
Image Processing Based on

Orthonormal Transforms

Yao Wang

Tandon School of Engineering, New York University

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline

• Unitary transform: from 1D to 2D

• Optimal transform: KLT=PCA

• Redundant transform: dictionary

2

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Transform Representation (1D)

• Represent a vector f as the weighted combination of some basis

vectors hn . Weights tn are called transform coefficients

• An N-dimensional vector needs N non-linearly dependent bases

+
t1 t2 t3 t4

f

h1 h3h2 h4

3

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

One Dimensional Linear Transform

• Let CN represent the N dimensional complex space.

• Let h0, h1, …, hN-1 represent N linearly independent

vectors in CN.

• Any vector f є CN can be represented as a linear

combination of h0, h1, …, hN-1 :

.

)1(

)1(

)0(

],,...,,[

,)(

110

1

0



















−

==

==

−

−

=



Nt

t

t

where

kt

N

N

k

k


thhhB

Bthf

AffBt == −1

f and t form a transform pair

4

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Inner Product

• Definition of inner product

• Orthogonal

• 2-Norm of a vector

• Normalized vector: unit norm

• Orthonomal = orthogonal + normalized


−

=

==
1

0

2

*

12121)()(,
N

n

H
nfnfffff

0, 21 = ff

f
2

=< f, f >= f H f = | f (n) |2

n=0

N-1

å

1
2
=f

5

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Orthonormal Basis Vectors (OBV)

• {hk, k=0,…N-1} are OBV if

• With OBV







=
==

lk

lk
lklk

0

1
, ,hh

fhhhhhfh
H

lkl

N

k

k

N

k

ll ltktkt ==== 
−

=

−

=

)(,)()(,,
1

0

1

0

AffBf

h

h

h

t ==





















=

−

H

H

N

H

H

1

1

0



.,1
IBBBBBB ===− HHH or B is unitary

6

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Definition of Unitary Transform

• Basis vectors are orthonormal

• Forward transform

• Inverse transform

AffBf

h

h

h

t

fh

==





















=

==

−

−

=



H

H

N

H

H

N

n

kk nfnhkt

1

1

0

1

0

* ,)()(,)(



  tABtthhhhf H

N

N

k

k

N

k

k

kt

nhktnf

====

=

−

−

=

−

=





110

1

0

1

0

)(

,)()()(



7

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Example: 4-pt Hadamard Transform













−=

=

−=

=





















=



















−

−
=



















−

−
=



















−

−
=



















=

1

0

2

5

4

3

2

1

,

2/1

2/1

2/1

2/1

,

2/1

2/1

2/1

2/1

,

2/1

2/1

2/1

2/1

,

2/1

2/1

2/1

2/1

3

2

1

0

3210

t

t

t

t

f

hhhh

8

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

1D DFT as a Unitary Transform

.1,...,1,0,

1

1

,
1

)(

)1(
2

2

2

−=





















=

=

−

Nk

e

e

N

ore
N

nh

N

kN
j

N

k
j

k

N

kn
j

k








h

.1...,,1,0,)(
1

)(

;1...,,1,0,)(
1

)(

1

0

2

1

0

2

−==

−==





−

=

−

=

−

NnekF
N

nf

Nkenf
N

kF

N

k

N

kn
j

N

n

N

kn
j





9

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Example: 1D DFT, N=2

() ()

fhh

fh

f

hhh

=







=









−
−








=+

−
=−=






























−
==+=





























=

=









=










−
=








=

















=

=

2

1

1

1

2

1

1

1

2

3
 :Verify

2

1
2*11*1

2

1

2

1
,

1

1

2

1
,

2

3
2*11*1

2

1

2

1
,

1

1

2

1

obtain we,, Using

, determine ,
2

1
 if

1

1

2

1
,

1

1

2

1
:

)1
2

2exp(

)0
2

2exp(

2

1

: vectorsbasis only two are there:case 2

1100

10

10

10

tt

tt

t

tt

k
j

k
j

N

kk

k





10

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Another Example: 1D DFT, N=4

() ()

() () ()

fhhhh

f

hhhhh

=



















=



















−−++

−+++

−++−

−−+−

=+++

−−=−−+==−+−=

+−=+−−==+++=




















=



















−

−
=



















−

−
=



















−

−
=



















=



























==

12

20

16

8

4

1

)3()3(14

)3()3(14

)3()3(14

)3()3(14

4

1
 :Verify

.3
2

1
3542

2

1
;03542

2

1

);3(
2

1
3542

2

1
;73542

2

1

3

5

4

2

1

1

2

1
;

1

1

1

1

2

1
;

1

1

2

1
;

1

1

1

1

2

1
:yields

)3
4

2exp(

)2
4

2exp(

)1
4

2exp(

)0
4

2exp(

2

1
 using :case 4

33221100

32

10

3210

jjjj

jj

jjjj

jj

tttt

jjjtt

jjjtt

j

j

j

j

k
j

k
j

k
j

k
j

N k









11

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

1D Discrete Cosine Transform (DCT)

1,...,1

0

2

1

)(

2

)12(
cos)()(

 :Vectors Basis

−=

=









=








 +
=

Nk

k

N

Nkwhere

N

kn
knhk









−

=

−

=

=

=

1

0

1

0

)()()(:Transforms Inverse

)()()(:Transform Forward

N

u

k

N

n

k

nhkTnf

nhnfkT

()

()

fhhhh

f

hhhhh

=+++

=−+−=−=+−−=

−=−+−==+++=




















=



















−

−
=



































































=



















−

−
=



































































=



















−

−
=



































































=



















=



















=



































































=

=

33221100

32

10

3210

 :Verify

.3827.06533.0*)45(2706.0*)32(;23542
2

1

;9239.02706.0*)54(6533.0*)32(;73542
2

1

3

5

4

2

2706.0

6533.0

6533.0

2706.0

8

21
cos

8

15
cos

8

9
cos

8

3
cos

2

1
;

5.0

5.0

5.0

5.0

8

14
cos

8

10
cos

8

6
cos

8

2
cos

2

1
;

6533.0

2706.0

2706.0

6533.0

8

7
cos

8

5
cos

8

3
cos

8

1
cos

2

1
;

5.0

5.0

5.0

5.0

1

1

1

1

2

1
:yields

8

7
cos

8

5
cos

8

3
cos

8

1
cos

)(

 :case 4tion RepresentaVector

tttt

tt

tt

k

k

k

k

k

N

k



































12

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Two Dimensional Transform

• Decompose a MxN 2D matrix F=[F(m,n)] into a linear

combination of some basic images, Hk,l=[Hk,l(m,n)], so

that:




−

=

−

=

−

=

−

=

=

=

1

0

1

0

,

1

0

1

0

,

),(),(),(

,),(

M

k

N

l

lk

M

k

N

l

lk

nmHlkTnmF

lkT HF

13

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Transform Representation of an Image Block

+
t1 t2 t3 t4

Inverse transform: Represent a block of image samples as the superposition of some

basic block patterns (basis images)

Forward transform: Determine the coefficients associated with each basis image

14

2D Transform Can be Treated as 1D Transform

• Arrange each image block into a vector

• Arrange each basis image as a vector using the same

order

• But this does not take advantage of special properties

of Separable Transform

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 15

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Separable Unitary Transform

• Let hk, k=0, 1, …, M-1 represent orthonormal basis

vectors in CM,

• Let gl, l=0, 1, …, N-1 represent orthonormal basis

vectors in CN,

• Let Hk,l=hkgl
T, or Hk,l(m,n)=hk(m)gl(n).

• Then Hk,l will form an orthonormal basis set in CMxN.

16

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Example of Separable Unitary Transform

• Example 1










−

−
==









−−
==










−

−
==








==










−
=








=

2/12/1

2/12/1

2/12/1

2/12/1

2/12/1

2/12/1

2/12/1

2/12/1

.
2/1

2/1
,

2/1

2/1

11110110

10010000

10

TT

TT

hhHhhH

hhHhhH

hh

17

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Example: 4x4 DFT

()



















−−

−−

−−

−−

=



















−−

−−

−−

−−

=



















−−

−−

−−

−−

=



















−−−−

−−−−
=



















−−

−−

−−

−−

=



















−−

−−

−−

−−

=



















−−

−−

−−

−−

=



















−−−−

−−−−
=



















−−

−−

−−

−−

=



















−−

−−

−−

−−

=



















−−

−−

−−

−−

=



















−−−

−−−−
=



















−−

−−

−−

−−

=



















−−

−−

−−

−−

=



















−−

−−

−−

−−

=



















=

=



















−

−
=



















−

−
=



















−

−
=



















=

11

11

11

11

4

1
,

1111

1111

4

1
,

11

11

11

11

4

1
,

1111

1111

4

1

11

11

11

11

4

1
,

1111

1111

1111

1111

4

1
,

11

11

11

11

4

1
,

1111

1111

1111

1111

4

1

11

11

11

11

4

1
,

1111

1111

4

1
,

11

11

11

11

4

1
,

1111

1111

4

1

11

11

11

11

4

1
,

1111

1111

1111

1111

4

1
,

11

11

11

11

4

1
,

1111

1111

1111

1111

4

1

:yields using

1

1

2

1
;

1

1

1

1

2

1
;

1

1

2

1
;

1

1

1

1

2

1
: are basis DFT 1D theRecall

3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

3210

jj

jj

jj

jj

jjjj

jjjj

jj

jj

jj

jj

jjjj

jjjj

jj

jj

jj

jj

jj

jj

jj

jj

jj

jj

jj

jj

jjjj

jjjj

jj

jj

jj

jj

jjjj

jjjj

jj

jj

jj

jj

jj

jj

jj

jj

j

j

j

j

T

lkk,l

HHHH

HHH

HHHH

HHHH

hhH

hhhh

18

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Example: 4x4 DFT

()

())1(
4

1
22123221

4

1

1221

1210

1310

0221

,

11

11

11

11

4

1
,

4

18
1221121013100221

4

1

1221

1210

1310

0221

,

1111

1111

1111

1111

4

1
,

e.g, yields, , Using

 compute ,

1221

1210

1310

0221

For

*

3,23,2

0,00,0

,,

,

jjjjjjjj

jj

jj

jj

jj

T

T

T

T

lklk

lk

−=−+−−−−+++−−+=







































−


















−−

−−

−−

−−

==

=−++++++++++++++=







































−


















==

=



















−

=

FH

FH

FH

F

19

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Example: 8x8 DCT

Low-Low

Low-High

High-Low

High-High

1,...,1

0

2

1

)(

2

)12(
cos

2

)12(
cos)()(),(,

−=

=









=








 +







 +
=

Nk

k

N

Nkwhere

N

ln

N

km
lknmH lk






D=dctmtx(8);

Basis43=D(:,4)*D(3,:)’;

20

Basis Images:

Hadamard Transform:

Basis images

ECE-GY 6123: Image and Video Processing

Example:

D=hadamard(8);

reindex=[1,8,4,5,2,7,3,6];

D(reindex,:)=D;

Basis43=D(:,4)*D(:,3)’;

From Amy Reibman
Yao Wang, 2019 21

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Property of Separable Transform

• When the transform is separable, we can perform the

2D transform separately.

– First, do 1D transform for each row using basis vectors gl,

– Second, do 1D transform for each column of the intermediate

image using basis vectors hk.

– Proof:

 
−

=

−

=

−

=

−

=

−

=

===
1

0

*
1

0

1

0

**
1

0

1

0

*

,),()(),()()(),(),(),(
M

m

M

m

N

n

l

M

m

N

n

lk lmUmhnmFngmhnmFnmHlkT
kk

22

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

DCT on a Real Image Block

>>imblock = lena256(128:135,128:135)-128

imblock=

54 68 71 73 75 73 71 45

47 52 48 14 20 24 20 -8

20 -10 -5 -13 -14 -21 -20 -21

-13 -18 -18 -16 -23 -19 -27 -28

-24 -22 -22 -26 -24 -33 -30 -23

-29 -13 3 -24 -10 -42 -41 5

-16 26 26 -21 12 -31 -40 23

17 30 50 -5 4 12 10 5

>>dctblock =dct2(imblock)

dctblock=

31.0000 51.7034 1.1673 -24.5837 -12.0000 -25.7508 11.9640 23.2873

113.5766 6.9743 -13.9045 43.2054 -6.0959 35.5931 -13.3692 -13.0005

195.5804 10.1395 -8.6657 -2.9380 -28.9833 -7.9396 0.8750 9.5585

35.8733 -24.3038 -15.5776 -20.7924 11.6485 -19.1072 -8.5366 0.5125

40.7500 -20.5573 -13.6629 17.0615 -14.2500 22.3828 -4.8940 -11.3606

7.1918 -13.5722 -7.5971 -11.9452 18.2597 -16.2618 -1.4197 -3.5087

-1.4562 -13.3225 -0.8750 1.3248 10.3817 16.0762 4.4157 1.1041

-6.7720 -2.8384 4.1187 1.1118 10.5527 -2.7348 -3.2327 1.5799

We subtract 128 from original image block shift the mean to zero

Note that low-low coefficients are much larger than high-high coefficients

23

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Energy Distribution of DCT Coefficients

in Typical Image Blocks

Variance of each coefficient is

determined by the average of

the square of this coefficient in

all blocks of an image

Zig-zag ordering

24

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Images Approximated by Different

Number of DCT Coefficients per Block

Original

With 8/64

Coefficients

With 16/64

Coefficients

With 4/64

Coefficients

25

Why do we want to use transform?

• Compression: With a well design set of basis vectors, only a few

coefficients of typical image blocks are large, and coefficients are

uncorrelated. Each image block can be represented by its quantized

transform coefficients!

• Feature dimension reduction: Using a few large coefficients rather

than original samples.

• Denoising: Noise typically contribute to small coefficients at all

frequencies, but real data typically have significant coefficients only

at low frequencies. We can suppress noise by setting small high

frequency coefficients to zero.

• Just as DFT, we could attenuate different DCT coefficients to

achieve different filtering effect (but the convolution property does

not hold for DCT)

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 26

Yao Wang, 2017 EL6123: Image and Video Processing

Block Diagram of Transform Coding

27

Scalar

Quantizer

• This is essentially how JPEG works!

• JPEG uses 8x8 DCT, and Runlength+Huffman

coding for binary encoding.

Yao Wang, 2017 EL6123: Image and Video Processing

JPEG Example: DCT on a Real Image Block

>>imblock = lena256(128:135,128:135)-128

imblock=

54 68 71 73 75 73 71 45

47 52 48 14 20 24 20 -8

20 -10 -5 -13 -14 -21 -20 -21

-13 -18 -18 -16 -23 -19 -27 -28

-24 -22 -22 -26 -24 -33 -30 -23

-29 -13 3 -24 -10 -42 -41 5

-16 26 26 -21 12 -31 -40 23

17 30 50 -5 4 12 10 5

>>dctblock =dct2(imblock)

dctblock=

31.0000 51.7034 1.1673 -24.5837 -12.0000 -25.7508 11.9640 23.2873

113.5766 6.9743 -13.9045 43.2054 -6.0959 35.5931 -13.3692 -13.0005

195.5804 10.1395 -8.6657 -2.9380 -28.9833 -7.9396 0.8750 9.5585

35.8733 -24.3038 -15.5776 -20.7924 11.6485 -19.1072 -8.5366 0.5125

40.7500 -20.5573 -13.6629 17.0615 -14.2500 22.3828 -4.8940 -11.3606

7.1918 -13.5722 -7.5971 -11.9452 18.2597 -16.2618 -1.4197 -3.5087

-1.4562 -13.3225 -0.8750 1.3248 10.3817 16.0762 4.4157 1.1041

-6.7720 -2.8384 4.1187 1.1118 10.5527 -2.7348 -3.2327 1.5799

In JPEG, “imblock-128” is done before DCT to shift the mean to zero

28

Yao Wang, 2017 EL6123: Image and Video Processing

JPEG Example: Quantized Indices

>>dctblock =dct2(imblock)

dctblock=

31.0000 51.7034 1.1673 -24.5837 -12.0000 -25.7508 11.9640 23.2873

113.5766 6.9743 -13.9045 43.2054 -6.0959 35.5931 -13.3692 -13.0005

195.5804 10.1395 -8.6657 -2.9380 -28.9833 -7.9396 0.8750 9.5585

35.8733 -24.3038 -15.5776 -20.7924 11.6485 -19.1072 -8.5366 0.5125

40.7500 -20.5573 -13.6629 17.0615 -14.2500 22.3828 -4.8940 -11.3606

7.1918 -13.5722 -7.5971 -11.9452 18.2597 -16.2618 -1.4197 -3.5087

-1.4562 -13.3225 -0.8750 1.3248 10.3817 16.0762 4.4157 1.1041

-6.7720 -2.8384 4.1187 1.1118 10.5527 -2.7348 -3.2327 1.5799

>>QP=1;

>>QM=Qmatrix*QP;

>>qdct=floor((dctblock+QM/2)./(QM))

qdct =

2 5 0 -2 0 -1 0 0

9 1 -1 2 0 1 0 0

14 1 -1 0 -1 0 0 0

3 -1 -1 -1 0 0 0 0

2 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Only 19 coefficients are retained out of 64

29

Yao Wang, 2017 EL6123: Image and Video Processing

JPEG Example: Quantized Coefficients

%dequantized DCT block

>> iqdct=qdct.*QM

iqdct=

32 55 0 -32 0 -40 0 0

108 12 -14 38 0 58 0 0

196 13 -16 0 -40 0 0 0

42 -17 -22 -29 0 0 0 0

36 -22 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Original DCT block

dctblock=

31.0000 51.7034 1.1673 -24.5837 -12.0000 -25.7508 11.9640 23.2873

113.5766 6.9743 -13.9045 43.2054 -6.0959 35.5931 -13.3692 -13.0005

195.5804 10.1395 -8.6657 -2.9380 -28.9833 -7.9396 0.8750 9.5585

35.8733 -24.3038 -15.5776 -20.7924 11.6485 -19.1072 -8.5366 0.5125

40.7500 -20.5573 -13.6629 17.0615 -14.2500 22.3828 -4.8940 -11.3606

7.1918 -13.5722 -7.5971 -11.9452 18.2597 -16.2618 -1.4197 -3.5087

-1.4562 -13.3225 -0.8750 1.3248 10.3817 16.0762 4.4157 1.1041

-6.7720 -2.8384 4.1187 1.1118 10.5527 -2.7348 -3.2327 1.5799

30

Yao Wang, 2017 EL6123: Image and Video Processing

JPEG Example: Reconstructed Image

%reconstructed image block

>> qimblock=round(idct2(iqdct))

qimblock=

58 68 85 79 61 68 67 38

45 38 39 33 22 24 19 -2

21 2 -11 -12 -13 -19 -24 -27

-8 -19 -31 -26 -20 -35 -37 -15

-31 -17 -21 -20 -16 -39 -41 0

-33 3 -1 -14 -11 -37 -44 1

-16 32 18 -10 1 -16 -30 8

3 54 30 -6 16 11 -7 23

Original image block

imblock=

54 68 71 73 75 73 71 45

47 52 48 14 20 24 20 -8

20 -10 -5 -13 -14 -21 -20 -21

-13 -18 -18 -16 -23 -19 -27 -28

-24 -22 -22 -26 -24 -33 -30 -23

-29 -13 3 -24 -10 -42 -41 5

-16 26 26 -21 12 -31 -40 23

17 30 50 -5 4 12 10 5

31

Transform design

• What are desirable properties of a transform for image

and video?

– Decorrelating

• Good for compression: one can entropy code each coefficient

independently without losing efficiency;

• Good for feature reduction: each feature reveal independent info.

– High energy compaction – Only a few large coefficients, rest are

zero or negligible

– Easy to compute (few operations)

– Separable – compute 1-D transform first on rows, then on

columns. So we only consider design of 1-D transform bases.

• What size transform should we use?

– Entire image? Small blocks?

– 2-D (on an image) or 3-D (incorporating time also)?

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 32

Karhunen Loève Transform (KLT) =

Principle Component Analysis (PCA)

• Basis vectors in directions with largest variance =

eigenvectors (principle components) of the signal

covariance matrix.

• Coefficients are completely uncorrelated ☺

• Best energy compaction ☺

– Sort coefficients from largest to smallest in expected squared

magnitude; then the sum of the energies of the first M

coefficients is as large as possible

• No computationally efficient algorithm 

• Requires the knowledge of the mean and covariance

matrix of the signal vector. 

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 33

Properties of Unitary Transforms

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 34

From Wang, et al, Digital video processing and communications, 2002.

s=[sn]: signal vector; t=[tk]: transform coefficient vector; uk: Basis vectors

Properties of Unitary Transforms

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 35

From Wang, et al, Digital video processing and communications, 2002.

Properties of Unitary Transforms

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 36

From Wang, et al, Digital video processing and communications, 2002.

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Karhunen Loève Transform (KLT)

• KLT: Using eigenvectors of signal covariance matrix [C]s as

transform bases, ordered based on the eigenvalues

– Resulting transform coefficients are uncorrelated

– The coefficient variances are the eigenvalues

– K-term approximation error = The expected square error of

representing a vector with first K coefficients = sum of last N-K

eigen-values

– It can be shown that among all possible unitary transforms, KLT

yields the least K-term approximation error, for all K=1,2,…,N.

37

[𝐂]𝑡=
𝜆1

…
𝜆𝑁

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Example

• Consider 2x2 image blocks with inter-sample correlation as shown below.

38

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Example Continued

(Convert 2x2 into 4x1)

• Correlation matrix

• DCT basis images

• Equivalent 1D transform matrix

39

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Example

• Determine the KLT for the 2x2 image block in the previous example

Determine the eigenvalues by solving:

Determine the eigenvectors by solving

(same as the coefficient variances with DCT)

Resulting transform is close to the DCT !

DCT is a good transform for images, with energy compaction close to KLT!

DCT is a fixed transform (does not depend on the signal statistics) and can be computed fast.

40

What if I don’t know the covariance matrix?

• Using samples to form the covariance matrix

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 41

Let 𝑭 be the sample matrix, consisting all the mean removed

samples in its columns,

𝑭 = 𝑓𝑘 − 𝜇; 𝑘 = 1,2,… , 𝐾
Covariance matrix

𝑪𝑓 =
1

𝐾
𝑭 𝑭𝑇

Feature Dimension Reduction by PCA

• Given a set of samples in a dataset, each represented by a raw

signal vector of dimension N

• Want to find a reduced feature representation of dimension K

• Principle component analysis (PCA) = KLT using the sample

covariance matrix

– The eigenvector corresponding to the largest eigen value corresponds

to the direction with largest variance.

• Features = first K transform coefficients

• Feature dimension reduction is an important problem in machine

learning.

• PCA is a linear feature reduction method.

• There are other more powerful non-linear transformations.

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 42

ECE-GY 6123: Image and Video Processing

Signal Independent Transform Bases

• Suboptimal transforms – many available!

– Discrete Fourier Transform (DFT): complex values;

• convolution in space = multiplication in coefficients;

• not best in terms of energy compaction.

– Discrete Cosine transform (DCT): real values only

• nearly as good as KLT for common image signals

– Hadamard and Haar: basis functions contain only

+1,0,-1

• Very fast computation

• Has blocky artifacts with k-term approximation

Yao Wang, 2019 43

Pop Quiz

• How do you determine the optimal transform (KLT)?

• What are its properties?

• What are the difficulty of using KLT in practice?

• Why do we use DCT for images?

• How does transform coding work?

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 44

From Transform to Dictionary (Not Required)

• Transform: Using N orthonormal basis vectors to represent a N-

vector (Non-redundant dictionary)

– Have unique solution to Ax=b -> x=AT b

– Not a good solution if the measured signal has noise!

• Dictionary: Using M (M > N generally) atoms am, m=1,2,…,M, to

represent a N-vector b

– b= x1 a1 + x2 a2 + … + xM aM

• When M>N, determining coefficients is an under-determined

problem and cannot be accomplished by a simple matrix inversion!

• Sparse dictionary learning: Given a set of data samples (each a N-

vector), determine dictionary atoms that leads to the sparsest

representation (with coefficients having minimal number of non-

zeros)
Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 45

Reading Assignment

• Reading assignment:

– [Wang2002] Sec. 9.1 (Transform coding)

– [Gonzalez and Woods 2008] “Digital Image Processing,” Chap

7 (Wavelet transforms), Chap 8 (Image compression)

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 46

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Written Homework

1. Answer the quiz questions

2. For the 2x2 image S given below, compute its 2D DCT, reconstruct it by retaining

different number of coefficients to evaluate the effect of different basis images.

a) Determine the four DCT basis images.

b) Show that these basis images are orthonormal to each other.

c) Determine the 2D-DCT coefficients for S, Tk,l, k=0,1;l=0,1.

d) Show that the reconstructed image from the original DFT coefficients equal to

the original image.

e) Modify the DCT coefficients using the given window masks (W1 to W5) and

reconstruct the image using the modified DCT coefficients. (for a given mask, “1”

indicates to retain that coefficient, “0” means to set the corresponding coefficient

to zero) What effect do you see with each mask and why?









=








=








=








=








=








=

10

01
,

10

00
,

01

00
,

00

10
,

00

01
,

91

19
54321 WWWWWS

47

