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Multi-task training of neural networks potentially yield better perfor-

mance over training for the individual tasks while resulting in computation-

ally more efficient structures than separate networks. Effective optimization

methods for multi-task network is an ongoing area of research. Multiple-

gradient descent algorithm (MGDA) is a good candidate for training net-

works with shared parameters. It finds solutions on the Pareto frontier by

taking gradient descent steps in Pareto optimal directions. In this work we

build upon the theoretical work done by Peitz et al. [1] who introduced an

inexact version of MGDA that conditionally updates the parameters based

on the gradient uncertainties. In deep learning uncertainty in gradients arise

from minibatch sampling. We simplify the inexact MGDA and propose a

version that is well-suited for training multi-task deep networks. We fur-

ther introduce an approximation for estimating gradient inexactness through



vi

training and propose a novel adaptive MGDA that updates the inexactness

bound as the training progresses. We test the new algorithm on three sep-

arate multi-task training networks and compare its performance with the

classical MGDA, single task training and optimizing jointly for the weighted

sum of losses associated with multiple tasks.
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Chapter 1

Multi-Objective Optimization

A multi-objective optimization problem can be expressed in the form

min
θsh

θ1,...,θk

{Li(θsh, θi)}ki=1 (1.1)

where we try to jointly optimize the parameter set θ = θsh∪
⋃k
i=1 θ

i for k loss

functions Li : Rni → R. θsh denotes the set of parameters that is shared by all

the loss functions and every loss function indexed i has its own set of param-

eters θi. In deep learning literature jointly optimized objectives are thought

to provide better generalized solutions for every objective compared to indi-

vidual optimizations of the objectives [3]. There are two explanations given

for this phenomenon; (1) the knowledge learned by a single task can be lever-

aged by other tasks and (2) tasks can behave as regularization constraints

for each other which enforce the network to learn more generic features [3].

However better generalization may not be gained by joint optimization when

the tasks are competing. Often times it is difficult to distinguish competing

and cooperating tasks and this distinction is not explored in this work. An-

other motivation for multi-objective optimization (MOP) in deep learning is

by using a shared set of parameters for multiple tasks one can save memory

and time when deploying the tasks. An important concept in MOP is the

1
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X

Y 1 → L1(θsh, θ1)

Y 2 → L2(θsh, θ2)

Y k → Lk(θsh, θk)

...
θsh

θ2

θ1

θk

Figure 1.1: A common deep learning framework for multi-objective optimiza-
tion problems in the form of equation (1.1) is shared encoder multi decoder
structure. A single input X is fed through a shared encoder which extracts
generic features for all tasks and a separate output Y i is generated for each
task through the decoders. The network is jointly optimized for loss functions
Li, i = 1, . . . , k.

Pareto optimality.

Definition 1. Pareto Optimal Set

• A point θ∗ ∈ Rn dominates the point θ ∈ Rn if Li(θ∗) ≤ Li(θ) for all

i ∈ {1, . . . k} and Li(θ∗) < Li(θ) for at least one i ∈ {1, . . . k}.

• A point θ∗ ∈ Rn is a Pareto optimal point if there exists no point

θ ∈ Rn that dominates θ∗.

• The set of non-dominated points is called a Pareto optimal set Ps and

its image is called the Pareto front PF .

It is often desired for a solution to the MOP be a Pareto optimal point;

otherwise we could find another solution that is better off in at least one task
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L1

L2

F

Figure 1.2: The bold line denotes the Pareto frontier for the 2-task optimiza-
tion problem. F denotes the feasibility set.

without being worse off in any other task. A common method in deep learning

for finding a Pareto optimal solution is optimizing all the parameters jointly

for a single objective obtained by the weighted sum of the other objectives.

min
θsh

θ1,...,θk

k∑
i=1

λiLi(θsh, θi) (1.2)

where λi > 0 for i ∈ 1, . . . , k. Ideally one can approximate the Pareto frontier

by finding the optimal solution for every point in the λ space. However there

are two major drawbacks to this method (1) the optimal solution distribution

is not uniform, and (2) optimal solutions in non-convex regions of Pareto

frontier are not detected [4]. Both of these drawbacks are more apparent for

deep learning applications where the objective functions and Pareto frontiers

are non-convex with a high dimensional parameter space and gradient descent

is used to obtain the solutions. The most common optimization techniques in

deep learning applications involve using gradient descent variant algorithms;

in which a descent direction in the parameter space is determined by the

gradient with respect to the objective function. For the case of weighted sum

of losses in equation (1.2), this direction is the weighted sum of individual
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gradients

q(θ) = −
k∑
i=1

λi∇Li(θ) (1.3)

Then the parameters are updated by the gradient descent update rule

θ ← θ + ηq(θ) (1.4)

where η denotes the learning rate.

Lemma 1. For a sufficiently small learning rate η, a descent direction q(θ)

will be non-increasing for objective function Li : Rni → R iff q(θ)·∇Li(θ) ≤ 0

Proof. Using the first order Taylor approximation around the updated pa-

rameters

Li(θ + ηq(θ)) = Li(θ) + ηq(θ) · ∇Li(θ) + εi‖ηq(θ)‖22 (1.5)

= Li(θ) + η(q(θ) · ∇Li(θ) + εi‖ηq(θ)‖22) (1.6)

≤ Li(θ) (1.7)

where εi → 0 as η → 0. Equation (1.7) holds iff

q(θ) · ∇Li(θ) + εiη‖q(θ)‖22 ≤ 0 (1.8)

Since ε‖q(θ)‖22 ≥ 0 it must hold that q(θ) · ∇Li(θ) ≤ 0 and for a sufficiently

small η there is an ε satisfying −q(θ) · ∇Li(θ) ≥ εiη‖q(θ)‖22.

Notice that lemma 1 holds for any function, including non-convex func-

tions which is often the case in deep learning optimization. Based on this

observation we can define a Pareto optimal descent direction as

Definition 2. A descent direction q(θ) is a Pareto optimal descent direction

when −q(θ) · Li(θ) ≥ 0,∀i ∈ {1, . . . , k}
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Notice that the solution to the optimization problem is Pareto optimal

when weighted sum of losses is optimized as in equation (1.2) [4] however

when gradient descent is used to obtain the solution, there are drawbacks

that may prevent us from getting to a Pareto optimal point when gradient

descent is used with the weighted sum of losses. In this work we address

two of these drawbacks (1) gradient descent direction is not Pareto optimal

(−∇Lj(θ) ·
∑k

i=1 λi∇Li(θ) ≥ 0 is not necessarily true for all i, j ∈ {1, . . . , k})
and (2) the gradients are sampled by mini-batching the dataset which causes

inexactness. A popular method to address the first drawback is the Multiple

Gradient Descent Algorithm (MGDA) developed by Désideri et al. [5]. It

was applied in deep learning setting by Şener et al. [2]. The second drawback

is addressed by a modified version of this algorithm using inexact gradients.

The theoretical work for the inexact-MGDA has been published by Peitz et

al. [1]. Our contributions are (1) experimentally applying this algorithm in a

deep learning setting and (2) formulating an empirical method for inexactness

estimation.



Chapter 2

Multiple Gradient Descent

Algorithm

2.1 Standard MGDA

Each gradient vector defines a half-space by the hyperplane perpendicular

to the gradient vector. The cone formed by the intersection of the half-

spaces across the gradients that satisfy −q(θ) · ∇Li(θ) ≥ 0 is the cone of

Pareto optimal descent directions. Thus, if a single Pareto optimal descent

direction exists then there must be a cone in which infinitely many more

directions lie. If the Pareto optimal descent direction does not exist then

the intersection of the half-spaces is an empty region. Goal of MGDA is to

find the common steepest descent direction [5]. An auxiliary optimization

problem is suggested for finding the common steepest direction

min
α∈Rk

{∥∥∥ k∑
i=1

αi∇Li(θ)
∥∥∥2
2

∣∣∣ αi ≥ 0, i = 1, . . . , k,
k∑
i=1

αi = 1
}

(2.1)

q(θ) = −
k∑
i=1

αi∇Li(θ) (2.2)

6
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Following the derivations from [2] we first derive the solution for k = 2 tasks

case.

min
α
‖α∇L1(θ) + (1− α)∇L2(θ)‖22 α ∈ [0, 1] (2.3)

α = clip[0,1]

[
(∇L2(θ)−∇L1(θ))T∇L2(θ)

‖∇L1(θ)−∇L2(θ)‖22

]
(2.4)

In order to find the solution for a higher number of tasks we follow the

Figure 2.1: Figure by Şener et al. [2] illustrating MGDA solution in 2D with
2 tasks. Their notation matches us when γ = α, θ = ∇L1(θ) and θ̂ = ∇L2(θ)

.

procedure suggested in [2]. Define matrix M

Mi,j = ∇Li(θ)T∇Lj(θ) (2.5)

then we can rewrite the optimization objective in vector quadratic form
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Figure 2.2: Frank-Wolfe algorithm visualized for a two variable function.
Figure by Stephanie Stutz from wikimedia under creative commons license.

min
α∈Rk

αTMα

subject to
k∑
i=1

αi = 1 (2.6)

αi ≥ 0 ∀i ∈ {1, . . . , k}

These type of contrained convex optimization problems can be solved by

Frank-Wolfe iteration solver [6]. Algorithm iteratively takes a linear approx-

imation of the objective function until convergence. Frank-Wolfe solves

problems in the following form for a convex function f(x).

min
x
f(x)

subject to x ∈ D (2.7)

for our problem x← α, f(α)← αTMα and D = {α|
∑
αi = 1, αi ≥ 0}.
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1: procedure Frank-Wolfe(M)

2: initialize {α1, . . . , αk} ← {1/k, . . . , 1/k}
3: while α not converged do . Check for convergence

4: t̂ = argminr
∑

t αtMrt . find direction

5: γ = argminγ((1− γ)α + γet̂)
TM((1− γ)α + γet̂) . find step size

with line search, two task solution in equation (2.4)

6: α← (1− γ)α + γet̂ . update parameters

7: end while

8: return α

9: end procedure

The gradient descent algorithm is updated using the Frank-Wolfe algorithm.

1: procedure Multiple Gradient Descent Algorithm(θ,L)

2: while θ not converged do . Check for convergence

3: for i ∈ {0, . . . , k} do

4: for j ∈ {0, . . . , i} do

5: Mij ← ∇Li(θ) · ∇Lj(θ)
6: Mji ←Mij . Sample gradients and form M

7: end for

8: end for

9: α← Frank-Wolfe(M)

10: θ ← θ − η
∑k

i=1 αi∇Li(θ)
11: end while

12: end procedure

2.2 Inexact MGDA

Gradient descent used in deep learning results in inexact gradients as the data

is fed in random batches. Empirical evidence suggest that models trained

with smaller batches usually achieve better generalization [7]. We expect

the inexactness of the gradients to grow as batchsize gets smaller. This
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leads to confusion about whether it is desired to rid the models of all the

inexactness that arise from sampling batches. We believe MGDA grants a

unique opportunity to study the effect of inexact batch gradients because the

existence of multiple gradients can be utilized to perform inexactness-aware

multiple-gradient descent. The theoretical foundations of an inexact MGDA

has been studied by Peitz et al. [1]. In this section we introduce a simplified

version of their algorithm that well-suited for deep learning applications.

Assume the gradients sampled for every task contains a bounded error

‖∇Li(θ)−∇L̃i(θ)‖2 ≤ εi (2.8)

Exact gradient ∇L(θ) is the gradient of whole epoch and inexact gradient

Figure 2.3: Figure by Peitz et al. [1]. fi = Li for our notation.

∇L̃(θ) is the gradient of the batch. In the following sections we will discuss

various methods for εi estimation, but for the theoretical discussions in this

section we assume the value to be known. The angle of inexactness ϕi can

be defined geometrically

ϕi = arcsin
( εi
‖∇Li(θ)‖2

)
(2.9)

Going back to the Pareto optimal descent direction from definition (1) that

defines a cone when multiple gradients are introduced Q = {q(θ) : −q(θ) ·
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Li(θ) ≥ 0, i ∈ {1, . . . , k}}. This cone can be updated when inexactness is

introduced Angle gammai is the angle from the descent direction to the

Figure 2.4: Figure by Peitz et al. [1] (a) the exact cone Q defined by gradients
in MGDA (b) illustrating the updated cone Qu when inexactness is taken into
account.

updated cone boundary hyperplane introduced by gradient i. Geometrically

we can define it as

γi =
π

2
− arccos

q(θ) · (−∇Li(θ))
‖q(θ)‖2‖∇Li(θ)‖2

(2.10)

Based on this we extend the Pareto optimal descent direction rule such that

for every task

γi ≥ ϕi ≥ 0, i = 1, . . . , k (2.11)

Assume we apply the original MGDA to come up with the set of αi and

descent direction q(θ) =
∑k

i=1 αi∇Li(θ). Then we can use the definitions of

γi and ϕi in equations (2.10) and (2.9) and check if this descent direction is

Pareto optimal descent using the updated rule in equation (2.11). Plugging

the definitions in, after some algebraic operations we can write the rule in
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terms of αi.

αi ≥ αmin,i =:
1

‖∇Li(θ)‖

(
‖q(θ)‖2εi −

k∑
i 6=j
j=1

αj
(
∇Lj(θ) · ∇Li(θ)

))
(2.12)

For the MGDA descent direction to be Pareto optimal we require every

αi yielded by Frank-Wolfe algorithm to be greater than the αmin defined in

equation (2.12). The inexact-MGDA is proposed as doing regular MGDA

while checking the condition of equation (2.12) at every step and skipping

the updates that do not satisfy this condition.

1: procedure Inexact-MGDA(θ,L, ε)
2: Sample gradients ∇L(θ) and form M

3: α← Frank-Wolfe(M)

4: Calculate αmin,i using αi and εi in equation (2.12)
5: if αi ≥ αmin,i, i = 1, . . . , k then

6: θ ← θ − η
∑k

i=1 αi∇Li(θ) . do descent update

7: end if

8: return θ

9: end procedure

Inexact-MGDA requires an upper bound on inexactness εi to be defined for

each task. In the following sections we discuss how to estimate this value for

deep learning problems.

2.3 Inexactness Upper Bound Estimation

εi can be regarded as a new hyperparameter introduced by inexact MGDA:

εi ≥ ‖∇Li(θ) − ∇L̃i(θ)‖2 that quantifies the uncertainity of the gradients.

We make some speculations about some expected properties of this new

hyperparameter ε.

• Very large εi definitely satisfies the definition but results in large αmin,i

which causes MGDA to skip most of the updates. We only want to
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skip very uncertain updates

• Very small εi makes the uncertainity analysis dsyfunctional: αmin,i → 0

as εi → 0 so inexact MGDA becomes same with regular MGDA

• Optimum εi value probably changes through training as uncertainity is

different when parameters are near or far from convergence

• Optimum εi value should be closely related to the batchsize, as less in-

exactness is expected from larger batches. Note that small inexactness

may not always be a desired property in deep networks as previous

works suggest that smaller batches usually yield better generalization

[7]

Based on these speculations we propose to estimate and update uncertainty

εi after each epoch. Our goal is to quantify uncertainty in the gradients

during an epoch say e and use that uncertainty to make an estimate on εi

on epoch e+ 1. Assume we label the minibatches contained within an epoch

with index p where N is the number of all minibatches. Let the gradient of

task i in minibatch p as ∇L̃pi and true epoch gradient as ∇LEi .

By definition the gradient error in a epoch can be determined by εi

ε2i = (
1

N

∑
p

‖∇L̃pi −∇LEi ‖22) (2.13)

In reality we do not know the true epoch gradient as we perform parame-

ter update after each minibatch based on the minibatch gradient. Here we

propose to simply use the average of the minibatchg gradients, µ∇Li

µ∇Li
≈ 1

N

∑
p

∇L̃p (2.14)
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So we update εi using

ε̂2 =
1

N

∑
p

(‖∇L̃p − µ∇L‖22) (2.15)

=
1

N

∑
p

∇L̃pT ˜∇Lp − µ∇LTµ∇L (2.16)

Notice that 1
N

∑
p(∇L̃T∇̃L) term is a scalar and can easily be tracked with

O(1) memory cost. The term µ∇L
Tµ∇L requires µ∇L to be updated at every

gradient descent update so it induces an extra memory cost of O(P ) for each

task where P is the total number of parameters in the model. However this

mean should be tracked for every task so the total increased cost is O(kP ).

This increase in cost is comparable to popular optimizers like Adam and

Momentum, where moving averages of gradients are kept through training.

Note that the pseudo-mean gradient introduced here is closely related to

the momentum terms used in popular optimizers like Adam, with a key

main difference. The pseudo-mean is taken over a single epoch whereas the

momentum terms are calculated by a running weighted average over the

whole training session.

Finally a new hyperparameter scaling factor εi = λε̂i. Our experiments have

shown that without the scaling factor the estimated inexactness is usually

an order of magnitude larger than the optimum εi value obtained by training

the network with a different εi that remains constant throughout training

session. Putting these together we introduce a novel algorithm adaptive

inexact-MGDA.
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1: procedure Adaptive-ε-MGDA(θ,L, λ)

2: Initialize εi ← 0, i = 1, . . . , k

3: while θ not converged do
4: µ∇Li ← 0, i = 1, . . . , k . Adds memory cost O(kP ) where P is total size of network

5: µ∇LiT∇Li ← 0 . Only a scalar, adds memory cost O(k) which is negligible

6: t← 0

7: while epoch has not ended do

8: Sample gradients ∇Li

9: µ∇Li ← µ∇Li +∇Li, i = 1, . . . , k

10: µ∇LiT∇Li ← µ∇LiT∇Li +∇LiT∇Li, i = 1, . . . , k

11: Inexact-MGDA(θ,∇L, ε)
12: t← t+ 1

13: end while

14: µ∇Li ← µ∇Li/t, i = 1, . . . , k

15: µ∇LiT∇Li ← µ∇LiT∇Li/t, i = 1, . . . , k

16: ε2i ←λ(µ∇LiT∇Li − µ∇Li
Tµ∇Li), i = 1, . . . , k

17: end while

18: end procedure

An alternative to using an adaptive ε estimation is to simply use a constant

throughout training, which means is regarded as a hyperparameter to be

tuned.

We compare the adaptive inexact MGDA with the constant inexact MGDA

and the original MGDA without considering inexactness in the experimen-

tation section.



Chapter 3

Experimental Results

We setup 3 different multi-task networks to compare the suggested algo-

rithms. Two of these networks are directly following the work of Sener et

al. [2] where we do (1) MNIST overlapping digit estimation and (2) joint

semantic segmentation, instance segmentation and depth estimation. For

the third task we introduce a joint saliency and compression network. All of

these tasks follow the single encoder multi decoder architecture in the form

of Figure 1.1.

3.1 MNIST Overlapping Digit Classification

The goal of the network is to separately classify overlapping digits in a single

image. The images are created by sampling two random digits form the

MNIST dataset and pasting one on the upper left and one on the lower right

of the image. A shared encoder and duo-decoder architecture is used where

one decoder tries to classify upper left and the other decoder tries to classify

the lower right digit. Decoders are fully connected layers with 10 unit sigmoid

outputs. MNIST dataset with 10000 28x28 images are used for generating

16
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Figure 3.1: Sample input images to be classified by the network.

the images. Cross entropy loss is used to train the network [8].

L = − log(pt) (3.1)

where

pt =

p if y = 1

1− p if y = 0
(3.2)

and y indicates whether the digit’s class corresponds to the one-hot vector

location. Network is trained over 100 epochs with learning rate 0.001 using

Figure 3.2: MNIST network by Şener et al. [2].

Nesterov’s momentum 0.9.
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3.1.1 Results

We evaluate the left and right digit accuracies on 5000 validation images.

We observe in figure (3.3) that for most values of ε classical MGDA outper-

Figure 3.3: Tasks’ performance for different ε values. ε = 0.0 corresponds to
the original MGDA and adaptive MGDA point has λ = 1.

forms inexact-MGDA but for a fine tuned ε we can see a slight improvement

in the digit accuracies. Notice that directly using the ε estimate in equation

(2.13) with λ = 1 does not yield a good training point. So we make a sep-

arate sweep on λ parameters on Figure (3.4) and compared it with the best

performing constant ε point for ε = 0.2. Adaptive-MGDA outperforms both

classical and constant MGDA when tuned with the right λ.

We have also tracked the estimated value during adaptive-MGDA before

scaling in figure (3.5), as well as the change of α in Figure (3.6).

The tracked uncertainty values in Figure (3.5) illustrate a couple of inter-

esting observations.
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Figure 3.4: Adaptive ε training results for different λ values. Best constant
ε point is ε = 0.1 point from figure (3.3).

(a) Left digit loss and ε2 estimation (b) Right digit loss and ε2 estimation

Figure 3.5: Training loss per task and ε2 estimation by the adaptive algo-
rithm.

• The gradient inexactness peak during the steepest descent of the losses
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• The uncertainty converges as the loss converge

• The adaptive ε̂ tracked is an order of magnitude larger than the opti-

mum ε obtained by the sweep. Moreover the optimum λ = 0.1 seems

to correct this mismatch.

Figure 3.6: Change of α through training during adaptive MGDA

We have also observed that α values in Figure (3.6) oscillate less as the

network nears convergence and there is slight more weighting on the right

digit loss throughout training which we believe is due to right digit loss

being consistently higher than the left. On the MNIST experiments we have

observed that using large ε or λ in training causes the early termination of

the training where updates are not being done.
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3.2 Joint Semantic Segmentation, Instance Seg-

mentation and Depth Estimation

We follow the Resnet-50 [9] based shared encoder and pyramid pooling net-

work [10] tri-decoder architecture put together by Sener et al. [2]. Network

Figure 3.7: Network used for joint semantic segmentation, instance segmen-
tation and depth estimation by Şener et al. [2].

Figure 3.8: Pyramid network as the decoder layers of the 3 task network by
Zhao et al. [10].

is trained using the fine annotated cityscapes dataset [11] consisting of 3750

training images and 500 validation images. Dataset consists high resolution

images taken over 30 cities in Germany annotated for semantic, instance and

depth maps.
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3.2.1 Semantic Segmentation

Goal of semantic segmentation is to assign a classification label for every pixel

on the input image based on the object that the pixel belongs to. Output

is a H × W × C image where C corresponds to the number of objects in

the dataset. For the cityscapes dataset C = 19. There are many popular

metrics to evaluate semantic segmentation performance, in this work we use

the mean intersection over union metric (mIoU). For every class

IoU =
y ∩ ŷ
y ∪ ŷ

(3.3)

where y denotes the ground truth regions that belong to the class and ŷ is

the predicted pixels to be belonging to the given class. Mean intersection

over union is obtained by averaging IoU scores over all C classes. The loss

function used is 1 minus sum of IoU scores for each pixel.

3.2.2 Instance Segmentation

Instance segmentation task is similar to semantic segmentation where each

pixel is labeled based on the class of the object it belongs to. Difference is

in instance segmentation when multiple separate objects of the same class

are present, different labels should be assigned for different instances. For

example when there are two dogs in the image each dog should be classified

differently. Therefore the output space of the instance segmentation task

would be undefined if we were to try an output map sized H ×W × C in

the same form of semantic task because number of instances can change for

each image. Kendall et al. [12] suggests a proxy task as a workaround of this

problem. Output maps are of H ×W × 2 where each pixel at location (x, y)

contains a vector (δx, δy) that points at the center of mass of the object such

that (x+ x, y + δy) is the mean location of all the pixels that belong to the

given object. Using the proxy problem, ground truth maps can be formed
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Disparity Error Instance Error mIOU
MGDA 2.78 11.24 56.54

Constant ε-MGDA 2.72 10.82 58.16
Adaptive ε-MGDA λ = 0.1 2.61 10.36 58.22

Table 3.1: Comparison of MGDA variations on 3 task network. For mIoU
higher is better. Optimum ε values found by the sweep were 0.35, 0.2 and
0.25 for depth estimation, instance segmentation and semantic segmentation
respectively.

and network is directly trained on the MSE between the ground truth and

predicted maps. We report the MSE of the validation dataset.

3.2.3 Depth Estimation

Depth estimation task aims to estimate the distance of each pixel from the

camera. Cityscapes dataset contains the depth maps in the form H ×W × 1

where each pixel directly contains the ground truth depth. Training is done

using the MSE with the ground truth. We report the MSE of the validation

dataset.

3.2.4 Joint Training and Results

Due to the large size of the network, a full sweep of all the potential λ and ε

values was not feasible. Best performing values was determined by a sweep on

a smaller dataset containing 150 images. Later a full training was performed

with the same parameters. All training instances use Adam optimizer with

0.001 learning rate. Learning rate is halved every 30 epochs. Training was

ran for 100 full epochs and the latest non-dominated point has been selected

from the validation performances. Based on the comparison on Table (3.1)

inexact MGDA outperforms the regular MGDA with adaptive-MGDA yield-

ing the best result. However like the MNIST experiment the λ scaling factor

is significantly small. When we consider that a large ε results in gradient
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updates being skipped for most of the inexact gradients the low optimum λ

value supports our conclusion that some inexactness helps the network gen-

eralize but filtering out gradients with too much inexactness is still beneficial

for the training.

As before we tracked the estimated ε̂2 for each task together with correspond-

ing loss function.

We have observed very similar gradient inexactness and loss relation to

Figure 3.9: Task loss and ε2 estimation by the adaptive algorithm for 3-task
network.

the MNIST experiments on Figure (3.9) eventhough the network was larger

and 3 tasks were employed. The nature of tasks were significantly different

than each in this example compared to the MNIST example so we see more

variation in the gradient inexactness range and convergence time.

3.3 Joint Saliency and Compression Network

3.3.1 Image Compression

The most representative models for image compression typically adopted the

auto-encoder (AE) like structure whose bottleneck layers, or latent represen-

tations, are quantized and entropy coded [13, 14, 15, 16, 17, 18, 19]. For
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Shared

Encoder (θsh)

Compression

Decoder (θ2)

Rate Estimator
(θ1)

Saliency
Detector (θ3)

L1

L2

Figure 3.10: Simple illustration of proposed simultaneously learning frame-
work.

example, Toderici et al. [15] proposed an end-to-end image coding model

based on the RNN, where the original and residual images are iteratively

compressed using RNN structure. During each RNN iteration, the better

reconstruction with a commensurate bitrate cost will be produced. However,

the RNN based method might have limitations in representing high-frequency

residuals. Additionally, the lack of entropy estimation during RNN training

also constraints its overall R-D performance. To address this issue, Theis et

al. [14] presented a CNN based AE structure, where the entropy model was

approximated using Gaussian distribution during optimization. In [20], an

inpainting base learning approach was proposed for image compression. To

enhance the visual quality, the generative adversarial network (GAN) based

learning strategies were investigated to the CNN based framework [16, 17, 18]

where the perceptual quality of the reconstructed images could be extremely

promoted. Furthermore, the generalized divisive normalization (GDN) [21]

together with variational auto-encoder was introduced as a substitute of the

nonlinear activation in [13], which significantly improves the coding perfor-

mance to be competitive with JPEG2000 standard. When comparing with

other activation functions, the core advantage of GDN is its fully reversibility

which guarantees nearly no information loss for the transform coding. And
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its successor [22], a novel parameters estimation for entropy model has shown

that additional coding gain could be obtained by extend the GDN with a hy-

perprior that captures the fact that spatially neighboring elements of the

latent representations tend to vary together in their scales. In [23], Alemi et

al. presented a theoretical framework for understanding representation learn-

ing using latent variable models in terms of the R-D tradeoff. Tschannen et

al. studied to optimize the R-D tradeoff under the constraint that the recon-

structed samples follow the distribution of the training data [18].

3.3.2 Saliency Prediction

Image saliency has embraced considerable development due to spread of deep

learning (DL) techniques and the current state-of-the-art methods are mainly

based on deep learning. One of these frameworks is the Ensemble of Deep

Networks (eDN) model by proposed by Vig et al. [24], who consists of three

convolutional layers followed by a linear classifier that blends feature maps

coming from the previous layers. After this work, Kummerer et al. [25] pro-

posed two deep saliency prediction networks: the first, called DeepGaze I,

was based on the AlexNet model [26], while its successor, DeepGaze II [27],

was built upon the VGG-19 network [28]. Liu et al. [29] presented a multi-

resolution CNN (Mr-CNN) fine-tuned over image patches centered on fixation

and non-fixation locations. It is well known that deep learning approaches

strongly depend on the availability of sufficiently large datasets. The publica-

tion of a large-scale eye-fixation dataset, SALICON [30], indeed contributed

to a big progress of deep saliency prediction models. SALICON dataset con-

sists of 480×640 images with ground truth binary saliency eye fixation points

(Sf ) as well as the continuous saliency maps (Sm). There are 10000 training,

5000 validation and 5000 test images in the dataset. Ground truth fixa-

tion and saliency maps are publicly available for the training and validation

images.

More recently, Kummerer et al. show that no single saliency map can
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perform well under all metrics and proposed a principled approach to solve

the benchmarking problem by separating the notions of saliency models,

maps and metrics [31].

3.3.3 Proposed Framework

We now consider the problem of joint learning for image compression and

saliency detection. The general framework is depicted in Fig. 3.11. Follow-

ing [13], we adopt an AE structure for image compression, which consists

of an encoder (with parameter θsh), a decoder (with parameter θ1), and an

entropy estimator (R). The encoder takes an image and generates a set

of feature maps; The decoder takes the quantized feature maps and gener-

ate the reconstructed image. The entropy coder takes the quantized feature

maps and estimates their entropy as a surrogate for the bit rate needed to

code the feature maps. The learning task for compression is to minimize the

compression loss defined as

L1 = ||I − Î||22 + λcR, (3.4)

where λc depends on the target bit rate, I and Î are original and recon-

structed images, R indicates the entropy of the latent variables.

In our current work, we adopt the compression framework proposed in [13].

The encoder utilizes a stack of three convolution layers separated by two GDN

layers as non-linearity function while the decoder part has mirror operations

with the encoder. Regarding the entropy model and arithmetic coding en-

gine for compressing the latent variables (X), we deploy the density model

with factorized-prior proposed in [22]. It is worthy noting that although the

image compression needs to quantize (round) the X to get finite entropy for

bit-rate, thanks to [13], the end-to-end learning of variational AEs could be

achieved by adding the i.i.d uniform noise (∆ ∼ (−0.5, 0.5)) to X to simulate

the quantization process such that the entire framework could be optimized
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end-to-end. The detailed illustration of network architecture is shown in Ap-

pendix. In the following discussion, the parameter θsh capsules the encoder

part of AE in Fig. 3.11 and θt denotes the parameters in the two specific

tasks.

For saliency detection, we adopt the architecture proposed in [32], which

uses initial Resnet [9] and VGG-16 [28] layers to generate features as inputs

to an attentive convolutional long-short-term-memory (ConvLSTM) archi-

tecture. Following [32], we remove the intial VGG-16 and Resnet layers and

directly use the encoder layers from the compression architecture followed by

three 3 × 3 stride 1 zero-padded convolutional layers with ReLu activation

functions to generate the inital visual features. We also reduce the number

of total feature maps from 512 to 192. We use a loss function that is a

weighted average of multiple metrics. The saliency detector (with parameter

θ2) takes the quantized feature maps X and generates a saliency map (Ŝ).

The learning task is to minimize the loss expressed as,

L2 = c1NSS(Ŝ, Sf) + c2KL(Ŝ, Sm) + c3CORR(Ŝ, Sm), (3.5)

where NSS(Sf , Ŝ) is the Normalized Scanpath Saliency loss specifically defined

for the evaluation of generated saliency map (Ŝ) who is to quantify the

saliency map values at the binarized label fixation locations (Sf ) and to

normalize it with the saliency map variance [33],

NSS(Ŝ, Sf) =
1

M

∑
i

Ŝi − µ(Ŝ)

σ(Ŝ)
Sf
i , (3.6)

where the µ(·) and σ(·) are the mean and variance for the generated saliency

map respectively and M is the number of elements of saliency map. While

the remaining two items in Eqn. (3.5) denote the Kullback-Leibler (K-L)

divergence,

KL(Ŝ, Sm) =
∑
i

Smi log(
Smi

Ŝi
). (3.7)
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Figure 3.11: The proposed framework for simultaneously learning for im-
age compression and saliency. The compression network follows [13]. The
saliency detection network follows the [32] with small modifications.

and linear Correlation Coefficient

CORR(Ŝ, Sm) =
σ(Ŝ, Sm)

σ(Ŝ) · σ(Sm)
. (3.8)

respectively, where the numerator is the co-variance between Ŝ and the con-

tinuous label Sm. The three ci, i ∈ {1, 2, 3} are used to balance the output

saliency map.

3.3.4 Training

The shared parameters θsh of our proposed model consists of the parameters

for GDN and the convolution kernels and bias. We use a 4 layer encoder,

with a 5 × 5 convolutional kernel with stride 2 followed by GDN operation

in each layer. First 3 layers use 192 convolution channels and the final latent

representations have 320 channels. Same-zero padding is always used in our

framework to ensure the feature dimension consistency. For the compression

decoder network we use the mirror structure of the shared encoder with 4

upsampling convolutional layers followed by inverse GDN activations. Fol-

lowing [32], we built the saliency framework using the attentive convolutional
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LSTM cells, using the structure illustrated in Fig. 3.11. Different from [32],

the latent variables are obtained using the shared encoder. These latent vari-

ables then go through 3 additional convolutional layers with 320 channels,

each activated by rectified linear unit (ReLU). The attentive convoltional

LSTM model is subsequently applied to predict a set of feature maps, which

are then combined by 1× 1 convolutional layers with multiple learned gaus-

sian priors to model the tendency of humans to fixiate in the center region

of the image. The gaussian parameters are learnable by the network.

Our joint training procedure consists of the following three phases.

• Phase 1 compression training: Only the encoder parameters (θsh)

and the decoder parameters (θ1) are trained using the compression loss

in Eqn. (3.4). We do not train the model until convergence on this

phase to allow for joint fine tuning on later training phases.

• Phase 2 saliency training: The encoder parameters (θsh) are frozen

and the saliency detector parameters (θ2) are optimized for the loss

in Eqn. (3.5).

• Fine tuning phase: All the parameters are further refined jointly

using two different approaches.

– Weighted average training : We use the weighted sum of the

loss the functions

L = βL1 + (1− β)L2, (3.9)

where β is a constant weight.

– MGDA: Updating θsh by the classical MGDA. θ1 and θ2 are

then updated based on the losses L1 and L2 respectively.

– Adaptive ε-MGDA

– Constant-ε-MGDA
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For evaluation purposes, we have also performed a separate saliency train-

ing and a separate compression training.

• Compression priority training: This training starts with the con-

tinuation of the Phase 1 training, where we continue minimizing L1

loss until convergence on the compression task. Then θsh parameters

are frozen and training is performed only on the θ2 parameters with L2

loss.

• Saliency priority training: This model is trained using only L2

loss over the parameters θsh∪θ2 until convergence on the saliency task.

Then θsh ∪ θ2 are frozen and only the θ1 parameters are trained using

L1.

Different instances of the saliency only training and full compression training

were used to determine a viable λc in Eqn. (3.4) and viable λ1, λ2, λ3 in

Eqn. (3.5). Then these parameters were kept as constant through all the

phases of training.

For all phases of the training we have used the SALICON training and

validation dataset [30]. During Phase 1, the model is trained self-supervised

on 256×256 random crops from the training images normalized to [0, 1] with

i.i.d. uniform noise ∆ ∼ (−0.001, 0.001) added for better generalization.

We have used an SGD optimizer with momentum with batchsize of 8 for

all the training phases, halving the learning rate every 15 epochs. Phase 1

training lasted for 1500 epochs, phase 2 training lasted for 50 epochs and

fine tuning training was done for 200 epochs on both the proposed and

the weighted average procedure. Although the weighted average fine tuning

lasted for the entire 200 epochs we have observed convergence much faster

compared to the proposed MGDA method. However training was done for

the full 200 epochs for fairness. Saliency priority training was ran for 50

epochs and compression priority training was ran for 2000 epochs.
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3.3.5 Results

We report our results on the SALICON validation dataset at different phases

of training. Since the parameters θsh are initially trained only on L1 loss, our

model performs much better in the compression task than the saliency task

at the end of Phase 2. However with the fine tuning phase this discrepancy

between the tasks greatly reduces. Tables 3.2 and 3.3 show that proposed

MGDA algorithm significantly outperforms the weighted average algorithm.

It was able to reach significantly lower L1 and L2 than weighted average

approach for three choice of the weighting factor; For β = 0.2, it achieved

significantly lower L1 and only slightly higher L2. Note that the MGDA

training was able to further reduce on the saliency loss, without increasing

the compression loss. We further compare the proposed method with the

constant-weight averaged training methods on Fig. 3.12. The red points are

generated by using weighted average training with different weights. Blue

point corresponds to MGDA training. Black points are the saliency and

compression priority training results, which can be considered as special cases

of weighted average training with β = 0 and β = 1, respectively. This figure

clearly shows that the MGDA algorithm is able to reach lower compression

loss and saliency loss than the weighted average method for most weighting

parameters, except for one point where saliency loss is slightly lower but

compression loss is significantly higher. Overall, the MGDA solution has a

significantly better trade-off between the two losses than all possible solutions

achievable by varying the weighting factor in the entire range. Furthermore,

the MGDA solution has a compression loss very close to the compression-

priority training, but has a saliency loss that is still quite higher than that

by saliency-priority training. This is likely because MGDA started with an

initial solution that favors the compression task. Had we start with a solution

that is more balanced between the two tasks, MGDA may yield a solution

that has worser compression performance and better saliency performance.

We have also compared the training losses of the exact and inexact MGDA
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L1 PSNR BPP
End of Phase 1 2.226 29.131 0.742
End of Phase 2 2.226 29.131 0.742
Original MGDA 2.013 29.291 0.685

Adaptive MGDA λ = 0.01 2.146 29.191 0.719
Adaptive MGDA λ = 0.05 2.211 29.276 0.725
Adaptive MGDA λ = 0.1 2.359 27.972 0.742

β = 0.2 3.428 25.374 0.771
β = 0.4 2.642 27.456 0.737
β = 0.6 2.221 28.923 0.694
β = 0.8 2.139 29.273 0.689

Compression priority 1.845 31.150 0.669
Saliency priority 8.123 26.152 6.123

Table 3.2: Compression model performances for joint training. BPP is the
average bits per pixel calculated using rate estimation network from [22].
MGDA is our proposed method.

L2 NSS CORR
End of Phase 2 -2.143 1.642 0.671
Original MGDA -3.002 1.856 0.791

Adaptive MGDA λ = 0.01 -3.038 1.921 0.772
Adaptive MGDA λ = 0.05 -2.973 1.803 0.722
Adaptive MGDA λ = 0.1 -2.614 1.752 0.769

β = 0.2 -3.101 2.002 0.813
β = 0.4 -2.617 1.745 0.781
β = 0.6 -2.364 1.682 0.768
β = 0.8 -2.164 1.648 0.763

Saliency priority -3.441 2.163 0.811
Compression priority -2.152 1.654 0.681

Table 3.3: Saliency model performances for different joint training instances.

points in Table (3.4). Inexact-MGDA has resulted in slightly better training

loss performance which may be because the by making sure batch gradients

are closer to the whole epoch gradient, the network optimizes better on the
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Figure 3.12: The validation loss values for saliency and compression. Black
points are the saliency and compression priority training results.

Compression Loss Saliency Loss
Original MGDA 1.513 -3.247

Adaptive MGDA λ = 0.01 1.502 -3.298
Adaptive MGDA λ = 0.05 1.527 -3.256
Adaptive MGDA λ = 0.1 1.711 -2.924

Table 3.4: Compression and saliency training losses compared based on
MGDA variants.

training data but losses the generalization benefits of a smaller batchsize.

In compression and saliency experiments by varying β we observe a Pareto

frontier on Figure (3.12) and MGDA variant algorithms yielding better solu-

tions than the Pareto frontier. However this network have not seen improve-

ment by using the inexact MGDA, in fact using the scaling factor λ = 0.1

similar to the previous experiments have in fact significantly lowered the

network performance. In order to get results similar to regular MGDA very
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small λ values had to be used. This not very surprising as λ → 0 inexact

MGDA acts like regular MGDA. We speculate some explanations about why

the network have not gained from the inexact MGDA.

• Out of the three experiments performed, saliency-compression was the

only one where the multiple tasks are not very compatible. The entropy

minimization of the compression was surely in direct contrast with

the saliency detection task and MSE minimzation does not take into

account which pixels are salient.

• The relationship between ε and ε̂ may not be linear. Using a simple

scaling factor lambda may not sufficiently capture the relation between

the two variables.

• The inexactness characteristics of all tasks are different. It is possible

that due to some inherent nature of the tasks, this network benefits

more from inexactness. We encourage more research about gradient

inexactness that could reveal the underlying relationship between tasks

and their relationship with inexact gradients.

We have also tracked training losses during MGDA starting from after the

compression priority training. The training loss trajectories demonstrated in

Fig. 3.13 show that saliency performance increase without performance loss in

the compression task. Compression task undergo small oscillations through-

out training without any significant change. We believe this oscillation is

caused by the use of the stochastic gradient descent, where the MGDA gra-

dient update is done based on the loss incurred in each small batch, rather

than the entire training set.

Tracking the trajectory of α in Fig. 3.14, we see that α starts out small

(reducing the influence of the compression loss) because the initial solution

is obtained by minimizing the compression loss. As the saliency performance

gets improved, α gradually increase so that both losses are considered more

equally.
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Figure 3.13: Saliency loss and Compression training loss variations during
MGDA training starting from an optimum compression and sub-optimum
saliency point. Losses are averaged over epochs.

We provide three generated test samples to show the visual results of the

proposed framework. The left panel is the output saliency map produced

by the proposed framework while the middle and right panels are the label

saliency and original texture image respectively. It is clear that the proposed

framework could generate convincing saliency map, while achieving good

compression performance.
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Figure 3.14: α trajectory during the proposed MGDA training initialized by
the compression priority solution, averaged over epochs.
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Figure 3.15: Left: the generated saliency map; middle: ground truth saliency
map; right: original texture image.
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(a) Original image. (b) Reconstructed image.

Figure 3.16: Image reconstruction at 29.925 PSNR and 0.712 BPP using the
inexact-MGDA λ = 0.01 trained model. Image from SALICON dataset.

(a) Original image. (b) Reconstructed image.

Figure 3.17: Image reconstruction at 28.421 PSNR and 0.703 BPP using the
inexact-MGDA λ = 0.01 trained model. Image from KODAK dataset [34].
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Conclusion and Future Work

We have proposed a novel adaptive inexactness algorithm extension to the

existing MGDA algorithm and tested the performance in 3 network setups.

In 2 of these setups we have observed significant gains by using the adaptive

algorithm. Our inexactness estimation hypothesis seems to be holding true

for these networks. However for the joint saliency and compression network

the adaptive algorithm have performed very similarly to the non-adaptive

case. We speculate that this is due to failure of adjusting the right scaling

hyperparameter for this set of tasks. Unfortunately due to the sheer size of

the compression and saliency network it was not feasible to run a full sweep

on the hyperparameters.

4.1 Conclusions

• Using estimated inexactness have improved results for two of our exper-

iments. We conclude that our hypothesis ε2 = λ 1
N

∑
p(‖∇L̃p − µ∇L‖22)

is likely true and the mean of the minibatch gradient using stochastic

gradient descent is a good estimate of the true epoch gradient.

• The inexact algorithm has yielded slightly better training loss perfor-

40
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mance. We believe this is because inexact MGDA basically tries to

make sure all minibatch gradients are similar to the epoch gradient.

By doing so a better training performance is observed but the general-

ization benefits of using minibatches is lost.

• The optimum ε∗ value that achieved the best performance was signifi-

cantly smaller than the estimated ε value but by scaling the estimated

value with a right small scaling factor we observed valuable gains. We

believe by keeping the ε smaller than the actual error bound the model

gains from the randomness introduced with the minibatch training as

explained in [7].

• The pseudo-mean gradient introduced for tracking gradients over an

epoch is similar to the momentum term in popular optimizers like

Adam. By doing the SGD update over a running average of the gra-

dient and scaling the gradient based on the running average of second

moments, Adam essentially does minimal updates in the direction that

shows more variation throughout training while maximizing updates

in the consistent, less variational directions. We believe this is closely

related to the gradient inexactness however the approach we are tak-

ing is significantly different. Inexact-MGDA algorithm operates in the

multi-task scene trying to make sure all updates are Pareto-optimal for

all the tasks whereas methods like Adam and momentum are analyzing

inexactness for every element of the gradient vector.

4.2 Future Work

• A relationship between batchsize and inexactness estimation was not

explored. It would be interesting to look at how inexactness amount

and final performance change with different batchsizes.

• The pseudo-mean gradient introduced for tracking gradients over an
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epoch is an approximation of the true epoch gradient. One could try

different methods of estimating the true gradient. Using a running

average instead of the pseudo-mean could yield promising results.

• Gradient inexactness is an interesting phenomenon studied widely in

deep learning that is not unique to multi-task problems. We have ap-

proached the multi-task problem from the inexactness perspective as

the multiple gradients provided with the tasks allowed for a straight-

forward analysis. Similar methods could be leveraged in a single-task

scenario by replacing different task gradients with different minibatch

gradients.
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[27] Matthias Kümmerer, Thomas SA Wallis, Leon A Gatys, and Matthias

Bethge. Understanding low-and high-level contributions to fixation pre-

diction. In 2017 IEEE International Conference on Computer Vision,

pages 4799–4808, 2017.

[28] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-

works for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[29] Nian Liu, Junwei Han, Dingwen Zhang, Shifeng Wen, and Tianming

Liu. Predicting eye fixations using convolutional neural networks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 362–370, 2015.

[30] Ming Jiang, Shengsheng Huang, Juanyong Duan, and Qi Zhao. Salicon:

Saliency in context. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1072–1080, 2015.
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