
Convolutional Networks for Image

Processing (Part II)

Yao Wang

Tandon School of Engineering, New York University

Many contents from Sundeep Rangan:

https://github.com/sdrangan/introml/blob/master/sequence.md

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing

Outline (Part I)

• Supervised learning: General concepts

• Neural network architecture

– From single perceptron to multi-layer perceptrons

• Convolutional network architecture

– Why using convolution and many layers

– Multichannel convolution

– Pooling

• Deep networks

• Model training

– Loss functions

– Stochastic gradient descent: general concept

– Data Preprocessing and Regularization

• Training, validation and testing and cross validation

• Demo: training a ConvNet classifier

2

Outline (Part II)

• Neural Nets and Conv Nets and Model Training

(Review)

• Gradient calculation

• Some important extensions of conv. layers

• Popular classification models and transfer learning

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 3

Outline (Part III)

• Image to image autoencoder

• Semantic Segmentation using Multiresolution

Autoencoder

• Object detection and classification

• Instance segmentation

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 4

Two-Layer Neural Net for Multiple Outputs

• Hidden layer: 𝒛𝐻 = 𝑾𝐻𝒙 + 𝒃𝐻 , 𝒖𝐻 = 𝑔𝑎𝑐𝑡(𝒛𝐻)

• Output layer: 𝒛𝑂 = 𝑾𝑂𝒖𝐻 + 𝒃𝑂
• Response map: ො𝑦 = 𝑢𝑂 = 𝑔𝑜𝑢𝑡(𝒛𝑂)

5

𝒙

Input

Linear map

𝒛𝐻 = 𝑾𝐻𝒙 + 𝒃𝐻

Activation

𝑔𝐻(𝒛𝐻)

Hidden layer

𝒛𝐻 𝒖𝐻

Linear map

𝒛𝑂 = 𝑾𝑂𝒖𝐻 + 𝒃𝑂

𝒛𝑂

Output layer

Response Map

ෝ𝒚 = 𝒖𝑂 = 𝑔𝑜𝑢𝑡(𝒛𝑂)

𝒖𝑂

Example Conv. Network

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 6

Convolutional layers

For feature extraction

2D convolution with

Activation and

pooling / sub-sampling

Fully connected layers

For Classification task

Matrix multiplication &

activation

• Alex Net

• Each convolutional

layer has:

– 2D convolution

– Activation (eg.

ReLU)

– Pooling or sub-

sampling

96

feature

maps of

size

55x55

each

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural

networks." Advances in neural information processing systems. 2012.

Training with Gradient Descent

• Given training data: 𝒙𝑖 , 𝑦𝑖 , 𝑖 = 1,… ,𝑁

• Learn parameters: 𝜃 = (𝑊𝐻 , 𝑏𝐻 ,𝑊𝑜, 𝑏𝑜)

– Weights and biases for hidden and output layers

– 𝑊𝐻 are filter kernels in conv. layer

• Neural network training (like all training): Minimize loss function

መ𝜃 = argmin
𝜃

𝐿 𝜃 , 𝐿 𝜃 =

𝑖=1

𝑁

𝐿𝑖(𝜃, 𝒙𝑖 , 𝑦𝑖)

– 𝐿𝑖(𝜃, 𝒙𝑖 , 𝑦𝑖) = loss on sample 𝑖 for parameter 𝜃

• Standard gradient descent:

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝐿 𝜃𝑘 = 𝜃𝑘 − 𝛼

𝑖=1

𝑁

𝛻𝐿𝑖(𝜃
𝑘 , 𝒙𝑖 , 𝑦𝑖)

– Each iteration requires computing 𝑁 loss functions and gradients

– But, gradient computation is expensive when data size 𝑁 large

7

Stochastic Gradient Descent

• In each step:

– Select random small

“mini-batch”

– Evaluate gradient on

mini-batch

• For 𝑡 = 1 to 𝑁steps

– Select random mini-

batch 𝐼 ⊂ {1, … , 𝑁}

– Compute gradient

approximation:

𝑔𝑡 =
1

|𝐼|

𝑖∈𝐼

𝛻𝐿(𝑥𝑖 , 𝑦𝑖 , 𝜃)

– Update parameters:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑡𝑔𝑡

8

Full batch of

training

records

e.g. 50,000 in

MNIST

Randomly

selected

mini-batch

e.g. 100

records

Loss Function: Regression

• Regression case:

– 𝑦𝑖 = target variable for sample 𝑖

– Typically continuous valued

• Output layer:

– ො𝑦𝑖 = 𝑧𝑂𝑖 = estimate of 𝑦𝑖

• Loss function: Use L2 loss

𝐿 𝜃 =
𝑖=1

𝑁

𝑦𝑖 − ො𝑦𝑖
2

• For vector 𝒚𝑖 = 𝑦𝑖1, … , 𝑦𝑖𝐾 , use vector L2 loss

𝐿 𝜃 =
𝑖=1

𝑁

𝑗=1

𝐾

𝑦𝑖𝑘 − ො𝑦𝑖,𝑘
2

9

Loss Function: Binary Classification

• Binary classification:
– Sample: 𝑥𝑖 with label 𝑦𝑖 = {0,1} = class label,

– Predicted output: ො𝑦𝑖= 𝑃 𝑦𝑖 = 1 𝑥𝑖 , 𝜃 ; 1 − ො𝑦𝑖= 𝑃 𝑦𝑖 = 0 𝑥𝑖 , 𝜃

– Output given by sigmoid on 𝑧𝑂,𝑖 : ො𝑦𝑖=
1

1+𝑒
−𝑧𝑂,𝑖

• Objective: maximize the likelihood (probability of 𝑦𝑖 given 𝑥𝑖 for all
samples, assuming independence among samples)

– 𝑃 𝒚 𝑿, 𝜽 = ς𝑖=1
𝑁 𝑃 𝑦𝑖 𝑥𝑖 , 𝜃

• Maximizing the likelihood = minimizing negative log likelihood:
𝐿 𝜃 = −σ𝑖=1

𝑁 ln 𝑃 𝑦𝑖 𝑥𝑖 , 𝜃

= −σ𝑖=1
𝑁 𝑦𝑖 ln ො𝑦𝑖 + (1 − 𝑦𝑖) ln (1− ො𝑦𝑖)

– Called the binary cross-entropy

10

activate when 𝑦𝑖=1 activate when 𝑦𝑖=0

Loss Function: Multi-Class Classification

• Use one-hot-encoding to describe the label 𝑦𝑖

𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝐾), 𝑦𝑖𝑘= ൜
1 𝑦𝑖 = 𝑘
0 𝑦𝑖 ≠ 𝑘

𝑘 = 1, … , 𝐾

• Output: ො𝑦𝑖= ො𝑦𝑖,1, … , ො𝑦𝑖,𝐾 ; ො𝑦𝑖,𝑘= 𝑃 𝑦𝑖 = 𝑘 𝑥𝑖 , 𝜃

– Output given by softmax on 𝑧𝑂,𝑖 : ො𝑦𝑖,𝑘 =
𝑒
𝑧𝑂,𝑖𝑘

σℓ 𝑒
𝑧𝑂,𝑖𝑙

• Negative log-likelihood given by:

𝐿 𝜃 = −
𝑖
ln 𝑃 𝑦𝑖 = 𝑘 𝑥𝑖 , 𝜃 = −

𝑖

𝑘=1

𝐾

𝑦𝑖𝑘 ln ො𝑦𝑖,𝑘

– Called the categorical cross-entropy

11

How to compute gradients?

• For two-layer neural net: 𝜃 = (𝑊𝐻 , 𝑏𝐻 ,𝑊𝑜, 𝑏𝑜)

• Gradient is computed with respect to each parameter in each batch

of 𝑀 samples:

𝐿 𝜃 =

𝑖=1

𝑀

𝐿𝑖(𝜃, 𝒙𝑖 , 𝑦𝑖) 𝛻𝐿(𝜃) =

𝑖=1

𝑀

𝛻𝐿𝑖(𝜃, 𝒙𝑖 , 𝑦𝑖)

𝛻𝐿𝑖 𝜃 = [𝛻𝑊𝐻
𝐿𝑖 𝜃 , 𝛻𝑏𝐻𝐿𝑖 𝜃 , 𝛻𝑊𝑂

𝐿𝑖 𝜃 , 𝛻𝑏𝑂𝐿𝑖 𝜃]

• Gradient descent is performed on each parameter:

𝑊𝐻 ← 𝑊𝐻 − 𝛼𝛻𝑊𝐻
𝐿 𝜃 ,

𝑏𝐻 ← 𝑏𝐻 − 𝛼𝛻𝑏𝐻𝐿 𝜃 ,

… .

• How to compute 𝛻𝑊𝐻
𝐿𝑖 𝜃 , 𝛻𝑏𝐻𝐿𝑖 𝜃 , etc.?

• 𝑊𝐻, 𝑏𝐻, etc. are vectors and more generally tensors!

• Variables 𝒙𝑖 , 𝒛𝑖 , 𝒖𝑖 , ෝ𝒚𝑖 are also tensors!

12

Outline (Part II)

• Neural Nets and Conv Nets and Model Training

(Review)

• Gradient calculation

• Some important extensions of conv. layers

• Popular classification models and transfer learning

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 13

Gradient Calculation

• Tensor definition

• Tensor gradients

• Tensor gradient chain rule

• Backpropagation

• Forward and backward pass

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 14

What is a Tensor?

• A multi-dimensional array

• Examples:

– 2D: A grayscale image [height x width]

– 3D: A color image [height x width x rgb]

– 4D: A collection of images [height x width x rgb x image number]

• Like numpy ndarray

• Basic unit in tensorflow

• Rank or order = Number of dimensions

– Note: Rank has different meaning in linear algebra

15

Indexing Tensors

• Suppose 𝑿 is a tensor of order 𝑁

• Index with a multi-index 𝑋[𝑖1, … , 𝑖𝑁]

– May also use subscript: X𝑖1,…,𝑖𝑁

• Example: Suppose 𝑿 = collection of images [height x

width x rgb x image number]

– 𝑋 100,150,1,30 = pixel (100,150) for color channel 1 (green)

on image 30

• If 𝑖1 ∈ 0,… , 𝑑1 − 1 , 𝑖2 ∈ 0,… , 𝑑2 − 1 ,… then total

number of elements = 𝑑1𝑑2…𝑑𝑁

16

Tensors and Neural Networks

• Need to be consistent with indexing

• For a single input 𝑥:
– Input 𝑥: vector of dimension 𝑑

– Hidden layer: 𝑧𝐻 , 𝑢𝐻: vectors of dimension 𝑁𝐻
– Outputs: 𝑧𝑂: dimension 𝐾

• A batch of inputs with 𝑀 samples:

– Input 𝑥: Matrix of dimension 𝑀 × 𝑑

– Hidden layer: 𝑧𝐻, 𝑢𝐻: vectors of dimension 𝑀 ×𝑁𝐻
– Outputs: 𝑧𝑂: dimension 𝑀 ×𝐾

• Can generalize to other shapes of input

17

Sample

dimension 𝑑

Number

samples

𝑀

Gradient for Tensor Inputs & Outputs

• How do we consider general tensor inputs and outputs?

• General setting: 𝒚 = 𝑓 𝒙
– 𝒙 is a tensor of order 𝑁, 𝒚 is a tensor of order 𝑀

• Gradient tensor: A tensor of order 𝑁 +𝑀

𝜕𝑓 𝑥

𝜕𝑥
𝑖1,…𝑖𝑀,𝑗1,…,𝑗𝑁

=
𝜕𝑓𝑖1,…,𝑖𝑀 𝑥

𝜕𝑥𝑗1,…,𝑗𝑁

– Tensor has the derivative of every output with respect to every
input.

• Ex: 𝒙 has shape (50,30), 𝒚 has shape (10,20,40)

–
𝜕𝑓 𝑥

𝜕𝑥
has shape (10,20,40,50,30)

– 10(20)(40)(50)(30) = 1.2(10)^7 elements

18

Gradient Examples 1 and 2

• Example 1: 𝑓 𝑤 = (𝑤1𝑤2, 𝑤1
2 +𝑤3

3)
– 2 outputs, 3 inputs.

– Gradient tensor is 2 × 3
𝜕𝑓(𝑤)

𝜕𝑤
=

𝑤2 𝑤1 0

2𝑤1 0 3𝑤3
2

• Example 2: 𝑧 = 𝑓 𝑤 = 𝐴𝑤, 𝐴 is 𝑀 ×𝑁

– 𝑀 outputs, 𝑁 inputs: 𝑧𝑖 = σ𝑗=1
𝑁 𝐴𝑖𝑗𝑤𝑗

– Gradient components:
𝜕𝑧𝑖

𝜕𝑤𝑗
= 𝐴𝑖𝑗

19

Computation Graph & Forward Pass

• Neural network loss function can be computed via a

computation graph

• Sequence of operations starting from measured data and

parameters

• Loss function computed via a forward pass in the

computation graph

– 𝑧𝐻,𝑖 = 𝑊𝐻𝑥𝑖 + 𝑏𝐻

– 𝑢𝐻,𝑖 = 𝑔𝑎𝑐𝑡(𝑧𝐻,𝑖)

– 𝑧𝑂,𝑖 = 𝑊𝑂𝑢𝐻,𝑖 + 𝑏𝑂

– ො𝑦𝑖 = 𝑔𝑜𝑢𝑡(𝑧𝑂,𝑖)

– 𝐿 = σ𝑖 𝐿𝑖(ො𝑦𝑖 , 𝑦𝑖)

20

Hidden variable

Observed variable

Trainable variable

𝑥𝑖 𝑧𝐻,𝑖

𝑊𝐻 , 𝑏𝐻

𝑢𝐻,𝑖 𝑧𝑂,𝑖

𝑊𝑂, 𝑏𝑂

𝐿(𝜃)

𝑦𝑖

ො𝑦𝑖

Chain Rule

• How do we compute gradient?

• Consider a three node computation graph:

– 𝑦 = ℎ 𝑥 , 𝑧 = 𝑔 𝑦

– So 𝑧 = 𝑓 𝑥 = 𝑔(ℎ 𝑥)

– What is
𝜕𝑧

𝜕𝑥
?

• If variables were scalars, we could compute gradients

via chain rule:

𝜕𝑧

𝜕𝑥
=
𝜕𝑓(𝑥)

𝜕𝑥
=
𝜕𝑔(𝑦)

𝜕𝑦

𝜕ℎ(𝑥)

𝜕𝑥

• What happens for tensors?

21

𝑥 𝑦 𝑧

Tensor Chain Rule

• Consider Tensor case:

– 𝑥 has shape 𝑛1, … , 𝑛𝑁 ,

– 𝑦 has shape 𝑚1, … ,𝑚𝑀

– 𝑧 has shape 𝑟1, … , 𝑟𝑅
• First, compute gradient tensors between input and output of each

node:

–
𝜕𝑔 𝑦

𝜕𝑦
has shape 𝑟1, … , 𝑟𝑅, 𝑚1, … ,𝑚𝑀

–
𝜕ℎ 𝑥

𝜕𝑥
has shape 𝑚1, … ,𝑚𝑀, 𝑛1, … , 𝑛𝑁

• Next, apply tensor chain rule:
𝜕𝑧

𝜕𝑥
has shape 𝑟1, … , 𝑟𝑅, 𝑛1, … , 𝑛𝑁 : How to compute this?

𝜕𝑧𝑖1,…,𝑖𝑅
𝜕𝑥𝑗1,…,𝑗𝑁

=
𝜕𝑓𝑖1,…,𝑖𝑅 𝑥

𝜕𝑥𝑗1,…𝑗𝑁
=

𝑘1=1

𝑚1

⋯

𝑘𝑀=1

𝑚𝑀
𝜕𝑔𝑖1,…,𝑖𝑅 𝑦

𝜕𝑦𝑘1,…𝑘𝑀

𝜕ℎ𝑘1,…𝑘𝑀 𝑥

𝜕𝑥𝑗1,…𝑗𝑁

22

𝑥 𝑦 = ℎ(𝑥) 𝑧 = 𝑔(𝑦)

Sum over indices of 𝒚

𝜕𝑧

𝜕𝑥
=
𝜕𝑓 𝑥

𝜕𝑥
=

𝜕𝑔 𝑦

𝜕𝑦
,
𝜕ℎ 𝑥

𝜕𝑥

Tensor Chain Rule Summary

• It is all about keeping track of indices!

• Step 1. Decide on some indexing

– 𝑥𝑗1,…𝑗𝑁, 𝑦𝑘1,…𝑘𝑀, 𝑧𝑖1,…,𝑖𝑅

• Step 2. Compute all partial derivatives
𝜕𝑔𝑖1,…,𝑖𝑅 𝑦

𝜕𝑦𝑘1,…𝑘𝑀
and

𝜕ℎ𝑘1,…𝑘𝑀 𝑥

𝜕𝑥𝑗1,…𝑗𝑁

• Step 3. Use tensor chain rule

𝜕𝑧𝑖1,…,𝑖𝑅
𝜕𝑥𝑗1,…,𝑗𝑁

=
𝜕𝑓𝑖1,…,𝑖𝑅 𝑥

𝜕𝑥𝑗1,…𝑗𝑁
=

𝑘1=1

𝑚1

⋯

𝑘𝑀=1

𝑚𝑀
𝜕𝑔𝑖1,…,𝑖𝑅 𝑦

𝜕𝑦𝑘1,…𝑘𝑀

𝜕ℎ𝑘1,…𝑘𝑀 𝑥

𝜕𝑥𝑗1,…𝑗𝑁

• Sometimes write with tensor inner product

𝜕𝑧

𝜕𝑥
=

𝜕𝑓 𝑥

𝜕𝑥
=

𝜕𝑔 𝑦

𝜕𝑦
,
𝜕ℎ 𝑥

𝜕𝑥

23

𝑥 𝑦 = ℎ(𝑥) 𝑧 = 𝑔(𝑦)

Gradients on a Computation Graph

• Backpropagation: Compute gradients

backwards

– Use tensor dot products and chain rule

• First compute all derivatives of all the

variables

– Τ𝜕𝐿 𝜕𝑧𝑂 = Τ𝜕𝐿 𝜕ෝ𝑦 , Τ𝜕ෝ𝑦 𝜕𝑧𝑂
– Τ𝜕𝐿 𝜕𝑢𝐻 = Τ𝜕𝐿 𝜕𝑧𝑂 , Τ𝜕𝑧𝑂 𝜕𝑢𝐻
– Τ𝜕𝐿 𝜕𝑧𝐻 = Τ𝜕𝐿 𝜕𝑢𝐻 , Τ𝜕𝑢𝐻 𝜕𝑧𝐻
– (Τ𝜕ෝ𝑦 𝜕𝑧𝑂 and Τ𝜕𝑢𝐻 𝜕𝑧𝐻 is element wise)

• Then compute gradient of parameters:

– Τ𝜕𝐿 𝜕𝑊𝑂 = Τ𝜕𝐿 𝜕𝑧𝑂 , Τ𝜕𝑧𝑂 𝜕𝑊𝑂

– Τ𝜕𝐿 𝜕𝑏𝑂 = Τ𝜕𝐿 𝜕𝑧𝑂 , Τ𝜕𝑧𝑂 𝜕𝑏𝑂
– Τ𝜕𝐿 𝜕𝑊𝐻 = Τ𝜕𝐿 𝜕𝑧𝐻 , Τ𝜕𝑧𝐻 𝜕𝑊𝐻

– Τ𝜕𝐿 𝜕𝑏𝐻 = Τ𝜕𝐿 𝜕𝑧𝐻 , Τ𝜕𝑧𝐻 𝜕𝑏𝐻
–

24

𝑥𝑖 𝑧𝐻,𝑖

𝑊𝐻 , 𝑏𝐻

𝑢𝐻,𝑖 𝑧𝑂,𝑖

𝑊𝑂, 𝑏𝑂

𝐿(𝜃)

𝑦𝑖

ො𝑦𝑖

Example: Last layer of a Binary Classifier

• How to compute Τ𝜕𝐿 𝜕𝑊𝑂, Τ𝜕𝐿 𝜕𝑏𝑂?

𝐿 𝜃 = −
𝑖=1

𝑁

𝑦𝑖 ln ො𝑦𝑖 + (1 − 𝑦𝑖) ln (1− ො𝑦𝑖)

ො𝑦𝑖=
1

1+𝑒
−𝑧𝑂,𝑖

; 𝒛𝑂 = 𝑾𝑂𝒖𝐻 + 𝒃𝑂

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 25

𝒙

Input

Linear map

𝒛𝐻 = 𝑾𝐻𝒙 + 𝒃𝐻

Sigmoid

𝑔(𝒛𝐻)

Soft binary

decision

Hidden layer

𝒛𝐻 𝒖𝐻

Linear map

𝒛𝑂 = 𝑾𝑂𝒖𝐻 + 𝒃𝑂

𝒖𝑂𝒛𝑂

Sigmoid

𝑔(𝒛𝑂)

Output layer

This part could be convolutional layers

Example: Last layer of a Binary Classifier

• Go through on the board

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 26

Indexing Multi-Layer Networks

• Similar to two-layer NNs

– But must keep track of

layers

• Consider batch of image

inputs:

– 𝑋[𝑖, 𝑗, 𝑘, 𝑛],
(sample,row,col,channel)

• Input tensor at layer ℓ:

– 𝑈ℓ[𝑖, 𝑗, 𝑘, 𝑛] for

convolutional layer

– 𝑈ℓ[𝑖, 𝑛] for fully connected

layer

• Output tensor from linear

transform:

– 𝑍ℓ 𝑖, 𝑗, 𝑘, 𝑛 or 𝑍ℓ 𝑖, 𝑛

• Output tensor after activation

/ pooling:

– 𝑈ℓ+1 𝑖, 𝑗, 𝑘, 𝑛 or 𝑈ℓ+1 𝑖, 𝑛

𝑍ℓ

Convolution or

fully-connected

𝑈ℓ+1𝑈ℓ

Activation,

pooling

𝑊ℓ, 𝑏ℓ Weight-bias

Or

Filter-bias

Back-Propagation in Convolutional Layers

• Convolutional layer in

forward path
𝑍ℓ = 𝑊ℓ ∗ 𝑈ℓ + 𝑏ℓ

• During back-propagation:

– Obtain gradient tensor

from upstream layers
𝜕𝐽

𝜕𝑍ℓ

– Need to compute

downstream gradients:

𝜕𝐽

𝜕𝑊ℓ
,

𝜕𝐽

𝜕𝑏ℓ
,

𝜕𝐽

𝜕𝑈ℓ

28

𝑈ℓ

Convolution

𝑍ℓ = 𝑊ℓ ∗ 𝑈ℓ + 𝑏ℓ
Loss function

𝐽 𝜃

⋯⋯

Input

𝑋

𝑊ℓ, 𝑏ℓ

𝜕𝐽

𝜕𝑍ℓ

𝜕𝐽

𝜕𝑈ℓ

𝜕𝐽

𝜕𝑊ℓ
,
𝜕𝐽

𝜕𝑏ℓ

Gradient With Respect to Filter Weights

• Write convolution as:

𝑍 𝑖1, 𝑖2, 𝑚 =

𝑘1=0

𝐾1−1

𝑘2=0

𝐾2−1

𝑛=0

𝑁𝑖𝑛−1

𝑊 𝑘1, 𝑘2, 𝑛,𝑚 𝑈[𝑖1 +𝑘1, 𝑖2 + 𝑘2, 𝑛] + 𝑏 𝑚

– Drop layer index ℓ and sample index 𝑖

• Gradient wrt filter weights:
𝜕𝑍 𝑖1,𝑖2,𝑚

𝜕𝑊[𝑘1,𝑘2,𝑛,𝑚]
= 𝑈 𝑖1 + 𝑘1, 𝑖2 + 𝑘2, 𝑛

– Note that the same filter is used for all pixels, need to sum gradients
𝜕𝑍 𝑖1,𝑖2,𝑚

𝜕𝑊[𝑘1,𝑘2,𝑛,𝑚]
for

all 𝑖1, 𝑖2:

𝜕𝐽

𝜕𝑊[𝑘1,𝑘2,𝑛,𝑚]
= σ𝑖1=1

𝑁1 σ𝑖2=1
𝑁2 𝜕𝑍 𝑖1,𝑖2,𝑚

𝜕𝑊[𝑘1,𝑘2,𝑛,𝑚]

𝜕𝐽

𝜕𝑍 𝑖1,𝑖2,𝑚
= σ𝑖1=1

𝑁1 σ𝑖2=1
𝑁2 𝑈[𝑖1 + 𝑘1, 𝑖2 + 𝑘2, 𝑛]

𝜕𝐽

𝜕𝑍 𝑖1,𝑖2,𝑚

• Gradient wrt weights can be computed via convolution

– Convolve input 𝑈 with gradient tensor
𝜕𝐽

𝜕𝑍 𝑖1,𝑖2,𝑚

• Similar computations for gradients with respect to
𝜕𝐽

𝜕𝑏

– Homework!

29

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 30

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 31

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf

Outline (Part II)

• Neural Nets and Conv Nets and Model Training

(Review)

• Gradient calculation

• Some important extensions of conv. layers

• Popular classification models and transfer learning

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 32

Residual Connections (ResNET)

• Really, really deep convnets don’t train well

– Gradient of final loss does not propagate back to earlier layers

• Key idea: introduce “pass through” into each layer for back

propagation

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 33

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.

http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Bottleneck

layer

http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Some Important Extensions

• Residual connections

• Dense connections

• Dilated convolution

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 34

Benefit of residual connection

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 35

W/o residual layer: deeper networks perform worse even for

the training data.

W residual layer: deeper networks perform better!

Using shortcut 2 is theoretically optimal

Demystifying ResNet

https://arxiv.org/abs/1611.01186

Revolution of Depth

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 36

From: http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf

A variation of residual connection:

Concatenation (DenseNet)

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 37

From: Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely connected convolutional networks."

In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700-4708. 2017.

• Feature maps of all

preceding layers are

concatenated and

used as input for the

current layer.

• Facilitate gradient back

propagation, as with

residual connection

• Strengthen feature

forward propagation

and reuse

Stacking Dense Blocks

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 38

Use bottleneck layer (1x1 conv) to reduce the number of feature maps between blocks

• Can use fewer layers to achieve

same performance as ResNET

From: Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q.

Weinberger. "Densely connected convolutional networks." In Proceedings

of the IEEE conference on computer vision and pattern recognition, pp.

4700-4708. 2017.

Dilated Convolution

• Large perceptive field is important to incorporate global information

• How to increase the perceptive field

– Larger filter

– More layers of small filters

– Dilated conv.

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 39

Figure from Fergus: https://cs.nyu.edu/~fergus/teaching/vision/3_convnets.pdf

Dilated Conv in 1D

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 40

Figure from https://i.stack.imgur.com/RmJSu.png

Multiscale processing while maintaining original resolution!

Used for speech waveform generation.

Dilated Conv. In 2D

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 41

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." arXiv preprint

arXiv:1511.07122 (2015).
Multiscale processing while maintaining original resolution!

Good for dense prediction: image to image

Outline (Part II)

• Neural Nets and Conv Nets and Model Training

(Review)

• Gradient calculation

• Some important extensions of conv. layers

• Popular classification models and transfer learning

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 42

Well-Known Models

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 43

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

Performance vs. Complexity

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 44

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

Transfer Learning

• For image classification or other applications, training from scratch

takes tremendous resources

• Instead, can refine the VGG or other well trained networks

• Can use VGG convolutional layers, and retrain only the fully

connected layers (possibly some later convolutional layers) for

different problems.

• Or can use VGG conv layers as the “initial model” and further

refine.

• Computer assignment: load VGG model, and fix all conv. layers,

retrain additional fully connected layers for binary classification, try

and compare different training tricks

– Using Flickr API (courtesy of Sundeep Rangan) for downloading

images for a given keyword

45

VGG16

• From the Visual

Geometry Group

– Oxford, UK

• Won ImageNet

ILSVRC-2014

• Remains a very good

network

• Lower layers are often

used as feature

extraction layers for

other tasks

46

http://www.robots.ox.ac.uk/~vgg/research/very_deep/

K. Simonyan, A. Zisserman

Very Deep Convolutional Networks for Large-Scale Image

Recognition

arXiv technical report, 2014

http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://arxiv.org/pdf/1409.1556

Transfer Learning

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 47

From http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 48

From http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Summary

• Gradient Calculation through backpropagation

– Tensor gradient, Tensor chain rule

• Residual and dense connections to ease gradient back

propagation

• Dilated convolution for increasing perceptive field

• Transfer learning

49

Recommended Readings

• For tensor gradient calculation and backpropagation:

– Lecture material of Sundeep Rangan

– https://github.com/sdrangan/introml/blob/master/sequence.md

– Unit on neural net and convolution networks

• For vision applications:

– Stanford course by Feifei Li, et al: CS231n: Convolutional Neural Networks for

Visual Recognition, Spring 2018: http://cs231n.stanford.edu/

– Popular network case studies:

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

– Learning GPU and PyTorch and TensorFlow:

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf

– Video available for previous offerings:

• https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-

zLfQRF3EO8sYvhttps://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-

zLfQRF3EO8sYv

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 50

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf
https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYvhttps://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

