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Last Lecture

• 2-D motion vs. optical flow

• Optical flow equation and ambiguity in motion estimation

• General methodologies in motion estimation
– Motion representation

– Motion estimation criterion

– Optimization methods

• Lucas-Kanade Flow Estimation Method and KLT tracker

• Block Matching Algorithm

– EBMA algorithm 

– Half-pel EBMA

– Hierarchical EBMA (HBMA)

• Deformable image registration
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Summary 1: General Methodology

• What causes 2D motion?
– Object motion projected to 2D
– Camera motion
– Optical flow vs. true 2D motion

• Constraints for 2D motion
– Optical flow equation
– Derived from constant intensity and small motion assumption
– Ambiguity in motion estimation

• Estimation criterion:
– DFD (constant intensity)

– OF (constant intensity+small motion)
– Regularization (motion smoothness or other prior knowledge)

• not required

• Search method:
– Exhaustive search, gradient-descent, multi-resolution
– Least squares solution under optical flow equation

3



Summary 2: Motion Estimation Methods

• Pixel-based motion estimation (also known as optical flow 
estimation)
– Most accurate representation, but also most costly to estimate
– Need to put additional constraints on motion of neighboring pixels
– Lucas-Kanade method

• Assuming motion in the neighborhood is the same
• Using Taylor expansion

– How to handle large motion: iterative refinement, multiresolution
– KLT tracker: apply LK method on feature points only
– Automatically yield fractional accuracy

• Block-based motion estimation, assuming each block has a 
constant motion
– Good trade-off between accuracy and speed
– EBMA and its fast but suboptimal variant is widely used in video 

coding for motion-compensated temporal prediction.
– HBMA can not only reduce computation but also yield physically more 

correct motion estimates 
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This Lecture

• Background modeling and moving object detection

– Low rank+sparse decomposition (RPCA)

• Object tracking

• Camera motion estimation

• Object detection under camera motion

• Video shot segmentation

• Video stabilization
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Background Modeling and Object Detection

• Main applications: 
– Visual surveillance (Road, Airport, Parking lot, In home security,…)
– Activity pattern discovery: e.g. # of people, # of cars 

• In most applications, we want to detect the moving objects 
• In some applications, we want to form a complete background from 

video frames

Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 6



Moving Object Detection 

• Simple idea
– Assuming background is stationary, color changes only at 

moving regions
– Take difference between two frames, detect pixels with large 

difference.
– Post processing is needed to form smooth, connected 

foreground regions
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Moving object detection by examining frame 
difference

• Frame at t:  f(x,y,t)
• Frame Difference at t:  e(x,y,t)=|f(x,y,t)-f(x,y,t-1)|
• Thresholding the difference to highlight pixels with large change
• Postprocessing

– Remove isolated foreground pixels due to false detection
– Find a connected blob covering the foreground pixels (blob detection, 

connectivity analysis, and other tools in openCV/Matlab)
– Alternative: Put a bounding box covering all detected foreground pixels 

after removing isolated pixels

• Show example
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>> img1=imread('frame31.jpg');
>> img2=imread('frame32.jpg');
>> img1=rgb2gray(img1);
>> img2=rgb2gray(img2);
>> img1=int16(img1);
>> img2=int16(img2);
>> diff=abs(img1-img2);

>> figure(1),imshow(img1,[])
>> figure(2),imshow(img2,[])
>> figure(3),imshow(diff,[]) 
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>> figure(3),imshow(diff,[]) 
>> max(max(diff))
>> diffT=(diff>20);
>> figure(4),imshow(diffT,[])
>> diffTM=medfilt2(diffT,[5 5]);
>> figure(5),imshow(diffTM,[])



Problem with frame difference

• The background may not be stationary
– Tree leaf motion
– Lighting change
– Camera motion

• More advanced methods are needed to compensate for such  
changes
– Background modeling (later)
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Object Tracking

• Suppose you identified a person or an object in one 
frame, and you want to find how does it move in the 
subsequent frames.

• How do you do that?
• Simple approach:

– If you put a bounding box over the person, then the color 
pattern within the bounding box (template block) should not 
change much even if the box is moving over time

– We can find how does the box move by searching for a same 
sized box with similar color pattern in successive frames –
Block Matching (also known as template matching) 
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Example of Object Tracking

• >> figure(2),imshow(img2,[])
• >> figure(1),imshow(img1,[])
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>> figure(1),imshow(img1,[])
>> figure(2),imshow(img2,[])
>> x0=112,y0=59,x1=175,y1=202
>> Rx=24,Ry=10
>> template=img1(y0:y1,x0:x1);
>> [xm,ym,matchblock]=EBMA(template,img2,x0,y0,Rx,Ry);
>> xm, ym



Problems with Block Matching

• The shape and appearance of the object may change if the motion is not 
just a shift

– Search for the parameters of possible object motion to minimize the intensity 
difference after motion compensation in the object region. (See following for 
global motion estimation)

• Different parts of the object may move differently
• Some parts may disappear, new parts may appear (occlusion issues)
• More sophisticated algorithms are needed to solve these challenges 

(outside the scope of this lecture)
• However, when two frames are very close in time (e.g under high frame 

rate), the movement of most objects are small and simple block matching 
can work quite well
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Challenges for Background Modeling

• Illumination change (background looks different at 
different times of the day, under different weathers)

• Camera jitter causes changes in the background 
• Shadow effect (Shadow is slowly moving, may be 

falsely considered moving object without proper 
treatment)

• Stationary foreground objects (e.g. parked cars) are 
hard to differentiate from background
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Challenge due to Illumination Changes
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Foreground detected using the MoG algorithm

From: T. Bouwmans, F. El-Baf, and B. Vachon. Background modeling using mixture of Gaussians for foreground detection: A survey. 
Recent Patents on Computer Science , 1(3):219–237, November 2008.



Challenge due to Dynamic Background
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Foreground detected using the MoG algorithm
From: T. Bouwmans, F. El-Baf, and B. Vachon. Background modeling using mixture of Gaussians for foreground detection: A survey. 
Recent Patents on Computer Science , 1(3):219–237, November 2008.



Challenge due to Shadows
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Foreground detected using the MoG algorithm

From: T. Bouwmans, F. El-Baf, and B. Vachon. Background modeling using mixture of Gaussians for foreground detection: A survey. 

Recent Patents on Computer Science , 1(3):219–237, November 2008.



Background Modeling

• Simple method

– Averaging all frames (hoping moving objects will be averaged out over 

a long period of time)

– Work well when the camera is stationary and illumination is nearly 

constant, and you can average many many frames

• Recursive update

– The background up to the previous frame Bt-1

– Given a new frame Ft, form difference  D(x,y)=Ft(x,y)-Bt-1(x,y)

– If |D(x,y)|< T, assign (x,y) to Background, use F(x,y) to update Bt-1(x,y).

– Bt(x,y)=(1-a) Bt-1(x,y)+ aFt(x,y)

• More sophisticated method

– Modeling the colors at each pixel using a Gaussian mixture model 

(GMM) (aka  mixture of Gaussian or MoG)

• Recursively update the GMM parameter at each pixel

– Robust PCA
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Background Modeling using GMM

• Initial paper:  
– Stauffer, Chris, and W. Eric L. Grimson. "Adaptive background mixture models 

for real-time tracking." Computer Vision and Pattern Recognition, 1999. IEEE 
Computer Society Conference on.. Vol. 2. IEEE, 1999.

– http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf

• A good review: 
– T. Bouwmans, F. El-Baf, and B. Vachon. Background modeling using mixture 

of Gaussians for foreground detection: A survey. Recent Patents on Computer 
Science , 1(3):219–237, November 2008.

• Not required for this class
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Foreground Detection using GMM-based Approaches
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From: T. Bouwmans, F. El-Baf, and B. Vachon. Background modeling using mixture of Gaussians for foreground detection: A survey. 

Recent Patents on Computer Science , 1(3):219–237, November 2008.



Background Separation 
Using Low Rank + Sparse Decomposition

• Main idea
– Reorder pixels in each frame into a vector
– Put successive frame vectors as columns of a matrix M
– If all the frames are the same (stationary), then all columns will be the 

same, the matrix has rank 1
– If all the frames only differ by a scale factor (e.g. due to illumination 

change), the matrix still has rank 1
– If all the frames vary from each other slightly, generally the matrix has 

a low rank (each frame is a linear combination of a few other frames)
– If there is a moving object in the scene, the matrix may not be low rank 

any more
– Generally, M may be decomposed into a low rank matrix L 

(corresponding to slowly changing background) and a sparse matrix S 
(corresponding to moving foreground, occupying only a sparse set of 
pixels)
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Stacking Video frames in a Matrix
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M = L + S
L: Background, low rank
S: Moving foreground, sparse

How to find L and S from M?



Rank of a Matrix and 

Singular Vector Decomposition (SVD)

• Rank = # of independent columns (or rows) in a matrix

• Rank = # non-zero singular values of the matrix

• SVD: any matrix can be decomposed as

! = #Λ%& ='
()*

+
,(-(.(&
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Low-rank+Sparse Decomposition

• Given M, determine L and S, so that
– M=L+S, L is low rank, S is sparse (Small L0 norm)

• Mathematical formulation 
– min %&'( ) + + , -, subj to ) + , = /. (Original problem)
– Hard to solve!

• Wright et al proved, under some conditions and for a suitably chosen +, 
the above problem is equivalent to
– min ) ∗ + + , 1, subj to ) + , = /. (Convex relaxed problem) 
– ) ∗ is the Nuclear Norm of L (Sum of singular values of L)
– Convex problem, and can be solved through ADMM (iterative SVD and soft 

thresholding)
• L consists of principle components of M, robust to outliers S.
• Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM 

(JACM), 58(3), 11.
• Wright, J., Ganesh, A., Rao, S., Peng, Y., & Ma, Y. (2009). Robust principal component analysis: Exact 

recovery of corrupted low-rank matrices via convex optimization. In Advances in neural information processing 
systems (pp. 2080-2088).

• https://sites.google.com/site/backgroundsubtraction/available-implementation/recent-background-
modeling/background-modeling-via-rpca
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Principle Component Analysis (PCA)

• Original formulation of PCA
– Given observation vectors xi, form matrix X=[x1, x2,…, xN]
– Covariance matrix C=X XT

– Principle components = Eigenvectors of C: !"# = %# "#, X X^T ui = li ui
– SVD of X: & = '()*
– ! = & &* = '()* )('* = '(,'* , !' = '(,
– Principle components can be found using SVD: "# is eigenvector with 

eigenvalue .#,
• Another interpretation of PCA

– Finding a low rank approximation of X with minimal L2 error
– min & − 3 ,, subj to ran6 3 = 7
– L=SVD of X with K largest singular values: 

• & = '()* -> L = '(:)*
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Robust PCA (RPCA)

• PCA: min $ − & ', subj to ran* & = ,
– the principle components are greatly affected by outliers (noise with 

large values)

• Robust PCA:  min -./* & + 1 2 3, subj to & + 2 = $
– S represent “outliers”, which occur rarely but can be large
– RPCA=Low Rank+Sparse Decomposition!

• Under mild conditions, RPCA is equivalent to solve
min & ∗ + 1 2 5, subj to & + 2 = 6.

– known as Principle Component Pursuit or PCP
– Can be solved using ADMM 
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Alternating direction method of multipliers 

(ADMM, Review)
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Croped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf

Typical use case:

f(x) is quadratic in x

g(z) contains L1 norm

B= diagonal

Minimizing a quadratic problem, with closed-form solution

Soft thresholding if B=diagonal

Can be grouped as \rho/2 ||y/rho+ (Ax+Bz-c)||^2 by completing square



ADMM Solution of L+S
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• Original problem:

• Augmented Lagrangian:

• ADMM: Solve L and S alternatingly, each with closed form solution

Find the SVD of ! = # − % + '()*,
soft hresholding singular values with threshold '()

L-minimization: 

S-minimization: 

From: Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11.



L+S Using ADMM
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From: Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11.
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From: Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11.



Variations of RPCA (not required)

• Complexity issue:

– ADMM requires solving SVD in each iteration

– Many fast algorithms have been developed

• Robustness to noise:

– Beyond the moving object, variations in the measurement matrix M 

may be due to camera noise, dynamic background (moving tree 

leaves, ocean waves, etc)

– Requiring M=L+S exactly may not be appropriate

– Stable PCP:

• M= L+S+E, where E represents small random variations

• min % ∗ + ( ) *, subj to + − % − ) - ≤ /
– Alternate formulation

• min % ∗ + (* ) *+(0 + − % − ) -0

• T. Bouwmans, E. Zahzah, “Robust PCA via Principal Component Pursuit: A Review for a Comparative 

Evaluation in Video Surveillance”, Special Issue on Background Models Challenge, Computer Vision and Image 

Understanding, CVIU 2014, Volume 122, pages 22–34, May 2014. [pdf] 
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Object Tracking by Template Matching

• Suppose you identified a person or an object in one 
frame, and you want to find how does it move in the 
subsequent frames.

• How do you do that?
• Simple approach:

– If you put a bounding box over the person, then the color 
pattern within the bounding box (template block) should not 
change much even if the box is moving over time

– We can find how does the box move by searching for a same 
sized box with similar color pattern in successive frames –
Block Matching (also known as template matching) 
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Other Alternatives for Object Tracking

• Previous approach 
– Detect in one frame, track in future frames
– Often loose track after a while

• Alternative approach
– Detect possible objects in each frame
– Link (associate) objects across frames based on their visual similarity

• Yet another alternative
– Detect feature points in each frame
– Link features across frames (e.g. KLT tracker) to form “tracklets”
– Merge tracklets belonging to the same object 

• Motion consistency, spatial adjacency
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Robust Vehicle Tracking for Urban Tra�c Videos at Intersections
Li C., Chiang A., Dobler G., Wang Y., Xie K., Ozbay K., Ghandehari M., Zhou J., Wang D.

Center for Urban Science + Progress (CUSP), New York University

Department of Electrical and Computer Engineering, New York University

Paper ID 96

Introduction

1 A robust system to automatically extract vehicle
trajectory data from video data obtained by existing tra�c
cameras from the New York City Department of
Transportation (NYCDOT).

2 Automatic trajectory information will be used to develop
realistic surrogate safety measures to both identify
high risk locations and assess implemented safety
improvements.

Figure 1: A representation of the steps in our vehicle tracking system.

KLT Tracklet Generation

Figure 2: The KLT tracking result shows the e�ects of perspective as well as

the stationary points which are to be filtered out as non-vehicle tracklets in

subsequent steps. Feature points are shown in red and tracklets in green.

Motivation and Objectives
We develop a robust, unsupervised vehicle tracking system for videos of very congested road intersections in urban environments.
Raw tracklets from the standard Kanade-Lucas-Tomasi(KLT) tracking algorithm are treated as sample points and grouped to
form di�erent vehicle candidates. Each tracklet is described by multiple features including position, velocity, and a foreground score
derived from robust PCA background subtraction. By considering each tracklet as a node in a graph, we build the adjacency
matrix for the graph based on the feature similarity between the tracklets and group these tracklets using spectral embedding and
Dirichelet Process Gaussian Mixture Models. The proposed system yields excellent performance for tra�c videos captured
in urban environments and highways.

Challenges from Urban Street Level Videos

Figure 3: Tracklets are shown before (left) and after (right) filtering and smooth-

ing. Note that the filtering process removes the majority of stationary points on

building corners and street paint.

1 High degree of partial occlusions in dense tra�c
2 Vehicles have deformable appearances due to viewing
angles as opposed to the high bird’s eye view

3 Tra�c lights at the intersection lead to vehicle stop-and-go
conditions

4 NYC DOT surveillance videos have low resolution (480 ◊ 640
pixels), frequent illumination changes among frames

Tracklet Clustering

Figure 4: The results of the rPCA foreground/background separation are shown

for both street-level NYCDOT (top) and NGSIM (bottom) video.

1 The adjacency matrix between two tracklets Aij is defined
as,

ln Aij = ≠w̨ • f̨ij, (1)

1 w̨ is a weight vector for each feature in
f̨ij © (xij,max, vx,ij,max, vy,ij,max, bcen,ij,max).

2 xij,max © maxk |x̨i(tk) ≠ x̨j(tk)| is the maximum positional
separation along the tracklet

3 vx,ij,max © maxk |vx,i(tk) ≠ vx,j(tk)| and
vy,ij,max © maxk |vy,i(tk) ≠ vy,j(tk)| are the maximum velocity
separations in two dimensions along the tracklet

4 bcen,ij,max © maxk |̨bcen,i(tk) ≠ b̨cen,j(tk)| is the maximum separation of
the center of mass of the blob labels

Result

Figure 5: The initial groups from thresholding adjacency matrix (top) and the

clustered results for all KLT tracklets(middle) are shown for NGSIM (left) and

NYCDOT (right) videos. The final extracted trajectories after spectral clustering

and DPGMM are shown in the (bottom) panels.

1 Perspective Transformation: Warping the non-parallel
trajectories into parallel

2 Hard thresholding Aij is thresholded according to
xij,max Æ d to form connected components which are never
separated by more than a distance d.

3 Spectral embedding and Dirichlet Processs
Gaussian Mixture Model (DPGMM) to identify the
number of clusters automatically and label each tracklet.

Contact: Chenge Li, chenge.li@nyu.edu
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Challenges with Object Tracking

• The shape and appearance of the object may change if the motion is not 
just a shift

– Search for the parameters of possible object motion to minimize the intensity difference 
after motion compensation in the object region. (See following for global motion estimation)

• Different parts of the object may move differently
• Some parts may disappear, new parts may appear (occlusion issues)
• Many advanced algorithms have been developed to solve these 

challenges (outside the scope of this lecture)
• Good references:

– Yilmaz, Alper, Omar Javed, and Mubarak Shah. "Object tracking: A survey." Acm
computing surveys (CSUR) 38.4 (2006): 13. 
http://7xq232.com1.z0.glb.clouddn.com/talk/2013.12.20-Student.Workshop.pdf

– Wu, Yi, Jongwoo Lim, and Ming-Hsuan Yang. "Online object tracking: A 
benchmark." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2013. http://www.cv-
foundation.org/openaccess/content_cvpr_2013/papers/Wu_Online_Object_Tracking_2013
_CVPR_paper.pdf
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Deep Learning for Object Tracking

• Many possible approaches
• Held, David, Sebastian Thrun, and Silvio Savarese. "Learning to 

track at 100 fps with deep regression networks." European 
Conference on Computer Vision. Springer, Cham, 2016. 
https://arxiv.org/pdf/1604.01802, 
http://davheld.github.io/GOTURN/GOTURN.html

• Bertinetto, Luca, Jack Valmadre, Joao F. Henriques, Andrea 
Vedaldi, and Philip HS Torr. "Fully-convolutional siamese networks 
for object tracking." In European conference on computer vision, 
pp. 850-865. Springer, Cham, 2016. 
https://arxiv.org/pdf/1606.09549.pdf

• Work at NYU Video Lab
• Not required
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GOTURN
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Held, David, Sebastian Thrun, and Silvio Savarese. "Learning to track at 100 fps with 
deep regression networks." European Conference on Computer Vision. Springer, Cham, 
2016. https://arxiv.org/pdf/1604.01802, 

https://arxiv.org/pdf/1604.01802
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Multiple Object Tracking

• Detect and track multiple objects
• Conventional approach

– Detect individual objects in each frame, then associate 
corresponding objects (Detect and then track)

• Work at NYU video lab
– Detect a “tube” in a video segment that contains the object in 

successive frames
– Chenge Li, Gregory Dobler, Xin Feng, Yao Wang “TrackNet: 

Simultaneous Object Detection and Tracking and Its 
Application in Traffic Video Analysis“.
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Tracking by Detection in Individual Frames 
(Conventional Approach)

Single frame object detection
(results of faster-region-CNN on one frame)

Multiple frame object detection
(results of applying faster-region-CNN on each 
frame. Need to determine which boxes in different 
frames correspond to the same object )
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Extending Region-CNN For Moving Object 
Detection in Video

• Consider a video segment 
consisting of multiple frames

• Detecting a tube bounding each
moving object 

• Use 3D and 2D convolution for 
feature extraction (C3D and VGG)

• Generate object proposals 
(bounding tubes of various sizes 
and orientations)

• Refine proposals and classify 
each detected tube (car, van, bus, 
pedestrian, …)
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Visual Results
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Pixel-Wise Object Tracking
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Proposed Framework

• Two stage tracking:

• The global model predicts a region of interests (RoI) in the new frame based on 
the segmentation masks of past frames.
• Employs a convolutional LSTM structure to generate the latent feature 

characterizing the object motion.

• The local model segments the RoI to identify pixels belonging to the object.
• Also uses a convolutional LSTM structure whose memory state evolves with

object appearance.

• The two-stage framework is robust to significant appearance shift, occlusion, and 
large motion and varying object sizes.

• Yilin Song, Chenge Li, Yao Wang “Pixel-wise object tracking“, Initial version: Nov. 2017, 
Last updated: July 2018.
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Camera Motion Model: 
How are two images related?

• If two images F and G are taken of the same scene 
from different view points, they are related by a 
geometric mapping or transformation

• What determines the mapping function? 
– Need to know camera 3D->2D projection geometry
– Need to know how to model camera motion
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x0 in F corresponds to x1 in G

Mapping function:
x1 = h(x0)
or
x1=hx(x0,y0), y1=hy(x0,y0) 



Planar Homography: Mapping for Points on the 
Same Plane (from Previous Lecture)
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Let$the$plane$be$represented$by$Z=aX+bY+c,
previous$general$relation$becomes

x1 =
a0 +a1x0 +a2 y0
c0 + c1x0 + c2 y0

, y1 =
b0 +b1x0 +b2 y0
c0 + c1x0 + c2 y0

The$parameters$depend$on$plane$parameters$(a,b,c)
and$camera$parameters$(F,$R,$T)
Note$there$is$inherent$scale$ambiguity$(unless$the$3D
position$of$a$point$is$known!).$Often$we$set$c0 =1

Using&homogeneous&coordinate:
x1
y1
w

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

a1 a2 a0
b1 b2 b0
c1 c2 c0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x0
y0
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x1 =Hx0
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Approximation of Projective Mapping 
by Affine and Bilinear Model

• Affine (6 parameters):

– Affine model sufficiently capture mapping due to in-plane 
camera motion (scaling, roll and translation in x,y only)

– Also known as affine homography

• Bilinear (8 parameters):

x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

a0 + a1u + a2v
b0 + b1u + b2v

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

a0 + a1u + a2v + a3uv
b0 + b1u + b2v + b3uv

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x
y
w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

a1 a2 a0
b1 b2 b0
0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

u
v
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Camera Motion Estimation

• Feature-based vs. intensity-based
– Feature-based: First determine some corresponding feature points (using 

feature detector and descriptor) in both images, then try to fit the 
correspondences into a chosen mapping model (covered previously)

• Least squares
• Robust fitting: RANSAC

– Intensity-based: Directly determine the motion field (or motion parameters) so 
that the intensities of corresponding pixels match (focus in this lecture)

• Direct vs. indirect estimation under intensity-based approach
– Direct: Directly finding the motion parameters
– Indirect: First find dense motion field, then fit the motion field to a chosen 

motion model
• Robust estimator

– Using squared error (L2 norm) make the resulting estimate sensitive to outliers 
(pixels which do not follow the camera motion, such as those corresponding to 
moving objects)

– Use L1 or L0 norm to minimize the impact of outliers
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Direct Estimation

• Parameterize the DFD error in terms of the motion parameters, 
and estimate these parameters by minimizing the DFD error

Ex: Affine motion:

T
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Exhaustive search or gradient descent method can be used to find a
that minimizes EDFD

When the motion is small, can also minimize the error to the optical 
flow equation at each pixel, EOF

Weighting wn coefficients depend on the importance of pixel xn.



Global Translation Estimation

• Simple global motion: Every pixel is moved by the same 
amount due to camera in-plane shift (global translation)

• How to find the global translation?
• Exhaustive search: Applying EBMA to the entire frame

– Find the shift between the anchor frame and the target frame 
so that the matching error is minimal

– Integer or fractional pel search
– Matching error should be calculated over overlapping pixels 

only, and the error should be normalized by the number of 
pixels in the overlapping area (average error / pixel)

• When the global translation is known to be small, the 
shift can be determined by solving an equation derived 
from optical flow constraint
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Estimating Global Shift

• Think of the whole anchor frame f1 as a block
• Find the match of f1 in the target frame f2 by evaluating matching 

error with all possible shifts
• =EBMA using the whole anchor frame as the template! 
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Anchor 
frame f1

Target 
frame, f2 



Sample MATLAB Code
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function [dx,dy]=GlobalMVEstimation1(f2, f1,Rx, Ry)
%finding global MV of f2 with respect to f1
%Rx and Ry are search range (maximum possible absolute shift)

[H,W]=size(f);[Hr,Wr]=size(fr);Maxerror=255; dx=0;dy=0;
for (k=-Ry:Ry, l=-Rx:Rx) %try all possible shifts

error=0;count=0;
for (m1=1:Hr,n1=1:Wr) 

m2=m1+k;n2=n1+l;
if ((m2>0) & (m2 <=H) &( n2>0) &( n2<=W))

count+=1;
error += abs(f1(m1,n1)-f2(m2,n2);

end
end
error=error/count;
if (error<maxerror)

dy=k,dx=l,maxerror=error;
end

end
%This script is not very efficient. How do you improve it by not looping through m1,n1 and 
checking “if …”



Alternate Faster Implementation
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function [dx,dy]=GlobalMVEstimation2(f2, f1,Rx, Ry)
%finding global MV of f2 with respect to f1
%Rx and Ry are search range (maximum possible absolute shift)

[H,W]=size(f2);[Hr,Wr]=size(f1);Maxerror=255; dx=0;dy=0;
for (k=-Ry:Ry, l=-Rx:Rx) %try all possible shifts

error=0;count=0;
mb=…, me=…, nb=…, ne=…
count=(me-mb+1)*(nb-ne+1);

%mb,me,nb,ne should be determined so that mb>=1 & mb+k>=1, similarly me<=Hr & 
me+k<=H. Similarly for nb,ne

error=sum(sum(abs(f1(mb:me,nb:ne)-f2(mb+k:me+k,nb+l:be+l))))/count;
if (error<maxerror)

dy=k,dx=l,maxerror=error;
end

end

%Hint:  To satisfy mb>=1 & mb+k>=1, we can set mb=max(1,1-k)



Global Affine Transformation

• Affine mapping is a good approximation of the global motion due to 
camera motion, especially for far-away view

• Global Affine Transformation (6 parameters)

• Special cases:
– Translation only: 
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!!!

ψ 1(x , y)=ψ 2(x +dx(x , y), y +dy(x , y))=ψ 2(x +A(x , y)a , y +A(x , y)b)
dx(x , y)
dy(x , y)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

a0 +a1x +a2 y

b0 +b1x +b2 y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

A(x , y) 0
0 A(x , y)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a
b

⎡

⎣
⎢

⎤

⎦
⎥

A(x , y)= 1 x y⎡
⎣⎢

⎤
⎦⎥ ,a =

a0
a1
a2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,b=
b0
b1
b2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!!

a0 = x#direction!shift,!a1 =0,a2 =0
b0 = y#direction!shift,!a1 =0,a2 =0
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Direct Estimation of Affine Motion: 
Minimizing DFD Error

• Parameterize the DFD error in terms of the motion parameters, 
and estimate these parameters by minimizing the DFD error

Ex: Affine motion:

!!!

dx(xn ;a)
dy(xn ;a)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

a0 +a1xn +a2 yn
b0 +b1xn +b2 yn

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= A(xn)a

A(xn)=
1 xn yn 0 0 0
0 0 0 1 xn yn

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a = [a0 ,a1 ,a2 ,b0 ,b1 ,b2]T

Exhaustive search of all 6 parameters is computationally prohibitive!
Using gradient descent method. 

Weighting wn coefficients depend on the importance of pixel xn.



Direct Estimation of Affine Motion Using Gradient Descent Method 

!!!

EDFD(a ,b)=
1
2 ψ 2(x +A(x , y)a , y +A(x , y)b)−ψ 1(x , y)

2

x∈B(x n )
∑ →min

A(x , y)= 1 x y⎡
⎣⎢

⎤
⎦⎥ ,a

T = a0 a1 a2
⎡
⎣⎢

⎤
⎦⎥ ,b

T = b0 b1 b2
⎡
⎣⎢

⎤
⎦⎥

B!refers!to!whole!frame.!Should!make!frame!center!has!coordinates!x=0,y=0

∂E
∂a

=

∂E
∂a0
∂E
∂a1
∂E
∂a2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= e(x , y)
(x ,y )∈B
∑ ∂ψ 2

∂x
(x+A(x ,y )a ,y+A(x ,y )b)

A(x , y)T =

e(x , y)Gx(x +a0 +a1x +a2 y , y +b0 +b1x +b2 y)
(x ,y )∈B
∑

e(x , y)Gx(x +a0 +a1x +a2 y , y +b0 +b1x +b2 y)
(x ,y )∈B
∑ x

e(x , y)Gx(x +a0 +a1x +a2 y , y +b0 +b1x +b2 y)
(x ,y )∈B
∑ y

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

∂E
∂b

=

∂E
∂b0
∂E
∂b1
∂E
∂b2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= e(x , y)
(x ,y )∈B
∑ ∂ψ 2

∂ y
(x+A(x ,y )a ,y+A(x ,y )b)

A(x , y)T =

e(x , y)Gy(x +a0 +a1x +a2 y , y +b0 +b1x +b2 y)
(x ,y )∈B
∑

e(x , y)Gy(x +a0 +a1x +a2 y , y +b0 +b1x +b2 y)
(x ,y )∈B
∑ x

e(x , y)Gy(x +a0 +a1x +a2 y , y +b0 +b1x +b2 y)
(x ,y )∈B
∑ y

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

e(x , y)=ψ 2(x +A(x , y)a , y +A(x , y)b)−ψ 1(x , y): !Current!prediction!error!image;

Gx(x , y)=
∂ψ 2
∂x

(x , y):!!Gradient!image!in!xFdirection;!Gy(x , y)=
∂ψ 2
∂ y

(x , y):!!Gradient!image!in!yFdirection
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Implementation Details: Gradient Vector Calculation
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!!!

First!order!gradient!descent!(starting!from!some!initial!condition):
At!(l +1)6th!iteration:

a(l+1) = a(l ) −α ∂E
∂a

a( l ) ,b( l )
,b(l+1) = b(l ) −α ∂E

∂b
a( l ) ,b( l )

!!!

First!calculate!the!gradient!images!of!ψ 2(x , y),!to!generate!original!gradient!image!Gx(x , y),Gy(x , y)
Find!an!initial!solution,!a(0) ,b(0).
At!end!of!(l):th!iteration,!you!have![a0 ,a1 ,a2]T = a(l ) ,[b0 ,b1 ,b2]T = b(l ).
Determine!the!predicted!image:!
ψ p

(l )(x , y)=ψ 2(x +a0 +a1x +a2 y , y +b0 +b1x +b2 y)=warp(ψ 2(x , y),a0 ,a1 ,a2 ,b0 ,b1 ,b2)
Determine!prediction!error!image:!!e(l )(x , y)=ψ p

(l )(x , y)−ψ 1(x , y)
Determine!the!shifted!gradient!images:
Gx

(l )(x , y)=warp(Gx(x , y),a0 ,a1 ,a2 ,b0 ,b1 ,b2); Gy
(l )(x , y)=warp(Gy(x , y),a0 ,a1 ,a2 ,b0 ,b1 ,b2)

Compute!the!gradient!vectors,!using!! ∂E
∂a

=

e(l )(x , y)Gx(l )(x , y)
(x ,y )∈B
∑

e(l )(x , y)Gx(l )(x , y)
(x ,y )∈B
∑ x

e(l )(x , y)Gx(l )(x , y)
(x ,y )∈B
∑ y

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

, ∂E
∂b

=

e(l )(x , y)Gy
(l )(x , y)

(x ,y )∈B
∑

e(l )(x , y)Gy
(l )(x , y)

(x ,y )∈B
∑ x

e(l )(x , y)Gy
(l )(x , y)

(x ,y )∈B
∑ y

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥



• Simple implementation (using centered difference)

• Convolves with filters that approximate the gradient 
operation

– Sobel operator

– Derivative of Gaussian filters (see previous lecture notes)
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Implementation Details: Gradient Image Calculation

!!Gx(x , y)=ψ (x , y)*Hx(x , y), Gy(x , y)=ψ (x , y)*Hy(x , y),

!!

Hx =
1
4

−1 0 1
−2 0 2
−1 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, Hy =

1
4

−1 −2 −1
0 0 0
1 2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

!!

Gx(x , y)= (ψ x(x +1, y)−ψ x(x −1, y))/2
Gy(x , y)= (ψ y(x , y +1)−ψ y(x , y −1))/2



How to determine the initial solution?

• If the anticipated rotation is small, may assume only 
translation is present. Estimate the translation 
parameters using the global translation estimation 
algorithm.

• If the anticipated translation is also small, can assume
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!!

a0 = translation!in!x,!a1 =0,a2 =0;
b0 = translation!in!y,!b1 =0,b2 =0.

!!

a0 =0,!a1 =0,a2 =0;
b0 =0,!b1 =0,b2 =0.



When to stop the iteration?

• When the energy functional being minimized stop decreases
• Energy function at (l+1) iteration

• At end of (l+1) iteration, check
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!!
E (l+1) = e(l+1)(x , y)( )∑

2

!!
E (l+1) −E (l )( )

E (l )
<T ?



Solving Affine Mapping Using Optical Flow Constraint
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Optical!Flow!Equation: ∂ψ 2
∂x

dx +
∂ψ 2
∂ y

dy +ψ 2(x , y)−ψ 1(x , y)=>

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ∂ψ 2
∂x

A(x , y)a+ ∂ψ 2
∂ y

A(x , y)b+ψ 2(x , y)−ψ 1(x , y)=0

We!can!find!a ,b!by!minimizing!the!following!energy!cost:

EOF(a,b)=
1
2

∂ψ 2
∂x

A(x , y)a+ ∂ψ 2
∂ y

A(x , y)b+ψ 2(x , y)−ψ 1(x , y)
2

x∈B
∑ →min

Set:
∂E
∂a

=
∂ψ 2
∂x

A(x , y)a+ ∂ψ 2
∂ y

A(x , y)b+ψ 2(x , y)−ψ 1(x , y)
⎛

⎝⎜
⎞

⎠⎟
∂ψ 2
∂x

A(x , y)T
x∈B
∑

=
∂ψ 2
∂x

∂ψ 2
∂x

A(x , y)TA(x , y)a+ ∂ψ 2
∂x

∂ψ 2
∂ y

A(x , y)TA(x , y)b+ ψ 2(x , y)−ψ 1(x , y)( )∂ψ 2
∂x

A(x , y)T⎛

⎝⎜
⎞

⎠⎟x∈B
∑ =0

∂E
∂b

=
∂ψ 2
∂x

A(x , y)a+ ∂ψ 2
∂ y

A(x , y)b+ψ 2(x , y)−ψ 1(x , y)
⎛

⎝⎜
⎞

⎠⎟
∂ψ 2
∂ y

A(x , y)T
x∈B
∑

=
∂ψ 2
∂x

∂ψ 2
∂ y

A(x , y)TA(x , y)a+ ∂ψ 2
∂ y

∂ψ 2
∂ y

A(x , y)TA(x , y)b+ ψ 2(x , y)−ψ 1(x , y)( )∂ψ 2
∂ y

A(x , y)T⎛

⎝⎜
⎞

⎠⎟x∈B
∑ =0

This!leads!to!a!linear!equation!!!
∂ψ 2
∂x

∂ψ 2
∂x

A(x , y)TA(x , y)⎛

⎝⎜
⎞

⎠⎟x∈B
∑ ∂ψ 2

∂x
∂ψ 2
∂ y

A(x , y)TA(x , y)⎛

⎝⎜
⎞

⎠⎟x∈B
∑

∂ψ 2
∂x

∂ψ 2
∂ y

A(x , y)TA(x , y)⎛

⎝⎜
⎞

⎠⎟x∈B
∑ ∂ψ 2

∂ y
∂ψ 2
∂ y

A(x , y)TA(x , y)⎛

⎝⎜
⎞

⎠⎟x∈B
∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

a
b

⎡

⎣
⎢

⎤

⎦
⎥ =

ψ 1(x , y)−ψ 2(x , y)( )∂ψ 2
∂x

A(x , y)T
x∈B
∑

ψ 1(x , y)−ψ 2(x , y)( )∂ψ 2
∂ y

A(x , y)T
x∈B
∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥



A Closer Look at the Equation …
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!!!

∂ψ 2
∂x

∂ψ 2
∂x

A(x , y)TA(x , y)⎛

⎝⎜
⎞

⎠⎟x∈B
∑ ∂ψ 2

∂x
∂ψ 2
∂ y

A(x , y)TA(x , y)⎛

⎝⎜
⎞

⎠⎟x∈B
∑

∂ψ 2
∂x

∂ψ 2
∂ y

A(x , y)TA(x , y)⎛

⎝⎜
⎞

⎠⎟x∈B
∑ ∂ψ 2

∂ y
∂ψ 2
∂ y

A(x , y)TA(x , y)⎛

⎝⎜
⎞

⎠⎟x∈B
∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

a
b

⎡

⎣
⎢

⎤

⎦
⎥ =

ψ 1(x , y)−ψ 2(x , y)( )∂ψ 2
∂x

A(x , y)T
x∈B
∑

ψ 1(x , y)−ψ 2(x , y)( )∂ψ 2
∂ y

A(x , y)T
x∈B
∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⇒S a
b

⎡

⎣
⎢

⎤

⎦
⎥ = t

B(x , y)= A(x , y)TA(x , y)=
1
x
y

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 x y⎡
⎣⎢

⎤
⎦⎥ =

1 x y
x x2 xy
y xy y2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

S =
Gx(x , y)( )2B(x , y)∑ Gx(x , y)Gy(x , y)B(x , y)∑

Gx(x , y)Gy(x , y)B(x , y)∑ Gy(x , y)( )2B(x , y)∑

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

t =

e(x , y)Gx(x , y)∑
e(x , y)Gx(x , y)∑ x

e(x , y)Gx(x , y)∑ y

e(x , y)Gy(x , y)∑
e(x , y)Gy(x , y)∑ x

e(x , y)Gy(x , y)∑ y

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

;

a0
a1
a2
b0
b1
b2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= S−1t



Iterations using the Optical Flow Approach

• The solution is accurate only if the true motion is small.
• When the true motion is not necessarily small, use an iterative 

approach
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At!the!(l+1)+th!iteration:!
Update!the!predicted!image,!error!image,!and!gradient!images!using!
ψ 2

(l ) =warp(ψ 2 ,T (l )),e(l ) =ψ 1 −ψ 2
(l ) ,Gx(l ) =warp(Gx ,T (l )),Gy

(l ) =warp(Gy ,T (l )),
Find!the!new!affine!mapping!T=(a ,b)!using!the!optical!flow!based!approach,!
with!ψ 2 ,e,Gx !,!Gyreplaced!by!ψ 2

(l ) ,e(l ) ,Gx(l ) , !Gy
(l ).

Update!the!overall!mapping!function!T (l+1) =T(a ,b)T (l ).
T (l+1) : x→ x '= x +a0 +a1x +a2 y , y→ y '= y +b0 +b1x +b2 y
T (l ) : x '→ x ''= x '+a0(l ) +a1(l )x '+a2(l ) y '; y '→ y ''= y '+b0(l ) +b1(l )x '+b2(l ) y ';
Overall!motion :
x ''= x +a0 +a1x +a2 y +a0(l ) +a1(l )(x +a0 +a1x +a2 y)+a2(l )( y +b0 +b1x +b2 y)

= x +a0
(l+1) +a1

(l+1)x +a2
(l+1) y

a0
(l+1) = a0 +a0

(l ) +a1
(l )a0 +a2

(l )b0 ,a1(l+1) = a1 +a1(l )(1+a1)+a2(l )b1 ,a2(l+1) = a2 +a1(l )a2 +a2(l )(1+b2)
y ''= y +b0(l+1) +b1(l+1)x +b2(l+1) y
b0
(l+1) = b0 +b0

(l ) +b1
(l )a0 +b2

(l )b0 ,b1(l+1) = b1 +b1(l )(1+a1)+b2(l )b1 ,b2(l+1) = b2 +b1(l )a2 +b2(l )(1+b2)



Indirect Estimation of Global Motion

• First find the dense motion field using pixel-based or block-based 
approach (e.g. EBMA), or find motion vectors at selected feature 
points, resulting in a sequence of data pairs pairs 

• Then finding the motion model parameters to satisfy the equations:

• The parameters for dx and dy can be solved separately by fitting 
the models for dx and dy separately.
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!!!dx(xn , yn ;a)= dx ,n ,dy(xn , yn ;b)= dy ,n ,n=1,2,...,N

!!(xn , yn),(dx ,n ,dy ,n),n=1,2,...,N



Least Squares Fitting for Affine Model
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!!!

Fitting!error!for!dx:!!E fit ,x = wn∑ (dx(xn ;a)−dx ,n)2.!!
Affine!motion:!!dx(xn ;a)= [An]a ,

[An]= 1 xn yn
⎡
⎣⎢

⎤
⎦⎥ ,a = a0 a1 a2

⎡
⎣⎢

⎤
⎦⎥
T

∂E fit

∂a
= wn∑ [An]T([An]a−dx ,n)=0→Qa = rx → a =Q−1rx

[An]T[An]=
1 xn yn
xn xn

2 xn yn
yn xn yn yn

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,[An]T dx ,n =
dx ,n
xndx ,n
yndx ,n

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Q = wn∑ [An]T[An]=
wn∑ wn∑ xn wn∑ yn
wn∑ xn wn∑ xn

2 wn∑ xn yn
wn∑ yn wn∑ xn yn wn∑ yn

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, rx = wn∑ [An]T dx ,n =
wn∑ dx ,n
wn∑ xndx ,n
wn∑ yndx ,n

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Similarly,

b=Q−1ry , ry = wn∑ [An]T dy ,n =
wn∑ dy ,n
wn∑ xndy ,n
wn∑ yndy ,n

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

• Weighting wn coefficients 
depend on the accuracy of 
estimated motion at  xn.



Problem with Least Squares Fitting

• Estimated motions at some pixels may be grossly wrong (outliers)
• Outliers can significantly impact the global motion estimation 

results when using square error, leading to errors in object 
detection as well

• Alternatives:
– Instead of minimizing the square error in terms of DFD, OF or motion 

parameter fitting error, minimize the L0 norm  (very hard)
– Convex relaxation: Minimize L1 norm instead. 

• Computationally more demanding than minimizing L2 error, but solvable.

– RANSAC method if based on feature correspondence 
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How to determine the parameters of 

Homography given a dense motion field?

• Previously described for the case using a set of 

corresponding feature points.

– Feature correspondence

– Least squares or RANSAC

• Same approach can be applied to all pixels

– RANSAC may be not practical 
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Pop Quiz

• What is the difference between direct and indirect methods?

• What are the two ways to set up your intensity-based objective function?

• What is the pros and cons using the optical flow equation to set up your 
optimization criterion?

• How would you estimate the global translation based on the optical flow 
equation?

• How would you estimate the homography parameters between two frames 
using the indirect method?
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Camera Motion Estimation: Applications

• To enable object detection under camera motion

• To enable registration of two frames under different 
camera views and stitching 

• To form a complete background image from a video 
sequence captured by a moving camera
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Moving Object Detection under Camera Motion

• Moving objects induce different motion than the camera motion
• Because moving objects are typically small in a frame, the pixels 

corresponding to these objects can be considered as “outliers”
• First determine camera motion by minimizing the error over all 

pixels (or feature points), then detect pixels with large error (in 
intensity or position)

• Moving objects are the outliers!
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Region-Based Motion Estimation

• Assumption: the scene consists of multiple objects, with the region 
corresponding to each object (or sub-object) having a coherent 
motion
– Physically more correct than block-based, mesh-based, global motion 

model
• Method:

– Region First: Segment the frame into multiple regions based on 
texture/edges, then estimate motion in each region using the global 
motion estimation method

– Motion First: Estimate a dense motion field, then segment the motion 
field so that motion in each region can be accurately modeled by a 
single set of parameters

• This can be done by clustering: partition all all pixels into different groups 
based on their motion similarity, using e.g. K-means algorithm

– Joint region-segmentation and motion estimation: iterate the two 
processes 



Layered Motion Estimation
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Wang, J. Y. A. and Adelson, E. H. (1994). Representing moving images with layers. IEEE
Transactions on Image Processing , 3(5):625–638.

See [Szeliski2010] Sec. 8.5.



Video Shot Boundary Detection 
(or Scene Change Detection)

• A video often contains different shots, each has a coherent scene
• How to divide a video into separate shots or detect scene change?

– An important first step for video analysis

• Simple approach:
– Frame difference: if sum of DFD is large, there is a scene change
– Sensitive to changes due to camera motion, object motion, illumination 

variation
– Does not work well in gradual transitions

• More advanced approaches
– Based on difference in color histogram, entropy of color distribution
– Machine learning based approach
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TRECVID Competition

– TRECVID  (TREC Video Retrieval Evaluation) is sponsored by NIST to 
encourage research in digital video indexing and retrieval. It has 
focused on different video analysis tasks. Shot boundary detection 
was one

• http://trecvid.nist.gov/

– Smeaton, Alan F., Paul Over, and Aiden R. Doherty. "Video shot 
boundary detection: Seven years of TRECVid activity." Computer 
Vision and Image Understanding 114.4 (2010): 411-418. 
http://doras.dcu.ie/4080/1/sbretro.pdf. Contain results up to 2005

– Liu, Z., Gibbon, D., Zavesky, E., Shahraray, B., & Haffner, P. (2007, 
November). AT&T research at trecvid 2006. In Proc. TRECVID 
Workshop (pp. 19-26). (best in TRECVid2006 SBD Competition) 
https://www.researchgate.net/profile/Behzad_Shahraray/publication/22
4718827_A_Fast_Comprehensive_Shot_Boundary_Determination_Sy
stem/links/02e7e51a8b6cea0546000000.pdf
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Video Stabilization

• A video may be unstable due to unwanted camera 
motion

• Especially prevalent in home video captured by hand-
held cameras with a “shaky hand”

• Also prevalent in aerial surveillance video
• Goal: remove the motion due to unwanted camera 

motion, so that the video plays smoothly
• Demo

– http://www.sri.com/newsroom/video/acadia-real-time-video-
stabilization-demo
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General Approach

• Estimate camera motion between every two adjacent 
frames
– Assuming a global translation is often sufficient
– More generally using affine to account for tilt or homography to 

account for out of plane rotation
– Can use either feature-based on intensity-based approaches

• Smooth motion parameters in time (to remove shaking, 
but keep the smooth camera motion)

• Warping each frame so that it undergoes the smoothed 
motion between frames
– Remove undesired global motion due to hand shaking

• Filling missing pixels (on the border) in each frame 
(image completion)
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Global Motion 
Smoothing
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From [1]

Kalman filtering approach:
Separating observed motion 
parameters into intentional 
and unwanted motion [Ref 2]

[2] A. Litvin, J. Konrad, and W. Karl, 
“Probabilistic Video Stabilization Using Kalman
Filtering and Mosaicking,” Proc. IS&T/SPIE 
Symp. Electronic Imaging, Image, and Video 
Comm., pp. 663-674, 2003.



Motion Correction Needed

• Original global motion parameters between successive 
frames In-1 and In: an
– xn= xn-1+h(xn-1,an)

• Smoothed parameters: bn

• Correction needed for frame n
– Observed pixel location xn=xn-1+h(xn-1,an)
– Desired pixel location x’n= xn-1+h(xn-1,bn)
– Correction needed: x’n=xn+h(xn-1,bn)-h(xn-1,an)=xn+d(xn-1,bn, an)
– Should warp xn in Ix to x’n in stabilized frame I’n
– Using inverse mapping I’(x’n)=I(xn=x’n-d(xn-1,bn, an))

• Special case: Consider only a global translation
– d(xn-1,bn, an)=bn,-an: difference in smoothed translation and 

original translation
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Sample Results: Considering Translation only
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From: Y. Matsushita, E. Ofek, W. Ge, X. Tang, H.-Y. Shum, “Full-Frame Video Stabilization with 

Motion Inpainting,” IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE 

INTELLIGENCE, VOL. 28, NO. 7, JULY 2006



Video Completion 
by Motion Inpainting [Ref 1]
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[1] Y. Matsushita, E. Ofek, W. Ge, X. Tang, H.-Y. Shum, “Full-Frame Video Stabilization 
with Motion Inpainting,” IEEE TRANSACTIONS ON PATTERN ANALYSIS AND 
MACHINE INTELLIGENCE, VOL. 28, NO. 7, JULY 2006



Pop Quiz

• What are the major steps in stabilization?
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Pop Quiz (Answer)

• What are the major steps in stabilization?
• Global motion (mapping) estimation -> motion 

parameter smoothing -> warping based on the 
difference of the smoothed motion and the measured 
motion -> image completion
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Summary (1)

• Simple approach for background modeling/ moving object 
detection: Using average or median of frames to form the 
background image. Pixels different from the background are 
considered to belong to moving objects.

• Not robust to changes due to illumination, shadow, background 
dynamics, and noise.

• Robust PCA solution:
– smooth background forms a low rank matrix, moving object leads to sparse 

entries in the matrix, Solve Low rank + sparse decomposition problem

• When the camera is moving, one has to estimate the camera 
motion and finding regions with different motion as objects.

• Camera motion induced motion field models:
– Homography is accurate when the imaged scene is faraway
– Affine is accurate when the camera motion is in plane (rotation, zooming, 

shifting) 
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Summary (2)

• Camera motion parameters can be estimated by minimizing the 

DFD error over all pixels in a frame

– No closed form solution,  can be solved using gradient descent 

– Should know how to set up the energy function, the gradient, and the iterations

• Camera motion parameters can also be estimated by minimizing 

the optical flow equation error

– Can lead to a linear equation with closed-form solutions  

– Should know how to set up the energy function, obtain the linear equation by 

setting the gradient to zero

– Optical flow equation is only accurate if the motion at every pixel is small, which 

is usually not true for camera motion.

– Can get around by iterative warping.

• Video shot boundary detection

– Based on difference in histogram or entropy

• Video stabilization 

– Global motion estimation, motion parameter smoothing, warping, missing pixel 

interpolation
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Tools for motion estimation, object detection and 
tracking

• Python tools for motion estimation and object detection
– http://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_o

bject_tracking.html
– cv2.calcOpticalFlowPyrLK()

• This function computes the flow at a set of feature points, using pyramid 
representation

– cv2.calcOpticalFlowFarneback()
• This function computes dense flow (at every pixel)

– cv2.BackgroundSubtractorMOG2() 
– cv2.BackgroundSubtractorMOG()

• KLT tracker
– https://github.com/TimSC/PyFeatureTrack (3rd party package)

• Tutorial on object detection and tracking using OpenCV
– https://www.intorobotics.com/how-to-detect-and-track-object-with-opencv/
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Useful Resources for Background Subtraction

• Background subtraction:
– http://bmc.iut-auvergne.com/ (some datasets)
– https://sites.google.com/site/backgroundsubtraction/ (algorithm, datasets, 

codes)
– changedetection.net (large dataset)
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Reading Assignments

• [Szeliski2010] Richard Szeliski, Computer Vision: Algorithms and Applications. 2010.  Chap. 8. 
(Mainly 8.2 and 8.5 for this lecture)

• [Wang2002] Wang, et al, Digital video processing and communications. Sec. 6.7,6.8, Apx. A, B.

• T. Bouwmans, E. Zahzah, “Robust PCA via Principal Component Pursuit: A Review for a 
Comparative Evaluation in Video Surveillance”, Special Issue on Background Models 
Challenge, Computer Vision and Image Understanding, CVIU 2014, Volume 122, pages 22–34, 
May 2014. [pdf] 

• Other optional references:
• Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM 

(JACM), 58(3), 11.

• T. Bouwmans, “Traditional and Recent Approaches in Background Modeling for Foreground Detection: An 
Overview”, Computer Science Review, 2014.[pdf]

• Andrews Sobral and Antoine Vacavant. A comprehensive review of background subtraction algorithms evaluated 
with synthetic and real videos. Computer Vision and Image Understanding, 122:4-21, 2014

• Yilmaz, Alper, Omar Javed, and Mubarak Shah. "Object tracking: A survey." Acm computing surveys 
(CSUR) 38.4 (2006): 13. http://7xq232.com1.z0.glb.clouddn.com/talk/2013.12.20-Student.Workshop.pdf

• Wu, Yi, Jongwoo Lim, and Ming-Hsuan Yang. "Online object tracking: A benchmark." Proceedings of the IEEE 
conference on computer vision and pattern recognition. 2013. http://www.cv-
foundation.org/openaccess/content_cvpr_2013/papers/Wu_Online_Object_Tracking_2013_CVPR_paper.pdf

• Stauffer, Chris, and W. Eric L. Grimson. "Adaptive background mixture models for real-time tracking." Computer 
Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on.. Vol. 2. IEEE, 1999. 
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Written Assignment

• Answer all the quiz questions
• Suppose you model the global motion between two frames by a bilinear 

transform. You would like to determine the bilinear transform parameters 
by minimizing the sum of squared differences between corresponding 
pixels in the two frames. Formulate the minimization function and its 
gradient with respect to the motion parameters. From the gradient, can 
you find the closed-form solution? If yes, derive the solution. If not, 
describe a gradient descent algorithm for finding the solution.

• Instead of minimizing the sum of squared differences between 
corresponding pixels in the two frames, you can assume the motion is 
small and apply the optical flow constraint at each pixel. Formulate the 
minimization function and its gradient with respect to the motion 
parameters. From the gradient, can you find the closed-form solution? If 
yes, derive the solution. If not, describe a gradient descent algorithm for 
finding the solution.
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