<N

Z
=
—

o W @)

Image and.\ 20 Processin

Convolutional Networks for Image
Processing (Part Il)

Yao Wang
Tandon School of Engineering, New York University
Many contents from Sundeep Rangan:
https://github.com/sdrangan/introml/blob/master/sequence.md

Outline (Part 1)

» Supervised learning: General concepts
* Neural network architecture
— From single perceptron to multi-layer perceptrons

« Convolutional network architecture
— Why using convolution and many layers
— Multichannel convolution
— Pooling

* Deep networks
« Model training
— Loss functions
— Stochastic gradient descent: general concept
— Data Preprocessing and Regularization
« Training, validation and testing and cross validation
Demo: training a ConvNet classifier

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline (Part 1l)

) . \eural Nets and Conv Nets and Model Training
(Review)

« Gradient calculation
« Some important extensions of conv. layers
» Popular classification models and transfer learning

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 3

Outline (Part 1)

« Image to image autoencoder

« Semantic Segmentation using Multiresolution
Autoencoder

* Object detection and classification
« Instance segmentation

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Two-Layer Neural Net for Multiple Outputs

 Hidden layer: zy = Wyx+ by, uy = guct(Zy)
« Output layer: z, = Wyuy + b,
 Response map: y = up = gout(Zo)

Linear map Activation Linear map Response Map
zy = Wyx + by 9u(zy) zo = Wouy + by Y = U = Gout(20)
@o— (O
o— —0——0——0— —0— —
x | o—LF——0 - Zo »
Input Zy Uy

\ Y J \ }
Hidden layer Output layer

Example Conv. Network

58

 Alex Net

dense dente o

96
feature
maps of
size
55x55
each

Convolutional

For feature extraction

2D convolution with

Activation and

Fully connected layers
For Classification task

layers

Matrix multiplication &
activation

pooling / sub-sampling

Each convolutional
layer has:

2D convolution
Activation (eg.
ReLU)

Pooling or sub-
sampling

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural
networks." Advances in neural information processing systems. 2012.

Yao Wang, 2019

ECE-GY 6123: Image and Video Processing

Training with Gradient Descent

« Given training data: (x;,v;),i=1,..,N

* Learn parameters: 8 = (Wy, by, W,, b,)
— Weights and biases for hidden and output layers
- Wy are filter kernels in conv. layer

« Neural network training (like all training): Minimize loss function
N

6 = arg min L(B), L(B) = z L;(0,x;,y;)
i=1

- L;(8,x;,y;) = loss on sample i for parameter 0
« Standard gradient descent:

N
ok+1 = gk — qVL(6%) = 9% — az VL; (0%, x;,v;)
i=1
— Each iteration requires computing N loss functions and gradients
— But, gradient computation is expensive when data size N large

Stochastic Gradient Descent

Full batch of
training
records

e.g. 50,000in
MNIST

Randomly
selected
mini-batch

e.g. 100
records

In each step:

— Select random small
“mini-batch”

— Evaluate gradient on
mini-batch

Fort =1to Nsteps

— Select random mini-
batchI c {1, ...,N}

— Compute gradient
approximation:

.1
g = mz VL(xi'yi'H)
L€l
— Update parameters:
9t+1 — Qt _ (tht

Loss Function: Regression

Regression case:
- y; = target variable for sample i
— Typically continuous valued

Output layer:
- ¥; = zp; = estimate of y;
Loss function: Use L2 loss

N
L(6) = Z,ﬂ(yi — 9))?

For vector y; = (y;q, ..., Y;jx), use vector L2 loss

L(O) = z:’:lzil()’ik - ?i,k)z

Loss Function: Binary Classification

Binary classification:
— Sample: x; with label y; = {0,1} = class label,
— Predicted Output: yi= P(yl = 1|xi, 9), 1-— 5}1’= P(yl = lel-,H)
— Output given by sigmoid on zy ; : y;= ﬁ

Objective: maximize the likelihood (probability of y; given x; for all
samples, assuming independence among samples)

- P(y|X,0) =TIiL; P(y;lx;, 6)

Maximizing the likelihood = minimizing negative log likelihood:
L() = — XL, InP(y;lx;, 6)
=-YiLiyilny + (1 -y)In(1-9)
f f

activate when y;=1 activate when y;=0

— Called the binary cross-entropy

10

Loss Function: Multi-Class Classification

« Use one-hot-encoding to describe the label y;

1 yi=k
Vi = Vits - Vi) Yik={0 yzik k=1,..,K

» Output: §;= (Ji1, s Jix)i Fire= Py; = klx;, 0)
eZ0,ik

— Output given by softmaxon zg; : y; = > oo
, €20,

* Negative log-likelinood given by:

K
L©) =~) PO =klx,0) == > yiln i
l l =

— Called the categorical cross-entropy

11

How to compute gradients?

For two-layer neural net: 8 = (Wy, by, W, b,)

Gradient is computed with respect to each parameter in each batch
of M samples

L) = Z L6, xuy) VL(O) = Z 7Li(6, %1, ¥1)

VL (9) = [V, Li(6),Vy,Li(0), VWOL (6), Vp,Li(6)]
Gradient descent is performed on each parameter:
Wy « Wy — aVy,, L(0),
by « by — aVy, L(0),

How to compute vy, L;(0),V,, L;(8), etc.?

Wy, by, etc. are vectors and more generally tensors!
Variables x;, z;, u;, y; are also tensors!

12

Outline (Part 1l)

* Neural Nets and Conv Nets and Model Training
(Review)

=) . Gradient calculation
« Some important extensions of conv. layers
» Popular classification models and transfer learning

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 13

Gradient Calculation

» Tensor definition

 Tensor gradients

« Tensor gradient chain rule

« Backpropagation

« Forward and backward pass

Yao Wang, 2019

ECE-GY 6123: Image and Video Processing

14

What is a Tensor?

A multi-dimensional array
Examples:

— 2D: A grayscale image [height x width]
— 3D: A color image [height x width x rgb]
— 4D: A collection of images [height x width x rgb X image number]

Like numpy ndarray
Basic unit in tensorflow

Rank or order = Number of dimensions
— Note: Rank has different meaning in linear algebra

By Yo ~ N
geegess— NN

DAVDOP g \M; 9060

1299906 113

| JH1tt

15

Indexing Tensors

Suppose X Is a tensor of order N

Index with a multi-index X[iy, ..., iy]
— May also use subscript: X;

LeiN

Example: Suppose X = collection of images [height X
width x rgbh x image number]

- X[100,150,1,30] = pixel (100,150) for color channel 1 (green)
on image 30

Ifi, € {0,..,d; —1},i, € {0, ...,d, — 1}, ... then total
number of elements = d,d, ...dy

16

Tensors and Neural Networks

* Need to be consistent with indexing
Sample

* For a single input x: dimension d
— Input x: vector of dimension d
— Hidden layer: zy,uy: vectors of dimension Ny
. . Number [
— Outputs: z,: dimension K samples

« A batch of inputs with M samples: ’
— Input x: Matrix of dimension M X d
— Hidden layer: zy,uy: vectors of dimension M X Ny
— Outputs: z,: dimension M X K

« Can generalize to other shapes of input

17

Gradient for Tensor Inputs & Outputs

How do we consider general tensor inputs and outputs?

General setting: y = f(x)
- x is atensor of order N, y is a tensor of order M

Gradient tensor: A tensor of order N + M

ox |. . . . 0xj, i
ll""lMijll"'I_]N]1;-.-;]N

[a f(x) _ iy)
— Tensor has the derivative of every output with respect to every
input.

Ex: x has shape (50,30), y has shape (10,20,40)

_ agix) has shape (10,20,40,50,30)

— 10(20)(40)(50)(30) = 1.2(10)*7 elements

18

Gradient Examples 1 and 2

« Example 1: f(w) = (wyw,, w? + w3)
— 2 outputs, 3 inputs.

— Gradienttensoris 2 x 3
df (w) | W2 W 0
12wy 0 3w#

dw
« Example2: z=f(w)=Aw, AiISM X N
- M outputs, N inputs: z; = X1, A;jw;

. a .
— Gradient components: —t = A;;
aWj Y

19

Computation Graph & Forward Pass

Neural network loss function can be computed via a
computation graph

Sequence of operations starting from measured data and
parameters

Loss function computed via a forward pass in the
computation graph
- zZp; = Wyx; + by
- Uy, = gact(ZH,i)
- Zg,i = Wouy; + bg
- Vi = gout(ZO,i)
- L=,LiGiy) L(6)

. Hidden variable

O Observed variable

O Trainable variable

20

Chain Rule

How do we compute gradient?
Consider a three node computation graph:

- y=hkx), z=g) O @ @

- Soz=f(x) =g(h(x)) x y z
— Whatis %’?

If variables were scalars, we could compute gradients
via chain rule:

9z _0f(x) _9g9(y)oh(x)

dx Ox dy Ox
What happens for tensors?

21

Tensor Chain Rule

Consider Tensor case:
- x has shape (n4, ...,ny),

- y has shape (my, ..., my) O _’() ==‘()
- z has shape (14, ..., 15) ' T -

First, compute gradient tensors between input and output of each
node:

)
_ %y) has shape (14, ..., g, M4, ..., My;)
oh(x)
0x

Next, apply tensor chain rule:

has shape (mq, ..., my, nq, ..., Ny)

Z—i has shape (ry, ..., 15, 4, ..., ny): How to compute this?

0z, ..ir _ 0fiy,in®) z z 99i,,..in¥) Ohy g, (X)

ox; v 0Xj_ iy Vi, kyy O%ip. jn

0z _f(x) _[ag(y) oh(x)
dx dx |\ dy = ox

kl_l kM 1

|

Sum over indices of y

22

Tensor Chain Rule Summary

It is all about keeping track of indices! O =‘ '
Step 1. Decide on some indexing x y = h(®) z=g)
= Xj,jn Yy keprr Zig,onin
- L 09iy,..ir(¥) Ohy,
Step 2. Compute all partial derivatives —2=B2" gng oty 2
0YViey,..kepy 0Xjy,.jn

Step 3. Use tensor chain rule

0z, ip ale g (1) z z 09i,...in(V) Ohy 1y, (X)

ale""le .]1 .]N kl_l kM 1 a:)/kl'kM ax]l .]N

Sometimes write with tensor inner product

0z _ of(x) _ <ag(y) 6h(x)>
0x ox \ 9y ' ox

23

Gradients on a Computation Graph

L6

Backpropagation: Compute gradients ()
backwards

— Use tensor dot products and chain rule
First compute all derivatives of all the
variables

- 9L/dz, = (3L/dy ,05 /9zp)

- 0dL/0uy =(0L/0zy,0zp/0uy)

- 0dL/0zy = (0L/0uy,0uy/0zy)

- (0y /0zy and duy /0zy is element wise)
Then compute gradient of parameters:

- 9L/OW, =(0L/0z,,0zy/0W,)

- dL/dby, =(0L/0zy,0z,/0by)

- QL)W = (dL/dzy ,0zy/0Wy)

— 9L/dby = (dL/dzy ,0zy/0by)

24

Example: Last layer of a Binary Classifier

 How to compute dL/dW,,dL/0by?
N

LO)=—-) Vi Iny; + (1 —-y;) In(1-¥;)
=
~ 1
Vi= —1+e_ZO,i’. Zp = WOuH + bO

Linear map Sigmoid Linear map
Zy = WHx + bH g(ZH) Zog = WouH + bo S|gm0|d

@ ,Z r@—> 9(zo)

o]0 —0—[g——e—
o /] Zg Up
. C S Soft binary
Input zZy uy decision
\ } \ }
| |
Hidden layer Output layer

This part could be convolutional layers

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Example: Last layer of a Binary Classifier

e Go through on the board

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

26

Indexing Multi-Layer Networks

Similar to two-layer NNs

— But must keep track of
layers

Consider batch of image
inputs:
- X[i,j, k,n],
(sample,row,col,channel)
Input tensor at layer ¢:
- Ui, j, k,n] for
convolutional layer

- U*[i,n] for fully connected
layer

Output tensor from linear
transform:

- Z*%i,j, k,n] or Z*[i,n]
Output tensor after activation
/ pooling:

Ui, j, k,n] or U**1[i,n]

Convolution or
fully-connected

S

Activation,
pooling

Zf U{’+1

—QO—

—'—>

0

wt pt Weight-bias
Or
Filter-bias

Back-Propagation in Convolutional Layers

« Convolutional layer in
fOfW?rd p?th / ’ Input Convolution
Z'=W*"xU"+b ZE =Wt U + b?

 During back-propagation: '—» O—"_’

— Obtain gradient tensor o
]
from upstream layers ——]{, 6U*’ 2zt
— Need to compute ﬂ o o
downstream gradients: ow?* " ob*

oy
owt’ ob?’ out

Loss function

J(6)

0

28

Gradient With Respect to Filter Wel

Write convolution as:
Ki—-1K,—1N;jp—1

Z[iy,iy,m 7 y 7 Wlkq, ko, n,mlU[iy + kq, i, + ky,n] + b[m]
k1=0 k,=0 n=0
— Drop layer index £ and sample index i

0Z[iq,i,,m]
0W|kq,kyn m]

Gradient wrt filter weights:

[ll + kl' ly + k2,]

ghts

. . . . aZ [I.)]
_ Note that the same filter is used for all pixels, need to sum gradients —22x2™
W[kl,kz,n,m]
all iy, i,:
a] _ N1 N2 aZ[il,iz,m] a] . ! —a']
6W[k1,k2,n,m] B Zilzl i2=1 aW[kl,kz,n,m] aZ[il,iz,m] o le 1 Zl =1 [ll + kl’ lz + k2;n] aZ[il,iz,m]

Gradient wrt weights can be computed via convolution
9J

— Convolve input U with gradient tensor
0Z[iq,i,,m]

Similar computations for gradients with respect to Z—l])

— Homework!

for

29

Backpropagation: layer i

* Layer 1 has two inputs (during training)

— Xi-1 £
: ox,
i For layer 1, we need the derivatives:
axi aFi(xi—l’wi) aE‘(xi_lswi)
Hidden layer i ox;_, w,
X1 s * We compute the outputs
X = Fi(xi—lﬂwi)
ox._,
oc__JC oF (x; ;)
Fi-l 07.?61._1 - (?x[. (?x[,_l

Forward Backward . Tpe weight update equation is:
pass pass oC 9C JF(x,,.w)
ow, ax, dw,
OE umoveran

k
< Wi + T] P training examples
to get E)

k+1
w;

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Back ropa ation: summary

- Forward pass: Yor each
training example.

m— Compute the outputs for

all layers

(output) x

X, =F(x,_.w)
- Backwards pass: compute .
cost derivatives iteratively A%
from top to bottom:

JdC dC JFi(x; W)
ox,, Ox, ox;

- Compute gradients and
update weights.

(input) X, y

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf
Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline (Part 1l)

* Neural Nets and Conv Nets and Model Training
(Review)

« Gradient calculation
=) . Some important extensions of conv. layers
» Popular classification models and transfer learning

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 32

Residual Connections (ResNET)

« Really, really deep convnets don'’t train well
— Gradient of final loss does not propagate back to earlier layers

« Key idea: introduce “pass through” into each layer for back

propagation Bottleneck

64-d 256-d Iayer

Y
| 1x1, 64
¢ relu
| 3x3, 64 |
l relu

| 1x1, 256

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56 x56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

He, Kaiming, Xiangyu Zhang, Shaoging Ren, and Jian Sun. "Deep residual learning for image recognition.” In Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_ CVPR_2016_paper.pdf

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 33

http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Some Important Extensions

 Residual connections
« Dense connections
 Dilated convolution

Yao Wang, 2019

ECE-GY 6123: Image and Video Processing

34

output
siza: 224

autput
siza: 112

autput
size: 56

output
size: 28

output
size: 14

output
size: 7

autput
size: 1

VGG-19 34-layer plain 34-layer residual
image image image
podl, 2
| 33conv1 | 7 conv, 64, /2| 7T conv, 64,/2 |
¥
paal, 2 poal, {2 poal, /2
¥
| sdconviss | | adconved | | 3dcomes |
¥
[3dconv2s6 | [3adcower | [3acomer |
¥
[s3conw1m | [sacowen | [za Tk |
¥
| 3dconw s | | 3a3comes | [3dcomes |
¥
| 3dconwbd | | 3dconw6d |
¥ ¥
[acomet | T
¥ T
poal, 2 [33comw, 128,72 | [3acomw 28,2 |
¥ ¥ Y
| macnvsz | | 3a@conv1s | | aadconvis |
E e ey
[sscomvsiz | | 3dconv12s | [sadconw 138 |
L2
[3dconvsiz | [adconv 128 | [3dconw 128 |
¥ ¥
| 33conv,512 | | 3conv, 128 | | 3dconv, 128 |
L2
[3@conv 12| [a8 |
¥
[macow, 128 | [3x3cony, 128
¥
| 33cow, 128 | | 3oy, 128 |
¥ ikdassrTrrey
poal, /2 | 33conv, 256,72 | [33conv, 256,/2 |
¥ v L2 ¥
[| [3sconw 256 | [3aconmass | .-
v 2 ey
| 3dconvsiz | | aaconv2se | | 3x3conv, 258
¥ ¥ ¥
| aanwsiz | | adconv s | | 3x3conv, 258
¥ ¥
[3dmmsiz | [saconv e | [3x3conv, 256
¥
| adconw 256 | | 3«3 conv, 256
¥ ¥
[aa@conv2ss | [3x3conv, 258
¥
| 3a3convass | | 3x3conv, 256
| 3aconv e | | 3u3conv, 256
v
[saconv s | | 3acony, 256
¥ ¥
| 3conv, 256 | [3dconv, 256 |
h 2 h
[3a@convss | [adconw 6 |
.
pogl, 2 [a3conv,512,/2 | [aacony, 512,72 |
¥ Y
| 3dconvs12 | | 3acony, 512 e
[Taacn s | [a3awan sz |
¥ ¥
[3dconwsz | [3dcomw sz |
¥ ¥
[3@cowsn | [mdconw sz |
¥
[a@conwsz | [saconw sz |
fc 4098 avg pool avg paol
l fc 4096 | fc 1000 fc 1000 |
fc 1000

Yao Wang, 2019

Benefit of residual connection

ResNet-20

ResNet-32

ResNet-44
= ResNet-56
=ResNet-110

=
= 10
E 20-layer
S—plaim-20 ~ ~ " " T T 7T T T T T T T
plain-32
plain-44
G _plain_56 1 L - L 1
0 1 2 3 4 5 6

iter. (le4)

W/o residual layer: deeper networks perform worse even for
the training data.
W residual layer: deeper networks perform better!

Using shortcut 2 is theoretically optimal
Demystifying ResNet
https://arxiv.org/abs/1611.01186

ECE-GY 6123: Image and Video Processing 35

Revolution of Depth

Case Studies

D E
16 weight 19 weight
layers layers
1)

conv3-64 conv3-64
conv3-64 conv3-64
conv3-128 | conv3-128
conv3-128 | conv3-128
conv3-256 | conv3-256
conv3-256 | conv3-256
conv3-256 | conv3-256
conv3-256
conv3-512 | conv3-512
conv3-512 | conv3-512
conv3-512 | conv3-512
conv3-512
conv3-512 | conv3-512
conv3-512 | conv3-512
conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

(2014)

VGG GoogLeNet
(2014)

ResNet
(2015)

From: http://cs231n.stanford.edu/slides/2016/winter1516 lecture8.pdf

Yao Wang, 2019

ECE-GY 6123: Image and Video Processing

Research
Revolution of Depth
152 layers
A
\
\
\\
[22 layers ‘ 19 Iayers
\6.7
i I = . I ‘ 8 layers ‘ 8Iayers shallow
ILSVRC'1S ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet
ImageNet Classification top-5 error (%)
%ICCV
—_— Xiangyu Zhang, Shaoging Ren, &

A variation of residual connection:
Concatenation (DenseNet)

* Feature maps of all
preceding layers are
concatenated and
used as input for the
current layer.

« Facilitate gradient back
propagation, as with
residual connection

« Strengthen feature
forward propagation
and reuse

Figure 1: A 5-layer dense block with a growth rate of £ = 4.
Each layer takes all preceding feature-maps as input.

From: Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely connected convolutional networks."
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700-4708. 2017.

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 37

Stacking Dense Blocks

Input

Prediction
o Dense Block 1 o} Dense Block 2 o Dense Block 3
] g e, S o T -
5 5 8 S 8 |8 2 ‘horse”
<} o = o =) =
3 1 3

= =

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change
feature-map sizes via convolution and pooling.

Use bottleneck layer (1x1 conv) to reduce the number of feature maps between blocks

16

— ResNet

« Can use fewer layers to achieve Mhe N [T DenseNetBO
same performance as ResNET << .
S1of : 3
o :
7 :
@ 8 .
From: Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. 6l
Weinberger. "Densely connected convolutional networks." In Proceedings ‘ : . : :
of the IEEE conference on computer vision and pattern recognition, pp. 4 ‘ : : 1 ‘ . :
4700-4708. 2017. o 1 2z s 4 5 6 7 8
#parameters x10

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 38

Dilated Convolution

« Large perceptive field is important to incorporate global information

 How to increase the perceptive field
— Larger filter
— More layers of small filters
— Dilated conv.

* Receptive field of the first layer is the filter size
* Receptive field (w.r.t. input image) of a deeper layer
depends on all previous layers’ filter size and strides

Figure from Fergus: https://cs.nyu.edu/~fergus/teaching/vision/3_convnets.pdf

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

39

Dilated Conv in 1D

Actual Dilated Casual Convolutions

A
AT A
A

Figure from https://i.stack.imgur.com/RmJSu.png

Multiscale processing while maintaining original resolution!
Used for speech waveform generation.

Dilated Conv. In 2D

(a) (b)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) F; is produced from Fy by a 1-dilated convolution; each element in F;
has a receptive field of 3 x 3. (b) F3 is produced from F; by a 2-dilated convolution; each element
in F5 has a receptive field of 7x 7. (c) F3 is produced from F5 by a 4-dilated convolution; each
element in F3 has a receptive field of 15x 15. The number of parameters associated with each layer
is identical. The receptive field grows exponentially while the number of parameters grows linearly.

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." arXiv preprint

Xiv:1511.07122 (2015). : : : N - :
arxivi1511.0 (2015) Multiscale processing while maintaining original resolution!
Good for dense prediction: image to image

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 41

Outline (Part 1l)

* Neural Nets and Conv Nets and Model Training
(Review)

« Gradient calculation
« Some important extensions of conv. layers
) . Popular classification models and transfer learning

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 42

Well-Known Models

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282
First CNN-based winner 152 layers| |152 layers| |152 layers
o
/ gz e
20
16.4
15 ;
11.7 |19 layers| |22 layers|
10 .
[2
5 3.6 =
shallow 8 layers . 3 23 .
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & | Krizhevsky et al| Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al

Perronnin (AlexNet) Fergus Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)

http://cs231n.stanford.edu/slides/2018/cs231n_2018 lecture09.pdf

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 43

Performance vs. Complexity

Inception-v4
80 1 80 1 : :
Inception-v3 ° ResNet-152
= ReSNet‘-”O‘ ? ; VGG-16 = VGG-19
75 1 751 ResNet-101
ResNet-34
.5 70 > 70 Oﬂ ResNet-18
© @ GooglLeNet
3 3 ENet
% 651 S 65
3 3 | @B
F 601 F 601 5M 35M 65M 95M 125M ---155M
BN-AlexNet
55 1 55 AlexNet
— 5. X A® A6 A0 O .o e B b =% 5 10 15 20 25 30 35 40
S W et & Y Bo: 5> AQ> A6 N9
pe’*\\\ ,,§ @‘* *\ $ \Ae \)66 66 V\e \\\e_\\\e‘_ $e‘ ‘\0(\ ‘0(\ Operations [G-Ops]
Q,V\ & o QO&Q

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

http://cs231n.stanford.edu/slides/2018/cs231n_2018 lecture09.pdf

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 44

Transfer Learning

For image classification or other applications, training from scratch
takes tremendous resources

Instead, can refine the VGG or other well trained networks

Can use VGG convolutional layers, and retrain only the fully
connected layers (possibly some later convolutional layers) for
different problems.

Or can use VGG conv layers as the “initial model” and further
refine.

Computer assignment: load VGG model, and fix all conv. layers,
retrain additional fully connected layers for binary classification, try
and compare different training tricks

— Using Flickr API (courtesy of Sundeep Rangan) for downloading
images for a given keyword

45

VGG16

224 = 204 x 3 224 = 334 = 64

 From the Visual
Geometry Group

— Oxford, UK

112 %]112 % 128

.-'_,f
St B[66 266
s F - . \
{ 98 % 28 1 512 THTxH12

% e LixB12 | 1414096 1x1x 1000

@ convolution+Rel.1T

[’ A max pooling
| fully connected4+HReal Ll

« Won ImageNet
ILSVRC-2014

« Remains a very good

network f _' softmax
* Lower layers are often -_
used as feature ~ validationset testset
. 16-layer 7.5% 7.4%
extraction layers for 1 layer e)
Othel‘ taSkS model fusion 7.1% 7.0%

http://www.robots.ox.ac.uk/~vga/research/very deep/

K. Simonyan, A. Zisserman

Very Deep Convolutional Networks for Large-Scale Image
Recognition

arXiv technical report, 2014

46

http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://arxiv.org/pdf/1409.1556

Transfer Learning

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs e e o oo e o

2014
1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset
v
\ Reinitialize <— Train these
hie and train
MaxPool MaxPool MaxPool
Conv-512 Conv-512 Conv-512 Wlth blgger
Conv-512 Conv-512 Conv-512 dataset train
MaxPool MaxPool MaxPool more Ia’yerS
Conv-512 Conv-512 Conv-512
Conv-512 Conv-512 Conv-512
MaxPool MaxPool > Freeze these MaxPool
Conv-256 Conv-256 Conv-256 > Freeze these
Conv-256 Conv-256 Conv-256
MaxPool MaxPool MaxPool .
Conv-128 Conv-128 Conv-128 Lower learning rate
Conv-128 Conv-128 Conv-128 when finetuning;
MaxPool MaxPool MaxPool 1/10 of original LR
Conv-64 Conv-64 Conv-64 1 i
is good startin
Conv-64 Conv-64 j Conv-64) p O?nt g

From http://cs231n.stanford.edu/slides/2018/cs231n_2018 lecture07.pdf
Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 47

Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has
similar data, train a big ConvNet there
2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of
pretrained models so you don’t need to train your own

Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo

TensorFlow: hitps://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision

From http://cs231n.stanford.edu/slides/2018/cs231n_2018 lecture07.pdf
Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 48

Summary

Gradient Calculation through backpropagation

— Tensor gradient, Tensor chain rule
Residual and dense connections to ease gradient back
propagation
Dilated convolution for increasing perceptive field
Transfer learning

49

Recommended Readings

« For tensor gradient calculation and backpropagation:
— Lecture material of Sundeep Rangan

— https://github.com/sdrangan/introml/blob/master/sequence.md
— Unit on neural net and convolution networks

« For vision applications:

Yao Wang, 2019

Stanford course by Feifei Li, et al: CS231n: Convolutional Neural Networks for
Visual Recognition, Spring 2018: http://cs231n.stanford.edu/

Popular network case studies:
http://cs231n.stanford.edu/slides/2018/cs231n_2018 lecture09.pdf

Learning GPU and PyTorch and TensorFlow:
http://cs231n.stanford.edu/slides/2018/cs231n_2018 lecture08.pdf

Video available for previous offerings:

* https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHMS8I|Y|-
zLfORF3EQO8sYvhttps://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHMS8I|Y|-
ZzLIORF3EOS8sYVv

ECE-GY 6123: Image and Video Processing 50

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf
https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYvhttps://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

