)

d3(n)

where the sub-system

AVE/
DIFF

c(n)

d(n)
x(n)

is described by the two equations:

c(n) = 0.5x(2n) + 0.5x(2n+ 1)

d(n) = 0.5x(2n)− 0.5x(2n+ 1).
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(a) Draw a block diagram for obtaining c(n) from x(n). The block diagram may

combine an up-sampler, a down-sampler, and an LTI filter; but not more than

one of each. What is the impulse response of the LTI filter? Sketch the zeros of

the filter.

Similarly, draw a block diagram for obtaining d(n) from x(n).

(b) Draw a block diagram expressing the system between x(n) and d2(n) in the 3-level

system above. The block diagram may combine up-samplers, down-samplers, and

LTI filters; but it should not have more than one of each. (Hint: use part a and

the Noble Identities.) Sketch the impulse response and the zeros of the LTI

system. Based on the zero diagram, roughly sketch the frequency response of the

LTI system. Show your work.

(c) Repeat part (b), but for d3(n) instead of d2(n).

25. An Interpolated FIR (IFIR) filter is an FIR filter implemented as a cascade of two

filters in the following structure.

x(n) −→ F (z) −→ G(z2) −→ y(n)

To satisfy some filter specifications, this kind of multistage filter can be more efficient

than a single FIR filter. Suppose G(z) is a lowpass filter with the transition band from

0.2π to 0.3π. (Although it is not realistic, suppose Gf (ω) is exactly 1 in the passband

and exactly 0 in the stopband, and linear in between. Make the same assumption

about F (z) in part (c).)

(a) Sketch the frequency response of the transfer function G(z).

(b) Sketch the frequency response of the transfer function G(z2).

(c) F (z) is to be a lowpass filter so that the total system is a lowpass filter with

transition band from 0.1π to 0.15π. What should be the transition band of the

lowpass filter F (z)? Sketch the frequency response of the total system with your

F (z).

(d) Given an expression for the impulse response h(n) of the total system in terms

of f(n) and g(n). Explain why this system is called an Interpolated FIR filter.

26. An IFIR (Interpolated FIR) filter is an FIR filter of the form:

H(z) = H1(zM )H2(z).

Sometimes an IFIR filter can meet given specifications with a lower implementation

complexity than a generic FIR filter.

Consider the design of a lowpass filter H(z) having cut-off frequency 0.125π = π/8.

Suppose

H(z) = H1(z4)H2(z)

and that H1(z) is the ideal lowpass filter with cut-off frequency 0.5π. That means,

H1(z) is given, and H2(z) is to be designed so that the total filter H(z) is a lowpass

filter with cut-off frequency 0.125π = π/8.
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(a) Sketch the frequency response of H1(z) and of H1(z4).

(b) What should be the passband edge and stopband edge of the filter H2(z)? What

is the widest transition band H2(z) can have? What is the advantage of choosing

a wide transition band for the design of H2(z)?

27. The following system consists of a rate changer in sequence with itself.

x(n) ↑2 H(z) ↓3 ↑2 H(z) ↓3 y(n)

(a) The total system can be rewritten as a simpler one:

x(n) ↑p G(z) ↓r y(n)

What is p, r, and the transfer function G(z)?

(b) Let H(z) be a LPF with cut-off frequency ωc = π/3 with a transition band of

width ∆ω. Let the frequency response of H(z) be exactly unity and zero in the

pass-band and stop-band respectively. Let the transition-band be linear over the

frequency interval [ωc −∆ω/2, ωc + ∆ω/2]. Then sketch the frequency response

of G(z).

28. Linear-phase FIR Nyquist-L filter design. Using Matlab, design a Type I linear-

phase Nyquist-3 FIR filter of length 29. A Nyquist-3 filter h(n) is one for which

every third coefficient is zero, except for one such value. (See the notes on multirate

systems.) The cut-off frequency ωo should be π/3. Use the following design methods.

(a) Spline method.

Why does the spline method produce a Nyquist filter?

(b) (Constrained) Least squares.

Use Kp = Ks = 1 and ωp = ωo − π
20 , ωs = ωo + π

20 .

(c) Constrained Chebyshev with linear programming.

Use Kp = Ks = 1 and ωp = ωo − π
20 , ωs = ωo + π

20 .

For (b) and (c), the Nyquist property can be included in the design by adding con-

straints on h(n).

Demonstrate the use of one of the filters to do interpolation of a signal x(n) by a

factor of 3. First upsample x(n) by 3, and then filter it to get y(n). Verify that the

values x(n) are not changed by the process. A data set will be available on the course

webpage.


