

Image and Video Processing

Convolutional Networks for Image Processing (Part II)

Yao Wang Tandon School of Engineering, New York University Many contents from Sundeep Rangan: https://github.com/sdrangan/introml/blob/master/sequence.md

Outline (Part I)

- Supervised learning: General concepts
- Neural network architecture
 - From single perceptron to multi-layer perceptrons
- Convolutional network architecture
 - Why using convolution and many layers
 - Multichannel convolution
 - Pooling
- Deep networks
- Model training
 - Loss functions
 - Stochastic gradient descent: general concept
 - Data Preprocessing and Regularization
- Training, validation and testing and cross validation
- Demo: training a ConvNet classifier

Outline (Part II)

- Neural Nets and Conv Nets and Model Training (Review)
 - Gradient calculation
 - Some important extensions of conv. layers
 - Popular classification models and transfer learning

Outline (Part III)

- Image to image autoencoder
- Semantic Segmentation using Multiresolution
 Autoencoder
- Object detection and classification
- Instance segmentation

Two-Layer Neural Net for Multiple Outputs

• Hidden layer: $\mathbf{z}_H = \mathbf{W}_H \mathbf{x} + \mathbf{b}_H$, $\mathbf{u}_H = g_{act}(\mathbf{z}_H)$

• Output layer:
$$\boldsymbol{z}_{O} = \boldsymbol{W}_{O}\boldsymbol{u}_{H} + \boldsymbol{b}_{O}$$

• Response map: $\hat{y} = u_0 = g_{out}(\mathbf{z}_0)$

Example Conv. Network

- Alex Net
- Each convolutional layer has:
 - 2D convolution
 - Activation (eg. ReLU)
 - Pooling or subsampling

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems*. 2012.

Yao Wang, 2019

ECE-GY 6123: Image and Video Processing

Training with Gradient Descent

- Given training data: $(x_i, y_i), i = 1, ..., N$
- Learn parameters: $\theta = (W_H, b_H, W_o, b_o)$
 - Weights and biases for hidden and output layers
 - W_H are filter kernels in conv. layer
- Neural network training (like all training): Minimize loss function

$$\hat{\theta} = \arg\min_{\theta} L(\theta), \qquad L(\theta) = \sum_{i=1}^{N} L_i(\theta, \mathbf{x}_i, y_i)$$

- $L_i(\theta, x_i, y_i)$ = loss on sample *i* for parameter θ

• Standard gradient descent:

$$\theta^{k+1} = \theta^k - \alpha \nabla L(\theta^k) = \theta^k - \alpha \sum_{i=1}^N \nabla L_i(\theta^k, \mathbf{x}_i, y_i)$$

- Each iteration requires computing N loss functions and gradients
- But, gradient computation is expensive when data size N large

Stochastic Gradient Descent

- In each step:
 - Select random small "mini-batch"
 - Evaluate gradient on mini-batch

• For
$$t = 1$$
 to N_{steps}

- Select random minibatch $I \subset \{1, ..., N\}$
- Compute gradient approximation:

$$g^t = \frac{1}{|I|} \sum_{i \in I} \nabla L(x_i, y_i, \theta)$$

- Update parameters:
$$\theta^{t+1} = \theta^t - \alpha^t g^t$$

Loss Function: Regression

- Regression case:
 - y_i = target variable for sample *i*
 - Typically continuous valued
- Output layer:
 - $\hat{y}_i = z_{Oi}$ = estimate of y_i
- Loss function: Use L2 loss

$$L(\theta) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

• For vector $\mathbf{y}_i = (y_{i1}, \dots, y_{iK})$, use vector L2 loss $L(\theta) = \sum_{i=1}^N \sum_{j=1}^K (y_{ik} - \hat{y}_{i,k})^2$

Loss Function: Binary Classification

- Binary classification:
 - Sample: x_i with label $y_i = \{0,1\} =$ class label,
 - Predicted output: $\hat{y}_i = P(y_i = 1 | x_i, \theta); \ 1 \hat{y}_i = P(y_i = 0 | x_i, \theta)$
 - Output given by sigmoid on $z_{0,i}$: $\hat{y}_i = \frac{1}{1+e^{-z_{0,i}}}$
- Objective: maximize the likelihood (probability of y_i given x_i for all samples, assuming independence among samples)

-
$$P(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{N} P(y_i|x_i, \boldsymbol{\theta})$$

• Maximizing the likelihood = minimizing negative log likelihood:

$$\begin{split} L(\theta) &= -\sum_{i=1}^{N} \ln P(y_i | x_i, \theta) \\ &= -\sum_{i=1}^{N} y_i \ln \hat{y}_i + (1 - y_i) \ln (1 - \hat{y}_i) \\ &\uparrow &\uparrow \\ &\text{activate when } y_i = 1 \quad \text{activate when } y_i = 0 \end{split}$$

- Called the binary cross-entropy

Loss Function: Multi-Class Classification

• Use one-hot-encoding to describe the label y_i

$$y_i = (y_{i1}, \dots, y_{iK}), \quad y_{ik} = \begin{cases} 1 & y_i = k \\ 0 & y_i \neq k \end{cases} \quad k = 1, \dots, K$$

• Output: $\hat{y}_i = (\hat{y}_{i,1}, ..., \hat{y}_{i,K}); \hat{y}_{i,k} = P(y_i = k | x_i, \theta)$

- Output given by softmax on $z_{0,i}$: $\hat{y}_{i,k} = \frac{e^{z_{0,ik}}}{\sum_{\ell} e^{z_{0,il}}}$

- Negative log-likelihood given by: $L(\theta) = -\sum_{i} \ln P(y_i = k | x_i, \theta) = -\sum_{i} \sum_{k=1}^{K} y_{ik} \ln \hat{y}_{i,k}$
 - Called the categorical cross-entropy

How to compute gradients?

- For two-layer neural net: $\theta = (W_H, b_H, W_o, b_o)$
- Gradient is computed with respect to each parameter in each batch of M samples:

$$L(\theta) = \sum_{i=1}^{M} L_{i}(\theta, \mathbf{x}_{i}, y_{i}) \qquad \nabla L(\theta) = \sum_{i=1}^{M} \nabla L_{i}(\theta, \mathbf{x}_{i}, y_{i})$$
$$\nabla L_{i}(\theta) = [\nabla_{W_{H}} L_{i}(\theta), \nabla_{b_{H}} L_{i}(\theta), \nabla_{W_{O}} L_{i}(\theta), \nabla_{b_{O}} L_{i}(\theta)]$$

• Gradient descent is performed on each parameter:

$$W_{H} \leftarrow W_{H} - \alpha \nabla_{W_{H}} L(\theta),$$

$$b_{H} \leftarrow b_{H} - \alpha \nabla_{b_{H}} L(\theta),$$

- How to compute $\nabla_{W_H} L_i(\theta)$, $\nabla_{b_H} L_i(\theta)$, etc.?
- W_H , b_H , etc. are vectors and more generally tensors!
- Variables x_i , z_i , u_i , \hat{y}_i are also tensors!

Outline (Part II)

- Neural Nets and Conv Nets and Model Training (Review)
- Gradient calculation
 - Some important extensions of conv. layers
 - Popular classification models and transfer learning

Gradient Calculation

- Tensor definition
- Tensor gradients
- Tensor gradient chain rule
- Backpropagation
- Forward and backward pass

What is a Tensor?

- A multi-dimensional array
- Examples:
 - 2D: A grayscale image [height x width]
 - 3D: A color image [height x width x rgb]
 - 4D: A collection of images [height x width x rgb x image number]
- Like numpy ndarray
- Basic unit in tensorflow
- Rank or order = Number of dimensions
 - Note: Rank has different meaning in linear algebra

Indexing Tensors

- Suppose X is a tensor of order N
- Index with a multi-index $X[i_1, ..., i_N]$
 - May also use subscript: $X_{i_1,...,i_N}$
- Example: Suppose X = collection of images [height x width x rgb x image number]
 - X[100,150,1,30] = pixel (100,150) for color channel 1 (green) on image 30
- If $i_1 \in \{0, \dots, d_1 1\}, i_2 \in \{0, \dots, d_2 1\}, \dots$ then total number of elements = $d_1d_2 \dots d_N$

Tensors and Neural Networks

- Need to be consistent with indexing
- For a single input *x*:
 - Input x: vector of dimension d
 - Hidden layer: z_H, u_H : vectors of dimension N_H
 - Outputs: z_0 : dimension K
- A batch of inputs with M samples:
 - Input x: Matrix of dimension $M \times d$
 - Hidden layer: z_H, u_H : vectors of dimension $M \times N_H$
 - Outputs: z_0 : dimension $M \times K$
- Can generalize to other shapes of input •

	Sample dimension <i>d</i>
Number samples <i>M</i>	

Gradient for Tensor Inputs & Outputs

- How do we consider general tensor inputs and outputs?
- General setting: y = f(x)
 - x is a tensor of order N, y is a tensor of order M
- Gradient tensor: A tensor of order N + M

$$\left[\frac{\partial f(x)}{\partial x}\right]_{i_1,\dots,i_M,j_1,\dots,j_N} = \frac{\partial f_{i_1,\dots,i_M}(x)}{\partial x_{j_1,\dots,j_N}}$$

- Tensor has the derivative of every output with respect to every input.
- Ex: *x* has shape (50,30), *y* has shape (10,20,40)
 - $-\frac{\partial f(x)}{\partial x}$ has shape (10,20,40,50,30)
 - $10(20)(40)(50)(30) = 1.2(10)^7$ elements

Gradient Examples 1 and 2

- Example 1: $f(w) = (w_1w_2, w_1^2 + w_3^3)$
 - 2 outputs, 3 inputs.
 - Gradient tensor is 2×3

$$\frac{\partial f(w)}{\partial w} = \begin{bmatrix} w_2 & w_1 & 0\\ 2w_1 & 0 & 3w_3^2 \end{bmatrix}$$

• Example 2: z = f(w) = Aw, A is $M \times N$

- *M* outputs, *N* inputs:
$$z_i = \sum_{j=1}^N A_{ij} w_j$$

- Gradient components:
$$\frac{\partial z_i}{\partial w_j} = A_{ij}$$

Computation Graph & Forward Pass

- Neural network loss function can be computed via a computation graph
- Sequence of operations starting from measured data and parameters
- Loss function computed via a forward pass in the computation graph
 - $\quad z_{H,i} = W_H x_i + b_H$
 - $u_{H,i} = g_{act}(z_{H,i})$
 - $z_{0,i} = W_0 u_{H,i} + b_0$
 - $\hat{y}_i = g_{out}(z_{0,i})$
 - $L = \sum_{i} L_i(\hat{y}_i, y_i)$

Chain Rule

- How do we compute gradient?
- Consider a three node computation graph:

-
$$y = h(x), z = g(y)$$

- So $z = f(x) = g(h(x))$
- What is $\frac{\partial z}{\partial x}$?

$$\frac{\partial z}{\partial x} = \frac{\partial f(x)}{\partial x} = \frac{\partial g(y)}{\partial y} \frac{\partial h(x)}{\partial x}$$

• What happens for tensors?

Ζ

Tensor Chain Rule

- Consider Tensor case:
 - x has shape (n_1, \dots, n_N) ,
 - y has shape (m_1, \dots, m_M)
 - z has shape (r_1, \dots, r_R)

• First, compute gradient tensors between input and output of each node:

$$- \frac{\partial g(y)}{\partial y} \text{ has shape } (r_1, \dots, r_R, m_1, \dots, m_M)$$
$$- \frac{\partial h(x)}{\partial x} \text{ has shape } (m_1, \dots, m_M, n_1, \dots, n_N)$$

• Next, apply tensor chain rule:

 $\frac{\partial z}{\partial x}$ has shape $(r_1, \dots, r_R, n_1, \dots, n_N)$: How to compute this?

Tensor Chain Rule Summary

- It is all about keeping track of indices!
- Step 1. Decide on some indexing

$$- x_{j_1,...,j_N}, y_{k_1,...,k_M}, z_{i_1,...,i_R}$$

٠

Step 2. Compute all partial derivatives $\frac{\partial g_{i_1,\dots,i_R}(y)}{\partial y_{k_1,\dots,k_M}}$ and $\frac{\partial h_{k_1,\dots,k_M}(x)}{\partial x_{i_1,\dots,i_N}}$

y = h(x)

x

z = g(y)

• Step 3. Use tensor chain rule

$$\frac{\partial z_{i_1,\dots,i_R}}{\partial x_{j_1,\dots,j_N}} = \frac{\partial f_{i_1,\dots,i_R}(x)}{\partial x_{j_1,\dots,j_N}} = \sum_{k_1=1}^{m_1} \cdots \sum_{k_M=1}^{m_M} \frac{\partial g_{i_1,\dots,i_R}(y)}{\partial y_{k_1,\dots,k_M}} \frac{\partial h_{k_1,\dots,k_M}(x)}{\partial x_{j_1,\dots,j_N}}$$

• Sometimes write with tensor inner product

$$\frac{\partial z}{\partial x} = \frac{\partial f(x)}{\partial x} = \left\langle \frac{\partial g(y)}{\partial y}, \frac{\partial h(x)}{\partial x} \right\rangle$$

Gradients on a Computation Graph

- Backpropagation: Compute gradients backwards
 - Use tensor dot products and chain rule
- First compute all derivatives of all the variables
 - $\quad \partial L/\partial z_{O} = \langle \partial L/\partial \hat{y} , \partial \hat{y} / \partial z_{O} \rangle$
 - $\partial L/\partial u_H = \langle \partial L/\partial z_O, \partial z_O/\partial u_H \rangle$
 - $\partial L/\partial z_H = \langle \partial L/\partial u_H, \partial u_H/\partial z_H \rangle$
 - $(\partial \hat{y} / \partial z_0 \text{ and } \partial u_H / \partial z_H \text{ is element wise})$
- Then compute gradient of parameters:
 - $\partial L/\partial W_{O} = \langle \partial L/\partial z_{O}, \partial z_{O}/\partial W_{O} \rangle$
 - $\partial L/\partial b_O = \langle \partial L/\partial z_O, \partial z_O/\partial b_O \rangle$
 - $\partial L/\partial W_H = \langle \partial L/\partial z_H, \partial z_H/\partial W_H \rangle$
 - $\partial L/\partial b_H = \langle \partial L/\partial z_H, \partial z_H/\partial b_H \rangle$

Example: Last layer of a Binary Classifier

• How to compute $\partial L/\partial W_0$, $\partial L/\partial b_0$?

$$L(\theta) = -\sum_{i=1}^{N} y_i \ln \hat{y}_i + (1 - y_i) \ln (1 - \hat{y}_i)$$
$$\hat{y}_i = \frac{1}{1 + e^{-z_{O,i}}}; \quad \boldsymbol{z}_O = \boldsymbol{W}_O \boldsymbol{u}_H + \boldsymbol{b}_O$$

This part could be convolutional layers

Example: Last layer of a Binary Classifier

• Go through on the board

Indexing Multi-Layer Networks

- Similar to two-layer NNs
 - But must keep track of layers
- Consider batch of image inputs:
 - X[i, j, k, n],
 (sample,row,col,channel)
- Input tensor at layer ℓ:
 - *U^ℓ*[*i*, *j*, *k*, *n*] for convolutional layer
 - $U^{\ell}[i, n]$ for fully connected layer
- Output tensor from linear transform:
 - $Z^{\ell}[i, j, k, n]$ or $Z^{\ell}[i, n]$
- Output tensor after activation / pooling:
 - $U^{\ell+1}[i, j, k, n]$ or $U^{\ell+1}[i, n]$

Back-Propagation in Convolutional Layers

- Convolutional layer in forward path $Z^{\ell} = W^{\ell} * U^{\ell} + b^{\ell}$
- During back-propagation:
 - Obtain gradient tensor from upstream layers $\frac{\partial J}{\partial Z^{\ell}}$
 - Need to compute downstream gradients:

$$\frac{\partial J}{\partial W^{\ell}}, \qquad \frac{\partial J}{\partial b^{\ell}}, \qquad \frac{\partial J}{\partial U^{\ell}}$$

Gradient With Respect to Filter Weights

• Write convolution as:

$$Z[i_1, i_2, m] = \sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} \sum_{n=0}^{N_{in}-1} W[k_1, k_2, n, m] U[i_1+k_1, i_2+k_2, n] + b[m]$$

- Drop layer index ℓ and sample index i
- Gradient wrt filter weights: $\frac{\partial Z[i_1, i_2, m]}{\partial W[k_1, k_2, n, m]} = U[i_1 + k_1, i_2 + k_2, n]$
 - Note that the same filter is used for all pixels, need to sum gradients $\frac{\partial Z[i_1,i_2,m]}{\partial W[k_1,k_2,n,m]}$ for all i_1, i_2 :

 $\frac{\partial J}{\partial W[k_1,k_2,n,m]} = \sum_{i_1=1}^{N_1} \sum_{i_2=1}^{N_2} \frac{\partial Z[i_1,i_2,m]}{\partial W[k_1,k_2,n,m]} \frac{\partial J}{\partial Z[i_1,i_2,m]} = \sum_{i_1=1}^{N_1} \sum_{i_2=1}^{N_2} U[i_1+k_1,i_2+k_2,n] \frac{\partial J}{\partial Z[i_1,i_2,m]}$

• Gradient wrt weights can be computed via convolution

- Convolve input U with gradient tensor $\frac{\partial J}{\partial Z[i_1, i_2, m]}$

- Similar computations for gradients with respect to $\frac{\partial f}{\partial h}$
 - Homework!

Backpropagation: layer i

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf

Yao Wang, 2019

ECE-GY 6123: Image and Video Processing

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf

ECE-GY 6123: Image and Video Processing

Outline (Part II)

- Neural Nets and Conv Nets and Model Training (Review)
- Gradient calculation
- Some important extensions of conv. layers
 - Popular classification models and transfer learning

Residual Connections (ResNET)

- Really, really deep convnets don't train well
 - Gradient of final loss does not propagate back to earlier layers
- Key idea: introduce "pass through" into each layer for back propagation
 Bottleneck

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770-778. 2016. http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Yao Wang, 2019

ECE-GY 6123: Image and Video Processing

Some Important Extensions

- Residual connections
- Dense connections
- Dilated convolution

Benefit of residual connection

W/o residual layer: deeper networks perform worse even for the training data.

W residual layer: deeper networks perform better!

Using shortcut 2 is theoretically optimal **Demystifying ResNet** https://arxiv.org/abs/1611.01186

Revolution of Depth

From: http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf

A variation of residual connection: Concatenation (DenseNet)

- Feature maps of all preceding layers are concatenated and used as input for the current layer.
- Facilitate gradient back propagation, as with residual connection
- Strengthen feature forward propagation and reuse

Figure 1: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps as input.

From: Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely connected convolutional networks." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4700-4708. 2017.

Yao Wang, 2019

Stacking Dense Blocks

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature-map sizes via convolution and pooling.

Use bottleneck layer (1x1 conv) to reduce the number of feature maps between blocks

 Can use fewer layers to achieve same performance as ResNET

From: Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely connected convolutional networks." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4700-4708. 2017.

Yao Wang, 2019

Dilated Convolution

- Large perceptive field is important to incorporate global information
- How to increase the perceptive field
 - Larger filter
 - More layers of small filters
 - Dilated conv.
- Receptive field of the first layer is the filter size
- Receptive field (w.r.t. input image) of a deeper layer depends on all previous layers' filter size and strides

Figure from Fergus: https://cs.nyu.edu/~fergus/teaching/vision/3_convnets.pdf

Dilated Conv in 1D

Actual Dilated Casual Convolutions

Figure from https://i.stack.imgur.com/RmJSu.png

Multiscale processing while maintaining original resolution! Used for speech waveform generation.

Dilated Conv. In 2D

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." *arXiv preprint arXiv:1511.07122* (2015). Multiscale processing while maintaining original resolution!

Good for dense prediction: image to image

Yao Wang, 2019

Outline (Part II)

- Neural Nets and Conv Nets and Model Training (Review)
- Gradient calculation
- Some important extensions of conv. layers
- Popular classification models and transfer learning

Well-Known Models

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

Yao Wang, 2019

Performance vs. Complexity

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

Yao Wang, 2019

Transfer Learning

- For image classification or other applications, training from scratch takes tremendous resources
- Instead, can refine the VGG or other well trained networks
- Can use VGG convolutional layers, and retrain only the fully connected layers (possibly some later convolutional layers) for different problems.
- Or can use VGG conv layers as the "initial model" and further refine.
- Computer assignment: load VGG model, and fix all conv. layers, retrain additional fully connected layers for binary classification, try and compare different training tricks
 - Using Flickr API (courtesy of Sundeep Rangan) for downloading images for a given keyword

VGG16

- From the Visual Geometry Group
 - Oxford, UK
- Won ImageNet
 ILSVRC-2014
- Remains a very good network
- Lower layers are often used as feature extraction layers for other tasks

Model	top-5 classification error on ILSVRC-2012 (%)	
	validation set	test set
16-layer	7.5%	7.4%
19-layer	7.5%	7.3%
model fusion	7.1%	7.0%
http://www.robots.ox.ac.uk/~vgg/research/very_deep/		

K. Simonyan, A. Zisserman Very Deep Convolutional Networks for Large-Scale Image Recognition arXiv technical report, 2014

Transfer Learning

Transfer Learning with CNNs

1. Train on Imagenet

2. Small Dataset (C classes) 3. Bigger dataset FC-C FC-C Train these FC-4096 FC-4096 Reinitialize FC-4096 FC-4096 this and train MaxPool MaxPool Conv-512 With bigger Conv-512 Conv-512 Conv-512 dataset, train MaxPool MaxPool more layers Conv-512 **Conv-512** Conv-512 Conv-512 Freeze these MaxPool MaxPool Conv-256 Freeze these Conv-256 Conv-256 Conv-256 MaxPool MaxPool Lower learning rate Conv-128 Conv-128 when finetuning; Conv-128 Conv-128 1/10 of original LR MaxPool MaxPool Conv-64 Conv-64 is good starting Conv-64 Conv-64 point Image Image

From http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

ECE-GY 6123: Image and Video Processing

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014

Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops

2014

Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

Caffe: <u>https://github.com/BVLC/caffe/wiki/Model-Zoo</u> TensorFlow: <u>https://github.com/tensorflow/models</u> PyTorch: <u>https://github.com/pytorch/vision</u>

From http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

- Gradient Calculation through backpropagation
 - Tensor gradient, Tensor chain rule
- Residual and dense connections to ease gradient back
 propagation
- Dilated convolution for increasing perceptive field
- Transfer learning

Recommended Readings

- For tensor gradient calculation and backpropagation:
 - Lecture material of Sundeep Rangan
 - https://github.com/sdrangan/introml/blob/master/sequence.md
 - Unit on neural net and convolution networks
- For vision applications:
 - Stanford course by Feifei Li, et al: CS231n: Convolutional Neural Networks for Visual Recognition, Spring 2018: <u>http://cs231n.stanford.edu/</u>
 - Popular network case studies: <u>http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf</u>
 - Learning GPU and PyTorch and TensorFlow: <u>http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf</u>
 - Video available for previous offerings:
 - <u>https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-</u> zLfQRF3EO8sYvhttps://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYjzLfQRF3EO8sYv