
Convolutional Networks for Image 

Processing (Part I)

Yao Wang

Tandon School of Engineering, New York University

Many contents from Sundeep Rangan: 

https://github.com/sdrangan/introml/blob/master/sequence.md



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline

• Supervised learning: General concepts

• Neural network architecture

– From single perceptron to multi-layer perceptrons

• Convolutional network architecture

– Why using convolution and many layers

– Multichannel convolution

– Pooling

• Deep networks

• Model training

– Loss functions

– Stochastic gradient descent: general concept 

– Data Preprocessing and Regularization

• Training, validation and testing and cross validation

• Demo:  training a ConvNet classifier

2



Supervised Learning

• Given a dataset with many samples

– Each sample has an input signal xi (e.g. image) and a ground truth 

output yi

• Learning objective

– Learn a function or model (parameterized by 𝜃) that maps x to y: 

f(x;𝜃)=y

– The function may not be represented by a closed-form representation. 

– Ex: with a neural net, 𝜃 includes the weights and biases in all layers  

• Formulate as an optimization problem

– 𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 σ𝑖 𝐿 ො𝑦𝑖 , 𝑦𝑖 + 𝜆𝑅(𝜃)

• Loss is the sum of losses for all training samples, all sharing the same 

parameter𝜃

• R(𝜃):  regularization term based on desirable properties of 𝜃

• Generalization ability of a learnt model

– The model should perform well on testing samples not used for training. 

Performance is measured on testing samples. More on this later.

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 3



Classification vs. Regression

• Classification

– Each input x (e.g. an image or features of the image) is 

mapped to a class label ො𝑦 (e.g. a person, dog, etc.), and there 

are only a finite number of classes

– Predicted output is the probability for each possible class (sum 

to 1) 

– Typical loss function 

• Binary classification: binary cross entropy

• Multi-class: cross entropy

• Regression

– Each input x is mapped to one or multiple continuous values ො𝑦

– Typical loss: MSE

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 4



How to Approximate a Function?

• Many possibilities!

– Lead to different types of models

• Linear regression

• Logistic regression (for classification): linear followed by a sigmoid 

function to convert to probability

• Support vector machine for classification/regression

• Decision tree for classification/regression

• Neural Networks (multi-layers of logistic regression)

– A two layer network can approximate any function with sufficient 

number of hidden nodes 

• Convolutional networks

– Special neural nets that exploit spatial/temporal structure of data such 

as images and videos

– Each layer uses multiple convolution filters

– Needs many layers but each layer with small number of parameters

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 5



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline

• Supervised learning: General concepts

• Neural network architecture

– From single perceptron to multi-layer perceptrons

• Convolutional network architecture

– Why using convolution and many layers

– Multichannel convolution

– Pooling

• Deep networks

• Model training

– Loss functions

– Stochastic gradient descent: general concept 

– Data Preprocessing and Regularization

• Training, validation and testing and cross validation

• Demo:  training a ConvNet classifier

6



General Structure of Neural Networks

• Input:   𝒙 = 𝑥1, ⋯ , 𝑥𝑑
– 𝑑 = number of features

• Hidden layer:  

– Linear transform:  𝒛𝐻 = 𝑾𝐻𝒙 + 𝒃𝐻
– Activation function:  𝒖𝐻 = 𝑔𝑎𝑐𝑡 𝒛𝐻
– Dimension:  𝑀 hidden units

• Output layer:  

– Linear transform:  𝒛𝑂 = 𝑾𝑂𝒖𝐻 + 𝒃𝑂
– Output function: 𝒖𝑂 = 𝑔𝑜𝑢𝑡 𝒛𝑂
– Dimension: 𝐾 = number of classes  / outputs

• Can be used for classification or regression, with 

different output functions

7



A Single Neuron (Perceptron)

• First linearly combine input variables 

𝑥𝑗
– z𝐻,𝑖 = σ𝑗𝑊𝐻,𝑖𝑗𝑥𝑗 + 𝑏𝐻,𝑖 , 𝑖 = 1,2, … ,

– 𝑊𝐻,𝑖𝑗: Weights; 𝑏𝐻,𝑖: Bias

– 𝑧𝐻,𝑖 = 0 linearly separates all 

possible points 𝒙 by a hyperplane

• Then apply a nonlinear mapping

(activation function 𝑔(𝑧))

– 𝑢𝐻,𝑖 = 𝑔 𝑧𝐻,𝑖 , 𝑖 = 1,2, … ,

• Equivalent to logistic regression or 

classifier when the nonlinearity is 

sigmoidal

– Works great if the two classes are 

linearly separable!

8

𝑢𝐻,𝑖

𝑧𝐻,𝑖

𝑏𝐻,𝑖



What if not linearly separable?

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 9



A Two-Stage Classifier

• Input sample:  𝒙 = 𝑥1, 𝑥2
𝑇

• First step:  Hidden layer

– Take 𝑁𝐻 = 4 linear discriminants

𝑧𝐻,1 = 𝒘𝐻,1
𝑇 𝑥 + 𝑏𝐻,1

⋮
𝑧𝐻,𝑁𝐻

= 𝒘𝐻,𝑀
𝑇 𝑥 + 𝑏𝐻,𝑀

– Make a soft decision on each 

linear region

𝑢𝐻,𝑚 = 𝑔 𝑧𝐻,𝑚 = Τ1 (1 + 𝑒−𝑧𝐻,𝑚)

• Second step:  Output layer

– Linear step  𝑧𝑂 = 𝑤𝑂
𝑇𝑢𝐻 + 𝑏𝑂

– Soft decision:  𝑢𝑂 = 𝑔(𝑧𝑂)

10



Two-Layer Neural Net for Binary Classification

• Hidden layer:  𝒛𝐻 = 𝑾𝐻𝒙 + 𝒃𝐻 , 𝒖𝐻 = 𝑔(𝒛𝐻)

• Output layer:  𝒛𝑂 = 𝑾𝑂𝒖𝐻 + 𝒃𝑂, 𝑢𝑂 = 𝑔(𝒛𝑂)

11

𝒙

Input

Linear map

𝒛𝐻 = 𝑾𝐻𝒙 + 𝒃𝐻

Sigmoid

𝑔(𝒛𝐻)

Soft binary 

decision

Hidden layer

𝒛𝐻 𝒖𝐻

Linear map

𝒛𝑂 = 𝑾𝑂𝒖𝐻 + 𝒃𝑂

𝒖𝑂𝒛𝑂

Sigmoid

𝑔(𝒛𝑂)

Output layer

Hidden layer does not have to use sigmoidal. tanh( ) is more often used.

Can have more than one hidden layers. 

Also known as a “Multi-Layer Perceptron” (MLP)



Step 1 Outputs and Step 2 Outputs

• Each output from step 1 is from a 

linear classifier with soft decision 

(Logistic regression)

• Final output is a weighted average of 

step 1 outputs using the weights 

indicated on top of the figures

12

𝑥0

𝑥1



Two-Layer Neural Net for Multiple Outputs

• Hidden layer:  𝒛𝐻 = 𝑾𝐻𝒙 + 𝒃𝐻 , 𝒖𝐻 = 𝑔𝑎𝑐𝑡(𝒛𝐻)

• Output layer:  𝒛𝑂 = 𝑾𝑂𝒖𝐻 + 𝒃𝑂
• Response map:  ො𝑦 = 𝑢𝑂 = 𝑔𝑜𝑢𝑡(𝒛𝑂)

13

ෝ𝒚 = 𝒖𝑂 = 𝑔𝑜𝑢𝑡(𝒛𝑂)

𝒙

Input

Linear map

𝒛𝐻 = 𝑾𝐻𝒙 + 𝒃𝐻

Activation

𝑔𝐻(𝒛𝐻)

Hidden layer

𝒛𝐻 𝒖𝐻

Linear map

𝒛𝑂 = 𝑾𝑂𝒖𝐻 + 𝒃𝑂

𝒛𝑂

Output layer

Response Map

𝒖𝑂



Response Map or Output Activation

• Last layer depends on type of response

• Binary classification:  𝑦 = ±1
– 𝑧𝑂 is a scalar

– Hard decision: ො𝑦 = sign 𝑧𝑂
– Soft decision: ො𝑦 = 𝑃 𝑦 = 1 𝑥 = Τ1 (1 + 𝑒−𝑧𝑂) (probability of class 1)

• Multi-class classification:  𝑦 = 1,… , 𝐾
– Ground truth label y is K-dimension (One-Hot Encoding)

– 𝒛𝑂 = 𝑧𝑂,1, ⋯ , 𝑧𝑂,𝐾
𝑇

is a vector

– 𝑢𝑂,𝑘 = 𝑃 𝑦 = 𝑘 𝑥 (probability of class k)

– Hard decision: 𝑢𝑂,𝑘= 1 𝑖𝑓 𝑘 = argmax
𝑙

𝑧𝑂,𝑙 ; 𝑢𝑂,𝑘= 0, otherwise

– Soft decision: 𝑢𝑂,𝑘= 𝑆𝑘 𝒛𝑂 = 𝑒
𝑧𝑂,𝑘

σ𝑙 𝑒
𝑧𝑂,𝑙

(softmax) 

• Regression: 𝒚 ∈ 𝑅𝑑

– ෝ𝒚 = 𝒛𝑂 (linear output layer)

14



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 15

Sigmoid nonlinearity converts z to a probability of being one class, and is used 

for binary classification. Not used in intermediate layers.

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 16

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 17

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 18

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf



Number of Parameters of a Two Layer Network

Layer Parameter Symbol Number parameters

Hidden layer Bias 𝑏𝐻 𝑁𝐻

Weights 𝑊𝐻 𝑁𝐻𝑑

Output layer Bias 𝑏𝑂 𝐾

Weights 𝑊𝑂 𝐾𝑁𝐻

Total 𝑁𝐻 𝑑 + 1 + 𝐾(𝑁𝐻 + 1)

19

◦ 𝑑 = input dimension, 𝑁𝐻= number of hidden units, 𝐾=output dimension

◦ 𝑁𝐻 is a free parameter. Should be chosen properly.

𝒙

Input

Linear map

𝒛𝐻 = 𝑾𝐻𝒙 + 𝒃𝐻

Activation

𝑔𝐻(𝒛𝐻)

Hidden layer

𝒛𝐻 𝒖𝐻

Linear map

𝒛𝑂 = 𝑾𝑂𝒖𝐻 + 𝒃𝑂

𝒛𝑂

Output layer

Response Map

𝒖𝑂



Representation Power: what function can an 

MLP represent?

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 20

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline

• Supervised learning: General concepts

• Neural network architecture

– From single perceptron to multi-layer perceptrons

• Convolutional network architecture

– Why using convolution and many layers

– Multichannel convolution

– Pooling

• Deep networks

• Model training

– Loss functions

– Stochastic gradient descent: general concept 

– Data Preprocessing and Regularization

• Training, validation and testing and cross validation

• Demo:  training a ConvNet classifier

21



Convolutional Network

• MLP uses fully-connected layers: 

– In each layer, each output is a weighted sum of all the inputs followed 

by a non-linearity

– If the input is an image, each output of the first layer will depends on 

all the pixels

– In image processing, we benefit from local operations (convolution), to 

detect local patterns (motivated by visual system computation)

• Convolutional network uses convolutional layers

– Each layer produces multiple output feature maps, each obtained by 

convolving each input feature map and sum all convolved feature 

maps (multi-channel convolution)

– Each layer is specified by the filter corresponding to each output map. 

Multiple filters are used to produce multiple maps

– Motivated by visual system processing using local computations

– Significantly smaller number of parameters for the same number of 

output at each layer

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 22



Example network

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 23

Convolutional layers

For feature extraction 

2D convolution with  

Activation and 

pooling / sub-sampling

Fully connected layers

For Classification task

Matrix multiplication &

activation

• Alex Net

• Each convolutional 

layer has:

– 2D convolution

– Activation (eg. 

ReLU)

– Pooling or sub-

sampling

96 

feature 

maps of 

size 

55x55 

each

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural 

networks." Advances in neural information processing systems. 2012.



What does convolution do?

• Convolution:  Find local feature by sliding a 

filter (convolution w/o reversal)

• Large image:  𝑋 𝑁1 × 𝑁2 (e.g. 512 x 512)

• Small filter:  𝑊 𝐾1 × 𝐾2 (e.g. 8 x 8)

• At each offset 𝑖, 𝑗 compute:

𝑍 𝑖, 𝑗 = ෍

𝑘1=0

𝐾1−1

෍

𝑘2=0

𝐾2−1

𝑊 𝑘1, 𝑘2 𝑋[𝑖 + 𝑘1, 𝑗 + 𝑘2]

– Correlation of 𝑊 with image box starting at 𝑖, 𝑗

– 𝑍 𝑖, 𝑗 is large if feature is present around 𝑖, 𝑗

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 24

Filter 𝑾 Image 𝑿 𝑍[𝑖, 𝑗]

High

Low



Why Convolution Layers?

• Exploit two properties of images

– Dependencies are local

• No need to have each output unit connect to all pixles

– Spatially stationary statistics

• Translation invariant dependencies

• Slide the same filter over all input pixels

• Only approximately true

• LeCun et al. 1989 (LeNet)

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 25

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/3_convnets.pdf



Convolution with/without reversal

• In signal processing and math, convolution includes flipping:

𝑧 𝑛1, 𝑛2 = ෍

𝑘2=0

𝐾2−1

෍

𝑘1=0

𝐾2−1

𝑤[𝑘1, 𝑘2]𝑥[𝑛1 − 𝑘1, 𝑛2 − 𝑘2]

– For this class, we will call this convolution with reversal

• But, in many neural network packages, convolution does not 

include flipping:

𝑧 𝑛1, 𝑛2 = ෍

𝑘2=0

𝐾2−1

෍

𝑘1=0

𝐾2−1

𝑤[𝑘1, 𝑘2]𝑥[𝑛1 + 𝑘1, 𝑛2 + 𝑘2]

– Will call this convolution without reversal (= correlation)

26



Boundary Conditions

• Suppose inputs are 

– 𝑥, size 𝑁1 × 𝑁2,  𝑤: size 𝐾1 × 𝐾2,  𝐾1 ≤ 𝑁1, 𝐾2 ≤ 𝑁2
– 𝑧 = 𝑥 ∗ 𝑤 (without reversal)

𝑧 𝑛1, 𝑛2 = ෍

𝑘2=0

𝐾2−1

෍

𝑘1=0

𝐾2−1

𝑤[𝑘1, 𝑘2]𝑥[𝑛1 + 𝑘1, 𝑛2 + 𝑘2]

• Different ways to define outputs

• Valid mode: 0 ≤ 𝑛1 < 𝑁1 − 𝐾1 + 1, 0 ≤ 𝑛2 < 𝑁2 − 𝐾2 + 1

– Requires no zero padding

• Same mode:  Output size 𝑁1 × 𝑁2
– Usually use zero padding for neural networks

• Full mode: Output size (𝑁1+𝐾1 − 1) × (𝑁2+𝐾2 − 1)

– Not used often in neural networks

27



Boundary Effect

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 28

Input imageValid region Output depends on both inside and outside boundary pixels

Filter mask

“valid” “same” “full”

N-K+1 K

N N N+K-1

Note that with convolution with reversal, the boundary effect will be observed at the top and left sides.



Convolutional Inputs & Outputs

• Inputs and outputs are images with multiple channels

– Number of channels also called the depth

• Can be described as tensors

• Input tensor,  𝑋 shape (𝑁1, 𝑁2, 𝑁𝑖𝑛)

– 𝑁1, 𝑁2 = input image size

– 𝑁𝑖𝑛 = number of input channels

• Output tensor, 𝑍 shape (𝑀1, 𝑀2, 𝑁𝑜𝑢𝑡)

– 𝑀1, 𝑀2 = output image size

– 𝑁𝑜𝑢𝑡 = number of output channels

29



Multi-Channel Convolution

• Weight and bias:  

– 𝑊: Weight tensor, size (𝐾1, 𝐾2, 𝑁𝑖𝑛, 𝑁𝑜𝑢𝑡)

– 𝑏: Bias vector, size 𝑁𝑜𝑢𝑡

• Convolutions performed over space and added over 

channels

𝑍 𝑖1, 𝑖2, 𝑚 = ෍

𝑘1=0

𝐾1−1

෍

𝑘2=0

𝐾2−1

෍

𝑛=0

𝑁𝑖𝑛−1

𝑊 𝑘1, 𝑘2, 𝑛,𝑚 𝑋[𝑖1 +𝑘1, 𝑖2 + 𝑘2, 𝑛] + 𝑏[𝑚]

• For each output channel 𝑚, input channel 𝑛
– Computes 2D convolution with 𝑊[: , : , 𝑛,𝑚] (2D filters of size 

𝐾1 × 𝐾2)

– Sums results over 𝑛

– Different 2D filter for each input channel and output channel pair

30



Activation and Pooling

• Convolution typically followed by activation and pooling 

• Activation, typically ReLU or PReLu

– Zeros out negative values 

• Pooling 

– Downsample output after activation

– Different methods (max, sum, sub-sampling)

– Output combines local features from adjacent regions

– Creates more complex features over wider areas

31



Receptive Field 

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 32

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/3_convnets.pdf



What do convnet learn?

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 33

• AlexNet first layer

– 96 filters

– Size 11 x 11 x 3

– Applied to image of 224 x 224 x 3

• What do these learned features 

look like?

• Selective to basic low-level 

features

– Curves, edges, color transitions, 

…



Convolution vs Fully Connected

• Convolution exploits translational invariance

– Same features is scanned over whole image

• Greatly reduces number of parameters

– Nin input channels of size M1xN1, Nout output channels with size 

M2xN2

– Fully connected network: Nin*Nout*M1*N1*M2*N2+Nout*M2*N2

– Convolutional network with K1xK2 filter: Nin*Nout*K1*K2+Nout

• Example:  Consider first layer in LeNet

– 32 x 32  image (1 channel) to 6 channels using 5 x 5 filters

– Creates 6 x 28 x 28 outputs (keeping only the valid region)

– Fully connected would require 32 x 32 x 6 x 28 x 28 + 6 x 28 x 28 = 

4.9 million parameters!

– Convolutional layer requires only 6 x 5 x 5 + 6 = 156 parameters 

– Reserve fully connected layers for last few layers (for non-image 

output such as classification).

34



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline

• Supervised learning: General concepts

• Neural network architecture

– From single perceptron to multi-layer perceptrons

• Convolutional network architecture

– Why using convolution and many layers

– Multichannel convolution

– Pooling

• Deep networks

• Model training

– Loss functions

– Stochastic gradient descent: general concept 

– Data Preprocessing and Regularization

• Training, validation and testing and cross validation

• Demo:  training a ConvNet classifier

35



Large-Scale Image Classification

• Pre-2009, many image recognition systems worked on relatively 

small datasets

– MNIST:  10 digits

– CIFAR 10 (right)

– CIFAR 100

– …

• Small number of classes (10-100)

• Low resolution (eg. 32 x 32 x 3)

• Performance saturated

– Difficult to make significant advancements

36

https://www.cs.toronto.edu/~kriz/cifar.html



ImageNet (2009) 

• Better algorithms need 

better data

• Build a large-scale image 

dataset 

• 2009 CVPR paper:

– 3.2 million images

– Annotated by 

mechanical turk

– Much larger scale than 

any previous 

• Hierarchical categories

37

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. 

In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (pp. 248-255). IEEE.



ILSVRC 

• ImageNet Large-Scale Visual 

Recognition Challenge

• First year of competition in 2010 

• Many developers tried their 

algorithms

• Many challenges:

– Objects in variety of positions, 

lighting

– Occlusions

– Fine-grained categories

(e.g. African elephants vs. Indian 

elephants)

– …

38



Deep Networks Enter 2012

• 2012:  Stunning breakthrough by 

the first deep network

• “AlexNet”  from U Toronto

• Easily won ILSVRC competition

– Top-5 error rate: 15.3%, second 

place:  25.6% 

• Soon, all competitive methods are 

deep networks

39



Alex Net

• Alex Krizhevsky, Ilya Sutskever,  Geoffrey E. Hinton,  University of 

Toronto, 2012

• Key idea:  Build a very deep neural network

• 60 million parameters, 650000 neurons

• 5 conv layers + 3 FC layers

• Final is 1000-way softmax

40



Why using many layers?

41



Biological Inspiration

• Processing in the brain uses multi-layer processing 

42



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline

• Supervised learning: General concepts

• Neural network architecture

– From single perceptron to multi-layer perceptrons

• Convolutional network architecture

– Why using convolution and many layers

– Multichannel convolution

– Pooling

• Deep networks

• Model training

– Loss functions

– Stochastic gradient descent: general concept 

– Data Preprocessing and Regularization

• Training, validation and testing and cross validation

• Demo:  training a ConvNet classifier

43



Model Training 

• Given a network architecture, how to determine the 

weights/filters?

• Set up a loss function based on the given task

• Update the network parameters to minimize the loss 

using gradient descent

– Stochastic gradient descent (SGD) for large training 

dataset

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 44



Training a Neural Network

• Given data:  𝒙𝑖 , 𝑦𝑖 , 𝑖 = 1,… ,𝑁

• Learn parameters:  𝜃 = (𝑊𝐻 , 𝑏𝐻 ,𝑊𝑜, 𝑏𝑜)
– Weights/filters and biases for hidden and output layers

• Will minimize a loss function: 𝐿 𝜃
෠𝜃 = argmin

𝜃
𝐿 𝜃

– 𝐿 𝜃 = measures how well parameters 𝜃 fit training data 𝒙𝑖 , 𝑦𝑖

45



Loss Function:  Regression

• Regression case:  

– 𝑦𝑖 = target variable for sample 𝑖

– Typically continuous valued

• Output layer:

– ො𝑦𝑖 = 𝑧𝑂𝑖 = estimate of 𝑦𝑖

• Loss function:  Use L2 loss

𝐿 𝜃 =෍
𝑖=1

𝑁

𝑦𝑖 − ො𝑦𝑖
2

• For vector 𝒚𝑖 = 𝑦𝑖1, … , 𝑦𝑖𝐾 , use vector L2 loss

𝐿 𝜃 =෍
𝑖=1

𝑁

෍
𝑗=1

𝐾

𝑦𝑖𝑘 − ො𝑦𝑖,𝑘
2

46



Loss Function:  Binary Classification

• Binary classification:  
– Sample: 𝑥𝑖 with label 𝑦𝑖 = {0,1} = class label,

– Predicted output: ො𝑦𝑖= 𝑃 𝑦𝑖 = 1 𝑥𝑖 , 𝜃 ; 1 − ො𝑦𝑖= 𝑃 𝑦𝑖 = 0 𝑥𝑖 , 𝜃

– Output given by sigmoid on 𝑧𝑂,𝑖 : ො𝑦𝑖=
1

1+𝑒
−𝑧𝑂,𝑖

• Objective: maximize the likelihood (probability of 𝑦𝑖 given 𝑥𝑖 for all 
samples, assuming independence among samples)

– 𝑃 𝒚 𝑿, 𝜽 = ς𝑖=1
𝑁 𝑃 𝑦𝑖 𝑥𝑖 , 𝜃

• Maximizing the likelihood = minimizing negative log likelihood:
𝐿 𝜃 = −σ𝑖=1

𝑁 ln 𝑃 𝑦𝑖 𝑥𝑖 , 𝜃

= −σ𝑖=1
𝑁 𝑦𝑖 ln ො𝑦𝑖 + (1 − 𝑦𝑖) ln (1− ො𝑦𝑖)

– Called the binary cross-entropy

47

activate when 𝑦𝑖=1 activate when 𝑦𝑖=0



Loss Function:  Multi-Class Classification

• Use one-hot-encoding to describe the label 𝑦𝑖

𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝐾), 𝑦𝑖𝑘= ൜
1 𝑦𝑖 = 𝑘
0 𝑦𝑖 ≠ 𝑘

𝑘 = 1, … , 𝐾

• Output: ො𝑦𝑖= ො𝑦𝑖,1, … , ො𝑦𝑖,𝐾 ; ො𝑦𝑖,𝑘= 𝑃 𝑦𝑖 = 𝑘 𝑥𝑖 , 𝜃

– Output given by softmax on 𝑧𝑂,𝑖 : ො𝑦𝑖,𝑘 =
𝑒
𝑧𝑂,𝑖𝑘

σℓ 𝑒
𝑧𝑂,𝑖𝑙

• Negative log-likelihood given by:

𝐿 𝜃 = −෍
𝑖
ln 𝑃 𝑦𝑖 = 𝑘 𝑥𝑖 , 𝜃 = −෍

𝑖
෍

𝑘=1

𝐾

𝑦𝑖𝑘 ln ො𝑦𝑖,𝑘

– Called the categorical cross-entropy

48



Selecting the Right Loss Function

• Depends on the problem type

• Always compare final output ො𝑦𝑖 with target 𝑦𝑖

49

Problem Target  𝒚𝒊 Output  𝒛𝑶𝒊 Loss function Formula

Regression 𝑦𝑖 = Scalar real ො𝑦𝑖 = Prediction of 𝑦𝑖
Scalar output / sample

Squared / L2 

loss
෍

𝑖
𝑦𝑖 − ො𝑦𝑖

2

Regression with 

vector samples

𝒚𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝐾) ො𝑦𝑖𝑘 = Prediction of 𝑦𝑖𝑘
𝐾 outputs / sample

Squared / L2 

loss
෍

𝑖𝑘
𝑦𝑖𝑘 − ො𝑦𝑖,𝑘

2

Binary 

classification

𝑦i = {0,1} ො𝑦𝑖 = Prob. for class 1

Scalar output / sample

Binary cross 

entropy
−෍

𝑖
𝑦𝑖 ln ො𝑦𝑖 + (1 − 𝑦𝑖) ln (1− ො𝑦𝑖)

Multi-class 

classification

𝑦i = {1,… , 𝐾} ො𝑦𝑖𝑘 = Prob. for class k

𝐾 outputs / sample 

Categorical 

cross entropy
−෍

𝑖
෍

𝑘=1

𝐾

𝑦𝑖𝑘 ln ො𝑦𝑖,𝑘



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline

• Supervised learning: General concepts

• Neural network architecture

– From single perceptron to multi-layer perceptrons

• Convolutional network architecture

– Why using convolution and many layers

– Multichannel convolution

– Pooling

• Deep networks

• Model training

– Loss functions

– Stochastic gradient descent: general concept 

– Data Preprocessing and Regularization

• Training, validation and testing and cross validation

• Demo:  training a ConvNet classifier

50



Training with Gradient Descent

• Neural network training:  Minimize loss function

෠𝜃 = argmin
𝜃

𝐿 𝜃 , 𝐿 𝜃 =෍

𝑖=1

𝑁

𝐿𝑖(𝜃, 𝒙𝑖 , 𝑦𝑖)

– 𝐿𝑖(𝜃, 𝒙𝑖 , 𝑦𝑖) = loss on sample 𝑖 for parameter 𝜃

• Standard gradient descent:

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝐿 𝜃𝑘 = 𝜃𝑘 − 𝛼෍

𝑖=1

𝑁

𝛻𝐿𝑖(𝜃
𝑘, 𝒙𝑖 , 𝑦𝑖)

– Each iteration requires computing 𝑁 loss functions and 

gradients

– Will discuss how to compute later

– But, gradient computation is expensive when data size 𝑁 large

51



Stochastic Gradient Descent

• In each step:

– Select random small 

“mini-batch”

– Evaluate gradient on 

mini-batch

• For 𝑡 = 1 to 𝑁steps

– Select random mini-

batch 𝐼 ⊂ {1, … , 𝑁}

– Compute gradient 

approximation:

𝑔𝑡 =
1

|𝐼|
෍

𝑖∈𝐼

𝛻𝐿(𝑥𝑖 , 𝑦𝑖 , 𝜃)

– Update parameters:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑡𝑔𝑡

52

Full batch of 

training 

records

e.g. 50,000 in 

MNIST

Randomly 

selected 

mini-batch

e.g. 100 

records

Learning rate



SGD Theory (Advanced)

• Expectation of Mini-batch gradient = true gradient :

𝐸 𝑔𝑡 =
1

𝑁
෍

𝑖=1

𝑁

𝛻𝐿(𝑥𝑖 , 𝑦𝑖 , 𝜃) = 𝛻𝐿(𝜃𝑡)

• Hence can write 𝑔𝑡 = 𝛻𝐿 𝜃𝑡 + 𝜉𝑡 ,

– 𝜉𝑡= random error in gradient calculation,  𝐸 𝜉𝑡 = 0

– SGD update:  𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑡𝑔𝑡 , 𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑡𝛻𝐿 𝜃𝑡 − 𝛼𝑡𝜉𝑡

• Robins-Munro:  Suppose that 𝛼𝑡 → 0 and σ𝑡 𝛼
𝑡 = ∞.  Let 𝑠𝑡 =

σ𝑘=0
𝑡 𝛼𝑘

– Then 𝜃𝑡 → 𝜃(𝑠𝑡) where 𝜃(𝑠) is the continuous solution to the 

differential equation:
𝑑𝜃(𝑠)

𝑑𝑠
= −𝛻𝐿(𝜃)

• High-level  take away:  

– If step size is decreased, random errors in sub-sampling are 

averaged out

53



SGD Practical Issues

• Terminology:

– Suppose minibatch size is 𝐵. Training size is 𝑁

– Each training epoch includes updates going through all non-

overlapping minibatches

– There are 
𝑁

𝐵
steps per training epoch

• Data shuffling

– Generally do not randomly pick a mini-batch

– In each epoch, randomly shuffle training samples

– Then, select mini-batches in order through the shuffled training 

samples.

– It is critical to reshuffle in each epoch!

• How to adapt the learning rate?

– Many optimization algorithms

– ADAM is widely used

– https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_resource/content/

1/adam_pres.pdf
54

https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_resource/content/1/adam_pres.pdf


ADAM Optimizer

• How to choose and adapt the learning rate 𝛼𝑡 in SGD?

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 55

𝑚𝑡 (Moment) = Moving average of gradient

𝑣𝑡 = Moving average of element wise 

gradient square (non-centered variance)

Update using moment, with learning 

rate inversely proportional to the STD

[Adam: A Method for Stochastic Optimization, Kingma & Ba, arXiv:1412.6980] 

https://arxiv.org/pdf/1412.6980.pdf



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline

• Supervised learning: General concepts

• Neural network architecture

– From single perceptron to multi-layer perceptrons

• Convolutional network architecture

– Why using convolution and many layers

– Multichannel convolution

– Pooling

• Deep networks

• Model training

– Loss functions

– Stochastic gradient descent: general concept 

– Data Preprocessing and Regularization

• Training, validation and testing and cross validation

• Demo:  training a ConvNet classifier

56



Initialization and Data Normalization 

• When the loss function is not convex, solution by gradient descent 

algorithm depends on the initial solution

• Typically weights are initialized to random values near zero.

• Starting with large weights often lead to poor results.

• Normalizing data to zero mean and unit variance allows all input 

dimensions be treated equally and facilitate better convergence.

• With normalized data, it is typical to initialize the weights to be 

uniform in [-0.7, 0.7] [ESL]

57



Regularization: Penalizing large weights

• To avoid the weights get too large, can add a penalty 

term explicitly, with regularization level 𝜆

• Ridge penalty 

𝑅 𝜃 =෍

𝑑,𝑚

𝑤𝐻,𝑑,𝑚
2 +෍

𝑚,𝑘

𝑤𝑂,𝑚,𝑘
2 = 𝑤𝐻

2 + 𝑤𝑂
2

• Total loss

𝐿𝑟𝑒𝑔 𝜃 = 𝐿 𝜃 + 𝜆𝑅 𝜃

• Change in gradient calculation

• Typically used regularization

– L2 = Ridge: Shrink the sizes of weights

– L1: Prefer sparse set of weights

– L1-L2: use a combination of both

58



Regularization: Batch normalization

• In addition to normalize the input 

data, also normalize the input to each 

intermediate layer within each batch

– Invariant to intensity shift

• Then rescale the data using two 

parameters (to be learnt)

• For each output in a fully connected 

layer or a feature map in a conv layer, 

save the training data mean 𝜇 and 

STD 𝜎 as well
– K feature maps: 4K parameters

• Add a Batch Normalization layer 

before each conv/fully connected 

layer!

• Can use a higher learning rate and 

hence converge faster

59

Sergey Ioffe, Christian Szegedy: Batch Normalization: 

Accelerating Deep Network Training by Reducing Internal 

Covariate Shift.

https://arxiv.org/pdf/1502.03167v3.pdf

https://www.youtube.com/watch?v=nUUqwaxLnWs

https://towardsdatascience.com/batch-normalization-in-

neural-networks-1ac91516821c

http://dblp.uni-trier.de/pers/hd/i/Ioffe:Sergey
http://dblp.uni-trier.de/pers/hd/s/Szegedy:Christian
https://www.youtube.com/watch?v=nUUqwaxLnWs


Regularization: Dropout

• Drop some percentage 

(Dropout Rate) of nodes in 

each layer both in forward and 

backward pass in each 

training epoch

• Implemented by setting a 

certain input elements to this 

layer to zero

• Dropout forces a neural 

network to learn more robust 

features that are useful in 

conjunction with many 

different random subsets of 

the other neurons.

• Reduces overfitting

• Need more epochs to 

converge but each epoch 

takes less time

60

Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural 
networks from
overfitting”, JMLR 2014



Data Augmentation

• When the training data are limited, can generate additional samples based on the 
anticipated diversity in the input data

• Image augmentation: by shifting, scaling, rotating the original training images

from keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(

featurewise_center=False,  # set input mean to 0 over the dataset

samplewise_center=False,  # set each sample mean to 0

featurewise_std_normalization=False,  # divide inputs by std of the dataset

samplewise_std_normalization=False,  # divide each input by its std

zca_whitening=False,  # apply ZCA whitening

rotation_range=0,  # randomly rotate images in the range (degrees, 0 to 180)

width_shift_range=0.1,  # randomly shift images horizontally (fraction of total width)

height_shift_range=0.1,  # randomly shift images vertically (fraction of total height)

horizontal_flip=True,  # randomly flip images

vertical_flip=False)  # randomly flip images

61



62From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline (Part I)

• Supervised learning: 

– General concepts 

– Classification vs. regression

• Neural network architecture

– From single perceptron to multi-layer perceptrons

• Convolutional network architecture

– Why using convolution and many layers

– Multichannel convolution

– Pooling

• Model training

– Loss functions

– Stochastic gradient descent: general concept 

– Data Preprocessing and Regularization

• Training, validation and testing and cross validation

• Demo:  training a ConvNet classifier

63



Training and Testing

• Goal: use training data to learn a model that works well on unseen data!

• Randomly split the data set to training and testing subsets
– Training and testing sets should contain the same percentages of different classes as the entire 

dataset 

• Train (using SGD) on the training set and compute both training loss and 

validation loss (on the testing set) in successive epochs and plot loss curves
– The training loss should decrease in successive epochs

– But the validation loss may not!

– Stop when validation loss starts to increase

– Use the trained network on the testing set to evaluate performance

• When the training error at convergence is still large, the network architecture 

does not have enough representation power. 
– Need to modify network architecture.

• When the training error is very small but the validation error is large, the network 

is overfit. 
– Stop earlier, and if necessary modify network architecture.

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 64



Training/Validation/Testing Pipeline

• To evaluate multiple model structures (including different structures 

and multiple hyperparameters of the same structure, e.g. #layers, # 

filters, filter sizes)

• Split data to training/validation/testing

– For each candidate model structure

• Train on the training set, evaluate on the validation set

– Determine the structure with best validation performance

– Retrain the network using training and validation set together using the 

best structure

– Evaluate the performance of the trained model on the test set

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 65



Cross Validation with Small Dataset

• When the available data set is small

• Partition to training and testing 

• Within the training set

– Divide to K-folds

– For each candidate models structure

• Using (K-1) fold for training, and 1 fold for testing;

• Repeat K times

• Average performance for all testing folds

– Determine the best structure with the best average validation performance

– Train the chosen structure using the entire training set

– Instead of dividing to K-folds, can randomly draw 1/K percent for validation and 

use remaining (K-1)/K percent for training, and average validation performance 

over many random drawings.

• Evaluate the trained model on the testing set (held-out set)

• Training and testing set and each fold/draw within the training set should 

contain the same percentages of different classes as the entire dataset

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 66



Model Structure Selection

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 67

Better to have big model and regularize, than unfit with small model.

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf



Summary: Building a Conv Net

• Define a network structure

– Conv layer + fully connected layers 

– Add batch normalization and drop out

• Set up a loss function based on the given task

– Need to add proper regularization on weights

• Partition data to training and testing

– Proprocess data (zero-mean, unit variance)

– Augment training data 

• Perform stochastic gradient descent on training set

– Calculate gradient for each batch (to be discussed later)

– Update the parameters (ADAM optimizer preferred)

– Evaluate the loss for training and testing set after each epoch

• Observe both training loss and validation loss curves

– Decide when to stop

– If training or validation loss is still very large, try to alter network structure

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 68



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline

• Supervised learning: General concepts

• Neural network architecture

– From single perceptron to multi-layer perceptrons

• Convolutional network architecture

– Why using convolution and many layers

– Multichannel convolution

– Pooling

• Deep networks

• Model training

– Loss functions

– Stochastic gradient descent: general concept 

– Data Preprocessing and Regularization

• Training, validation and testing and cross validation

• Demo:  training a ConvNet classifier using PyTorch

69



Deep Learning Zoo

70



Recommended Readings

• Material for the machine learning class developed by Sundeep 

Rangan:

– https://github.com/sdrangan/introml/blob/master/sequence.md

• Online course by Andrew Ng

– https://www.coursera.org/learn/neural-networks-deep-

learning?specialization=deep-learning

• Many online tutorials

• https://pytorch.org/tutorials/

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 71

https://github.com/sdrangan/introml/blob/master/sequence.md
https://www.coursera.org/learn/neural-networks-deep-learning?specialization=deep-learning

