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Outline

• Unitary transform: from 1D to 2D

• Optimal transform: KLT=PCA

• Redundant transform: dictionary
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Transform Representation (1D)

• Represent a vector f as the weighted combination of some basis 

vectors hn . Weights tn are called transform coefficients

• An N-dimensional vector needs N non-linearly dependent bases

+
t1 t2 t3 t4

f

h1 h3h2 h4
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One Dimensional Linear Transform

• Let CN represent the N dimensional complex space.

• Let h0, h1, …, hN-1 represent N linearly independent 

vectors in CN.

• Any vector f є CN can be represented as a linear 

combination of h0, h1, …, hN-1 :
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Inner Product

• Definition of inner product

• Orthogonal

• 2-Norm of a vector

• Normalized vector: unit norm

• Orthonomal = orthogonal + normalized
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Orthonormal Basis Vectors (OBV)

• {hk, k=0,…N-1} are OBV if

• With OBV
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Definition of Unitary Transform

• Basis vectors are orthonormal

• Forward transform

• Inverse transform
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Example: 4-pt Hadamard Transform 
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1D DFT as a Unitary Transform
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Example: 1D DFT, N=2 
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Another Example: 1D DFT, N=4 
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1D Discrete Cosine Transform (DCT)
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Two Dimensional Transform

• Decompose a MxN 2D matrix F=[F(m,n)] into a linear 

combination of some basic images, Hk,l=[Hk,l(m,n)], so 

that:
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Transform Representation of an Image Block

+
t1 t2 t3 t4

Inverse transform: Represent a block of image samples as the superposition of some 

basic block patterns (basis images)

Forward transform: Determine the coefficients associated with each basis image

14



2D Transform Can be Treated as 1D Transform

• Arrange each image block into a vector 

• Arrange each basis image as a vector using the same 

order

• But this does not take advantage of special properties 

of Separable Transform

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 15
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Separable Unitary Transform

• Let hk, k=0, 1, …, M-1 represent orthonormal basis 

vectors in CM,

• Let gl, l=0, 1, …, N-1 represent orthonormal basis 

vectors in CN,

• Let Hk,l=hkgl
T, or Hk,l(m,n)=hk(m)gl(n).

• Then Hk,l will form an orthonormal basis set in CMxN.
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Example of Separable Unitary Transform

• Example 1
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Example: 4x4 DFT
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Example: 4x4 DFT

( )

( ) )1(
4

1
22123221

4

1

1221

1210

1310

0221

,

11

11

11

11

4

1
,

4

18
1221121013100221

4

1

1221

1210

1310

0221

,

1111

1111

1111

1111

4

1
,

e.g, yields,  , Using

  compute  ,

1221

1210

1310

0221

For 

*

3,23,2

0,00,0

,,

,

jjjjjjjj

jj

jj

jj

jj

T

T

T

T

lklk

lk

−=−+−−−−+++−−+=







































−


















−−

−−

−−

−−

==

=−++++++++++++++=







































−


















==

=



















−

=

FH

FH

FH

F

19



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Example: 8x8 DCT
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D=dctmtx(8);

Basis43=D(:,4)*D(3,:)’;
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Hadamard Transform: 

Basis images

ECE-GY 6123: Image and Video Processing

Example:

D=hadamard(8);

reindex=[1,8,4,5,2,7,3,6];

D(reindex,:)=D;

Basis43=D(:,4)*D(:,3)’;

From Amy Reibman
Yao Wang, 2019 21
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Property of Separable Transform

• When the transform is separable, we can perform the 

2D transform separately.

– First, do 1D transform for each row using basis vectors gl,

– Second, do 1D transform for each column of the intermediate 

image using basis vectors hk.

– Proof:
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DCT on a Real Image Block

>>imblock = lena256(128:135,128:135)-128

imblock=

54    68    71    73    75    73    71    45

47    52    48    14    20    24    20    -8

20   -10    -5   -13   -14   -21   -20   -21

-13   -18   -18   -16   -23   -19   -27   -28

-24   -22   -22   -26   -24   -33   -30   -23

-29   -13     3   -24   -10   -42   -41     5

-16    26    26   -21    12   -31   -40    23

17    30    50    -5     4    12    10     5

>>dctblock =dct2(imblock)

dctblock=

31.0000   51.7034    1.1673  -24.5837  -12.0000  -25.7508   11.9640    23.2873

113.5766    6.9743  -13.9045   43.2054   -6.0959   35.5931  -13.3692  -13.0005

195.5804   10.1395   -8.6657   -2.9380  -28.9833   -7.9396    0.8750     9.5585

35.8733  -24.3038  -15.5776  -20.7924   11.6485  -19.1072   -8.5366  0.5125

40.7500  -20.5573  -13.6629   17.0615  -14.2500   22.3828   -4.8940  -11.3606

7.1918  -13.5722   -7.5971  -11.9452   18.2597  -16.2618   -1.4197     -3.5087

-1.4562  -13.3225   -0.8750    1.3248   10.3817   16.0762    4.4157    1.1041

-6.7720   -2.8384    4.1187    1.1118   10.5527   -2.7348   -3.2327    1.5799

We subtract 128 from original image block shift the mean to zero

Note that low-low coefficients are much larger than high-high coefficients

23
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Energy Distribution of DCT Coefficients 

in Typical Image Blocks

Variance of each coefficient is 

determined by the average of 

the square of this coefficient in 

all blocks of an image 

Zig-zag ordering

24
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Images Approximated by Different 

Number of DCT Coefficients per Block

Original

With 8/64

Coefficients

With 16/64

Coefficients

With 4/64

Coefficients

25



Why do we want to use transform?

• Compression: With a well design set of basis vectors, only a few 

coefficients of typical image blocks are large, and coefficients are 

uncorrelated. Each image block can be represented by its quantized 

transform coefficients!

• Feature dimension reduction: Using a few large coefficients rather 

than original samples.

• Denoising: Noise typically contribute to small coefficients at all 

frequencies, but real data typically have significant coefficients only 

at low frequencies. We can suppress noise by setting small high 

frequency coefficients to zero.

• Just as DFT, we could attenuate different DCT coefficients to 

achieve different filtering effect (but the convolution property does 

not hold for DCT)

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 26
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Block Diagram of Transform Coding

27

Scalar 

Quantizer

• This is essentially how JPEG works!

• JPEG uses 8x8 DCT, and Runlength+Huffman

coding for binary encoding.
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JPEG Example: DCT on a Real Image Block

>>imblock = lena256(128:135,128:135)-128

imblock=

54    68    71    73    75    73    71    45

47    52    48    14    20    24    20    -8

20   -10    -5   -13   -14   -21   -20   -21

-13   -18   -18   -16   -23   -19   -27   -28

-24   -22   -22   -26   -24   -33   -30   -23

-29   -13     3   -24   -10   -42   -41     5

-16    26    26   -21    12   -31   -40    23

17    30    50    -5     4    12    10     5

>>dctblock =dct2(imblock)

dctblock=

31.0000   51.7034    1.1673  -24.5837  -12.0000  -25.7508   11.9640    23.2873

113.5766    6.9743  -13.9045   43.2054   -6.0959   35.5931  -13.3692  -13.0005

195.5804   10.1395   -8.6657   -2.9380  -28.9833   -7.9396    0.8750     9.5585

35.8733  -24.3038  -15.5776  -20.7924   11.6485  -19.1072   -8.5366  0.5125

40.7500  -20.5573  -13.6629   17.0615  -14.2500   22.3828   -4.8940  -11.3606

7.1918  -13.5722   -7.5971  -11.9452   18.2597  -16.2618   -1.4197     -3.5087

-1.4562  -13.3225   -0.8750    1.3248   10.3817   16.0762    4.4157    1.1041

-6.7720   -2.8384    4.1187    1.1118   10.5527   -2.7348   -3.2327    1.5799

In JPEG, “imblock-128” is done before DCT to shift the mean to zero

28
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JPEG Example: Quantized Indices

>>dctblock =dct2(imblock)

dctblock=

31.0000   51.7034    1.1673  -24.5837  -12.0000  -25.7508   11.9640    23.2873

113.5766    6.9743  -13.9045   43.2054   -6.0959   35.5931  -13.3692  -13.0005

195.5804   10.1395   -8.6657   -2.9380  -28.9833   -7.9396    0.8750     9.5585

35.8733  -24.3038  -15.5776  -20.7924   11.6485  -19.1072   -8.5366  0.5125

40.7500  -20.5573  -13.6629   17.0615  -14.2500   22.3828   -4.8940  -11.3606

7.1918  -13.5722   -7.5971  -11.9452   18.2597  -16.2618   -1.4197     -3.5087

-1.4562  -13.3225   -0.8750    1.3248   10.3817   16.0762    4.4157    1.1041

-6.7720   -2.8384    4.1187    1.1118   10.5527   -2.7348   -3.2327    1.5799

>>QP=1;

>>QM=Qmatrix*QP;

>>qdct=floor((dctblock+QM/2)./(QM)) 

qdct =

2     5     0    -2     0    -1     0     0

9     1    -1     2     0     1     0     0

14     1    -1     0    -1     0     0     0

3    -1    -1    -1     0     0     0     0

2    -1     0     0     0     0     0     0

0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0

Only 19 coefficients are retained out of 64

29
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JPEG Example: Quantized Coefficients

%dequantized DCT block

>>  iqdct=qdct.*QM

iqdct=

32          55           0         -32           0         -40    0   0 

108          12         -14          38           0          58    0   0

196          13         -16           0         -40           0     0   0

42         -17         -22         -29           0            0    0   0

36         -22           0            0             0           0     0   0

0             0           0            0             0            0    0   0

0             0           0            0             0            0    0   0

0             0           0            0             0            0    0   0

Original DCT block

dctblock=

31.0000   51.7034    1.1673  -24.5837  -12.0000  -25.7508   11.9640    23.2873

113.5766    6.9743  -13.9045   43.2054   -6.0959   35.5931  -13.3692  -13.0005

195.5804   10.1395   -8.6657   -2.9380  -28.9833   -7.9396    0.8750     9.5585

35.8733  -24.3038  -15.5776  -20.7924   11.6485  -19.1072   -8.5366  0.5125

40.7500  -20.5573  -13.6629   17.0615  -14.2500   22.3828   -4.8940  -11.3606

7.1918  -13.5722   -7.5971  -11.9452   18.2597  -16.2618   -1.4197     -3.5087

-1.4562  -13.3225   -0.8750    1.3248   10.3817   16.0762    4.4157    1.1041

-6.7720   -2.8384    4.1187    1.1118   10.5527   -2.7348   -3.2327    1.5799

30
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JPEG Example: Reconstructed Image

%reconstructed image block

>>  qimblock=round(idct2(iqdct))

qimblock=

58    68    85    79    61    68    67    38

45    38    39    33    22    24    19    -2

21     2   -11   -12   -13   -19   -24   -27

-8   -19   -31   -26   -20   -35   -37   -15

-31   -17   -21   -20   -16   -39   -41     0

-33     3    -1   -14   -11   -37   -44     1

-16    32    18   -10     1   -16   -30     8

3    54    30    -6    16    11    -7    23

Original image block

imblock=

54    68    71    73    75    73    71    45

47    52    48    14    20    24    20    -8

20   -10    -5   -13   -14   -21   -20   -21

-13   -18   -18   -16   -23   -19   -27   -28

-24   -22   -22   -26   -24   -33   -30   -23

-29   -13     3   -24   -10   -42   -41     5

-16    26    26   -21    12   -31   -40    23

17    30    50    -5     4    12    10     5
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Transform design

• What are desirable properties of a transform for image 

and video?

– Decorrelating

• Good for compression:  one can entropy code each coefficient 

independently without losing efficiency; 

• Good for feature reduction: each feature reveal independent info.

– High energy compaction – Only a few large coefficients, rest are 

zero or negligible

– Easy to compute (few operations)

– Separable – compute 1-D transform first on rows, then on 

columns. So we only consider design of 1-D transform bases.

• What size transform should we use?

– Entire image? Small blocks? 

– 2-D (on an image) or 3-D (incorporating time also)?

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 32



Karhunen Loève Transform (KLT) = 

Principle Component Analysis (PCA)

• Basis vectors in directions with largest variance = 

eigenvectors (principle components) of the signal 

covariance matrix.

• Coefficients are completely uncorrelated ☺

• Best energy compaction ☺

– Sort coefficients from largest to smallest in expected squared 

magnitude; then the sum of the energies of the first M 

coefficients is as large as possible

• No computationally efficient algorithm 

• Requires the knowledge of the mean and covariance 

matrix of the signal vector. 

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 33



Properties of Unitary Transforms

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 34

From Wang, et al, Digital video processing and communications, 2002.

s=[sn]: signal vector;  t=[tk]: transform coefficient vector; uk: Basis vectors



Properties of Unitary Transforms

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 35

From Wang, et al, Digital video processing and communications, 2002.



Properties of Unitary Transforms

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 36

From Wang, et al, Digital video processing and communications, 2002.
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Karhunen Loève Transform (KLT)

• KLT: Using eigenvectors of signal covariance matrix [C]s as 

transform bases, ordered based on the eigenvalues

– Resulting transform coefficients are uncorrelated

– The coefficient variances are the eigenvalues

– K-term approximation error = The expected square error of 

representing a vector with first K coefficients = sum of last N-K 

eigen-values

– It can be shown that among all possible unitary transforms, KLT 

yields the least K-term approximation error, for all K=1,2,…,N. 
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Example

• Consider 2x2 image blocks with inter-sample correlation as shown below.
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Example Continued

(Convert 2x2 into 4x1)

• Correlation matrix

• DCT basis images

• Equivalent 1D transform matrix

39
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Example

• Determine the KLT for the 2x2 image block in the previous example

Determine the eigenvalues by  solving: 

Determine the eigenvectors by solving

(same as the coefficient variances with DCT)

Resulting transform is close to the DCT !

DCT is a good transform for images, with energy compaction close to KLT!

DCT is a fixed transform (does not depend on the signal statistics) and can be computed fast.

40



What if I don’t know the covariance matrix?

• Using samples to form the covariance matrix

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 41

Let 𝑭 be the sample matrix, consisting all the mean removed 

samples in its columns,

𝑭 = 𝑓𝑘 − 𝜇; 𝑘 = 1,2,… , 𝐾
Covariance matrix  

𝑪𝑓 =
1

𝐾
𝑭 𝑭𝑇



Feature Dimension Reduction by PCA

• Given a set of samples in a dataset, each represented by a raw 

signal vector of dimension N

• Want to find a reduced feature representation of dimension K

• Principle component analysis (PCA) = KLT using the sample 

covariance matrix

– The eigenvector corresponding to the largest eigen value corresponds 

to the direction with largest variance.

• Features = first K transform coefficients

• Feature dimension reduction is an important problem in machine 

learning. 

• PCA is a linear feature reduction method.

• There are other more powerful non-linear transformations. 

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 42
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Signal Independent Transform Bases

• Suboptimal transforms – many available!

– Discrete Fourier Transform (DFT): complex values; 

• convolution in space = multiplication in coefficients; 

• not best in terms of energy compaction.

– Discrete Cosine transform (DCT): real values only

• nearly as good as KLT for common image signals

– Hadamard and Haar: basis functions contain only 

+1,0,-1

• Very fast computation

• Has blocky artifacts with k-term approximation

Yao Wang, 2019 43



Pop Quiz

• How do you determine the optimal transform (KLT)?

• What are its properties?

• What are the difficulty of using KLT in practice?

• Why do we use DCT for images?

• How does transform coding work?

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 44



From Transform to Dictionary (Not Required)

• Transform: Using N orthonormal basis vectors to represent a N-

vector (Non-redundant dictionary) 

– Have unique solution to Ax=b -> x=AT b

– Not a good solution if the measured signal has noise! 

• Dictionary: Using M (M > N generally) atoms am, m=1,2,…,M, to 

represent a N-vector b

– b= x1 a1 + x2 a2 + … + xM aM

• When M>N, determining coefficients is an under-determined 

problem and cannot be accomplished by a simple matrix inversion!

• Sparse dictionary learning: Given a set of data samples (each a N-

vector), determine dictionary atoms that leads to the sparsest 

representation (with coefficients having minimal number of non-

zeros)
Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 45



Reading Assignment

• Reading assignment: 

– [Wang2002] Sec. 9.1 (Transform coding)

– [Gonzalez and Woods 2008] “Digital Image Processing,” Chap 

7 (Wavelet transforms), Chap 8 (Image compression) 

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 46
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Written Homework

1. Answer the quiz questions

2. For the 2x2 image S given below, compute its 2D DCT, reconstruct it by retaining 

different number of coefficients to evaluate the effect of different basis images. 

a) Determine the four DCT basis images.

b) Show that these basis images are orthonormal to each other.

c) Determine the 2D-DCT coefficients for S, Tk,l, k=0,1;l=0,1. 

d) Show that the reconstructed image from the original DFT coefficients equal to 

the original image.

e) Modify the DCT coefficients using the given window masks (W1 to W5) and 

reconstruct the image using the modified DCT coefficients. (for a given mask, “1” 

indicates to retain that coefficient, “0” means to set the corresponding coefficient 

to zero) What effect do you see with each mask and why?
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